- 1 Supplement of
- 2 Differences in organic carbon fractions and stability explain limited accumulation in loam
- 3 and sandy loam under greenhouse conditions
- 4 Boyuan Tan ¹ · Lu Yang ¹ · Xun Xiao ² · Chunji Li ^{3, 4} · Jing Tan ¹ · Ning An ¹ · Lingxuan Meng
- ¹ College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
- ² State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese
- 8 Academy of Sciences, Nanjing 210008, China
- 9 ³ College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering,
- 10 Guangzhou, 510550, China
- ⁴ Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China,
- 12 Ministry of Agriculture and Rural Affairs, Guangzhou, 510550, China
- ⁵ School of Humanities and Law, Northeastern University, Shenyang, 110169, China
- ⁶ Liaoning Academy of Agricultural Science, Shenyang, Liaoning 110866, China
- ⁷Key Liaoning Vocational College of Ecological Engineering, Shenyang 110101, China
- * Corresponding authors:
- 17 Song Li; Email: lisong 86@syau.edu.cn
- 18 Wei Han; Email: hanweiguy@163.com

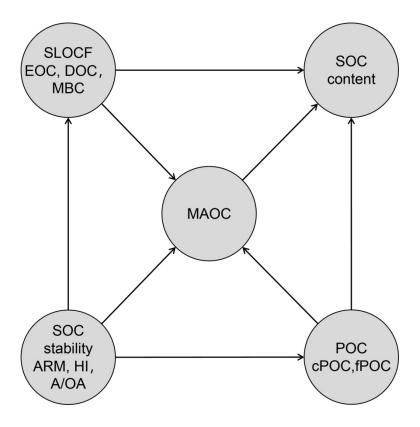


Fig. S1. A priori partial least squares structural equation model (PLS-SEM) illustrating the hypothesized pathways through which SOC chemical stability indices affect SOC fractions and SOC content in greenhouse soils. Note: SOC fractions include easily oxidizable organic carbon (EOC), dissolved organic carbon (DOC), microbial biomass carbon (MBC), coarse particulate organic carbon (cPOC), fine particulate organic carbon (fPOC), and mineral-associated organic carbon (MAOC). SOC chemical stability indices include aromaticity index (ARM), humification index (HI), and alkyl-C to O-alkyl-C ratio (A/OA).