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S1. Flow-cell calibration and particle conditioning time determination 12 
 13 
In both bead-mobility and poke-and-flow experiments, the flow-cell was calibrated for relative humidity (RH) 14 
using the deliquescence points of three salts including K2CO3, NaCl, and  (NH4)2SO4 (Winston and Bates, 1960). 15 
The experimentally determined deliquescence RH at each measurement temperature 273, 283, 293, and 303 K were 16 
compared with literature. The RH accuracy was within ± 2.0 % and the temperature was controlled within ± 1 K 17 
of the target. 18 

Prior to each experiment, particles deposited on a hydrophobic substrate were conditioned at the target RH of 19 
the carrier gas to allow sufficient equilibration with the surrounding gases. Conditioning times were adjusted 20 
depending on the experimental temperature and technique. To evaluate whether the samples reached near-21 
equilibrium with the target RH, we applied a method previously reported in the literature (Kiland et al., 2023a; 22 
Smith et al., 2021a; Kiland et al., 2023b; Maclean et al., 2021; Evoy et al., 2021; Smith et al., 2021b). This method 23 
involves comparing experimental conditioning time to the characteristic mixing time of water within organic 24 
aerosol (OA), τmix,H2O, calculated:  25 

τmix,H2O =
dp

2

4π2DH2O(T, RH)
 (S1.1) 

Here, dp represents the particle diameter. 𝐷𝐻2𝑂(𝑇, 𝑅𝐻) is the RH- and temperature-dependent diffusion coefficient 26 

of water in OA. The value of DH
2

O was calculated using the fractional Stokes–Einstein equation, which accounts 27 

for the link between viscosity and diffusion in cases where the diffusing species are comparable in size to, or smaller 28 
than, the molecules forming the molecules (Evoy, 2020):  29 

DH2O(T, RH) = D°H2O(T) × (
η°H2O(T)

η(T, RH)
)

ξ

 (S1.2) 

In this equation, 𝐷°𝐻2𝑂(𝑇) is the the self-diffusion of water calculated with the Stokes-Einstein equation at 293 K 30 
(2.15 × 10−9 m2 s–1). 𝜂°𝐻2𝑂(𝑇) is the viscosity of pure water obtained from literature with values of 1.78×10–3 Pa⸱s 31 
at 273 K, 1.31×10–3 Pa⸱s at 283 K,  1×10–3 Pa⸱s at 293K, and 8.14×10–4 Pa⸱s at 303 K.(Weight, 2019). 𝜂(𝑇, 𝑅𝐻) is 32 
the measured viscosity of sucrose at the corresponding RH and temperature. ξ is the fractional exponent, using Eq. 33 
(S1.3), which accounts for the relative size of the diffusing molecule and the matrix: 34 

ξ = 1 − [A × exp (−B
rdiff

rmatrix

)]  

 

(S1.3) 

where coefficient values of A = 0.73 and B = 1.79 (Evoy et al., 2020),  rdiff hydrodynamic radius of water of 0.1 35 
nm.(Price et al., 2016) The matrix radius, rmatrix, of the sucrose molecule was calculated under the assumption of 36 
spherical geometry, using 342.30 g mol-1 and a density of 1.67 g cm-3(Haynes, 2016), resulting in rmatrix = 0.44 nm 37 
and 𝜉 = 0.51. Conditioning durations for the other temperatures (273, 283, 293 and 303 K) are summarized in 38 
Table S1. 39 



3 

 

In addition to water, we also estimated the mixing times of organic molecules (τmix,org) to assess potential diffusion 40 
limitations within the particle matrix itself. This is particularly relevant under conditions where semi-solid or glassy 41 
states may impede equilibration. The diffusion coefficient of organics (Dorg) was calculated using the classical 42 
Stokes–Einstein equation (Eq. S1.4):(Evoy et al., 2019; Evoy et al., 2020)  43 

Dorg(T, RH) =
kT

6πηorg(RH, T)Rdiff

 (S1.4) 

where k is the Boltzmann constant, 𝜂𝑜𝑟𝑔 is the temperature-and-RH dependent viscosity of OA, and Rdiff is the 44 

radius of the diffusing molecules. We used 0.4 nm for Rdiff, consistent with typical organic molecules of similar 45 
molecular weight and density. Using the estimated diffusion coefficients, the mixing time of organics was 46 
calculated as: 47 

τmix,org =
dp

2

4π2Dorg(T, RH)
 (S1.5) 

 48 
A particle diameter of 200 nm was used in all calculations, consistent with the typical size of secondary organic 49 
aerosol (SOA) particles observed in the atmosphere (Riipinen et al., 2011; Pöschl et al., 2010). The τmix,org value 50 
represents the time required for the concentration of the diffusing species at the particle’s center to attain 1/e of the 51 
equilibrium concentration. 52 

The diffusivity coefficient of N2O5 in OA (DN2O5), which is needed in calculations of N2O5 uptake coefficient, is 53 
also determined using the fractional Stokes-Einstein equation (S1.2 and S1.3). In Eq. S1.3, the hydrodynamic radius 54 
of N2O5 is set to be 0.25 nm (Grzinic et al., 2015).  55 
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S2. Viscosity parameterization of sucrose-H2O droplets 56 

We parameterized the viscosity of sucrose-H2O droplets as a function of RH and temperature, following the 57 
approach proposed by Kiland et al. (2023) Experimental data at 293 ± 1 K was fitted using a mole-fraction-based 58 
Arrhenius mixing rule (Eq. S2.1) 59 

log(η(RH, 293K) = xorg log10(ηorg,dry) + (1 − xorg)log(η°H2O) (S2.1) 

where η(RH, 293K) is the viscosity of the mixture at room temperature, ηorg,dry is the viscosity of the organic 60 
component at 0% RH (1×1012 Pa⸱s), and η°H

2
O is the viscosity of pure water (1×10–3 Pa⸱s).  61 

The mole fraction of organic components, 𝑥𝑜𝑟𝑔, was calculated from the mass fraction using: 62 

xorg =

worg

Morg

worg

Morg
+ 

1 − worg

MH2O

   

 

(S2.2) 

 63 

where worg is the mass fraction of the organic component, and Morg and MH
2
O are the molecular weights of sucrose 64 

and water, respectively. worg was determined from the water activity (aw = RH/100) using a mass-based 65 
hygroscopicity parameter k, as shown in Eq. S2.3. 66 

worg = (1 + k (
aw

1 − 𝑎𝑤

))

−1

  
(S2.3) 

 67 

To evaluate the tropospheric distribution of predicted sucrose–H₂O droplet phase state and mixing times, we 68 
utilized monthly mean reanalysis data for temperature and RH from the Copernicus Climate Data Store 69 
(https://cds.climate.copernicus.eu/) (Hersbach et al., 2023). The dataset provides global coverage from 90oN to 70 
90oS and 180oW to 180o E, with temporal resolution spanning January 2020 to December 2024. The altitude (h) 71 
corresponding to each pressure level was computed using the following equation derived from the barometric 72 
formula: 73 
Fitting the experimental data at 293 K yielded the value of k = 0.061 ± 0.0023. As shown in Figure S8, the model 74 
provides a good fit to the experimental data, supporting the robustness of the parameterization. Peters and 75 
Kreidenweis (2007)  reported k values between 0.01 and 0.5 for diverse organic compounds, highlighting variability 76 
in hygroscopicity with molecular structure. 77 

https://cds.climate.copernicus.eu/
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S3. Collection of global ambient zonal-RH and -temperature 78 
 79 

ℎ =
1 − (

𝑃
𝑃𝑜

)

𝑅𝜆
𝑀𝑎𝑖𝑟

𝜆/𝑇𝑜

 

 

 

(3) 

 80 
where P is the pressure at the given level (1000 hPa – 100 hPa), 𝑝𝑜 is the pressure at sea level (101325 Pa), R is the 81 
gas constant (8.314 J mol–1 K–1), 𝜆 is the temperature lapse rate (6.5 K km–1), Mair is the molecular mass of the air 82 
(28.97 g mol–1), and To is the mean temperature at the surface (288.15 K). To construct latitude–altitude profiles, 83 
the monthly RH and temperature values were averaged across all longitudes at each latitude and pressure level. 84 

 85 

  86 
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 87 

Figure S1: Calibration line illustrating the relationship between mean bead speeds and viscosities of sucrose-H2O 88 
droplets at varying relative humidity (RH) levels. A linear regression, shown by the red dotted line, fits the data with the 89 
equation: 𝒗𝒊𝒔𝒄𝒐𝒔𝒊𝒕𝒚 =  𝟎. 𝟎𝟎𝟎𝟎𝟑 ×  (𝒎𝒆𝒂𝒏 𝒃𝒆𝒂𝒅 𝒔𝒑𝒆𝒆𝒅)−𝟎.𝟗𝟕𝟏. The pink area denotes 95% prediction bands of fitting 90 
to the data in this study. The uncertainty in mean bead speed along x–axis is calculated from standardization of 2 – 5 91 
beads within 3 – 5 particles for each RH value. 92 
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 94 

Figure S2: Optical images of sucrose-H2O droplets during a typical bead-mobility experiment at different temperatures. 95 
Three labeled beads with tracked x and y coordinates were used to determine average bead speeds using ImageJ 96 
software. The size of the scale bar is 20 μm. 97 
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 99 
Figure S3: (a) Mean bead speed and (b) resulted viscosities from bead-mobility experiments for sucrose-H2O droplets 100 
as a function of temperature and relative humidity (RH). The x-axis error bars represent the uncertainty in RH from 101 
the RH sensor during calibration at each temperature, while y-axis error bars indicate the standard deviation of the 102 
measured bead speeds and viscosity calculated from 3 – 5 beads across 2 – 5 particles at each RH level.  103 

 104 
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 105 

Figure S4: Optical images for experimental flow times (τexp, flow) during poke-and-flow experiments at different 106 
temperatures. White scale bar indicates 20 μm. 107 
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 108 

Figure S5: (a) Mean experimental flo  time (τ(e    flo )) from  o e-and-flow experiments for sucrose-H2O droplets as 109 
a function of temperature and relative humidity (RH). The x-axis error bars represent the uncertainty in RH from the 110 
RH sensor during calibration at each temperature, while y-error bars indicate the standard deviation of the measured 111 
τ(e    flo )  calculated from measureme ts of   – 4 particles at each RH level. (b) Resulted viscosities from the τ(e    112 
flow) and the equation proposed by Sellier et al. (2015) The y-error bars indicate the standard deviation of the measured 113 
viscosity.  114 

 115 

 116 

  117 
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 118 

Figure S6: Optical images of sucrose-H2O droplets during poke–and–flow experiments at different temperatures. 119 
Observations were made when particles cracked at certain relative humidity (RH), and they were then monitored for 120 
longer than 2 hours, with no evidence of flow restoration was detected. RH was consistently regulated throughout the 121 
pre-poking, poking, and post- o i   sta es. White scale bars re rese t 20 μm. 122 
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 124 

 125 

Figure S7: The log viscosity of sucrose-H2O droplets as a function of RH at room temperature. The solid line is a mole-126 
fraction-based Arrhenius mixing rule fit to the viscosity data (eq S2.1), which yields a hygroscopicity parameter, κ = 127 
0.061. The point at 100% RH (green circle) represents the viscosity of water at room temperature. 128 

129 
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 130 

Figure S8: Comparison of experimental and predicted viscosity values for sucrose-H2O droplets. The experimental 131 
values (blue circles) were measured between 273 and 303 K and ~20 to ~90 % RH, whereas predicted viscosities (dashed 132 
line) were calculated using the VFT equation. The fitting procedure yields the fragility parameter (Df) value of 13 ± 1. 133 

 134 
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 135 

Figure S9: Altitude–latitude profiles of zonal-mean temperature and RH obtained from Copernicus Climate Data Store 136 
(https://cds.climate.copernicus.eu/) , averaged seasonally and annually over the period 2020-01-01 to 2024-12-01. Panels 137 
present seasonal profiles for spring (a and b), summer (c and d), fall (e and f), and winter (g and h), showing temperature 138 
and RH, respectively. Panels (I and j) display the annual average zonal-mean profiles of temperature and RH. 139 
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 140 

Figure S10: Seasonal zonal-mean profiles of viscosity and mixing time of sucrose droplets as a function of altitude and 141 
latitude, derived from temperature and RH data obtained from Copernicus Climate Data Store 142 
(https://cds.climate.copernicus.eu/) and averaged over the period 2020-01-01 to 2024-12-01. Panels (a and b) present 143 
viscosity and mixing time for spring, panels (c and d) for summer, panels (e and f) for fall, and panels (g and h) for 144 
winter. The blue dashed line shows the transition from liquid to semi-solid state. The light green dashed shows the mixing 145 
time of 1 hr. 146 

147 
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 148 
Figure S11: N2O5 uptake coefficient in 200 nm sucrose droplets as a function of altitude and latitude based on annual 149 
average zonal-mean RH and temperature fields for the years 2020 to 2024, obtained from Copernicus Climate Data 150 
Store (https://cds.climate.copernicus.eu/). Surface hydrolysis is not considered in calculations of N2O5 uptake coefficient 151 
(Γs is set to be 0 in Eq. 3). 152 

 153 
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Table S1. Summary of the conditioning time for sucrose-H2O droplets at different temperature and RH conditions. 169 
𝜏𝑚𝑖𝑥,𝐻2𝑂 values are the calculated characteristic mixing time of water within the sucrose-H2O droplets based on the 170 

calculated diffusion coefficient of water. τconditioning values represent the experimental conditioning time. τconditioning 171 
/ 𝜏𝑚𝑖𝑥,𝐻2𝑂 ratio values exceeding 1 indicates that the particles have likely reached equilibrium with the surrounding 172 

RH. 173 

 174 

RH τconditioning (h) 𝝉𝒎𝒊𝒙,𝑯𝟐𝑶 (h) τconditioning / 𝝉𝒎𝒊𝒙,𝑯𝟐𝑶 

Temp = 273 K    

79  3.30E-01 3.64E-03 90.6  

53  1.50E+00 2.39E-01 6.3  

49  1.50E+00 4.58E-01 3.3  

Temp = 283 K    

81  1.60E-01 1.85E-03 86.5  

76  1.60E-01 5.00E-03 32.0  

55  1.00E+00 2.19E-02 45.7  

49  1.00E+00 8.86E-02 11.3  

46  1.00E+00 1.94E-01 5.1  

42  1.00E+00 4.64E-01 2.2  

Temp = 293 K    

90 1.60E-01 1.84E-04 868.3  

86 1.60E-01 2.23E-04 718.4  

83 1.60E-01 4.18E-04 383.0  

79 1.60E-01 7.37E-04 217.2  

75 1.60E-01 1.50E-03 106.4  
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71 1.60E-01 2.03E-03 78.7  

50 5.00E-01 1.82E-02 27.5  

44 5.00E-01 2.14E-02 23.3  

39 5.00E-01 1.48E-01 3.4  

34 5.00E-01 5.08E-01 1.0  

Temp = 303 K    

73 1.60E-01 8.87E-04 180.5  

69 1.60E-01 1.69E-03 94.9  

65 1.60E-01 2.65E-03 60.5  

50 5.00E-01 6.54E-03 76.5  

44 5.00E-01 8.78E-03 56.9  

39 5.00E-01 2.69E-02 18.6  

34 5.00E-01 5.95E-02 8.4  

29 5.00E-01 3.25E-01 1.5  

 175 

 176 

 177 

  178 
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