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S1. Flow-cell calibration and particle conditioning time determination

In both bead-mobility and poke-and-flow experiments, the flow-cell was calibrated for relative humidity (RH)
using the deliquescence points of three salts including K,COs3, NaCl, and (NH4)>SO4 (Winston and Bates, 1960).
The experimentally determined deliquescence RH at each measurement temperature 273, 283, 293, and 303 K were
compared with literature. The RH accuracy was within + 2.0 % and the temperature was controlled within £ 1 K
of the target.

Prior to each experiment, particles deposited on a hydrophobic substrate were conditioned at the target RH of
the carrier gas to allow sufficient equilibration with the surrounding gases. Conditioning times were adjusted
depending on the experimental temperature and technique. To evaluate whether the samples reached near-
equilibrium with the target RH, we applied a method previously reported in the literature (Kiland et al., 2023a;
Smith et al., 2021a; Kiland et al., 2023b; Maclean et al., 2021; Evoy et al., 2021; Smith et al., 2021b). This method
involves comparing experimental conditioning time to the characteristic mixing time of water within organic
aerosol (OA), Tui 20, calculated:

d,?

. S1.1
TmixH20 = 2r2p o (T, RH) (S1.1)

Here, d, represents the particle diameter. Dy, (T, RH) is the RH- and temperature-dependent diffusion coefficient

of water in OA. The value of Du,0 was calculated using the fractional Stokes—Einstein equation, which accounts

for the link between viscosity and diffusion in cases where the diffusing species are comparable in size to, or smaller
than, the molecules forming the molecules (Evoy, 2020):

T‘IQHZO(T))E (SIE)

Duzo (T, RH) = Do (1) X (S bes

In this equation, Dy, (T) is the the self-diffusion of water calculated with the Stokes-Einstein equation at 293 K
(2.15 x 1072 m? s7"). n°y,0 (T) is the viscosity of pure water obtained from literature with values of 1.78x107 Pa-s
at273 K, 1.31x1073 Pa's at 283 K, 1x107 Pa's at 293K, and 8.14x10~ Pas at 303 K.(Weight, 2019). n(T, RH) is
the measured viscosity of sucrose at the corresponding RH and temperature. ¢ is the fractional exponent, using Eq.
(S1.3), which accounts for the relative size of the diffusing molecule and the matrix:

E=1— [A X exp (—Bﬂﬂ (S1.3)
Fmatrix

where coefficient values of A =0.73 and B = 1.79 (Evoy et al., 2020), r4j hydrodynamic radius of water of 0.1

nm.(Price et al., 2016) The matrix radius, #mair, Of the sucrose molecule was calculated under the assumption of

spherical geometry, using 342.30 g mol™! and a density of 1.67 g cm(Haynes, 2016), resulting in 7w = 0.44 nm

and ¢ = 0.51. Conditioning durations for the other temperatures (273, 283, 293 and 303 K) are summarized in

Table S1.
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In addition to water, we also estimated the mixing times of organic molecules (7,ix0rg) to assess potential diffusion

limitations within the particle matrix itself. This is particularly relevant under conditions where semi-solid or glassy

states may impede equilibration. The diffusion coefficient of organics (D,.,) Was calculated using the classical

Stokes—Einstein equation (Eq. S1.4):(Evoy et al., 2019; Evoy et al., 2020)
KT

6TNorg (RH, T)Rgifr

where k is the Boltzmann constant, 7,4 is the temperature-and-RH dependent viscosity of OA, and Ry is the

Dorg (T, RH) =

(S1.4)

radius of the diffusing molecules. We used 0.4 nm for Rgy; consistent with typical organic molecules of similar
molecular weight and density. Using the estimated diffusion coefficients, the mixing time of organics was
calculated as:
= (S1.5)
TOOTE 412D 5 (T, RH) '

A particle diameter of 200 nm was used in all calculations, consistent with the typical size of secondary organic
aerosol (SOA) particles observed in the atmosphere (Riipinen et al., 2011; Poschl et al., 2010). The tyixore value
represents the time required for the concentration of the diffusing species at the particle’s center to attain 1/e of the
equilibrium concentration.

The diffusivity coefficient of N>Os in OA (Dn20s), which is needed in calculations of N>Os uptake coefficient, is
also determined using the fractional Stokes-Einstein equation (S1.2 and S1.3). In Eq. S1.3, the hydrodynamic radius
of N,Os is set to be 0.25 nm (Grzinic et al., 2015).
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S2. Viscosity parameterization of sucrose-H20 droplets

We parameterized the viscosity of sucrose-H>O droplets as a function of RH and temperature, following the
approach proposed by Kiland et al. (2023) Experimental data at 293 + 1 K was fitted using a mole-fraction-based
Arrhenius mixing rule (Eq. S2.1)

log(ﬂ(RH' 293K) = Xorg loglo(norg,dry) + (1 - Xorg)log(noHZO) (821)

where 7(RH, 293K) is the viscosity of the mixture at room temperature, #4.g4- 1S the viscosity of the organic
component at 0% RH (1x10'* Pa's), and 1,0 is the viscosity of pure water (110 Pa-s).

The mole fraction of organic components, X4, was calculated from the mass fraction using:

Worg

Morg (S2.2)
Worg + 1- Worg
Morg MH20

Xorg =

where worg is the mass fraction of the organic component, and Mg and My 0 are the molecular weights of sucrose

and water, respectively. wo, was determined from the water activity (aw = RH/100) using a mass-based
hygroscopicity parameter k, as shown in Eq. S2.3.

o (ion(e)]

To evaluate the tropospheric distribution of predicted sucrose—H2O droplet phase state and mixing times, we
utilized monthly mean reanalysis data for temperature and RH from the Copernicus Climate Data Store
(https://cds.climate.copernicus.eu/) (Hersbach et al., 2023). The dataset provides global coverage from 90°N to
90°S and 180°W to 180° E, with temporal resolution spanning January 2020 to December 2024. The altitude (%)
corresponding to each pressure level was computed using the following equation derived from the barometric
formula:

Fitting the experimental data at 293 K yielded the value of £ =0.061 + 0.0023. As shown in Figure S8, the model
provides a good fit to the experimental data, supporting the robustness of the parameterization. Peters and
Kreidenweis (2007) reported k values between 0.01 and 0.5 for diverse organic compounds, highlighting variability
in hygroscopicity with molecular structure.
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S3. Collection of global ambient zonal-RH and -temperature

N
1-(p) 3)

h=—>r

where P is the pressure at the given level (1000 hPa — 100 hPa), p,, is the pressure at sea level (101325 Pa), R is the
gas constant (8.314 J mol™! K1), A is the temperature lapse rate (6.5 K km™), M, is the molecular mass of the air
(28.97 g mol™), and T, is the mean temperature at the surface (288.15 K). To construct latitude-altitude profiles,
the monthly RH and temperature values were averaged across all longitudes at each latitude and pressure level.
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Figure S1: Calibration line illustrating the relationship between mean bead speeds and viscosities of sucrose-H0
droplets at varying relative humidity (RH) levels. A linear regression, shown by the red dotted line, fits the data with the
equation: viscosity = 0.00003 x (mean bead speed)™%°71. The pink area denotes 95% prediction bands of fitting
to the data in this study. The uncertainty in mean bead speed along x—axis is calculated from standardization of 2 — §
beads within 3 — 5 particles for each RH value.
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95 Figure S2: Optical images of sucrose-H2O droplets during a typical bead-mobility experiment at different temperatures.
96 Three labeled beads with tracked x and y coordinates were used to determine average bead speeds using ImageJ

97  software. The size of the scale bar is 20 pm.
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Figure S3: (a) Mean bead speed and (b) resulted viscosities from bead-mobility experiments for sucrose-H2O droplets
as a function of temperature and relative humidity (RH). The x-axis error bars represent the uncertainty in RH from
the RH sensor during calibration at each temperature, while y-axis error bars indicate the standard deviation of the
measured bead speeds and viscosity calculated from 3 — 5 beads across 2 — 5 particles at each RH level.
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106 Figure S4: Optical images for experimental flow times (texp, flow) during poke-and-flow experiments at different
107 temperatures. White scale bar indicates 20 pm.
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Figure S5: (a) Mean experimental flow time (t(exp, flow)) from poke-and-flow experiments for sucrose-H2O droplets as
a function of temperature and relative humidity (RH). The x-axis error bars represent the uncertainty in RH from the
RH sensor during calibration at each temperature, while y-error bars indicate the standard deviation of the measured
1(exp, flow), calculated from measurements of 3 — 4 particles at each RH level. (b) Resulted viscosities from the t(exp,

flow) and the equation proposed by Sellier et al. (2015) The y-error bars indicate the standard deviation of the measured
viscosity.
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Figure S6: Optical images of sucrose-H20O droplets during poke-and—flow experiments at different temperatures.
Observations were made when particles cracked at certain relative humidity (RH), and they were then monitored for
longer than 2 hours, with no evidence of flow restoration was detected. RH was consistently regulated throughout the
pre-poking, poking, and post-poking stages. White scale bars represent 20 pm.
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126 Figure S7: The log viscosity of sucrose-H2O droplets as a function of RH at room temperature. The solid line is a mole-
127 fraction-based Arrhenius mixing rule fit to the viscosity data (eq S2.1), which yields a hygroscopicity parameter, k =
128 0.061. The point at 100% RH (green circle) represents the viscosity of water at room temperature.
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131 Figure S8: Comparison of experimental and predicted viscosity values for sucrose-H2O droplets. The experimental
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133 line) were calculated using the VFT equation. The fitting procedure yields the fragility parameter (Df) value of 13 + 1.

134

13



135

136
137
138
139

g_RH Profile

Relative Humidity (%)

B
Temperature (K)

EEEEEEE]
Relative Humidity (%)

80 -60 -40 -20 O 20 40 60 &

(C) Latitude (f)

Fall Temperature Profile Fall RH Profile

¥ % 5 ¥ 8 3 B8
Relative Humidity (%)

% 40 -0 0 . 4 @ & <0 %0 0 0 0 2 4 W 0
Latitude Latitude
Q) Winter Temperature Profile Winter_RI Profile

Altitude (km)

Relative Humidity (%)

40
0
»

Altitude (km)
%2 %882 2¢88
Relative Humidity (%)

Figure S9: Altitude-latitude profiles of zonal-mean temperature and RH obtained from Copernicus Climate Data Store
(https://cds.climate.copernicus.eu/) , averaged seasonally and annually over the period 2020-01-01 to 2024-12-01. Panels
present seasonal profiles for spring (a and b), summer (c and d), fall (e and f), and winter (g and h), showing temperature
and RH, respectively. Panels (I and j) display the annual average zonal-mean profiles of temperature and RH.
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Figure S10: Seasonal zonal-mean profiles of viscosity and mixing time of sucrose droplets as a function of altitude and
latitude, derived from temperature and RH data obtained from Copernicus Climate Data Store
(https://cds.climate.copernicus.eu/) and averaged over the period 2020-01-01 to 2024-12-01. Panels (a and b) present
viscosity and mixing time for spring, panels (c and d) for summer, panels (e and f) for fall, and panels (g and h) for
winter. The blue dashed line shows the transition from liquid to semi-solid state. The light green dashed shows the mixing
time of 1 hr.
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14 Figure S11: N205 uptake coefficient in 200 nm sucrose droplets as a function of altitude and latitude based on annual
150 average zonal-mean RH and temperature fields for the years 2020 to 2024, obtained from Copernicus Climate Data

151 Store (https://cds.climate.copernicus.eu/). Surface hydrolysis is not considered in calculations of N20O5 uptake coefficient
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169 Table S1. Summary of the conditioning time for sucrose-H>O droplets at different temperature and RH conditions.
170 Tmix,H,0 Values are the calculated characteristic mixing time of water within the sucrose-H,O droplets based on the
171 calculated diffusion coefficient of water. Teonditioning Values represent the experimental conditioning time. Tconditioning
172 ! Tmix,m,0 Tatio values exceeding 1 indicates that the particles have likely reached equilibrium with the surrounding

173 RH.

174
RH Teonditioning () Tmix,H,0 (h) Teonditioning / Trmix,Hp0
Temp =273 K
79 3.30E-01 3.64E-03 90.6
53 1.50E+00 2.39E-01 6.3
49 1.50E+00 4.58E-01 33
Temp =283 K
81 1.60E-01 1.85E-03 86.5
76 1.60E-01 5.00E-03 32.0
55 1.00E+00 2.19E-02 45.7
49 1.00E+00 8.86E-02 11.3
46 1.00E+00 1.94E-01 5.1
42 1.00E+00 4.64E-01 2.2
Temp =293 K
90 1.60E-01 1.84E-04 868.3
86 1.60E-01 2.23E-04 718.4
83 1.60E-01 4.18E-04 383.0
79 1.60E-01 7.37E-04 217.2
75 1.60E-01 1.50E-03 106.4
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71 1.60E-01 2.03E-03 78.7
50 5.00E-01 1.82E-02 27.5
44 5.00E-01 2.14E-02 233
39 5.00E-01 1.48E-01 34
34 5.00E-01 5.08E-01 1.0
Temp =303 K
73 1.60E-01 8.87E-04 180.5
69 1.60E-01 1.69E-03 94.9
65 1.60E-01 2.65E-03 60.5
50 5.00E-01 6.54E-03 76.5
44 5.00E-01 8.78E-03 56.9
39 5.00E-01 2.69E-02 18.6
34 5.00E-01 5.95E-02 8.4
29 5.00E-01 3.25E-01 1.5
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