Microscale Alkenone Heterogeneity and Replicability of Ultra-High-Resolution Temperature Records from Marine Sediments

Jannis Viola^{1,2}, Lars Wörmer², Kai-Uwe Hinrichs², Thomas Laepple^{1,2}

5 Corresponding author: Jannis.viola@awi.de

S1 FT ICR MS settings

Table S1: Selected parameters for laser-desorption-ionization (LDI) FT-ICR-MS for compounds in the mass range around 554 m/z ("alkenone window")

Setting	Value
Q1 (m/z)	554 m/z
Q1range (m/z)	544-564
wordsize	512k
Detection mode	broadband
excitation mode	sweep
excitation range (m/z)	300-2000
shotraster	100μm
scans per shot	1
spot size	medium
laser power	varied according to sediment conditions
laser frequency	500 Hz
laser number of shots	250
Plate 1 final voltage for ramp 2	0.0 V
Plate 1 initial ramp voltage	1.0 V
Plate 1 final voltage for ramp 1	0.6 V
Gated Injection DC Bias 0	3.6 V
Internal Filament Current [Instrument Param]	0.500 A
Plate 2 initial ramp voltage	1.0 V
Plate 2 final voltage for ramp 1	0.6 V
Plate 2 final voltage for ramp 2	0.0 V
Gated Injection DC Bias 180	2.4 V

Front Trap Plate	3.0 V
Back Trap Plate	3.0 V
Internal Ionization Energy	1.0 eV
Gated Injection DC Bias 90	2.7 V
Back Trap Plate Quench	-30.0 V
Sidekick	0.0 V
Shimming DC Bias 90	3.0 V
Shimming DC Bias 270	3.0 V
Shimming DC Bias 0	3.0 V
Shimming DC Bias 180	3.0 V
ECD Lens	10.0 V
Gated Injection DC Bias 270	3.3 V
Analyzer Entrance	-10.0 V
Sidekick Offset	-1.5 V
Octopole 2 DC [Instrument Param]	2.0 V
Octopole Frequency	1
Extract [Instrument Param]	-10.0 V
Trap [Instrument Param]	10.0 V
Octopole 1 DC Bias (Low) [Instrument Param]	3.5 V
Octopole 2 DC Bias (High)	2.5 V
Octopole RF Amplitude	350.0 Vpp
Partition Lens [Instrument Param]	3.0 V
Octopole 2 Delta DC	0.0 V

10

S2 Time series summary

Table S2: Time-series data and row-wise averages across replicates per depth interval. Standard errors below $0.001~(\sim 0.03 \, ^{\circ}\mathrm{C})$ are not shown.

Depth	Mean	Variance	Average variance	Average number of successful	Average number of successful
(cm)			of swUK per	detections of both alkenones per	detections of any alkenone per
			horizon	horizon	horizon
0-5	0.523	0.00044	0.006	34.2 ± 1.6	38.6 ± 1.8

5-10	$0.536 \pm$	0.000412	0.0059	42.2 ± 0.8	48.1 ± 0.9
	0.001				
10-15	0.543	0.000611	0.006	16 ± 0.8	19.2 ± 0.9
15-20	$0.539 \pm$	0.000388	0.0062	24.8 ± 1	31.4 ± 1.1
	0.001				
20-25	$0.538 \pm$	0.000898	0.0061	32.2 ± 3.8	38.4 ± 4.4
	0.001				
25-30	$0.530 \pm$	0.000994	0.0059	39 ± 1.9	46.3 ± 1.7
	0.001				

15 S3 Xray Image Correction

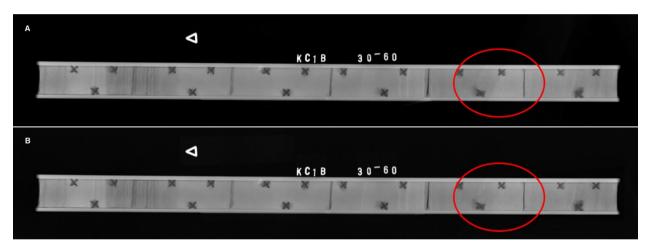


Figure S3: Comparison of the unaltered and corrected X-ray density maps for sediment segment KC1. Section 20-25 cm had an exposure artefact after developing, which was corrected digitally using Adobe Photoshop (2024).

20 S4 Individual variograms per depth

25

Figure S4: Variogram estimates averaged per depth interval of sediment segment KC1 for C37:3 and pyropheophorbide α intensities and spotwise Uk'37 temperatures. Note that each row has individual y-axes. C37:3 and pyropheophorbide α values in A, B were scaled prior calculation and are not in their native units, whereas in C γ values correspond to spotwise $U_{37}^{K'}$ units.

S5 Comparison to SST

SST products vs. MSI temperatures shaded grey & vertical lines: Breitkreutz et al. 2018, mean+-1sd of 0-50m (solid) / 0-200m (dash)

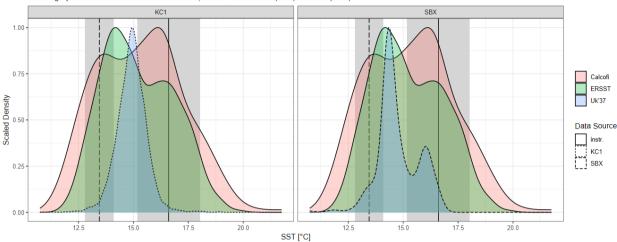


Figure S5: Comparison of MSI-derived SST estimates and SST products. Sediment data from KC1 segment, and the SBX 20-25cm exemplary varved section from Alfken et al. 2020, both converted to temperature using ISU and MSW approaches and the Prahl & Wakeham (1987) calibration ($U_{37}^{K'} = 0.033T + 0.043$). External SST data from the nearest location in Breitkreutz et al. (2018) (Lon: -119.5, Lat: 33.5) shown as vertical lines and shaded grey area (mean+-1sd of 0-50m and 0-200m respectively); ERSSTv4 (Huang et al., 2015) at Lon: 120, Lat: 34); and the nearest CalCOFI station (81.8-46.9) temperatures integrated 0-30m over 1984-2009 (California State Department of Fish and Game; NOAA Fisheries; Scripps Institution of Oceanography, 2001) (accessed 03/03/2023).

References

35

40

Adobe Inc., 2024. Adobe Photoshop (Version 2024). San Jose, CA: Adobe Systems Incorporated.

Alfken, S., Wörmer, L., Lipp, J.S., Wendt, J., Schimmelmann, A., Hinrichs, K., 2020. Mechanistic Insights Into Molecular Proxies Through Comparison of Subannually Resolved Sedimentary Records With Instrumental Water Column Data in the Santa Barbara Basin, Southern California. Paleoceanography and Paleoclimatology 35. https://doi.org/10.1029/2020PA004076

Breitkreuz, C., Paul, A., Kurahashi-Nakamura, T., Losch, M., Schulz, M., 2018. A Dynamical Reconstruction of the Global Monthly Mean Oxygen Isotopic Composition of Seawater. Journal of Geophysical Research: Oceans 123, 7206–7219. https://doi.org/10.1029/2018JC014300

- 45 California State Department of Fish and Game; NOAA Fisheries; Scripps Institution of Oceanography, 2001. Chemical, physical, and other data collected in the coastal waters of California as part of the California Cooperative Fisheries Investigation (CalCOFI) project since 1949.
 - Prahl, F.G., Wakeham, S.G., 1987. Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment. Nature 330, 367–369. https://doi.org/10.1038/330367a0
- Huang, B., Banzon, V.F., Freeman, E., Lawrimore, J., Liu, W., Peterson, T.C., Smith, T.M., Thorne, P.W., Woodruff, S.D., Zhang, H.-M., 2015. Extended Reconstructed Sea Surface Temperature Version 4 (ERSST.v4). Part I: Upgrades and Intercomparisons. Journal of Climate 28, 911–930. https://doi.org/10.1175/JCLI-D-14-00006.1

55