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Abstract. Accurate estimation of snow depth is a crucial problem from both meteorological and hydrological points of view. 

Global and regional reanalyses still struggle to address it, mostly because the scale of snow spatial heterogeneity is widely 10 

beyond current resolutions of the databases. In the study, snow depth estimation from Copernicus reanalyses ERA5 and 

ERA5-Land are compared and evaluated against point measurements in Poland, Czech Republic and Slovakia in winter 

seasons 2001/2002 – 2020/2021. Additionally, a Random Forests (RF) model is developed to reduce identified errors based 

on various environmental variables and parameters derived from the reanalyses and a digital elevation model. As mountains 

are main snow water reservoirs for Central Europe, the model is then used to spatially downscale snow depth over a fine-scaled 15 

subdomain in mountainous terrain. 

For both reanalyses, the deviations are relatively small in flat or gently rolling terrain (below 500 m a.s.l.). ERA5 (0.25°) 

outperforms ERA5-Land (0.1°) due to the presence of data assimilation. Since only synop measurements are assimilated, errors 

are the lowest for these stations, however, lower-ranked stations are also affected.  In more complex terrain, both reanalyses 

exhibit an underestimation of snow that increases with elevation. In this area, ERA5-Land is slightly less biased due to its 20 

higher resolution and the fact that observations from mountainous sites are often masked out from the data assimilation in 

ERA5. The proposed RF model improves accuracy of estimation by around 48% with respect to the best reanalysis. The results 

of spatial downscaling certainly provide added value to the problem of snow estimation in complex terrain. Although they 

cannot be considered entirely valid and reliable since not all factors determining spatial variability of snow at such resolution 

are taken into account, they might be useful for future studies concerning, e.g., climatological variability of snow with respect 25 

to altitudinal zonation. 

1 Introduction 

Accurate estimation of snow cover, being a phenomenon at the interface between the atmosphere and the land surface, is of 

particular interest to meteorologists and hydrologists. From a meteorological point of view, as soon as snow cover occurs, it 
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alters, e.g., surface radiation budget and roughness, which in turn affect other meteorological elements such as near-surface 30 

air temperature or wind speed. From a climatological perspective, seasonal variation of snow cover duration and snow depth 

are used as one of the climatological characteristics of winter. Although in numerical modelling it is usually snow water 

equivalent (SWE) which is a principal variable storing information about the amount of snow at every model timestep 

(ECMWF, 2016b; Le Moigne et al., 2018), there are issues in favour of considering snow depth instead. First of all, snow 

depth in situ measurements are taken more easily than SWE – beside a snow stick, no special equipment is needed. Secondly, 35 

they are more temporally continuous since there is no minimum amount of snow, below which taking a measurement is 

unfeasible. Consequently, the in situ data coverage for snow depth is higher than in case of SWE. Last but not least, it is snow 

depth which is actually assimilated in most of the models, as the model background field is transformed from SWE to snow 

depth prior to performing snow analysis (ECMWF, 2016a; Helmert et al., 2018).    

In recent years, there has been a tremendous growth of studies which use reanalyses as a proxy for observations. Hence, 40 

reanalyses validation becomes a fundamental task. There are, however, several factors which make comparing point snow 

depth measurements with gridded data sets more complicated than in case of other meteorological elements, such as 2 m air 

temperature or precipitation. First of all, spatial heterogeneity of snow depth is much larger than the size of a grid cell of most 

existing datasets. Hence, what is actually compared is a point measurement against a grid-averaged value (Copernicus Climate 

Change Service, 2019). Secondly, snow depth is a cumulative parameter. As a result, bias between modelled and measured 45 

snow depth, assuming no data assimilation, has cumulative nature. It makes verification a non-trivial task. Naturally, the 

problem occurs at most in areas with snow cover persisting throughout a winter season and is less severe where snow cover is 

intermittent. 

Despite the above-mentioned hurdles, accuracy assessment of snow in ERA5 and ERA5-Land reanalysis using point 

measurements from meteorological stations has already been carried out in literature. A study conducted by the provider of 50 

the reanalysis showed that both reanalyses underestimates snow at mountain sites, however, at altitudes up to 1500 m a.s.l. 

ERA5 generally outperforms ERA5-Land (Muñoz-Sabater et al., 2021). For more elevated sites, ERA5-Land is more accurate 

due to the added value of higher resolution. It is also shown that the superiority of one reanalysis against the other is region-

dependent. Overestimation of snow in ERA5 has been identified in several studies over the High Mountain Asia (HMA) region 

(Lei et al., 2023; Orsolini et al., 2019; Wang et al., 2021). Lei et al. (2023) stated that the bias is especially distinct during the 55 

ablation period. They also spotted it in ERA5-Land, however, to a much lesser degree than in ERA5. Smaller overestimation 

of snow in ERA5-Land was also recognized over the mountainous part of Iran by Majidi et al. (2025). On the other hand, they 

detected a systematic underestimation in the atmospheric ERA5 across all elevations. Opposite conclusions were drawn by 

Monteiro and Morin (2023) who examined snow bias in the Alps. They found that it is ERA5-Land that has greater positive 

bias. The bias  increases with elevation, while in ERA5 it becomes negative at altitudes below 600 m a.s.l. Overestimation of 60 

snow in ERA5-Land was reported in the Alps also by Pflug et al. (n.d.) and in the Atlas Mountains in Africa by Baba et al. 

(2021). However, it should be noted that those two works concern only SWE. Particularly interesting is research done by Varga 

and Breuer (2023) as it focused on the Pannonian Basin, which is just to the south of the area of this study. They claimed that 
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ERA5-Land overestimates snow while ERA5 matches observations well. However, their analysis was limited only to flat 

terrain. In addition, they concluded that the quality of ERA5 away from assimilated sites is yet to be investigated.  65 

Monumental intercomparisons concerning also other than ERA5 regional and global reanalyses have shown that systematic 

biases in snow estimation are a common issue (Monteiro and Morin, 2023; Mudryk et al., 2025). Hence, there have been a 

couple of methods developed to reduce them. Some studies address it by dynamical downscaling, using WRF or some other 

regional numerical model (Avanzi et al., 2023; Fontrodona-Bach et al., 2023; Yang et al., 2021). Wang (2021) used the 

Japanese 55-year Reanalysis (JRA-55) to correct biased snow depth in ERA5 over the HMA region using a linear scaling 70 

factor. Recently, machine learning algorithms have been recognised to be a robust tool to achieve this goal, particularly Long 

Short-Term Memory (LSTM) and Random Forests (RF) models. King (2020) used RF to reduce overestimation of SWE in a 

regional 1-km resolution reanalysis in Ontario, Canada. Two studies concerning application of LSTM to forecast SWE based 

on meteorological forcing over the western United States reached the conclusion that without nudging the results with 

observations, LSTM predictions suffer from bias that grows over time (Cui et al., 2023; Song et al., 2024). It seems, however, 75 

that application of ML is the most advantageous for prediction based on combining data from multiple datasets and sources. 

Qiao et al. (2021) merged data from ERA-Interim, MERRA-2, GLDAS and microwave remote sensing to obtain snow depth 

over China. A similar job was done in the Western Himalayas by Tanniru et al. (2023) as they ran an extremely randomised 

trees model combining data from ERA5, MERRA-2, CMC and JRA-55 reanalysis. A broader study area occurs in work of Hu 

et al. (2024) where they combined several reanalyses (e.g., Era-Interim, MERRA2) and remote sensing snow products to create 80 

a gridded dataset for the Northern Hemisphere using RF. The results were superior to input reanalyses, however, the resolution 

was quite coarse (0.25°). Work on the integration of satellite products and data from ERA5 using LSTM to get continuous 

spatial distribution of snow depth in the Atlas Mountains is ongoing in Morocco (Elyoussfi et al., 2023).  

In summary, studies investigating snow depth and SWE in ERA5 and ERA5-Land revealed it is mostly overestimated, with 

ERA5-Land being generally biased more. However, as pointed out by Muñoz-Sabater (2021), the exact outcome may be 85 

different as it is region- and elevation-dependent. Moreover, the work of Varga and Breuer (2023), which is to our knowledge 

the only one concerning Central Europe, is limited only to flat terrain and synoptic stations. A limited amount of research in 

this region regard also ML-based bias correction of snow estimation in reanalysis. Most publications on this topic concern 

HMA or western USA. Although tools proposed there are usually robust as they use information from more datasets than in 

this study, the output resolution is often quite coarse, especially with respect to the spatial scale of topographic complexity in 90 

Central Europe. Therefore, two primary objectives of this study are established: 1. To assess spatial and temporal variability 

of bias in ERA5 and ERA5-Land snow depth estimation in Central Europe 2. To explore the potential of ML to combine 

information from these two reanalyses in order to reduce the identified errors and create a consistent snow distribution over a 

subdomain with complex orography.   

This paper has been divided into four parts. The first part describes input data and how it is processed to become predictors 95 

for a ML training. Then, a RF algorithm as well as verification metrics are briefly introduced. Additionally, a setup for a spatial 

downscaling experiment is defined. The Results section deals with assessing the accuracy of both reanalyses and the RF model. 
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It is followed by the discussion which handles e.g. circumstances favouring large deviations and the influence of data 

assimilation. Eventually, limitations of emulating spatial variability of snow in high resolution in complex terrain are carefully 

analysed. 100 

2 Data and methods 

2.1 Study area 

The investigated area extends from 48.5 to 55°N and 14 to 24.5°E, representing the north-eastern part of Central Europe. It 

covers the whole administrative area of Poland and most of the Czech Republic and Slovakia. Its northern and central parts 

belong to the North European Plain and are usually flat or gently rolling with elevations not exceeding 200 m a.s.l. (Fig. 1). 105 

South of that, uplands and mountain ranges occur belonging to the Central European Uplands. Two major mountain ranges 

can be distinguished: the Sudetes and the Western Carpathians. Their elevation ranges from 800 to 1600 m a.s.l. in the Sudetes 

and from 800 to 2650 m a.s.l. in the Western Carpathians. The south-western edge of the study area reaches also the Bohemian 

Forest (800 - 1400 m a.s.l.). Average snow conditions in the study area are characterised in the Appendix A. 

 110 

Fig. 1. Orography map of the study area with country borders and stations included in the study (S – synop, C – climate, P – 
precipitation) 

2.2 Study period and ground-based data 

The study spans 20 winter seasons defined as a period between 01.11 and 30.04 in the years 2001-2021. While the assumed 

duration of a winter period is certainly too short for high-elevated sites (particularly regarding a snowmelt period), it was set 115 
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as a reasonable compromise between losing some data and a large amount of empty data (i.e., without snow) from the majority 

of the stations. The initial and the final year of the study period were specified so as to capture considerable interseasonal 

winter variability while having limited access to historical snow depth measurements in national weather centres. A more 

detailed description of snow conditions in the study period may be found in the Appendix A. 

Ground-based data includes snow depth measurements taken daily at 6 UTC at meteorological stations of national weather 120 

services of Poland, Czech Republic and Slovakia. Only data from manned stations were collected. The stations are grouped 

according to their importance into three ranks: synoptic (reporting every hour according to an international SYNOP standard), 

climate (reporting several basic meteorological elements internally at 6,12 and 18 UTC) and precipitation (reporting only daily 

precipitation sum and snow phenomena internally at 6 UTC). The methodology of snow depth measurements is the same 

across the station ranks, however, due to diverse quality control mechanisms, credibility of data is somewhat lower for non-125 

synops. Additionally, measurements at a few top-mountain stations are  done in an approximate way due to site’s high 

susceptibility on wind-induced erosion. A total of 340 stations (91 synoptic, 140 climatological and 109 precipitation) were 

selected according to the following criteria (ranked from most to least important): 

 average snow cover duration 

 data completeness throughout the study period 130 

 relatively even spatial distribution of stations in the study area 

 station rank 

Consequently, stations at mountainous sites were included even if they worked only for a few winter seasons. For this reason, 

a denser station network could be seen in the southern part of the study area (Fig. 1). If two stations with complete data records 

but different ranks were close to each other, the higher-ranked one was picked. Although station elevation ranges in total from 135 

1 to 2635 m a.s.l., 50% of the stations lie below 300 m a.s.l. and only 5% above 1000 m a.s.l. 

2.3 ERA5 and ERA5-Land Reanalyses 

A number of meteorological and topographic fields from ERA5 and ERA5-Land reanalysis have been retrieved using the 

Climate Data Store API. Both datasets belong to the ERA5 family, which is the latest (as of the time of submitting the 

manuscript) generation of global reanalysis of past weather conditions produced by ECMWF (Hersbach et al., 2020). A full 140 

list of parameters from both reanalyses is to be found in Table B1 (Appendix B). 

ERA5 is an atmospheric reanalysis combining short-ranged numerical forecasts with meteorological observations during a 

process of data assimilation (DA). It has 0.25° horizontal resolution (around 30 km) and 1 h temporal resolution. It assimilates 

snow depth observations from synop stations and some additional national snow measurements that are available on the Global 

Telecommunication System (GTS) (ECMWF, 2016a; de Rosnay et al., 2015). As claimed by the ECMWF Support Portal 145 

(2024), no other measurements than synops are assimilated from the area of Poland, Czech Republic and Slovakia. The 

observations are then combined with a snow-depth background field (estimated from forecasted SWE and snow density) and 
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a satellite-based snow extent product (ECMWF, 2016a). The Optimal Interpolation algorithm is used for that purpose. The 

analysis is performed every 6 h starting at 00 UTC. It is worth noting that the snow extent product was not included in the DA 

system for data before 2004, which is a potential source of discontinuity. Furthermore, for data after 2010 its horizontal 150 

resolution was upgraded from 24 to 4 km (Mortimer et al., 2020; de Rosnay et al., 2015). Additionally, before the exact DA, 

observations undergo various quality checks. The most important ones regarding snow are that the maximum threshold of 140 

cm for in situ snow depth data is given (it is lowered to 70 cm if a background 2-m air temperature exceeds 8℃) and the 

satellite-based snow extent is not assimilated from areas above 1500 m a.s.l (ECMWF, 2016a). In the output dataset, snow 

depth occurs in fact as SWE – it is defined as the depth of water after the whole snow melted and was uniformly spread over 155 

a grid box. To obtain snow depth sensu stricto, it is necessary to divide the field by snow density. Hence, bias in snow density 

may be transmitted to snow depth.  

ERA5-Land is a land surface reanalysis run in an offline mode with an atmospheric forcing coming from the ERA5 dataset 

(Muñoz-Sabater et al., 2021). Output fields are produced with a 1-hour frequency at the enhanced 0.1° horizontal resolution, 

which is roughly three times higher than in case of ERA5. No DA is deployed in ERA5-Land. Observations are indirectly 160 

passed to the model through an atmospheric forcing. The forcing includes surface pressure, air temperature, specific humidity, 

wind components, liquid and solid precipitation as well as solar radiation fluxes. It is important to highlight that no snow fields 

are passed to ERA5-Land. Just like in ERA5, actual snow depth is retrieved from two prognostic variables: SWE and snow 

density.  

2.4 Auxiliary data 165 

Data from the Digital Elevation Model (DEM) - Shuttle Radar Topography Mission Version 4.1 were used to provide 

information about altitude and topography (Jarvis et al., 2008). The data is in 3’’ horizontal resolution (around 75 m in the 

study area).  

2.4 Data preprocessing 

2.4.1 Ground-based data 170 

If a trace of snow (i.e., snow depth lower than 0.5 cm) or snow in patches (i.e., less than one-half of the ground covered by 

snow) was reported, snow depth was assumed to be 0 cm. If snow cover was discontinuous but it covered more than one-half 

of the ground, snow depth was kept as measured. 

2.4.2 ERA5 and ERA5-Land reanalyses 

Reanalysis data were extracted in the nearest grid point for every station using the Climate Data Operators (CDO) function 175 

remapnn (Schulzweida, 2023). Next, selected  fields were temporally aggregated in order to capture their variability in between 

snow depth measurements, which are taken once a day at 6:00 UTC. The exact metric of aggregation and its timeframe have 
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been subjectively defined by the authors depending on the nature of a meteorological element and its potential impact on snow 

depth. See Table B1 (Appendix B) to find out how exactly every reanalysis parameter has been aggregated. 

Since the nearest grid point for a few coastline stations is covered predominantly by a sea, a number of land variables are not 180 

available there. Therefore, an automatic search of the nearest land grid point was performed and assigned to a station. Most 

often it was one of the other surrounding grid points. One station have to be removed from the database as it lies at the tip of 

a 35-km-long sandspit that expanded into the Baltic Sea and therefore, a shift by 0.4° would be required.  

 2.4.3 Auxiliary data 

The following topographic parameters were calculated based on the DEM: topographic position index (TPI), sky view factor 185 

(SVF) and a fraction of the surrounding area with higher elevation. Dedicated R packages terra and horizon were used for that 

purpose (Hijmans, 2020; Van Doninck, 2018). Computations were performed for every grid point for a set of user-defined 

radii ranging from 100 to 30000 m in order to capture land relief variability at different scales. However, due to high 

computational cost, the calculation of SVF and a fraction of the surrounding area with higher elevation was limited to 5000 m. 

Data from DEM were also used to calculate the daily-integrated amount and duration of direct incoming solar radiation. This 190 

was performed using a Points/Area Solar Radiation algorithm available in the ArcGIS Spatial Analyst Toolbox 

(ArcGIS 10.2.1). Apart from DEM-based predictors, a few temporal and station-embedded variables were also included in the 

dataset in order to emulate the passing of time and spatial distribution of data, respectively. The exact list of parameters and 

their aggregations is to be found at Table B2 (Appendix B).  

2.5 Machine learning 195 

The RF algorithm designed by Breiman (2001) and implemented in R environment (package ranger) by Wright and Ziegler 

(2017) is used in the study. It generates an ensemble of decision trees by bootstrapping the training data, which are then 

aggregated into a final prediction. Generalisation skill and performance accuracy are estimated on  a training set using an out-

of-bag error (Breiman, 2001). Along with neural networks, RF has been commonly deployed at various stages of weather and 

climate modelling (Bochenek and Ustrnul, 2022; de Burgh-Day and Leeuwenburg, 2023). In this study, we use it to predict an 200 

absolute value of snow depth, which is a regression problem (Fig. 2). The initial set of around 120 predictors was prepared 

based on meteorological knowledge of physical processes affecting snow depth. It was eventually shrunk to 70 predictors in a 

process of feature selection to account for redundancy and multicollinearity. The selection was made based on the Boruta 

algorithm implemented in the R package Boruta, permutation variable importance from the ranger package and Variance 

Inflation Factor implemented in the collinear package (Benito, 2023; Kursa and Rudnicki, 2010). The predictors are listed in 205 

Table B1 and B2 (Appendix B). Next, an automated tuning of training hyperparameters from the tuneRanger package was 

performed to find the best model settings (Probst, 2025). The tunable parameters are: minimum node size (min.node.size), the 

number of predictors at each split (mtry) and the fraction of observations at each split (sample.fraction). The number of trees 

in the forest was set to 1000. A set of parameters that gives the lowest out-of-bag error was picked as the most optimal 
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configuration, which is mtry=31, min.node.size=2 and sample.fraction=0.895. Predictions of the RF model for the whole 210 

dataset (20 winter seasons) were produced using a leave-one-year-out cross-validation. This is a particular example of k-folds 

cross-validation method that is often applied when handling time-series meteorological data (Hu et al., 2024; Sebbar et al., 

2023). A set of 20 RF models were generated where each winter season was treated as a test set, while the remaining 19 seasons 

were used for training. No spatial split was applied – the stations in the test set are the same as in the training set.  

 215 

Fig. 2. A schematic diagram of data used for training of a RF model. Only station data was used to train the model. 

2.6 Spatial downscaling experiment setup 

Apart of point verification on station locations, the above described RF model was tested also over a small subdomain in 

complex terrain to assess its skill in downscaling of ERA5 snow depth estimations. The domain covers the Tatra Mountains – 

the highest mountain range in the Carpathian Mountains located on the border between Poland and Slovakia (Fig. 3). Several 220 

factors determined this selection. First of all, due to its elevation, it is the largest snow reservoir in the study area. Hence, 

accurate estimation of snow amount is crucial there. Secondly, the horizontal resolution of both reanalyses is much lower than 

the scale of orographic complexity of most of the area, which results in large biases that need to be reduced. Hence, it was 

expected that the added value of the DEM would benefit here the most. Furthermore, there is a considerable spatial coverage 

of observations in this area which makes accuracy evaluation more reliable.  225 
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Fig. 3. A subdomain selected for a spatial experiment (Tatra Mountains). Stations are coloured according to their rank (S - synop, 
C - climate, P - precipitation) 

The predictions of RF for the experiment were generated using a model trained on stations (as shown in Fig. 2). Thus, the final 

outcome is in fact just an ensemble of point predictions produced separately for every grid point of the domain. Prior to it, all 230 

predictors in a test set were bicubicly interpolated to the DEM grid (3’’) using CDO software (Schulzweida, 2023). The 

predictions are then analysed only at one timestep, primarily for demonstrating potential spatial skills rather than thoroughly 

assess them, which could be a subject of separate research. Additionally, in light of obtained results, sensitivity analysis of 

wind-related predictors (daily mean wind speed, wind direction and daily maximum wind gusts at 10m) was conducted. 

2.7 Evaluation metrics 235 

To assess the accuracy of the predictions and the reanalyses, commonly known verification metrics such as Root Mean Square 

Error (RMSE), Mean Absolute Error (MAE), Mean Error (bias), standard deviation of bias (SD) and MAE Skill Score (SSMAE) 

are used in the study (Table 1). RMSE is by far the most commonly used benchmark metric employed to evaluate reanalysis 

or forecast accuracy, however, as it penalises greater deviations more, errors occurring at mountainous stations would affect 

the global metric more than in case of MAE. Hence, it was decided to use MAE as a basic verification metric in the study. 240 

Another snow-specific issue caused by the cumulative nature of snow is an increase of error with an increasing amount of 

snow (provided no DA is applied). To account for that, normalisation is carried out (Monteiro and Morin, 2023; Muñoz-

Sabater et al., 2021). In the study, mean snow depth is used to normalise MAE (denoted as nMAE). To avoid the influence of 

snowless days, all metrics were calculated only for data when either measured or reanalysed snow depth was above 0 cm.  
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Table 1. Verification scores used in the study (adapted from Warner (2011)). Denotations: N - number of data samples, Fi – i-th 245 
forecasted value, Oi – i-th observed value, MAERF - MAE of an evaluated RF forecast, MAEref – MAE of the best reanalysis. 

Metric Formula 

MAE [cm] 
1

𝑁
෍|𝐹௜ − 𝑂௜|

ே

௜ୀଵ

 

bias [cm] 
1

𝑁
෍(

ே

௜ୀଵ

𝐹௜ − 𝑂௜) 

RMSE [cm] ඩ
1

𝑁
෍(𝐹௜ − 𝑂௜)ଶ

ே

௜ୀଵ

 

SD [cm] ඩ
1

𝑁
෍(𝐹௜ − 𝑂௜  − 𝑏𝑖𝑎𝑠)ଶ

ே

௜ୀଵ

 

nMAE[cm] 
𝑀𝐴𝐸

1
𝑁

∑ 𝑂௜
ே
௜ୀଵ

 

SSMAE [%] 
𝑀𝐴𝐸ோி − 𝑀𝐴𝐸௥௘௙

𝑀𝐴𝐸௣௘௥௙ − 𝑀𝐴𝐸௥௘௙

∙ 100% 

3 Results 

Considering overall verification scores from Table 2 (bottom row), estimation of snow depth is more accurate in ERA5-Land 

than in ERA5 . While the difference in MAE is relatively small, it is much higher in case of bias. To address this issue, metrics 

in relation to elevation need to be examined. Aggregated metrics for elevation intervals (Tab. 2) as well as plots for bias and 250 

MAE (Fig.4a-d) show a clear increase of error with elevation. Particularly for elevations over 1000 m a.s.l., the trend is roughly 

linear. Both reanalyses severely underestimate snow depth there, however, the deviations are slightly lower in ERA5-Land. 

What differentiates the datasets the most is bias tendency below 1000 m a.s.l. While in ERA5-Land it is predominantly positive 

(only 15% of stations experiencing underestimation of snow), in ERA5 it is diverse with substantial negative bias at some sites 

at 500-1000 m a.s.l. Regarding MAE, it is interesting to notice that although the global score from Tab. 2 gives favour to 255 

ERA5-Land, at 65% of stations it is actually ERA5 that performs better. The ratio increases even to 75% if stations below 500 

m a.s.l. are considered. In zoomed areas in Fig. 4c-d, stations are coloured according to their rank. A couple of issues are 

striking here. Errors in ERA5 can go as low as around 0.5 cm, whereas in ERA5-Land it is always higher than 2 cm. 
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Additionally, the majority of the lowest errors in ERA5 occur at synop stations (red dots), while in ERA5-Land no clear 

separation is visible. This could be directly attributed to data assimilation. Thirdly, for ERA5 there is an error spike near the 260 

sea level, which is barely distinguishable for the other reanalysis. The rise of error affects also synops, which could be explained 

by the fact that these stations were dismissed from data assimilation due to their location at the interface between land and sea. 

Table 2. Average accuracy of snow depth estimation in ERA5 and ERA5-Land. 

elevation 
interval 

number of 
stations 

database 
MAE 
[cm] 

RMSE 
[cm] 

bias [cm] SD [cm] 

< 250 146 
ERA5 2.65 4.23 0.25 3.67 

ERA5-Land 3.86 5.77 2.33 5.28 

250-500 92 
ERA5 5.52 9.2 -0.27 8.06 

ERA5-Land 7.47 11.7 6.16 9.95 

500-1000 88 
ERA5 12.52 20.25 -6.82 17.53 

ERA5-Land 11.76 18.21 3.71 17.82 

1000-
1500 

8 
ERA5 36.99 52.69 -36.31 37.97 

ERA5-Land 30.83 45.81 -25.29 38.2 

> 1500 6 
ERA5 85.7 109.37 -85.56 68.4 

ERA5-Land 69.76 92.98 -69.09 62.24 

overall 340 
ERA5 11.43 27.44 -7.13 23.88 

ERA5-Land 10.5 22.56 0.62 22.55 
 

To compare MAE between stations in a more objective way, the metric was normalised with the mean snow depth for each 265 

station (Fig. 4e-f). As a result, the relationship with elevation is more complex, and no clear trend is visible anymore, especially 

for ERA5-Land. In both datasets, the highest errors occur at an altitude range of 400-700 m a.s.l. These are predominantly 

stations lying in the foothills of the Carpathian Mountains and the Sudetes rather than high mountainous ones. If a threshold 

value of nMAE=1 would be considered, there are only three sites exceeding it in ERA5: two lower-rank ones in the Sudetes 

(Karpacz, Przesieka) and one Slovakian synop Poprad-Gánovce (Fig. 5). For ERA5-Land the threshold is violated by a number 270 

of stations in mountain valleys or basins, including synops, e.g., Zakopane, Liesek or Kłodzko. The error for these sites in 

ERA5 is usually 3-4 times lower likely owing to data assimilation. 
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Fig. 4. Bias (top row), MAE (middle row) and nMAE (bottom row) at every station in the database in relation to elevation for ERA5 
(left column) and ERA5-Land (right column). Stations at which a given reanalysis performs better than the other are shown in 275 
green, while those where it performs worse – in grey. In zoomed areas in the middle row, stations are coloured according to their 
rank (S - synop, C - climate, P - precipitation). 
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Fig. 5. Location of stations with nMAE of snow depth estimation exceeding 1 cm. Stations are coloured according to their rank (S - 
synop, C - climate, P - precipitation). The colour of the label denotes reanalysis, for which the error occured (blue - ERA5, light 280 

green -  ERA5-Land, purple – both). 

Having analysed the elevation-dependent differences in both reanalyses, now the interseasonal variability will be investigated 

(Fig. 6). Seasonal MAE averaged across all the considered stations changes substantially throughout the seasons. Both 

reanalyses correlate well with each other with respect to this metric. The highest values occur in the seasons 2004/2005, 

2005/2006, 2011/2012 and 2018/2019, which were all snowy ones. The lowest MAE refers to the 2013/2014 season, which 285 

was in fact one of the least snowy ones, however, also the 2009/2010 season, which was actually quite abundant in snow. 

Additionally, the season 2019/2020, which is by far the least snowy, has relatively large errors, particularly in ERA5. The error 

for RF predictions is lower by around 50% than for the reanalyses and exhibits similar changes in relation to the mean snow 

depth. To remove this impact, nMAE was also analysed (Fig. 6b). After normalisation, the intraseasonal fluctuations are less 

severe and the errors are relatively steady in time. The lowest error for both reanalyses is achieved in the 2009/2010 season 290 

(for ERA5-Land also the 2004/2005 season). What is striking is a sharp drop of the error for the reanalyses from 2008/2009 

to 2009/2010. As regards RF, two seasons are easily distinguishable by an increased value of the error: 2010/2011 and 

2013/2014. Since the reanalyses performed quite well then, the relative improvement (SSMAE) is much smaller than the average 

(11% and 31%, respectively). This could be attributed to the unusual winter conditions during that time. However, this is 

barely visible on boxplots as the conditions occurred mainly at mountainous stations, which are scarcely represented yet 295 

provide a lot of data with snow. The two seasons turned out to be the driest ones in the study period and involved frequent 

melting episodes (Fig. 7). Consequently, the evolution and accumulation of snow cover was significantly deviated then, 

particularly regarding the second part of the seasons. 

In total, RF estimated snow depth with the mean bias of 0.26 cm and MAE - 5.5 cm, which provides a large improvement 

upon both reanalysis (compare with the scores in Table 2). Metrics calculated for each station show that RF is superior at 70% 300 
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of them, while at the majority of the remaining 30%, RF is outperformed by ERA5 only slightly (less than 0.5 cm of MAE 

difference). These are mostly synops or lower-rank stations strongly affected by DA and thus having very small errors and 

therefore little space for improvement.   

 

Fig. 6. Seasonal variability of MAE (a) and nMAE (b) for ERA5, ERA5-Land and RF predictions (lines), SSMAE of RF over the 305 
best reanalysis (barplot) and the mean snow depth for all stations (boxplot). 
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Fig. 7. Temporal evolution of snow depth in seasons 2001/2002 - 2020/2021 for Štrbské Pleso, Kasprowy Wierch and Śnieżka synop 
stations. The two bolded lines represent 2010/2011 and 2013/2014 seasons. 

As far as the downscaling experiment is considered, the fine-scaled spatial distribution of snow depth on 6 December 2016 at 310 

6:00 UTC produced by RF based on coarse-resolved reanalysis ERA5 and ERA5-Land is depicted in Fig. 8b. For comparative 

purposes, snow depth from ERA5-Land with native grid mesh and land relief is also shown (Fig. 8a and c, respectively). The 

date was chosen based on observations availability and climatological characteristics of the season. Moreover, an early stage 

of snow accumulation was deliberately selected not to violate a 140 cm threshold of maximum snow depth allowed in analysis 

during the DA process in ERA5 (ECMWF, 2016a). The predictions were initially supposed to be verified with spatially 315 

interpolated measurements. However, probably due to high terrain complexity, none of the interpolation methods yielded 
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meaningful results. Consequently, verification is limited only to station points. The forecasted and measured values of snow 

depth are shown on the map in red and black, respectively. What is easily noticeable is the elevation dependence of the field. 

The greatest spatial variability occurs in highly complex terrain. In the northern part of the domain, where elevation does not 

vary that much, the predictions are quite close (14–29 cm). However, the true variability in this area, evidenced by the station 320 

snow depth values, is larger. This is particularly noticeable at two neighbouring sites, Poronin and Bukowina Tatrzańska. 

Despite only 4 km of horizontal distance and around 130 m of elevation change, snow depth in Bukowina Tatrzańska is 18 cm 

thicker than in Poronin. This value was considerably underestimated in RF predictions. Similar bias could be observed for 

Białka Tatrzańska, which is just north. Interestingly, opposite bias occurs at Bańska Wyżna. Despite considerable elevation 

(896 m a.s.l.), there is less snow there than at lower-elevated stations in the vicinity. Such a deviation from the elevation-325 

dependence relation is likely to be a source of  RF misprediction. As far as stations in the Tatra Mountains are considered, 

deviations slightly increase, ranging from a few up to 21 cm. There is one site with an exceptionally large discrepancy between 

a prediction and the true value – Lomnický Štít. This is a mountain-top station at the highest altitude in the dataset (2635 m 

a.s.l.). Snow depth is severely underestimated there. Apparently, the RF model prodicts the  Eastern Tatras to have slightly 

less snow than the western part, which stands in contrast to observations as well as typical snow conditions there. This might 330 

imply a systematic error that may be derived from the reanalysis (as the SE corner of the domain had the least snow in ERA5-

Land).  

Closer inspection of Fig. 8b shows another interesting issue – the RF model accumulated more snow on northern slopes. Hence, 

it might be concluded that it was able to emulate the shadowing effect of the orography. This is to be seen at best along east-

west-oriented ridges, particularly along the main ridge of the Western Tatras, which is shown in magnification in Fig. 9. This 335 

is likely to be an effect of including DEM-based parameters like potential solar radiation and SVF into the training dataset.  

https://doi.org/10.5194/egusphere-2025-5084
Preprint. Discussion started: 24 November 2025
c© Author(s) 2025. CC BY 4.0 License.



17 
 

 

Fig. 8. Spatial variability of snow depth on 6th December 2016 6:00 UTC  in ERA5-Land (a) and the result of  downscaling by RF 
(b). Measured and predicted values for stations are shown in black and red, respectively.  The bottom map depicts land relief (for 

comparison purposes only). Stations are coloured according to their rank (S - synop, C - climate, P - precipitation). 340 
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Fig. 9. Spatial variability of snow depth along the main ridge of the Western Tatras (a) and its orography (b). The main valleys are 
marked with numbers: 1 – Chochołowska Valley, 2 – Kościeliska Valley, 3 – Tichá Valley. 

Apart of the shadowing effect, it is commonly acknowledged that above the tree line, it is wind redistribution that affects snow 

variability the most. However, wind-related predictors were excluded from the RF training dataset due to its poor importance 345 

score. The 25 most informative variables are ranked in Fig 10. Except of snow depth itself, topographic variables that carries 

information about elevation are most precious. What is worth noticing is high values of parameters cumulated from the season 

beginning (snowfall, snowmelt, total precipitation). Information from some past time is also included in other high-ranked 

predictors such as age of the snow depth, mean air temperature in the second soil layer and snow density. Wind-related 

predictors were scored way below 1. Therefore, a sensitivity analysis for these predictors have been additionally conducted. 350 
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The predictors were added to the training dataset listed in the Appendix B and a new RF model was trained. Then it was 

compared in selected periods where weather conditions favored wind redistribution. The conditions were: average daily wind 

speed over 1.5 m/s, maximum wind gusts over 10 m/s, daily maximum temperature below 0℃,  daily precipitation below 0.5 

mm and observed daily snow depth reduction by at least 5 cm. In total, 40 such cases were identified. The verification was 

performed for one station Hala Gąsienicowa, since this station lies above tree line and its snow depth report is representative 355 

(averaged from five snow poles). The place is also known for snow being blown away to lower parts of the valley which results 

in snow depth reduction. The mean snow deflation as seen by RF is 2.1 cm while in fact it was over 11.5 cm. This is only 

slightly better than the reference RF model (with no wind-derived predictors), which reduced snow depth by 1.6 cm on average. 

ERA5-Land does not exhibit any snow depth reduction (0 cm on average). Global metrics calculated for the stations within 

the subdomain show minor improvement in most cases (differences in MAE predominantly below 0.1 cm). 360 

 

Fig. 10. Importance score for the 20 most important predictors of the reference RF model. Predictors were manually grouped into 
categories denoted with colors. Variable abbreviations are explained in Table B1 and B2. Following suffixes are used: cum – 
cumulative parameter, age – snow age, avg24 – daily average value. The X-axis is logarithmic. 
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4 Discussion 365 

4.1 Bias in mountainous terrain 

Underestimation of snow depth at high elevations (above 1000 m a.s.l.) in both ERA5 and ERA5-Land has been reported, e.g., 

by Muňoz Sabater et al. (2021) and was attributed to orography smoothing. As it is an effect of orography discretisation, it 

occurs in most numerical models (depending chiefly on their horizontal resolution). In this light, less deviation observed in 

this study at high elevations in ERA5-Land could be clearly explained by better resolution of this reanalysis, which is  in line 370 

with conclusions of Muňoz Sabater et al. (2021) or Lei et al. (2023). However, their evaluation was done either globally or for 

a specific mountain area located remotely from the study area. Surprisingly, conclusions from studies regarding the Alps, 

which are the closest large-scale mountain range, stay in contradiction to our findings (Dalla Torre et al., 2024; Monteiro and 

Morin, 2023; Shrestha et al., 2023).  This clearly demonstrates that the impact of orography smoothing could be completely 

offset by some other factors, which can locally become a dominant source of deviation. Bias in snow depth may be derived 375 

from various factors, out of which the most important are generally errors of air temperature, precipitation or shortcomings in 

parametrisation of snowpack properties, particularly snow density. The last one is usually systematic (spatially invariant), 

which does not explain the current discrepancy. Hence, the reason might be either temperature or precipitation bias that differs 

between the Alps and the Carpathian Mountains.  As a matter of fact, in comprehensive pieces of work by Dalla Torre et al. 

(2024) and Monteiro and Morin (2023) these two elements were also evaluated. The authors identified substantial wet bias 380 

that contributes to overestimation of snow depth the most. Lack of accuracy assessment of air temperature and precipitation in 

this study hinders a clear explanation of the observed bias, which is a major limitation of the work. 

4.2 Role of data assimilation 

Outside complex terrain, the differences in errors between ERA5 and ERA5-Land are determined chiefly by the presence of 

DA in the coarser-resolved reanalysis. It is important to notice that despite the fact that only synop stations are assimilated, the 385 

improvement is visible also for lower-rank stations. First of all, it should be reminded that apart of SYNOP reports, additional 

information about snow extent is provided by satellites. However, this is just binary information with no plain conversion to 

snow depth (de Rosnay et al., 2015). From the IFS documentation (2016a), one can learn that horizontal and vertical structure 

functions applied in the Optimal Interpolation algorithm play an essential role in interpolating snow depth values in space 

between assimilated points. Because of them, the influence of a point measurement assimilated in the model spreads to 390 

neighbouring areas. It was examined more deeply by Stachura (2024), who claims that it yields satisfactory results unless there 

is a considerable elevation difference between a low-ranked station and an assimilated synop station. 

However, some synops are excluded from the assimilation process. Our findings suggest that this is the case for sites at the sea 

coast.  More importantly, there are several quality control conditions which result in rejection of measurements from, e.g., 

mountainous stations (ECMWF, 2016a). The IFS documentation does not specify a certain elevation threshold, below which 395 

measurements are accepted.  Based on MAE scores presented in the study, one can state that the impact of DA is to be seen 
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up to around 900 m a.s.l., however, our analysis of the normalised MAE revealed that there exist synops lying below this 

altitude with errors suggesting they were most likely not included in the DA system (e.g., Poprad-Gánovce). This indicates 

that quality control of snow depth DA in ERA5 involves thresholds other than elevation-based one. 

4.3 Random Forests performance 400 

Analysis of interseasonal variability of nMAE and SSMAE indicated two seasons with relatively weaker performance of RF 

with respect to the reanalysis. This deviation was attributed to very dry conditions in the southern part of the study area during 

these two winters. Consequently, the process of snow cover accumulation in the mountains was abnormal. As a matter of fact, 

some sites recorded the seasonal maximum just at the beginning of December. Since RF predictions were generated through a 

leave-one-year-out cross-validation, for each of the two abnormal seasons, one of them was always included in the training 405 

set. Hence, it was not the case that such circumstances were completely unknown for the RF model. Apparently, however, 

they were too rare or too local for the model to generalise the information and represent it correctly. The importance of  an 

equally balanced training set is commonly acknowledged in machine learning (Meehan et al., 2024; O’Gorman and Dwyer, 

2018). One possible solution could be to use oversampling techniques that make training sets well-balanced. Otherwise, some 

other ML method could be deployed as some studies suggest that ANN or DL may be more robust in similar circumstances 410 

(Pflug et al., n.d.; Stachura et al., 2024). 

Nevertheless, considerably lower SSMAE for the two specific seasons is not only an effect of RF mispredictions but also 

exceptionally low bias of the reanalysis. As concluded from Fig. 4, snow cover in mountainous terrain is generally heavily 

underestimated. From the other site, dry winters result in poor amounts of accumulated snow during the season. Bearing in 

mind the cumulative nature of snow, this eventually leads to lower bias of the reanalyses.  415 

4.4 Spatial downscaling experiment 

Station verification shown in Fig. 8b is in such complex terrain definitely insufficient to draw a conclusion that spatial 

distribution of the downscaled snow depth is legitimate and corresponds to the ground truth in the whole subdomain. It was 

shown that except for elevation dependence, also the shadowing effect is to be noticed due to including predictors which take 

into account the topographic influence of the surrounding terrain. This corresponds well with variable importance presented 420 

in Fig. 10 where information about elevation and solar radiation belong to the most informative predictors. However, both 

variable importance and the sensitivity test proved little or negligible impact of the wind, while it is commonly acknowledged 

that this is a predominant determinant of spatial variability of snow, especially above the tree line (Mott et al., 2018). First of 

all,, observation network above tree line is really scarce and hardly reflects wind redistribution in an objective way. As 

mentioned previously, some of the mountain-top stations do not measure snow depth directly (i.e., by reading the value from 425 

a snow pole) but rather estimate it based on fresh snowfall and other meteorological quantities so that the final value is 

representative for a greater area than a mountain peak itself. Such methodology is used, e.g., at Kasprowy Wierch, Śnieżka 

and Lomnický Štít. This, however, is misleading for a ML algorithm during training since the target values for these stations 
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have slightly different meanings than for stations which measure snow depth explicitly. One way to get around it would be 

simply to remove the problematic sites, however, it would result in significant shrinkage of the data, especially above 1500 m 430 

a.s.l. and with large values of snow depth. In view of the known limited capability of RF to predict extremes (Muckley et al., 

2022; Sun et al., 2024; Yang et al., 2020), this may lead to the deterioration of the final results. Another solution would be to 

include measurement data from ultrasound sensors, which have been recently set up at several stations in Poland. Lack of long 

observation series could be partially offset by higher data frequency. Secondly, the majority of training data come from stations 

located in lowland areas, where strong wind events are much less frequent than in mountainous regions and thus, wind 435 

redeposition occurs only rarely. A potential solution for this would be to train a ML model only on data from mountainous 

sites. This would result, however, in reduction of generalization ability of the model. Thirdly, as certain meteorological 

variables have proved to be more informative when expressed in their cumulative form, we speculate that a similar approach 

would be beneficial for wind-related predictors. However, aggregating them to this form would be more challenging than, e.g., 

precipitation, since effects of wind redistribution (deposition/erosion) are often wind-direction-dependent.  A parameter 440 

accounting for these processed was developed and successfully used by Liu et al. (2025). However, it should be admitted that 

studies on snow wind redistribution in complex terrain using ML remain challenging and, therefore, relatively rare. More 

frequently, the topic is addressed through numerical modelling (Liston et al., 2007; Marsh et al., 2024). 

Apart from wind, there are a few other snow depth determinants which are completely unrepresented in observations due to 

adhering to the WMO standards for weather stations siting. These are, e.g., influence of slope steepness, snow avalanches or 445 

canopy. Consequently, the RF model has no information about how snow accumulates on steep slopes or in the forest. As a 

result, RF predicts considerable amounts of snow even on extremely steep slopes, which is obviously erroneous. Owing to a 

lack of target observations, the potential of a ML approach seems to be limited. However, some of these processes (e.g., snow 

interception over canopy or snow settlement over steep slopes) are parameterised in surface numerical models, e.g., SURFEX 

(Hedstrom and Pomeroy, 1998). Hence, it might be worth considering developing a hybrid approach which would combine 450 

the strengths of both ML and classic Numerical Weather Prediction (NWP) models, e.g., using physics-informed ML (Viallon-

Galinier et al., 2023). 

5 Conclusions 

In both reanalysis (i.e., ERA5 and ERA5-Land), heavy underestimation of snow depth is observed in complex terrain, where 

accurate estimation of snow is particularly crucial, as this is a key winter water reservoir for this part of Central Europe. On 455 

average, ERA5-Land is less biased than the atmospheric ERA5 due to to its higher resolution and the fact that mountainous 

stations are excluded from the DA process in the atmospheric reanalysis. In flatter terrain, the accuracy of snow depth 

estimation is predominantly affected by DA, which makes the coarse-resolved reanalysis better at 75% of sites below 500 m 

a.s.l. This highlights the importance of DA and indicates major deficiencies in parametrisation of snow processes. MAE for 
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both reanalysis generally increases with elevation, however, after normalisation the greatest errors occur at sites located at the 460 

foothill zone rather than high in the mountains. 

Continued efforts are needed at the side of reanalysis providers to enhance the DA system in several aspects. First of all, at the 

level of international data collection policies, an effort is required to adapt them so that more national databases of snow depth 

(which also involve measurements from lower-ranked stations) would be available to be assimilated. Secondly, at the scientific 

level, more robust methods should be deployed to handle assimilating of measurements in areas which were so far masked out 465 

from the procedure (due to strict quality control requirements or other assumptions). It is important to note here that DA would 

not be that crucial to reanalysis accuracy if physical parameterisations of snow processes were not flawed. Moreover, it is 

commonly known in the NWP community that correcting for bad physics is not the primary goal of DA. Therefore, 

improvement in the description of s.now-related physical processes is a challenge of the utmost importance. 

On average, the RF model was able to reduce systematic errors occurring at both reanalyses by as much as 48%. The greatest 470 

improvement occur in elevated terrain, predominantly due to improved resolution of orography. In lowlands, the differences 

between model and real elevation are little and the observed improvement occur mostly due to simplifications in 

parametrizations of snow processes, particularly in non-assimilated areas. Stations where RF predictions were not superior are 

the stations with already small error, most likely due to the impact of DA. Importantly, RF diminishes interseasonal variations 

of the error which were apparent for the reanalyses. The study identified two winter seasons with distinctly smaller relative 475 

improvement and argued that abnormal climatological conditions contributed to it. This points out the importance of a well-

balanced training dataset and a potential limitation in application of this method of ML. Spatial downscaling performed by RF 

in areas with complex orography produced a fine-scaled spatial distribution of snow depth. Despite a decent overall 

performance verified pointly at 20 sites and the ability to capture more snow accumulated on northern slopes, predictions 

turned out to be spatially underdispersive in areas where other factors than elevation affect snow depth. Additionally, there are 480 

some factors  which are crucial in determining the spatial extent of snow depth in mountainous terrain at such resolution, but 

they are barely reflected in observations (e.g., snow avalanches, drifting snow). Consequently, information about these 

determinants in training data is incomplete and deficient.  

Overall, the main limitation of the RF model presented in this paper is that it requires ground station measurements and 

therefore, its skill and generalization capabilities depend chiefly on the measurements quality and representativeness. This 485 

allows the conclusion that other sources of measurements and observations should be deployed in order to address the problem 

more properly in the future, preferably ones which are spatially continuous. Such data are provided by satellite measurements, 

e.g. passive microwave remote sensing or laser altimetry, and was used in snow depth estimation by, e.g. , (Liu et al., 2025; 

Takala et al., 2011). However, other problem arises when processing this type of data such as scarce temporal coverage or too 

coarse resolution.  490 

Finally, it should be added the above-mentioned limitations apply to virtually every modelling approach, especially when 

considering such a diverse climate element as snow cover and its thickness. In light of the literature and our own experience 

with snow cover measurements, it should be noted that the value of measurement data is crucial not only for simple spatial 
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analyses using GIS spatialization methods but also for the application of ML methods, including RF. Nevertheless, we believe 

the experiment provides valuable insights, as its results offer opportunities for analysing climatological variability of snow 495 

with respect to, e.g., altitudinal zonation.  

Appendix A 

The study area belongs to the temperate climate zone. A specific feature of climate in this place is a gradual transition from 

the oceanic type in the west to the continental one in the east. This is reflected in spatial variability of main climate 

characteristics such as mean air temperature but also mean snow cover duration (Fig. A1). It ranges from less than 30 days in 500 

the northwestern part of the study area to around 100 days in the northeast. The latitudinal pattern is strongly affected by 

mountainous areas in the south, where snow cover duration is elevation-dependent and can reach 180 days (6 months) in the 

highest parts of the Carpathians.  

 

Fig. A1. Average snow cover duration (in days) in the period 1991-2020 according to ERA5-Land 505 
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The study period (20 winter seasons from 2001/2002 to 2020/2021) is marked by fairly gentle snow conditions with snow 

duration shorter by around 10 days on average with respect to a long period 1951-2021. It is important to highlight that, in 

contrast to what is commonly believed, snow conditions then were not yet considerably poorer. By analysing boxplots showing 

seasonal distribution of snow cover duration and mean snow depth (Fig. A2), it is evident that snow conditions were very 

variable. The most snowy season regarding snow cover duration was 2005/2006 when 50% of stations had snow for more than 510 

110 days. However, in terms of mean snow depth, this season is slightly inferior to 2004/2005, when median of this parameter 

reached almost 20 cm. The least snowy season is 2019/2020 with fewer than 10 days with snow at half of the stations and no 

snow at 25% of them. Mean snow depth was also extremely low then. In general, considering the whole study period, four 

consecutive seasons 2002/2003 – 2005/2006 as well as 2012/2013 could be regarded as snowy ones, while 2013/2014, 

2015/2016 and 2019/2020 are seasons with the poorest snow conditions. 515 

 

Fig. A2. Seasonal distribution of snow cover duration (a) and the mean snow depth (b) in the study period based on measurements 
taken at all stations included in the analyses. For the sake of better legibility, outliers are not shown. 

Summing it up, average snow conditions in the study period were a little gentler than in the over-70-year period 1951-2022. 

However, due to considerable interseasonal variability, extreme winter seasons in the study period are also one of the most 520 
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severe and mildest seasons in the long respected long period. This was concluded based on data from ERA5 as well as a 

number of meteorological stations with long observational series. 

Appendix B 

Tab. B1. List of reanalysis fields and their aggregations used in training a Random Forests model. 

parameter name abbrev. database unit 
aggregation/processing 

type 

850 hPa air temperature t ERA5 K daily mean 

surface geopotential z ERA5 m2/s2 elevation retrieval 

land-sea mask lsm ERA5 - - 

snow depth sd ERA5 
m of water 

equivalent 
-, snow age 

snow density rsn ERA5 kg/m3 - 

2m air temperature 2t ERA5-Land K 

6-hour average, daily 

average, maximum and 

minimum, seasonal and 

weekly sum of T<0℃ and 

T>0℃ 

snow albedo asn ERA5-Land - daily mean 

snow density rsn ERA5-Land kg/m3 - 

snow depth sd ERA5-Land 
m of water 

equivalent 
-, snow age 

snowfall sf ERA5-Land 
m of water 

equivalent 
weekly and seasonal sum 

snowmelt smlt ERA5-Land 
m of water 

equivalent 
daily and seasonal sum 

soil temperature in the 

uppermost layer (0-7 cm) 
stl1 ERA5-Land K daily mean 

soil temperature in the 

second layer (7-28 cm) 
stl2 ERA5-Land K daily mean 

surface net solar radiation ssr ERA5-Land J/m2 daily sum 
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surface solar radiation 

downwards 
ssrd ERA5-Land J/m2 

daily average, daily and 

seasonal sum 

total precipitation tp ERA5-Land m seasonal sum 

snow fraction snowc ERA5-Land - - 

snow depth sde ERA5-Land m - 

snow density rsn ERA5-Land kg/m3 - 

type of low vegetation tvl ERA5-Land - - 

type of high vegetation tvh ERA5-Land - - 

surface geopotential z ERA5-Land m2/s2 elevation retrieval 

land-sea mask lsm ERA5-Land - - 

low vegetation fraction cvl ERA5-Land - - 

high vegetation fraction cvh ERA5-Land - - 

 525 

Tab. B2. List of DEM-based parameters used in training a Random Forests model. 

parameter name abbrev. database unit aggregation/processing type 
potential direct incoming 

solar radiation  
dirrad DEM Wh/m2 daily and seasonal sum 

potential duration of solar 
radiation 

time DEM h daily and seasonal sum 

elevation elev DEM m - 
distance to the Baltic coast odl DEM km - 
percentage of surrounding 

area elevated higher   
major DEM % 

for a set of radii [m]: 100, 
200, 500, 1000, 2000, 5000 

sky view factor SVF DEM - 
for a set of radii [m]: 100, 

200, 500, 1000, 2000, 5000 

topographic position index tpi DEM - 
for a set of radii [m]: 100, 

200, 500, 1000, 2000, 5000, 
10000, 20000, 30000 

date date - - - 
day of a season  doy - - starting from 1st November 

month of a season moy - - starting from November 
year year - - - 

station rank rank - - encoded to integer 
longitude lon - ° - 
latitude lat - ° - 

 

Data availability 

Snow depth measurements from Polish stations used in the study are publicly available at danepubliczne.imgw.pl (accessed: 

23.02.2025). This does not include data from precipitation stations from years 2001-2010, which are available only internally. 530 
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For downloading the data, an R package climate was used (Czernecki et al. 2019). As far as Czech stations are considered, 

data are publicly available at https://www.chmi.cz/historicka-data/pocasi/denni-data (accessed: 14.02.2024). Data from 

Slovakia are available only on request at the national weather service (Slovenský hydrometeorologický ústav). 

Copernicus reanalyses ERA5 and ERA5-Land are available to download at the Climate Data Store of Copernicus Climate 

Change Service at https://cds.climate.copernicus.eu/datasets (accessed: 23.06.2024) 535 
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