
REVIEWER 3 

MAJOR COMMENTS: 

1. One major missing element from the manuscript is the discussion of elevation mismatch 
between the coarse reanalysis gridcells and stations. Both in terms of evaluation, because 
from all previous studies it emerges that if one accounts for these diƯerences, errors drop 
considerably. But also for the RF, it could be a key input variable. 

Answer: 

Elevation mismatch is certainly the primary factor contributing to systematic error of snow 
depth over complex orography. If in Fig. 4a-b, the mean bias is plotted against the elevation 
diƯerence instead of absolute elevation value, there will be a distinct linear relationship 
between them (see Fig. 3 below). However, bias changes during the season (increases 
with snow accumulation), so trend parameters derived from the plots would not be 
relevant to calculate a daily correction. Hence, apart from elevation mismatch, other 
factors  (e.g., absolute value of snow depth, accumulated precipitation since the 
beginning of the season) should also be explanatory. It is definitely more common in 
literature to account on elevation mismatch when correcting bias of air temperature using 
lapse rate since the method is very simple and the parameter is instantaneous 
(Bouallègue et al., 2023; Keller et al., 2021). When it comes to snow fields, it is common 
by dynamical downscaling to apply lapse-rate-based corrections to fields that 
determinates snow at most, i.e. air temperature and precipitation (Baba et al., 2021; Dalla 
Torre et al., 2024). However, we are not aware of any publication where a snow field would 
be corrected using some linear relation based on elevation mismatch. We can imagine 
that it could possibly reduce the error in complex terrain to some extent, however, please 
notice that even for stations with little elevation diƯerence, there are still non-negligible 
systematic errors. An example of such site is Puczniew (Fig. 4), a climate station which lies 
in central Poland in nearly flat terrain, with only 3 metres of elevation diƯerence against 
ERA5 and a perfect match in case of ERA5-Land. The station lies around 20 km away from 
a synop station which probably was assimilated and therefore the mean bias for the 
atmospheric reanalysis is relatively low. However, RF is still able to make it better. 

Summing it up, the approach we used is to tackle the systematic error in total, regardless 
weather it was predominantly driven by elevation mismatch, simplifications in 
parametrizations of snow physical processes or any other factor (although some part of 
the error could be reduced with some simple linear method). Such an approach is 
common when correcting snow bias using ML methods. 



 
Fig. 1 Mean bias of  snow depth for every station in relation to elevation mismatch (reanalysis minus real) for 
ERA5-Land (right) and the atmoshperic ERA5 (left). 

 
Fig. 2 Snow depth variability in the 2005/2006 season at station Puczniew. Despite negligible elevation 
mismatch, systematic errors still exist. 

Regarding the inclusion of elevation mismatch at the stage of a RF model training – this 
piece of information is indirectly provided to the model with three variables: elevation from 
the Digital Elevation Model (as a proxy of real elevation) and model elevation of ERA5 and 
ERA5-Land. If we used relative fields instead (diƯerence instead of absolute values), they 
would probably be the most important features during training. However, some 
information regarding absolute altitude might be lost. Actually, we conducted such an 
experiment and the diƯerence in training MSE is negligibly small (6.321 versus 6.315 cm). 
Thus, the two alternative forms of information about elevation could be considered as 
equivalent.  



 

2. In the RF date, day, month, and year are used as input. In an operational setting, year and 
date would not be available? From the variable importance analysis, they seem to have 
some influence. Would it make sense to test a model without these variables? 

Answer: 

We cannot see any reason why temporal variables like day, month, year and date would 
not be available when running operationally. However, it was not the goal of this study to 
propose a tool that could be run operationally. The main reason for it is that ERA5 
reanalyses are publicly available with a delay of around 5 days.  

3. Sec 2.5 unclear how you split into training, test and validation sets. Was a validation set 
used at all? Similar to the previous reviewers, I strongly suggest including a validation set 
in the spatial domain. Moreover, it could be useful to give summary metrics for the diƯerent 
sets (training, test, validation), to see how well the model generalizes. 

Answer:  

There is no separate validation set in a sense that occurs by other machine learning 
methods, e.g. artificial neural networks. In contrast to them, random forests (RF) does not 
use a separate, fixed validation dataset due to diƯerent training methodology. RF is a 
decision-trees-based method that uses bootstrap aggregating – a resampling method  
that randomly generates multiple  data samples with some data replaced by duplicated 
samples of the original set (Boehmke and Greenwell, 2019).  The part of the original 
dataset not included in a bootstrap sample (around 27% on average) is considered out-of-
bag (OOB). The OOB samples are then used to validate the model. Hence, the score is 
called the OOB error. Breimann (2001) explicitly stated that the error “removes the need 
for a set aside test set”. Under “test set” he meant “validation set” – these two terms used 
to be often confused in literature (Ripley, 1996). The OOB error is proved to be a good 
estimation of the model generalisation error (Breiman, 2001). Hence, the error is 
commonly regarded as a training error, while sensu stricto this is a validation error.  

Furthermore, we appreciate your suggestion regarding the spatial split. The training 
strategy has been extended so that, beside temporal split, also spatial split is concerned. 
Taking into consideration latitudinal pattern of land relief in the study area, the domain has 
been split into 5 longitudinal bands (every 2°), so that every band includes some 
mountainous stations which provide extensive data. Little variability of training error in 
both temporal and spatial split proves good generalization skill of the RF model. A detailed 
list of the errors for every combination is put in the Appendix C. In the manuscript (section 
2.5), the information was given in an aggregated form (mean + standard deviation). In 
addition,  the description of splitting was put in a separate paragraph in the Section 2.5 so 
that it is more comprehensible. 

4. Example downscaling: it unclear if the authors used interpolation of surface meteorology 
from stations using bicubic? Or what variables were interpolated to perform the 
downscaling? Note that simple bicubic is not appropriate for variables that have a strong 
elevation dependency such as temperature, humidity, … I don’t know if this might be an 
explanation for the errors found. Of course it is diƯicult to validate such a dataset, but have 
you considered remote sensing products based on MODIS, such as globalsnowpack from 
the DLR or ESA snow CCI? Of course you’d have to convert snow depth to snow presence, 
but it could give you some independent spatial information. 

Answer: 



Thank you for this question. None of the station-measured parameters have been 
interpolated. Bicubic interpolation was performed over predictors from reanalyses in 
order to prepare a test set. As they already were continuous 2D fields before this 
operation, it was actually regridding rather then interpolation. We are aware that some of 
the fields are meteorological fields with distinct elevation dependence which is not 
accounted for while interpolating bicubicly. However, please notice that during retrieval of 
a point value from a reanalysis (as it was done for every station in the study area for 
training), it is often interpolation from the nearest node which is performed (alternatively, 
it could be a raw value from the nearest node, but in our case it wouldn’t make sense). 
Therefore, the predictors are not really downscaled, but rather bicubically regridded. The 
description of the experiment setup in Section 2.6 has been modified so that it is hopefully 
more accurate and clear. 

Regarding using an independent dataset, we are very grateful for this suggestion. At the 
initial stage of research, we found the remote-sensing-based products not relevant to our 
research as they mostly provide qualitative information about snow, not quantitative. 
However, it is indisputable that in cases where snow does not cover the entire study area, 
information about snow presence do provides added value. In order to fully benefit from 
it, date of the presented results had to be changed (at the initial date, the whole domain 
was covered by snow). Consequently, major modifications have been introduced in 
Section 2.4 and 3.3, including the figures. The snow mask from the GlobSnowPack 
database was added upon Fig. 8b. 

 

MINOR COMMENTS: 

1. L69: Avanzi and Fontrodona are not appropriate references for the statement. 

Answer: 

Thank you for pointing it out. Indeed the work of Avanzi et al. is an example of reanalysis 
that does not involve any numerical modelling. The second study we referred to does 
employ calculation using a regional snow model ∆SNOW, however only point-wise (for 
stations). Therefore, it cannot be considered dynamical downscaling. The incorrect 
references have been replaced with the relevant ones. 

2. L90: I guess topographic complexity can also be high in the Americas and HMA, depending 
on where you are. 

Answer: 

What we intended to convey is that spatial resolution of the output of the ML models 
proposed in referred papers (specifically, Cui et al. (2023), King et al. (2020), Tanniru 
(2025)) is still insuƯicient regarding the scale of topographic complexity that occurs in the 
highest mountain range in our study area. No doubt that such complexity occurs also in 
mountains of North America or in the Himalayas. However, the papers concerning these 
regions propose spatial resolution that is indeed finer that the output, but with primary 
goal to accurately reflect snow depth (or SWE) over a large mountainous area, rather than 
oƯering horizontal resolution corresponding to the scale of topographic complexity. The 
sentence has been reformulated for clarity. 
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