REVIEWER 3

MAJOR COMMENTS:

1.

One major missing element from the manuscript is the discussion of elevation mismatch
between the coarse reanalysis gridcells and stations. Both in terms of evaluation, because
from all previous studies it emerges that if one accounts for these differences, errors drop
considerably. But also for the RF, it could be a key input variable.

Answer:

Elevation mismatch is certainly the primary factor contributing to systematic error of snow
depth over complex orography. If in Fig. 4a-b, the mean bias is plotted against the elevation
difference instead of absolute elevation value, there will be a distinct linear relationship
between them (see Fig. 3 below). However, bias changes during the season (increases
with snow accumulation), so trend parameters derived from the plots would not be
relevant to calculate a daily correction. Hence, apart from elevation mismatch, other
factors (e.g., absolute value of snow depth, accumulated precipitation since the
beginning of the season) should also be explanatory. It is definitely more common in
literature to account on elevation mismatch when correcting bias of air temperature using
lapse rate since the method is very simple and the parameter is instantaneous
(Bouallegue et al., 2023; Keller et al., 2021). When it comes to snow fields, it is common
by dynamical downscaling to apply lapse-rate-based corrections to fields that
determinates snow at most, i.e. air temperature and precipitation (Baba et al., 2021; Dalla
Torre et al., 2024). However, we are not aware of any publication where a snow field would
be corrected using some linear relation based on elevation mismatch. We can imagine
that it could possibly reduce the error in complex terrain to some extent, however, please
notice that even for stations with little elevation difference, there are still non-negligible
systematic errors. An example of such site is Puczniew (Fig. 4), a climate station which lies
in central Poland in nearly flat terrain, with only 3 metres of elevation difference against
ERAS and a perfect match in case of ERA5-Land. The station lies around 20 km away from
a synop station which probably was assimilated and therefore the mean bias for the
atmospheric reanalysis is relatively low. However, RF is still able to make it better.

Summing it up, the approach we used is to tackle the systematic error in total, regardless
weather it was predominantly driven by elevation mismatch, simplifications in
parametrizations of snow physical processes or any other factor (although some part of
the error could be reduced with some simple linear method). Such an approach is
common when correcting snow bias using ML methods.
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Fig. 1 Mean bias of snow depth for every station in relation to elevation mismatch (reanalysis minus real) for
ERA5-Land (right) and the atmoshperic ERAS (left).
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Fig. 2 Snow depth variability in the 2005/2006 season at station Puczniew. Despite negligible elevation
mismatch, systematic errors still exist.

Regarding the inclusion of elevation mismatch at the stage of a RF model training — this
piece of information s indirectly provided to the model with three variables: elevation from
the Digital Elevation Model (as a proxy of real elevation) and model elevation of ERA5 and
ERA5-Land. If we used relative fields instead (difference instead of absolute values), they
would probably be the most important features during training. However, some
information regarding absolute altitude might be lost. Actually, we conducted such an
experiment and the difference in training MSE is negligibly small (6.321 versus 6.315 cm).
Thus, the two alternative forms of information about elevation could be considered as
equivalent.



2.

In the RF date, day, month, and year are used as input. In an operational setting, year and
date would not be available? From the variable importance analysis, they seem to have
some influence. Would it make sense to test a model without these variables?

Answer:

We cannot see any reason why temporal variables like day, month, year and date would
not be available when running operationally. However, it was not the goal of this study to
propose a tool that could be run operationally. The main reason for it is that ERAS
reanalyses are publicly available with a delay of around 5 days.

Sec 2.5 unclear how you split into training, test and validation sets. Was a validation set
used at all? Similar to the previous reviewers, | strongly suggest including a validation set
inthe spatial domain. Moreover, it could be useful to give summary metrics for the different
sets (training, test, validation), to see how well the model generalizes.

Answer:

There is no separate validation set in a sense that occurs by other machine learning
methods, e.g. artificial neural networks. In contrast to them, random forests (RF) does not
use a separate, fixed validation dataset due to different training methodology. RF is a
decision-trees-based method that uses bootstrap aggregating — a resampling method
that randomly generates multiple data samples with some data replaced by duplicated
samples of the original set (Boehmke and Greenwell, 2019). The part of the original
dataset notincluded in a bootstrap sample (around 27% on average) is considered out-of-
bag (OOB). The OOB samples are then used to validate the model. Hence, the score is
called the OOB error. Breimann (2001) explicitly stated that the error “removes the need
for a set aside test set”. Under “test set” he meant “validation set” — these two terms used
to be often confused in literature (Ripley, 1996). The OOB error is proved to be a good
estimation of the model generalisation error (Breiman, 2001). Hence, the error is
commonly regarded as a training error, while sensu stricto this is a validation error.

Furthermore, we appreciate your suggestion regarding the spatial split. The training
strategy has been extended so that, beside temporal split, also spatial splitis concerned.
Taking into consideration latitudinal pattern of land relief in the study area, the domain has
been split into 5 longitudinal bands (every 2°), so that every band includes some
mountainous stations which provide extensive data. Little variability of training error in
both temporal and spatial split proves good generalization skill of the RF model. A detailed
list of the errors for every combination is put in the Appendix C. In the manuscript (section
2.5), the information was given in an aggregated form (mean + standard deviation). In
addition, the description of splitting was put in a separate paragraph in the Section 2.5 so
that it is more comprehensible.

Example downscaling: it unclear if the authors used interpolation of surface meteorology
from stations using bicubic? Or what variables were interpolated to perform the
downscaling? Note that simple bicubic is not appropriate for variables that have a strong
elevation dependency such as temperature, humidity, ... | don’t know if this might be an
explanation for the errors found. Of course it is difficult to validate such a dataset, but have
you considered remote sensing products based on MODIS, such as globalsnowpack from
the DLR or ESA snow CCI? Of course you’d have to convert snow depth to snow presence,
but it could give you some independent spatial information.

Answer:



Thank you for this question. None of the station-measured parameters have been
interpolated. Bicubic interpolation was performed over predictors from reanalyses in
order to prepare a test set. As they already were continuous 2D fields before this
operation, it was actually regridding rather then interpolation. We are aware that some of
the fields are meteorological fields with distinct elevation dependence which is not
accounted for while interpolating bicubicly. However, please notice that during retrieval of
a point value from a reanalysis (as it was done for every station in the study area for
training), it is often interpolation from the nearest node which is performed (alternatively,
it could be a raw value from the nearest node, but in our case it wouldn’t make sense).
Therefore, the predictors are not really downscaled, but rather bicubically regridded. The
description of the experiment setup in Section 2.6 has been modified so that it is hopefully
more accurate and clear.

Regarding using an independent dataset, we are very grateful for this suggestion. At the
initial stage of research, we found the remote-sensing-based products not relevant to our
research as they mostly provide qualitative information about snow, not quantitative.
However, it is indisputable that in cases where snow does not cover the entire study area,
information about snow presence do provides added value. In order to fully benefit from
it, date of the presented results had to be changed (at the initial date, the whole domain
was covered by snow). Consequently, major modifications have been introduced in
Section 2.4 and 3.3, including the figures. The snow mask from the GlobSnowPack
database was added upon Fig. 8b.

MINOR COMMENTS:
L69: Avanzi and Fontrodona are not appropriate references for the statement.
Answer:

Thank you for pointing it out. Indeed the work of Avanzi et al. is an example of reanalysis
that does not involve any numerical modelling. The second study we referred to does
employ calculation using a regional snow model ASNOW, however only point-wise (for
stations). Therefore, it cannot be considered dynamical downscaling. The incorrect
references have been replaced with the relevant ones.

L90: | guess topographic complexity can also be high in the Americas and HMA, depending
on where you are.

Answer:

What we intended to convey is that spatial resolution of the output of the ML models
proposed in referred papers (specifically, Cui et al. (2023), King et al. (2020), Tanniru
(2025)) is still insufficient regarding the scale of topographic complexity that occurs in the
highest mountain range in our study area. No doubt that such complexity occurs also in
mountains of North America or in the Himalayas. However, the papers concerning these
regions propose spatial resolution that is indeed finer that the output, but with primary
goal to accurately reflect snow depth (or SWE) over a large mountainous area, rather than
offering horizontal resolution corresponding to the scale of topographic complexity. The
sentence has been reformulated for clarity.



REFERENCES

Baba, M. W., Boudhar, A., Gascoin, S., Hanich, L., Marchane, A., and Chehbouni, A.: Assessment
of MERRA-2 and ERA5 to Model the Snow Water Equivalent in the High Atlas (1981-2019), Water,
13, 890, https://doi.org/10.3390/w13070890, 2021.

Boehmke, B. and Greenwell, B.: Hands-On Machine Learning with R, 1st ed., Chapman and
Hall/CRC, https://doi.org/10.1201/9780367816377, 2019.

Bouallegue, Z. B., Cooper, F., Chantry, M., Duben, P.,, Bechtold, P., and Sandu, I.: Statistical
Modelling of 2m Temperature and 10m Wind Speed Forecast Errors, Mon. Wea. Rev., 1,
https://doi.org/10.1175/MWR-D-22-0107.1, 2023.

Breiman, L.: Random Forests, Machine Learning, 45, 5-32,
https://doi.org/10.1023/A:1010933404324, 2001.

Cui, G., Anderson, M., and Bales, R.: Mapping of snow water equivalent by a deep-learning model
assimilating snow observations, Journal of Hydrology, 616, 128835,
https://doi.org/10.1016/j.jhydrol.2022.128835, 2023.

Dalla Torre, D., Di Marco, N., Menapace, A., Avesani, D., Righetti, M., and Majone, B.: Suitability of
ERA5-Land reanalysis dataset for hydrological modelling in the Alpine region, Journal of
Hydrology: Regional Studies, 52, 101718, https://doi.org/10.1016/j.ejrh.2024.101718, 2024.

Keller, R., Rajczak, J., Bhend, J., Spirig, C., Hemri, S., Liniger, M. A., and Wernli, H.: Seamless
Multimodel Postprocessing for Air Temperature Forecasts in Complex Topography, Wea.
Forecasting, 36, 1031-1042, https://doi.org/10.1175/WAF-D-20-0141.1, 2021.

King, F., Erler, A. R., Frey, S. K., and Fletcher, C. G.: Application of machine learning techniques for
regional bias correction of snow water equivalent estimates in Ontario, Canada, Hydrology and
Earth System Sciences, 24, 4887-4902, https://doi.org/10.5194/hess-24-4887-2020, 2020.

Ripley, B. D.: Pattern Recognition and Neural Networks, 1st ed., Cambridge University Press,
https://doi.org/10.1017/CB0O9780511812651, 1996.

Tanniru, S., Singh, K., Singh, K., and Ramsankaran, R.: Exploring Machine Learning’s Potential for
Estimating High Resolution Daily Snow Depth in Western Himalaya Using Passive Microwave
Remote Sensing Data Sets, 2025.



