
Response to Referee #1’ Comments 
 
Response to Major comments 
1. The extinction-to-mass conversion is on shaky ground. You’re dividing CATS extinction by a 
fixed DustCOMM MEE that’s climatological, largely dry, and wavelength/size-agnostic, while the 
actual extinction depends strongly on size distribution, mineralogy, refractive index, and RH. With 
regional dust heterogeneity across Tarim/Qaidam and potential 1064 532 nm inconsistencies, this 
shortcut can introduce order-of-magnitude bias unless you regionalize MEE and propagate its 
uncertainty. 
Response: Thank you for highlighting potential issues associated with this key step of converting 
extinction coefficients to dust mass concentration. We agree that the description of the DustCOMM 
MEE in the original manuscript was overly brief and could inadvertently suggest that a single fixed 
MEE constant was used for the conversion, which did not adequately convey the physical basis of 
this procedure or its regional variability. In fact, we used the three-dimensional MEE dataset 
provided by DustCOMM at 550 nm, rather than a prescribed constant value. This product was a 
physically grounded global dust climatology based on a multi-model ensemble that was further 
constrained by multi-site observations (Adebiyi et al., 2020). During the dataset construction, 
factors such as particle size distribution, regional variability, and vertical structure were explicitly 
considered. Consequently, MEE varied with both location and altitude on a 0.5° × 0.625° horizontal 
grid and across 35 pressure levels (Figs. S1–S2). Adebiyi et al. (2020) showed that the DustCOMM 
MEE differed from observational estimates by only ~1% on average, and that it improved upon the 
raw model ensemble by better capturing lower MEE near source regions and higher MEE downwind 
as dust was transported and aged. Therefore, this conversion did not rely on a wavelength- or size-
independent “universal constant”; instead, it used an observation-constrained, spatially and 
vertically varying 3D MEE field. Given the lack of long-term, continuous, and representative in situ 
MEE measurements along the Taklamakan–Thar–Tibetan Plateau transport corridor, region- and 
height-resolved MEE fields could not be independently constructed from observations alone. 
DustCOMM effectively addressed this data gap by providing a global, three-dimensional, 
observation-constrained dust MEE product, representing a pragmatic balance between feasibility 
and reliability. Moreover, several recent studies focusing on the source and downwind regions 
relevant to this work (including the Taklamakan Desert, the Thar Desert, and the Tibetan Plateau) 
have directly adopted DustCOMM MEE climatology to quantify dust loading and transport and 
have reported encouraging performance (Han et al., 2022a, 2022b; Tang et al., 2024). 

We acknowledge the reviewer’s point that the DustCOMM product did not explicitly account 
for humidity effects, which could influence MEE by altering particle size and refractive index. 
However, for the mineral dust and free-tropospheric conditions in this study, the use of an 
approximately dry-state MEE was justified for the following reasons.  

(1) Laboratory constraints indicated limited mass growth of mineral dust under subsaturated 
conditions. For Asian mineral dust types closely relevant to our study region, vapor adsorption 
experiments by Chen et al. (2020) showed that the water mass at RH = 90% was only ~2% of the 
dry dust mass for Chinese loess, Qinghai dust, and Xinjiang dust; at RH = 70% it was ~1%. This 
suggested that the humidity-induced mass increase was modest under subsaturated RH.  

(2) The hygroscopic diameter growth factor of natural mineral dust was close to unity under 
subsaturated RH. Using HTDMA measurements, Koehler et al. (2009) reported that natural mineral 



dust from North Africa and the southwestern United States typically exhibited diameter growth 
factors < 1.1 for RH ≤ 90%, whereas more pronounced growth was mainly observed for artificially 
generated samples produced via nebulization. This implied that hygroscopic growth of naturally 
emitted mineral dust was generally weak under subsaturated conditions, with impacts on geometric 
size and optical cross-section at only the few-percent level.  

(3) Our analysis was based on the “Dust” (not “Dust mixture”) classification from CATS. 
Based on the typically dry free-tropospheric conditions in our study region and the constrained 
hygroscopic growth factors, we inferred that the RH-induced enhancement of MEE under our 
conditions was likely only a few percent. This effect was smaller than other dominant uncertainties, 
such as those from the CATS extinction retrievals and wind fields. 

Based on these considerations, we concluded that treating mineral dust as weakly hygroscopic 
and using the DustCOMM three-dimensional (approximately dry) MEE to estimate dust mass fluxes 
in the dry, cold free troposphere was a reasonable approximation under current observational and 
parameter constraints. Due to the lack of sufficient in situ measurements, developing an 
observationally derived, RH-dependent MEE field was not yet technically mature. Introducing an 
RH-dependent “wet” MEE would rely on assumptions regarding dust mixing state, soluble fraction, 
and vertical humidity profiles, potentially introducing new uncertainties that were difficult to 
quantify with available data. Therefore, we retained the dry-MEE treatment in the revised 
manuscript and added text in Section 3.7 (Uncertainty assessment) to explicitly clarify the physical 
basis and spatial heterogeneity of DustCOMM MEE, and limitations of this assumption, including 
its conditions of applicability and potential bias range. 
 

 
Figure S1. Horizontal distribution of the DustCOMM MEE product over the study region at 581.25 hPa. The 

581.25 hPa level corresponded to an altitude of approximately 4 km, which represented the principal dust transport 

layer downwind of the TD, Qaidam Basin, and the TP. The MEE values across the entire region generally ranged 

between 1.6 and 2.9  𝑚𝑚2 ⋅ 𝑔𝑔−1. 

 



 

Figure S2. Vertical distribution of the DustCOMM MEE product over the TD (35°–42°N, 75°–90°E). The MEE 

values showed a gradual increase with altitude. 
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2. The reconstruction of a 3-hour diurnal cycle from CATS observations is statistically invalid. 
CATS data cover only a short time period and have uneven local-time sampling. Using a 60-day 
moving window does not compensate for aliasing or sampling bias. Without showing the local-time 
coverage distribution and weighting scheme, the derived “typical day” is more likely an artifact of 
orbital sampling than a real physical signal. 
Response: Thanks for the careful consideration on the statistical validity of reconstructing the 



diurnal cycle of dust from CATS observations. We agree that the three-year CATS record and its 
uneven local-time sampling presented clear limitations. Consequently, deriving a 3-hourly 
representative diurnal cycle was statistically constrained, and the use of a 60-day moving window 
could not entirely eliminate sampling aliasing and bias. We did not state clearly enough about these 
limitations in the original manuscript, and we are grateful to the reviewer for pointing it out.  

We would like to clarify that the purpose of this study is not to reproduce the “true” 3-hourly 
diurnal evolution for any specific day. Instead, given the inherent sampling limitations of spaceborne 
lidar, our objective was to extract the climatological local-time dependence of dust from the full 
CATS record. It is currently not yet feasible to obtain complete, multi-year, all-weather diurnal 
sampling of dust vertical structure from active spaceborne sensors, especially for a large coverage. 
Since continuous diurnal sampling from space is currently unattainable, we employ seasonal/ 
climatological compositing to extract statistical diurnal tendencies—a methodology also used in 
other CATS-based diurnal studies of clouds and aerosols (e.g., Noël et al., 2018; Yu et al., 2021; Li 
et al., 2023; Wang et al., 2024). Following this climatological framework, we derived two CATS 
dust extinction products under the assumption that seasonal characteristics are regionally consistent: 
(i) a climatological dust extinction (total dust extinction divided by all valid aerosol retrievals), 
representing the mean state conditioned on aerosol detection; and (ii) a dust-event dust extinction 
(total dust extinction divided by valid dust retrievals), representing the mean under dust conditions. 
The former was used to estimate climatological dust mass concentration and transport fluxes, while 
the latter specifically quantified fluxes during dust events. Thus, the “typical diurnal cycle” obtained 
here should be viewed as an initial, observationally constrained estimate—a practical compromise 
under current sampling limitations. We agree that in future studies, with more complete 
observational coverage, it should employ rigorous sampling diagnostics and joint inversion to 
approach a more instantaneous representation of the diurnal cycle. 

In the revised manuscript, we have added relevant citations, expanded the limitation section to 
cover sampling and aliasing, and emphasized that our results reflect climatological local-time 
tendencies from CATS, not true instantaneous cycles. Accordingly, we suggest that the derived 
diurnal patterns be regarded as qualitative or semi-quantitative references, not as exact depictions 
of real-time behavior. 
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3. The treatment of the near-surface layer is oversimplified. Assuming a uniformly mixed layer 



of 0–180 m ignores sharp vertical gradients under stable conditions or during dust storms. This can 
strongly distort the surface dust concentration and any comparison with ground-based PM10 data. 
A more realistic boundary-layer height estimates or sensitivity analysis is needed. 
Response: Thanks for the reviewer’s valuable comments on the treatment of the near-surface layer. 
We acknowledge that representing the 0–180 m layer as uniformly mixed was an idealized 
simplification, as strong vertical gradients could occur under stable stratification or during intense 
dust events. This methodological choice inevitably introduced uncertainty, affecting both the 
derived surface concentrations and their validation against ground-based PM10 observations. 

However, it should be noted that in this study the use of the 0–180 m near-surface layer was 
mainly motivated by the inherent limitations of spaceborne lidar retrievals. When retrieving near-
surface signals, spaceborne lidars such as CATS and CALIOP frequently encountered challenges 
including surface return contamination, low signal-to-noise ratios, and cloud interference. These 
unfavorable conditions often resulted in data gaps (NaN) or unreliable (anomalously high or low) 
extinction coefficients in the lowest range bins. It was thus difficult to reliably represent surface 
concentrations using the single lowest layer alone. Some practical precedents have proven the 
effectiveness of such layer mean method, including Toth et al. (2019), who used the 100–1000 m 
mean CALIOP extinction to avoid surface reflection, and Han et al. (2022), who treated the 0–300 
m mean as surface concentration. Considering these constraints and CATS’s 60 m resolution, our 
adoption of the 0–180 m layer was a pragmatic compromise between data reliability and near-
surface representativeness.  

To evaluate the climate-scale validity of this near-surface approximation, we conducted a 
systematic comparison between CATS retrievals and reanalysis data. Fig. S3 presented the seasonal-
mean relationship between MERRA-2 surface dust mass concentration (DMCS) and the CATS-
derived near-surface concentrations. Upon removing a small set of extreme outliers (<7% of total 
samples) via the IQR method, the two datasets show strong agreement in their seasonal spatial 
patterns, with correlation coefficients ranging from 0.54 to 0.74 across the four seasons (mean ≈ 
0.67). Compared to MERRA-2, CATS showed a modest positive bias in spring (+13 𝜇𝜇𝑔𝑔 ⋅ 𝑚𝑚−3) and 
negative biases of 18–27 𝜇𝜇𝑔𝑔 ⋅ 𝑚𝑚−3 in other seasons, yielding an annual mean bias of –10 to –20 
𝜇𝜇𝑔𝑔 ⋅ 𝑚𝑚−3 . Seasonal MAE and RMSE were 41–68 𝜇𝜇𝑔𝑔 ⋅ 𝑚𝑚−3  and 57–98 𝜇𝜇𝑔𝑔 ⋅ 𝑚𝑚−3 , respectively. 
Relative to typical dust concentrations (150–250 𝜇𝜇𝑔𝑔 ⋅ 𝑚𝑚−3 ) in source and downwind areas, this 
MAE corresponded to about 20–40% of the mean, and could be larger under conditions with 
pronounced gradients or specific meteorology. Fig. S4 further compared the seasonal relationships 
between CATS 0–180 m near-surface dust concentration, MERRA-2 DMCS, and ground-based 
PM10-PM2.5 data. After IQR-based outlier removal (<7%), CATS showed moderate-to-high 
correlation (r ≈ 0.56–0.68) and generally comparable magnitude with PM10-PM2.5, but with an 
overall negative bias of ~–20 𝜇𝜇𝑔𝑔 ⋅ 𝑚𝑚−3 (i.e., slight overestimation in spring and underestimation in 
other seasons). It should be noted that PM10-PM2.5 was only an approximate indicator of dust 
concentration, as it included non-dust coarse particles and excluded fine dust (accounted for in 
PM2.5). As an additional reference, we also examined the relationship between MERRA-2 dust 
concentration and PM10-PM2.5. MERRA-2 achieved higher correlations in all seasons (r ≈ 0.65–
0.86) with lower MAE and RMSE than CATS, though it similarly showed a systematic negative 
bias of about –9 to –19 𝜇𝜇𝑔𝑔 ⋅ 𝑚𝑚−3. This bias likely arose from the representativeness gap between 
station observations and model/satellite grids, along with the influence of near-surface vertical 
gradients. 



Overall, treating the 0–180 m layer as uniformly mixed was a simplification that might 
underestimate near-surface gradient effects, particularly during stable stratification or intense dust 
events. Nevertheless, after removing extreme outliers, the CATS near-surface dust concentrations 
demonstrate substantial consistency with both MERRA-2 and ground-based PM10-PM2.5 in 
seasonal-mean spatial patterns and magnitude. The uncertainty was comparable to that found in 
similar CALIOP/CATS retrieval studies. Hence, we consider the 0–180 m layer to be a 
quantitatively viable near-surface representation for our climatological and regional-mean analysis, 
with uncertainties that were both acceptable and controllable. In the revised manuscript, we have 
explicitly stated the limitations of this approximation. We further note in the outlook that future 
improvements in near-surface dust retrieval will require both more accurate boundary-layer height 
estimates and systematic sensitivity analyses regarding the choice of layer thickness. 
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Figure S3. Comparison of CATS 0–180 m DMCS and MERRA-2 DMCS at seasonal-mean scales. The number in 

parentheses following the total sample size indicated the percentage of samples retained after removing outliers 

using the interquartile range (IQR) method. 

 



 

 
Figure S4. Comparison of surface PM10-PM2.5 observations with (a–d) CATS 0–180 m DMCS and (e–h) MERRA‑2 

DMCS at seasonal‑mean scales. The number in parentheses after the total sample size indicated the percentage of 

samples remaining after outlier removal using the interquartile range (IQR) method. PM10-PM2.5 means the 

difference of PM10 and PM2.5. 

 

 
 



 
4. The flux integration across regional boundaries is not well justified. The authors multiply a 
sparsely sampled DMC profile by ERA5 winds and integrate over large sections, implicitly 
assuming representativeness and mass conservation that are never verified. There are no flux 
divergence checks or control-volume closure tests, and the temporal normalization (instantaneous, 
seasonal, or annual) is unclear. The resulting flux magnitudes, comparable to or exceeding full 
chemistry models, are likely overestimated. 
Response: We are grateful to the reviewer for the insightful suggestions. We recognize that the 
original manuscript did not adequately describe the boundary flux integration method, potentially 
leading to unclear expression. In this work, we did not rely on extrapolating a single, spatially or 
temporally sparse dust mass concentration (DMC) profile, but the DMC profiles were obtained from 
gridded, averaged dust extinction coefficient data at 0.5° × 0.5° horizontal and 60 m vertical 
resolution. Then we composited DMC seasonally and diurnally along each boundary to obtain 
representative mean profiles and combined them with coincident ERA5 winds. The flux was then 
integrated vertically and along the boundary direction. As a result, the fluxes reported are seasonal 
means, and then converted to annual totals (𝑇𝑇𝑇𝑇 ⋅ 𝑦𝑦𝑦𝑦−1 ) based on seasonal length, and do not 
represent instantaneous transports. To evaluate the reliability of these flux estimates, we compared 
them quantitatively with existing observational and model-based studies. Our estimated seasonal-
mean westerly-driven dust flux over northwestern China (2.5–7 km layer) fell between 6.8 and 34.4 
𝑡𝑡𝑡𝑡𝑡𝑡 ⋅ 𝑘𝑘𝑘𝑘−2 ⋅ 𝑑𝑑𝑑𝑑𝑑𝑑−1 . This range is consistent with the 5.3–68.7 𝑡𝑡𝑡𝑡𝑡𝑡 ⋅ 𝑘𝑘𝑘𝑘−2 ⋅ 𝑑𝑑𝑑𝑑𝑑𝑑−1  reported by 
Iwasaka et al. (2008) for free-tropospheric Asian dust based on Dunhuang balloon soundings (2001–
2004), which also noted a flux of ~50 𝑡𝑡𝑡𝑡𝑡𝑡 ⋅ 𝑘𝑘𝑘𝑘−2 ⋅ 𝑑𝑑𝑑𝑑𝑑𝑑−1 at 4–6 km. Furthermore, our estimated 
total dust transport to the Tibetan Plateau via the S1 and S2 transects is ~10.2 𝑇𝑇𝑇𝑇 ⋅ 𝑦𝑦𝑦𝑦−1, consistent 
with the 8.0 𝑇𝑇𝑇𝑇 ⋅ 𝑦𝑦𝑦𝑦−1 simulated by Hu et al. (2020) using WRF-Chem. Though marginally higher, 
our estimates were comparable in magnitude, with bias within the overall uncertainty of the retrieval 
and sampling approach. Our method likely provided an upper-bound flux estimate for two reasons: 
(1) satellite retrievals favored strong dust events, leading to a seasonal-mean DMC biased high; and 
(2) uncertainties in the DMC retrieval parameters and potential systematic positive bias in ERA5 
wind speeds within the transport layer could further raise the estimated flux. 

We thank the reviewer for proposing a control-volume analysis to examine flux divergence and 
mass conservation. While such a closed budget would indeed be valuable under ideal conditions, it 
relied on spatially and temporally continuous 4D dust and wind data across the entire region—a 
requirement which may exceed the current capabilities of satellite-based sampling. Accordingly, in 
the revised manuscript we emphasize that the boundary fluxes are intended as a diagnostic indicator 
of key transport routes and their seasonal changes, not as a rigorously closed mass budget. We have 
explicitly listed this distinction as a methodological limitation. 
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5. Uncertainty assessment is incomplete. Errors from aerosol typing, wavelength conversion, 
MEE selection, humidity effects, and wind fields should be propagated through each processing 
step. Simply reporting correlations of 0.4–0.6 with reanalysis products does not demonstrate 
accuracy. Confidence intervals or uncertainty ranges for all major quantities are necessary for the 
results to be credible. 
Response: Thanks for the valuable comments regarding the uncertainty assessment. We fully agree 
that reporting correlation coefficients of 0.4–0.6 with a reanalysis product was insufficient to 
robustly validate our results and cannot replace a systematic uncertainty analysis. As highlighted, 
uncertainties arose in each step of the process, including aerosol classification, wavelength 
conversion, MEE selection, humidity influence, and wind-field errors. 

While these errors ideally should be propagated stepwise in a formal analysis, two practical 
limitations prevented such a rigorous approach in this study. First, several key error sources could 
not be adequately represented by gridded statistical models. Aerosol typing errors, for instance, were 
discrete and highly scenario-specific—varying with situations like cloud-aerosol mixtures, 
low-level stratocumulus, or elevated dust plumes. To mitigate such issues, the CATS Cloud–Aerosol 
Discrimination (CAD) algorithm implemented several checks, including horizontal continuity and 
cloud-fraction tests. Second, the sparse and irregular sampling of satellite profiles introduced 
representativeness errors that are difficult to quantify with a full covariance structure for each grid 
cell, unlike in numerical models. Imposing a formal stepwise error-propagation framework under 
these limitations could yield confidence intervals with limited physical interpretability. Therefore, 
in the revised manuscript we have implemented an integrated uncertainty assessment for DMC, 
rather than attempting to propagate errors formally through each separate step (e.g., aerosol 
classification, wavelength conversion, MEE choice, and humidity adjustments). Specifically, we 
began with the final retrieved products—DMCS and dust mass column concentration (DMCC)—
and performed systematic comparisons with reanalysis datasets and ground-based observations to 
constrain their overall uncertainty. 

As shown in Fig. S3, the seasonal spatial correction coefficient between CATS and MERRA-
2 surface dust concentration (DMCS) ranged from 0.54 to 0.74, with the MAE of 41-68 𝜇𝜇𝑔𝑔 ⋅ 𝑚𝑚−3. 
Based on the typical regional dust concentration of 150-250 𝜇𝜇𝑔𝑔 ⋅ 𝑚𝑚−3, this error corresponded to a 
relative error of approximately 20–40%. As shown in Fig. S4, the correlation between the near-
surface dust concentrations retrieved by CATS (MERRA-2) and the PM₁₀-PM₂.₅ concentrations 
from ground observation stations was in the range of 0.56–0.68 (0.65–0.86), with an overall negative 
bias of ~ –20 𝜇𝜇𝑔𝑔 ⋅ 𝑚𝑚−3 (–9 ~ –19 𝜇𝜇𝑔𝑔 ⋅ 𝑚𝑚−3). A further comparison of seasonal DMCC (Fig. S5) 
shows better correlations of 0.57–0.84 between CATS and MERRA-2, with lower bias, MAE, and 
RMSE than for near-surface concentrations, indicating better column-level consistency. Combined 
retrieval errors from both column and near-surface estimates, it suggests an overall uncertainty of 
~20–40% for the multiyear-mean dust concentration retrieval. The ERA5 10 m wind speed product 
has been shown to agree well with surface observations with a global bias of −4.5% (Fan et al., 
2021) and to outperform MERRA-2 in capturing East Asian surface wind patterns under a bias of 
~0.6 m s⁻¹ (Li et al., 2025). Differences between ERA5 and other reanalyses (e.g., MERRA-2, CFSv) 
across altitude levels are also generally small (Wu et al., 2024), supporting its reliability for 
multi-level analysis. Given that the regional mean systematic bias is < 5% and the random deviation 
at different vertical levels is < 0.5 𝑚𝑚 ⋅ 𝑠𝑠−1, we conservatively assume a random uncertainty of 10–



20% for ERA5 wind speeds in the subsequent error-propagation analysis. On this basis, the dust 
transport flux uncertainty was expressed as the combined effect of the mass and wind-speed terms, 
yielding an overall uncertainty range of approximately 25–45%. The above analysis has been 
incorporated into the revised manuscript. 
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Figure S5. Comparison of DMCC between CATS and MERRA-2 at seasonal-mean scales. The number in 

parentheses following the total sample size indicated the percentage of samples retained after removing outliers 

using the interquartile range (IQR) method. 

 
6. Aerosol classification and cloud filtering are not handled carefully enough. Over complex 
terrain, small misclassification rates between dust and cloud layers can generate large mass errors 
after the extinction-to-mass step. Independent validation using AERONET or ground-based lidar 



data should be provided to quantify such effects. 
Response: Thanks for the suggestions about aerosol classification and cloud screening issues. The 
CATS Level-2 products were generated using a Cloud–Aerosol Discrimination (CAD) algorithm 
accompanied by various quality-control tests, which were designed to differentiate clouds from 
aerosols and to flag cases of potential cloud contamination (CATS L2O Profile Products Quality 
Statements, Version 3.00). In the processing, we imposed further strict screening criteria on top of 
the standard CATS quality controls: (1) the 1064 nm extinction QC flag must be 0 to ensure 
non-opaque layers and stable lidar ratio; (2) both feature type and aerosol type must equal 3 to select 
dust aerosols only; (3) the feature type score is confined between −10 and −2 to exclude 
low-confidence layers with minimal effect on aerosol optical thickness (AOD); (4) the 1064 nm 
extinction uncertainty must be <10  𝑘𝑘𝑘𝑘−1  for stable retrieval; and (5) the 1064 nm extinction 
coefficient is limited to −0.05–1.25 𝑘𝑘𝑘𝑘−1  to reduce averaging-induced high bias (Xiong et al., 
2023). It is worth noting that CATS has incorporated multiple algorithmic improvements for cloud–
aerosol discrimination and aerosol typing, including a cloud-fraction threshold, a layer-integrated 
vertical backscatter test, and a relative-humidity test (CATS L2O Profile Products Quality 
Statements, Version 3.00). These refinements helped to better differentiate optically thick clouds 
from intense dust/smoke plumes and reduced errors such as misidentifying elevated dust as ice cloud 
or thick smoke as cloud. As a result, the accuracy of aerosol–cloud separation has been substantially 
improved under complex cloud-field conditions. 

We appreciate the reviewer’s suggestion to perform independent validation using AERONET 
or ground-based lidar data in our study region. However, the sparse coverage of AERONET and 
ground-based lidar sites over the Tibetan Plateau and surrounding areas, combined with the limited 
number of spatiotemporal matches with CATS overpasses, made it difficult to perform a 
large-sample collocated statistical evaluation in our study region. Therefore, to account for these 
limitations and to evaluate the potential impact of classification errors on mass retrieval, we 
conducted an integrated assessment by synthesizing findings from multiple independent validation 
studies together with the indirect validation evidence presented in this paper (Figs. S3–S7). 
Proestakis et al. (2019) systematically compared CATS 1064 nm backscatter profiles with 
EARLINET ground-based lidar data in Europe and Central Asia. The study reported general 
agreement overall , with CATS showing negative biases of −22.3% (daytime) and −6.1% (nighttime). 
Yu et al. (2020) conducted a global analysis of the dust diurnal cycle using CATS and found that 
CATS-retrieved dust AOD agreed reasonably well with AERONET and MISR AOD in spatial 
distribution and seasonal variation, while also observing a tendency for CATS to underestimate 
near-surface dust extinction, particularly in daytime. Nowottnick et al. (2022) summarized the 
CATS aerosol typing algorithm and noted that globally, within the 0–4 km altitude range, the aerosol 
typing results from CATS and MERRA-2 were generally consistent. These independent validation 
studies consistently demonstrated that, CATS cloud–aerosol discrimination and dust identification 
carried certain systematic biases. The overall bias was typically on the order of ~10–30%, with a 
frequent tendency toward underestimation of dust loading. In addition, the comparisons between 
CATS dust concentrations, MERRA-2, and ground-based PM10-PM2.5 in this study—as detailed in 
our response to Comment 5 and Figs. S3–S5—showed moderate-to-high correlations and a 
consistent slight low bias. This result indirectly indicated that cloud-screening and aerosol-typing 
errors did not cause a significant net positive bias in our dust estimates. 
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Figure S6. Comparison of springtime 𝜎𝜎𝐷𝐷_𝐴𝐴 profiles at 532 nm between CATS and CALIPSO. 

 



 

Figure S7. Comparison of annual-mean 𝜎𝜎𝐷𝐷_𝐴𝐴 at 532 nm between CATS and CALIPSO Level 3 data. The number in 

parentheses following the total sample size indicated the percentage of samples retained after removing outliers 

using the interquartile range (IQR) method. 

 
 

7. The wavelength mismatch between CATS extinction (1064 nm) and DustCOMM MEE (532 
or 550 nm) is not properly treated. The study seems to apply a simple or fixed conversion without 
discussing the spectral dependence of MEE or its influence on retrieved mass (Kok et al., 2021; 
Vaughan et al., 2019; Song et al., 2022). This needs explicit scaling and sensitivity testing to ensure 
physical consistency. 
Response: Thank you for pointing out the importance of wavelength matching. The most critical 
wavelength-related issue in this study arose from matching the CATS 1064 nm extinction retrievals 
with the conversion ratio typically defined for the visible band (532/550 nm). To address this, we 
constructed a season- and height-stratified ratio set, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝜎𝜎𝐷𝐷_532 𝜎𝜎𝐷𝐷_1064⁄  , using 
CALIOP dual-wavelength (1064/532 nm) dust extinction profiles (Fig. 2), and explicitly converted 
the CATS 1064 nm dust extinction to 532 nm based on this ratio set. The conversion ratio is about 
1.2–1.5 in the near-surface layer and approaches ~1 at higher altitudes, reflecting altitude- and 
season-dependent variations in the particle size distribution and spectral dependence. 

For the subsequent minor wavelength mismatch between 532 nm (dust extinction coefficient) 
and the 550 nm MEE from DustCOMM, we conducted the following sensitivity test. 

Using the Ångström power-law approximation, we scaled the 532 nm extinction to 550 nm: 

𝛼𝛼550 = 𝛼𝛼532(
550
532

)−𝛼𝛼 

Given that mineral dust typically exhibited weak to moderate spectral dependence in the visible 
wavelength range, we adopted α = 0.5–1.0 as the typical range and took α = 1.5 as a conservative 
upper bound. According to the formula above, when α = 0.5–1.0, the corresponding change in 



retrieved mass was approximately −1.7% to −3.3%. Under the conservative upper bound of α = 1.5, 
the change reached about −5%. Hence, the uncertainty in mass estimation introduced by the 
wavelength difference between 532 nm and 550 nm was less than 5%, which fell within the overall 
retrieval uncertainty range of 20–40% for the climatological-mean dust concentration field derived 
in this study.  

In addition, we have included a comparison between the CATS and CALIPSO L3 dust 
extinction coefficients at 532 nm. As shown in Fig. S6, the vertical profiles of dust extinction from 
the two datasets over three representative regions in spring indicated that CATS was able to 
reproduce the main distribution patterns and the typical height-decreasing structure of dust in the 
atmosphere. It also captured regional differences, such as the strongest near-surface dust loading 
and its rapid decreased with height over the Thar Desert, as well as the elevated dust layer around 3 
km altitude over the Taklamakan Desert. Compared with CALIPSO, CATS might show a slight 
overestimation in the mid-troposphere (approximately 4–6 km). The full-year scatter statistics (Fig. 
S7) further demonstrated good consistency between CATS and CALIPSO at the regional scale, with 
high correlation (r = 0.88) and small biases (Mean Bias ≈ 0.01 𝑘𝑘𝑘𝑘−1, MAE ≈ 0.01 𝑘𝑘𝑘𝑘−1, RMSE ≈ 
0.02 𝑘𝑘𝑘𝑘−1) across the annual dataset. These results indicated that CATS retrievals reliably captured 
the spatiotemporal variability and relative magnitude of dust extinction, and were therefore suitable 
for investigating the distribution, and variations of dust aerosol. 

 
8. Deposition processes are oversimplified. Estimating basin-to-basin mass budgets using only 
dry deposition neglects the role of wet removal, which is significant near the Tibetan Plateau 
margins (Liu et al., 2023; Qian et al., 2011). The “net export” numbers could therefore be biased. 
Inclusion of precipitation or wet-deposition parameterizations would improve credibility. 
Response: Thank you for highlighting this important aspect regarding the treatment of deposition 
processes. We agree that considering dry deposition alone might impact the estimation of net export. 
In this study, we adopted the framework proposed by Han et al. (2022) specifically for estimating 
the contribution of dust from the Qaidam Basin to downwind cities, and only included the dry 
deposition process. This decision was primarily based on the region's very arid climate, where the 
long-term mean annual precipitation was approximately 88 mm (Wang et al., 2014), making wet 
deposition relatively weak and the dry deposition to be the major contribution in most seasons (Fig. 
S8). We also fully acknowledge that in areas with relatively higher precipitation, such as the 
southern and western edges of the Tibetan Plateau, wet deposition played a non-negligible role in 
the dust mass balance (Liu et al., 2023; Qian et al., 2011). Therefore, in the revision we characterize 
the Qaidam Basin export flux as an upper-bound estimate based solely on dry deposition, 
emphasizing that wet deposition would lower the actual value. We also no longer attempt to provide 
a comprehensive inter-regional mass budget or infer “net export” for other areas. Instead, we focus 
our interpretation more cautiously on the “spatial and seasonal patterns of transport column flux”. 
We further highlight in the outlook that the lack of constraints on wet deposition remains a key 
priority for future work. 
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Figure S8. The seasonal distributions of dust dry deposition and its percentage in total deposition (dry and wet 

deposition) from MERRA-2 dataset of 2015-2017. 

 
9. Multiplying column dust mass by population and a temperature factor has no epidemiological 
validation or defined weighting. Without calibration or comparison to health outcome data, this 
index serves more as a visualization than a scientific metric. 
Response: Thanks a lot for raising this point. We fully understand and agree that multiplying 



column-integrated dust mass by population and a temperature factor lacked epidemiological 
validation and a clear weighting rationale. In the absence of calibration against health outcome data, 
such a composite index might introduce misinterpretation and did not qualify as a robust scientific 
metric. Accordingly, we have removed this content from the revised manuscript. 
 
10. Similar analyses of dust pathways and seasonal transport over the Tibetan Plateau have already 
been reported using better constrained observational and modeling frameworks. Given the 
limitations of the CATS dataset, the “first 3-hour diurnal characterization” is not convincing. 
Response: Thank you for the comment.  We agree that our original claim of being the “first” was 
inadequately supported. We have therefore removed “first” and revised the statement to: “This study 
provides an extended analysis of the 3-hour diurnal variation characteristics of dust based on CATS 
observations.” 
 
11. Presentation issues make the analysis harder to evaluate. Units and averaging periods are 
sometimes missing, and the geographic boundaries of the defined sections are not clearly specified. 
Several figures appear over-smoothed relative to the data resolution. Adding coordinate definitions, 
uncertainty shading, and data-density information would help. 
Response: Thanks for the specific suggestions concerning figure/table presentation and 
readability. Accordingly, we have enhanced the revised manuscript by ensuring that all units are 
included and that the time-averaging or compositing periods for every figure and table are explicitly 
stated in the corresponding captions and methodology. We have also supplemented the geographic 
boundaries and coordinate ranges for the S1–S4 and X1–X2 transects. To facilitate a robust 
assessment of our validation results, we have further provided data-density plots for the 
comparisons of CATS with MERRA-2, ground-based observations, and CALIPSO (Figs. S3–S7), 
along with uncertainty shading in extinction-coefficient plots to represent the uncertainty range. We 
also clarify that the smoothed profile in Fig. 9a (now Fig. 8a) was obtained via a five-point 
smoothing approach, and have enhanced several previously ambiguous figures. 
 
 
12. Quantitative error metrics such as mean bias, normalized mean bias, or RMSE should be 
reported, and comparisons should be stratified by season and boundary-layer height. Including at 
least one well-documented dust event as a case study would make the evaluation more persuasive. 
Response: Thanks for the suggestion. We have added a comparison of vertical profiles of dust 
extinction coefficients from CATS and CALIPSO at 532 nm, and have re-performed the 
comparisons between CATS and MERRA-2 as well as ground-based monitoring stations, with 
quantitative error metrics provided in Figs. S3–S7. Moreover, a case study of a major spring dust 
event in 2015 was added in Section 3.6. Based on CATS retrievals, we examined the dust vertical 
structure during this event and compared it with surface PM data. The analysis indicated that CATS 
retrievals were able to reasonably represent the vertical distribution and intensity of dust, and that 
their temporal evolution aligned with ground-based observations under changing boundary-layer 
and transport backgrounds. 
 
 
 



Response to Minor comments 
1. The description of MEE (Eq. 2–3) lacks proper wavelength dependence and unit consistency. 
Response: Thank you for the reminder. We have now supplemented the description of Eq. (1) by 
specifying the units and wavelengths of both the mass extinction efficiency (MEE) at 550 nm (𝑚𝑚2 ⋅
𝑔𝑔−1) and the extinction coefficient at 532 nm (𝑘𝑘𝑘𝑘−1). We further clarified that the error resulting 
from this slight wavelength difference amounts to only a few percent and was therefore negligible 
(a detailed analysis was provided in our response to Major Comment 7). 
 
2. Figure captions are often incomplete and do not specify averaging periods or units. 
Response: Thank you for the suggestion. We have added the averaging period and units to the figure 
captions. 
 
3. The map projections and domain boundaries (S1–S4, X1–X2) are not precisely defined, where 
is TD, GD, and TH, I cannot find the location. 
Response: Thank you for the reminder. We have replaced the map projection in Fig. 1 and added 
the locations of TD, GD, TH, and TP to facilitate identification of the different regions. We also 
specified in the caption the latitude–longitude ranges of the study-area boundary and the domain 
boundaries (S1–S4 and X1–X2). 

 

Figure 1. The topography of the study aera (23-45°N, 68-115°E). S1 to S4 (S1: 36.5°N, 76.75–86.75°E; S2: 38.5°N, 

88.75–101.75°E; S3: 27.75°N, 88.25–100.25°E; S4: 30.25–35.25°N, 80.25°E) were the selected boundaries for the 

TP-ward dust flux calculation and X1 to X2 (X1: 35–38.5°N, 90°E; X2: 35–38.5°N, 98°E) were used to quantify the 

dust contribution of the Qaidam Basin to downstream regions.TD, TP, TH, GD are Taklimakan Desert, Tibetan 

Plateau, Thar Desert and Gobi Desert. Base map data sourced from the Natural Earth dataset. 

 
4. References to validation datasets (DustCOMM, CHAP, CNEMC) should include temporal 
overlap periods. 
Response: Thank you for highlighting this important detail. We have added clarifications in the 
manuscript concerning the temporal overlap between the validation datasets and CATS. The periods 
used for CHAP and CNEMC were aligned with the CATS observation period, i.e., from March 2015 
to October 2017 (this information has been added in Section 2.3). The observation period of CATS 



itself has also been explicitly stated in the Data section (March 2015–October 2017). The 
DustCOMM dataset was generated based on the global model ensemble results during 2004–2008, 
among which the data periods of the WRF-Chem and IMPACT models were 2007–2016 and 2004, 
respectively. The dataset was further produced by integrating observational data and experimental 
constraints. For DustCOMM, it should be clarified that the dataset offers 
climatological/seasonal-mean values and did not contain monthly or daily time series corresponding 
to 2015–2017; thus, no strict temporal overlap interval existed. In this work, we utilized 
DustCOMM as a climatological reference to evaluate spatial distributions and seasonal patterns, not 
for time-resolved (hourly/daily) comparisons. This point has been added in the revision. 
 
5. The discussion mixes physical interpretation with socio-political implications, which dilutes 
the scientific focus. 
Response: Thanks for the suggestion. We agree that mixing physical interpretations with socio-
political implications could dilute the scientific focus of the discussion. Therefore, we have removed 
this part from the revised manuscript. 
 
6. Some figures (e.g., diurnal cycle composites) are overly smoothed and may give a misleading 
impression of temporal resolution. 
Response: Thank you for pointing out this potential issue. We agree that if the diurnal composites 
appeared excessively smoothed, they might lead readers to perceive a temporal resolution beyond 
the informational limits of the data. It should be clarified that Fig. 10 (now Fig. 9) displayed a diurnal 
composite derived from CATS retrievals, which had a spatial grid of 0.5° × 0.5° and a vertical 
resolution of approximately 60 m. To increase the sample size and minimize random noise, we 
binned the data by UTC time and performed 3-hour averaging. For consistency, Fig. 11 (now Fig. 
10), which used ERA5 fields (0.5° × 0.5°, 20 pressure levels from 1000 to 300 hPa), adopted the 
same 3-hour averaging to match the time bins in Fig. 10. Beyond the 3-hour bin-averaging, no 
further temporal smoothing or filtering was applied. The smooth appearance arose mainly from the 
compositing process itself, which dampened random fluctuations, and from the use of continuous 
color scales in the plots. To prevent any potential misunderstanding, we have revised the figure 
captions to clearly indicate that the figures present diurnal composites at 3-hour resolution, not raw 
hourly time series. This ensured that the displayed temporal resolution aligned with the data 
processing and could be properly interpreted by readers. 
 
 
 The new added sections (section 3.6 and 3.7) 

3.6 Application in a dust event 

Fig. 11-12 presented a case study of an intense dust event on 31 March 2015 (UTC), aiming to 
evaluate the consistency between the CATS-retrieved dust properties and ground-based 
environmental monitoring observations. This episode was also reported by Li et al. (2018). At 22 
UTC on 31 March (06 Beijing Time, BJT, on 1April), CATS overpassed the study region (Fig. 11a). 
At that time, the aerosol optical depth (AOD) within TD exceeded 1. The vertical profiles indicated 
that aerosols over both TD and TP were dominated by dust, and the DMC below 4 km in the TD 
exceeded 300 𝜇𝜇𝜇𝜇 ⋅ 𝑚𝑚−3 (Fig. 11e, f). During this overpass, the CATS ground track approached the 
Aksu site located at the northern margin of the TD and the Nagqu site on the TP, providing an 



opportunity for satellite–surface comparison. 
During the CATS overpass, the PM10 concentration at Aksu was only 154 𝜇𝜇𝜇𝜇 ⋅ 𝑚𝑚−3 (Fig. 12a), 

and the nearby AOD was also clearly below 1, indicating that the near-surface air had not yet been 
substantially affected by the main dust plume. The near-surface dust mass concentrations retrieved 
from the four pixels of the trajectory closest to Aksu (approximately 115 km) ranged from 100–250 
𝜇𝜇𝜇𝜇 ⋅ 𝑚𝑚−3, showing a good correspondence with surface observed PM concentrations. Concurrently, 
weak northerly winds prevailed near Aksu (Fig. 11a). After sunrise, near-surface winds gradually 
shifted from northerly to southerly. By 03 UTC on 1 April (11 BJT), both the 10 m and 850 hPa 
wind fields near Aksu exhibited coherent southerly flow (~5 𝑚𝑚 ⋅ 𝑠𝑠−1), which favored northward 
transport of dust from the TD toward Aksu. Meanwhile, the boundary layer height (BLH) rose from 
~250 m to ~1500 m, enhancing the mixing of the aloft dust into the near-surface layer. Under the 
combined effects of advection and mixing, surface PM10 at Aksu increased rapidly to 965 𝜇𝜇𝜇𝜇 ⋅ 𝑚𝑚−3  
at 12 BJT (Fig. 12a). This PM₁₀ magnitude is comparable to the DMC (≥1000 𝜇𝜇𝜇𝜇 ⋅ 𝑚𝑚−3) retrieved 
by CATS over TD during the 06 BJT overpass (Fig. 11f), indicating that the dust transported by the 
southly wind from the interior of the TD desert has affected the particulate matter concentration in 
Aksu..These remaining deviations are mainly due to spatial collocation mismatches, temporal 
offsets, and the inequality of PM₁₀ and DMC intrinsically. 

In contrast, Nagqu exhibited better spatial collocation with the CATS ground track (only ~23 
km away from the closest pixel point). At 06 BJT, the observed PM10 and PM2.5 concentrations at 
Nagqu were approximately 60 and 20 𝜇𝜇𝜇𝜇 ⋅ 𝑚𝑚−3 , respectively, whereas the CATS-retrieved near 
surface DMC was 25 - 40 𝜇𝜇𝜇𝜇 ⋅ 𝑚𝑚−3, showing a close agreement in magnitude (Fig. 12b, d). Overall, 
this case study suggested that the CATS retrievals could reasonably capture the vertical distribution 
and magnitude of dust, and give a comparable result of dust variation relative to the ground-based 
measurements. 

 
Figure 11. Integrated analysis of a springtime dust event in 2015 based on CATS observations. (a) 
CATS overpass track and 10 m wind field at 22 UTC on 31 March (06 BJT on 1 April). Track 



colours indicated different aerosol optical depths (AODs). Red markers denote the locations of the 
ground-based environmental monitoring stations of Aksu (41.18°N, 80.29°E) and Nagqu (31.48°N, 
92.06°E), respectively. (b, c) Wind fields at 10 m and 850 hPa at 03 UTC on 1 April (11 BJT on 1 
April). (d) Hourly boundary-layer height (BLH) at Aksu. (e, f) Vertical profiles of total extinction 
coefficient at 1064 nm (𝜎𝜎1064) and DMC retrieved from CATS. Wind and BLH data are from the 
MERRA-2 reanalysis. The basemap is from the Natural Earth dataset. 
 

 
Figure 12. (a, b) Temporal variations of PM10 and PM2.5 concentrations measured at Aksu (41.18°N, 
80.29°E) and Nagqu (31.48°N, 92.06°E) ground-based environmental monitoring stations. (c, d) 
Vertical profiles of DMC retrieved from CATS along the ground track segments closest to Aksu and 
Nagqu during the 22 UTC overpass on 31 March 2015 (06 BJT on 1 April). 
  
 

3.7 Uncertainty and limitation 

In this study, DMC is derived from CATS extinction coefficients and subsequently used to 
estimate the transport fluxes. The overall uncertainty mainly arose from the choice of MEE, CATS 
sampling characteristics and potential cloud aerosol misclassification, wavelength conversion of 
extinction, uncertainties in the driving wind fields, and simplified treatment of deposition processes. 
Each error source was discussed below in detail. 
3.7.1 MEE 

To the DMC retrieval, we adopt the three-dimensional climatological MEE at 550 nm provided 
by DustCOMM. DustCOMM was a global dust climatology constructed from a multi-model 
ensemble that was constrained by multi-site observations, and it had a clear physical basis (Adebiyi 
et al., 2020). Its production explicitly accounted for particle size distributions, regional variability, 
and vertical structure, yielding a climatology seasonal mean MEE field that varied with space and 
altitude on a 0.5° × 0.625° grid and across 35 pressure levels (Fig. S1–S2). The dataset was 
generated by integrating global model ensembles from 2004–2008 (except WRF-Chem and 
IMPACT, which covered 2007–2016 and 2004, respectively) with observational data and 
experimental constraints. The evaluation in Adebiyi et al. (2020) indicated that the mean difference 
between DustCOMM MEE and observations was ~1%. Compared with the unconstrained model 
ensemble, DustCOMM better reproduced lower MEE near source regions and higher MEE farther 
downwind due to transport and aging. For the source and downwind regions examined here 



(including TD, TH, TP), several recent studies (Han et al., 2022a, 2022b; Tang et al., 2024), which 
characterized dust loading and transport based on DustCOMM MEE, have proven the effectiveness 
of this product to a certain extent. It should be pointed out that although no humidity effect was 
explicitly accounted in DustCOMM MEE product, some studies suggested that the hygroscopic 
growth of mineral dust under subsaturated conditions was generally weak, for example the water 
uptake mass was only ~2% for dry dust at RH = 90% in Qinghai and Xinjiang(Chen et al., 2020), 
and the diameter growth factor of natural mineral dust was typically < 1.1 for RH ≤ 90% (Koehler 
et al., 2009). Moreover, we selected the aerosol type of “Dust” rather than “Dust mixture” in CATS. 
Together with the generally dry background over the study region, we inferred that the humidity-
induced enhancement of MEE under this condition was likely on the order of several percent, which 
was smaller than other uncertainty sources such as extinction retrieval and wind bias. 
3.7.2 Sampling and cloud contamination 

Although CATS provides higher spatiotemporal resolution than some spaceborne lidars such 
as CALIPSO, its effective observing period spans only about three years and its local-time sampling 
is not temporally uniform. Therefore, it is important to clarify that the diurnal variations presented 
in this work do not represent a “true” 3-hourly evolution for any specific day; rather, it depicts the 
average dependence on local time for different seasons over the study region. Not only aerosol, 
CATS retrievals also have been used to investigate the diurnal variations of clouds, and planetary 
boundary layer height (Noël et al., 2018; Yu et al., 2021; Li et al., 2023; Wang et al., 2024). 
Regarding cloud screening and aerosol typing, the CATS Level-2 product applies a cloud–aerosol 
discrimination (CAD) algorithm and multiple quality-control tests to separate clouds from aerosols 
and to flag potential cloud contamination (CATS L2O Profile Products Quality Statements, Version 
Release 3.00). These procedures include thresholds in cloud fraction, tests based on layer-integrated 
attenuated backscatter, and relative humidity checks, aiming to better distinguish optically thick 
clouds from strongly scattering dust/smoke layers and to reduce misclassification (e.g., lofted dust 
as ice cloud, or dense smoke as cloud). Building on these product-level controls, our processing 
further applies more strict filtering to improve retrieval reliability (Xiong et al., 2023). Prior studies 
have also validated the credibility of CATS classification and retrieval results from different 
perspectives (Proestakis et al., 2019; Nowottnick et al., 2022). 
3.7.3 Extinction wavelength conversion 

A key step of this study was to derive the CATS 532 nm extinction coefficient from CATS 
1064 nm measurements, using the extinction conversion ratio of 1064-to-532 nm from CALIPSO 
observation. Comparisons with CALIPSO Level-3 dust extinction at 532 nm (Fig. S6) show that 
CATS captured the major spatial patterns and the vertical decay of dust extinction, as well as 
regional differences, such as the strongest extinction near the surface over the TH with rapid 
decreases aloft, and an elevated dust layer around ~3 km over the TD. However, relative to 
CALIPSO, CATS appeared to be slightly higher in the mid-troposphere (~4–6 km). Annual statistics 
(Fig. S7) further demonstrated overall regional consistency between CATS and CALIPSO, with 
high correlation (r = 0.88) and small biases (mean bias ≈ 0.01 𝑘𝑘𝑘𝑘−1, MAE ≈ 0.01 𝑘𝑘𝑘𝑘−1, RMSE ≈ 
0.02 𝑘𝑘𝑘𝑘−1 ). These results suggest that CATS retrievals reliably presented the spatiotemporal 
variations in dust extinction, which ensured the reliability of the analysis on spatial distribution, 
seasonal variability, and local-time dependence. Following the Ångström relation 𝛼𝛼550 =

𝛼𝛼532(550
532

)−𝛼𝛼 and weak-to-moderate spectral dependence in the visible exhibited by mineral dust, 



we adopt α = 0.5–1.0 as the typical range. This choice introduced a mass change of only –1.7 % to 
–3.3 %. Even under the conservative upper limit of α = 1.5, the shift remains within –5 %. Thus, the 
mass concentration bias due to the conversion from 532 to 550 nm were only a few percent (<5%). 
3.7.4 Mass concentration, wind, and deposition 

In DMC calculation, the average value of the layer below 180 m is regarded as the near-surface 
concentration. To evaluate the uncertainty of this approximation, we systematically compared the 
CATS-derived dust concentrations with reanalysis products (MERRA-2) and surface observations. 
Seasonal-mean surface dust concentrations between CATS and MERRA-2 showed the correlation 
coefficients between 0.54 and 0.74. CATS results were slightly higher than MERRA-2 ones in 
spring (approximately +13 𝜇𝜇𝜇𝜇 ⋅ 𝑚𝑚−3 of mean bias) but lower more in summer, autumn, and winter 
(approximately −18 to −27 𝜇𝜇𝜇𝜇 ⋅ 𝑚𝑚−3), which resulted in an overall underestimation of about 10 to 
20 𝜇𝜇𝜇𝜇 ⋅ 𝑚𝑚−3 in annual means.  The ranges of seasonal MAEs (Mean Absolute Error) and RMSEs 
(Root Mean Square Error) were ~41–68 𝜇𝜇𝜇𝜇 ⋅ 𝑚𝑚−3 and ~57–98 𝜇𝜇𝜇𝜇 ⋅ 𝑚𝑚−3, respectively. Compared 
to the typical concentrations of ~150-250 𝜇𝜇𝜇𝜇 ⋅ 𝑚𝑚−3  over the study region, the MAE of CATS 
retrievals was about 20–40% (Fig. S3). Moreover, seasonal-mean comparisons between CATS 
DMCS and in situ observations of differences between PM10 and PM2.5 (as a dust proxy) showed 
correlations of 0.56–0.68, and a slightly positive bias (+8 𝜇𝜇𝜇𝜇 ⋅ 𝑚𝑚−3) in spring and negative biases 
(-20 𝜇𝜇𝜇𝜇 ⋅ 𝑚𝑚−3 ) in other seasons (Fig. S4). For column DMC, the seasonal correlations between 
CATS and MERRA-2 were 0.57–0.84, and the seasonal mean bias, MAE, and RMSE were -0.06–
+0.01, 0.05–0.09 and 0.06–0.12 𝜇𝜇𝜇𝜇 ⋅ 𝑚𝑚−2, respectively (Fig. S5). In conclusion, the uncertainty of 
seasonal-mean DMC retrieval was approximately inferred as 20–40%. 

In flux calculation, the bias of wind speed is a major impactor. Some studies indicated that 
ERA5 10 m wind speed agreed well with surface observations, with a global mean bias of about 
−4.5% (Fan et al., 2021), and it performs better than MERRA-2 one over East Asia (Li et al., 2025). 
In addition, the wind speed biases in different vertical layers for ERA5 and MERRA-2 were in a 
reasonable range (Wu et al., 2024). Given that the regional mean systematic bias is < 5% and the 
random deviation at different vertical levels is < 0.5 𝑚𝑚 ⋅ 𝑠𝑠−1, we conservatively assume a random 
uncertainty of 10–20% for ERA5 wind speeds in the subsequent error-propagation analysis. It 
should be noticed that the boundary fluxes in this work are primarily used to diagnose major 
transport pathways and their seasonal evolution, rather than to construct a strictly closed mass 
budget under mass conservation. This study only considered dry deposition and didn’t take into 
account wet deposition, which would lead to a certain degree of overestimation of the flux. However, 
the precipitation in the study area is relatively small, the major deposition contribution is from dry 
deposition in most seasons (Fig. S8). Furthermore, when calculating the dust contribution from the 
Qaidam Basin, this study exclusively accounted for dry deposition while neglecting wet removal 
processes. This omission introduced a systematic bias that likely inflated the estimated outward dust 
flux. In brief, considering the combined uncertainties associated with concentration retrieval, wind 
speed variability, and deposition mechanisms, we estimated an overall error margin of 25–45%. 
Consequently, these results should be interpreted primarily as a characterization of the 
spatiotemporal patterns of dust vertical distribution and transport, rather than as a rigorous 
quantitative budget. 
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