

1 Correction of PM_{2.5} Underestimation in Low-Cost Sensors under 2 Elevated Dust Loading Using Only Sensor Measurements

3 Kamaljeet Kaur¹, Tristalee Mangin¹, Kerry E. Kelly¹

4 ¹Department of Chemical Engineering, University of Utah, Salt Lake City, UT, 84112, USA

5 *Correspondence to:* Kamaljeet Kaur (kamaljeet.kaur@chemeng.utah.edu)

6

7 **Abstract.** The Plantower PMS5003/6003 sensor is widely used for low-cost monitoring of particulate matter (PM),
8 but it substantially underestimates PM_{2.5} and PM₁₀ during periods of elevated dust loading, when the particle size
9 distribution is dominated by particles > 1 μm in diameter. This limitation is especially critical in the arid regions, such
10 as the western United States, where windblown dust frequently degrades air quality, visibility, and public health.
11 Accurate estimation of PM_{2.5} and PM₁₀ concentrations during periods dominated by dust typically relies on federal
12 reference or equivalent methods (FRM/FEM), but these resources have limited spatial resolution. This study
13 investigates whether PMS5003/6003 measurements alone can be used to detect and to bias correct for these dust-
14 dominant PM conditions. We analyzed measurements from 109 PMS sensors collocated or near 75 U.S. EPA
15 monitoring sites with hourly FEM PM_{2.5} and/or PM₁₀ between January 2017 to May 2025. Two cutoff thresholds
16 (threshold1 and threshold2) were developed using relative humidity and the sensor-reported ratio of coarse (2.5–10
17 μm) to submicron (0.3–1 μm) mass concentration to identify potential periods dominated by dust when the PMS
18 sensor underestimated PM_{2.5} concentration. The thresholds can be used in real time, relying on the preceding 336
19 hourly measurements (consistent with PurpleAir's public archive display). To improve PM_{2.5} estimates from the PMS
20 sensor (pm2.5_alt, a common correction for Plantower PMS measurements reported by PurpleAir), this study used
21 pm2.5_alt measurements identified as potential dust-dominated periods to develop a correction factor through non-
22 linear regression. This correction reduced the mean bias error between PMS PM_{2.5} estimates (pm2.5_alt) and FEM
23 PM_{2.5} by approximately 50% for 97 sensors, and reduced the root mean square error by approximately 30% for 84
24 sensors. This framework enhances the utility of PMS5003/6003 measurements during periods of elevated dust loading,
25 extending monitoring capabilities in regions where regulatory coverage is limited.

26

27 1 Introduction

28 Plantower particulate matter sensors (PMS) are among the most widely used low-cost sensors for measuring
29 particulate matter (PM) in ambient and indoor air (Barkjohn et al., 2021; Jaffe et al., 2023; Kim et al., 2025; Searle et
30 al., 2023; Wallace et al., 2022). The PurpleAir (PA) network uses PMS sensors, and as of August 12, 2025, it had
31 deployed 26,055 nodes worldwide (Worldwide, Ranked Data by PurpleAir, 2025). Additionally, other sensor networks
32 use PMS sensors (Air Quality Egg - Science is Collaboration, 2025; Outdoor Air Quality Monitor, 2025; Air Quality
33 Monitoring. Monitor in UK & Europe. Airly Data Platform and Monitors | Airly, 2025; Low-Cost Air Quality
34 Monitoring & Measurement | Clarity Movement Co., 2025; QuantAQ, 2025; TELLUS Air Quality Monitoring Data
35 and Solutions, 2025). The PMS5003 found in the PA-II is one of the most commonly used PM_{2.5} sensors; this sensor
36 reports particle number concentrations in six size bins, along with PM₁ (PM with aerodynamic diameter less than 1
37 μm), PM_{2.5} (PM with aerodynamic diameter less than 2.5 μm), PM₁₀ (PM with aerodynamic diameter less than 10
38 μm), temperature (T), and relative humidity (RH) measurements (Barkjohn et al., 2021; Kaur and Kelly, 2023a; Sayahi
39 et al., 2019; Searle et al., 2023). The PA-II typically contains two sensors per node, which provides an indication of
40 measurement consistency (Barkjohn et al., 2021).

41 The PMS5003 sensor has been extensively studied, and numerous correction factors have been developed to improve
42 its PM_{2.5} measurement accuracy under varying environmental conditions (Ardon-Dryer et al., 2020; Barkjohn et al.,
43 2021, 2022; Cowell et al., 2022; Hong et al., 2021; Hua et al., 2021; Jaffe et al., 2023; Kaur and Kelly, 2023b; Magi
44 et al., 2020; Mai et al., 2025; Malings et al., 2020; Mathieu-Campbell et al., 2024; Nilson et al., 2022; Patel et al.,
45 2024; Raheja et al., 2023; Si et al., 2020; Tryner et al., 2020b; Wallace, 2023; Wallace et al., 2022; Weissert et al.,
46 2025). Some of the most commonly used correction algorithms, such as pm2.5_alt and Barkjohn's U.S. universal
47 correction, can be integrated into PurpleAir's real-time maps (Barkjohn et al., 2021; Wallace, 2023). However, a
48 persistent limitation of the PMS sensors is their inability to accurately detect larger particles (roughly >1 μm in
49 diameter) (Gautam et al., 2025a; He et al., 2020; Kaur & Kelly, 2023a; Kosmopoulos et al., 2023; Kuula et al., 2020,
50 Ouimette et al., 2022; Tryner, Mehaffy, et al., 2020), which leads to a significant underestimation of sensor-reported
51 PM_{2.5} and PM₁₀ concentrations during periods dominated by large particles, such as dust (Gautam et al., 2025b; Jaffe
52 et al., 2023; Kaur and Kelly, 2023b; Masic et al., 2020; Vogt et al., 2021; Weissert et al., 2025). This significant
53 underestimation of PM levels during dust-dominant periods can be misleading. For example, looking at a map of PM_{2.5}
54 concentrations from a source that utilizes Plantower PMS sensors during a dust-dominant PM episode will likely show
55 inaccurately low PM concentrations, which can lead individuals and decision makers to significantly underestimate
56 the associated health risks. Over the long term, this can lead to distrust in these low-cost sensor networks. Prior studies
57 (Kuula et al., 2020; Ouimette et al., 2024; Ouimette et al., 2022) have demonstrated that this underestimation of coarse
58 PM is due to scattering truncation error. This occurs because the photodiode in the sensor is poorly positioned to detect
59 forward-scattered light, which is dominant for large particles, meaning the sensor often fails to register them
60 effectively.

61 Identifying periods dominated by dust typically relies on FEM PM_{2.5} and PM₁₀ measurements to obtain an estimate of
62 coarse PM, which can be supplemented by satellite imagery, visibility reports, and high wind speed indicators (Hand
63 et al., 2017; Jaffe et al., 2023; Kaur and Kelly, 2023b; Robinson and Ardon-Dryer, 2024; Sandhu et al., 2024; Tong et
64 al., 2012). However, the availability of FEM, FRM, and other high-quality measurements is limited. For example, the
65 continental United States has 2,141 PM_{2.5} and 672 PM₁₀ monitoring sites, respectively, with only 502 locations
66 operating both PM_{2.5} and PM₁₀ monitors (AirNow-Tech: Home, 2025). In addition, satellite products are typically
67 available after a time delay; for example, MODIS data is usually available 60 to 125 minutes after the satellite
68 observation (MODIS Near Real-Time Data | NASA Earthdata, 2025). Thus, relying on FEM/FRM measurements or
69 satellite products is impractical for large-scale or real-time applications (Brahney et al., 2024). To address these
70 limitations, some studies have used nearby FEM sites to estimate correction factors for PMS sensors (Weissert et al.,
71 2025). These methods often rely on rolling 3- or 4-day correlations or FEM-to-PMS concentration ratios, but such
72 strategies have limitations, including limited spatial representativeness and time lags. Dust-dominated PM conditions
73 typically last a few hours, as they are associated with short-term elevated wind speeds and larger particles settle quickly
74 (Brahney et al., 2024). Common strategies for correcting low-cost PM sensor measurements, such as a rolling 3- or 4-
75 day average, cannot be implemented in real time and may fail to capture periods dominated by larger particles because
76 the averaging window can include both dust-dominated periods and periods dominated by other sources.

77 Recognizing periods dominated by dust is important in western regions of the United States, where such episodes can
78 occur frequently due to arid landscapes, land disturbance, sparse vegetation, and high wind activity. These regions,
79 including parts of California, Arizona, Utah, New Mexico, and Texas, experience elevated levels of windblown dust,
80 which can significantly impact air quality, visibility, and public health (Ardon-Dryer et al., 2023a, b; Goudie, 2014;
81 Hahnberger and Nicoll, 2012; Kaur et al., 2025; Lei et al., 2016; Lewis et al., 2011; Robinson and Ardon-Dryer,
82 2024). Accurate detection and correction of dust-related pollution are therefore essential for both regulatory
83 monitoring and public exposure assessments (Ardon-Dryer et al., 2023a).

84 This manuscript examines whether PMS measurements alone can be used to identify and bias-correct their
85 measurements during periods dominated by larger particles (e.g., dust), without reliance on external data such as FEM
86 monitors, satellite imagery, or meteorological information. This question is inspired by findings from Ouimette et al.

87 (2024), who noted that although the PMS sensor is often described as a nephelometer, it actually counts individual
88 particles. In the PMS sensor, the probability of detection increases with particle size, meaning larger particles are more
89 likely to be counted. However, the PMS does not effectively size the large particles ($>1 \mu\text{m}$) to the correct bin, due to
90 scattering truncation errors. Correctly sizing these larger particles depends on their passage through the sensor's focal
91 point, where sufficient light scattering occurs to be detected by the photodiode. Ouimette et al. (2024) estimated that
92 the probability of a $10 \mu\text{m}$ particle being correctly sized in a PMS sensor to produce a detectable signal is less than
93 2%. Consequently, on days with relatively low PM levels, counts in the coarse particle bin ($2.5\text{--}10 \mu\text{m}$) are expected
94 to be negligible due to both the scarcity of coarse particles and the low probability of correct bin assignment. Even
95 with the low probability of correct classification, during dust-dominated periods, the coarse bin registers higher counts
96 compared to clean days, reflecting the increased presence of coarse particles and providing a potential pathway for
97 identifying periods dominated by dust using the sensor alone. Building on this rationale, Jaffe et al. (2023) proposed
98 using the ratio of $0.3 \mu\text{m}$ to $5 \mu\text{m}$ PMS bin counts as a dust indicator, suggesting a cutoff value of 190, below which
99 measurements were likely associated with dust events, and suggested a correction method using the measurements
100 from one site, Keeler, California. Their method improved corrected PMS $\text{PM}_{2.5}$ measurements during dust events at
101 this single controlled site (operated by the air quality agency), but it did not provide a useful correction for most of
102 the 50 other sensors, collocated at monitoring stations (Jaffe et al., 2023).

103 Building on these previous studies (Jaffe et al., 2023; Ouimette et al., 2024), this study developed sensor-specific
104 parameters for identifying potential periods dominated by dust, when PMS sensors severely underestimate $\text{PM}_{2.5}$,
105 derived solely from PMS sensor measurements, without relying on external data sources. By analyzing internal
106 metrics, such as particle count distributions and RH, it provides a framework that can be applied to any PMS5003
107 sensor, regardless of location, to identify potential periods dominated by dust and to bias correct the sensor
108 measurements of $\text{PM}_{2.5}$ concentration. This approach expands the usability of the vast network of publicly available
109 sensors during periods dominated by dust, even in areas where regulatory monitoring is lacking.

110

111 **2 Method**

112 This section describes the PMS sensor, the data sources, and the time periods used in this study. It also describes the
113 PMS sensor data cleaning procedures, the sensor parameters of interest, the post-processing and real-time approaches
114 for identifying potential periods dominated by dust and for bias correcting the sensors' underestimates of $\text{PM}_{2.5}$, as
115 well as the statistical tools used for data analysis. This study focuses on identifying conditions that are specifically
116 associated with PMS underestimation. It does not attempt to identify "dust events" in part because there is no well-
117 defined dust event classification method based solely on FEM PM_{10} and $\text{PM}_{2.5}$ measurements. Moreover, the PMS
118 sensor's performance depends strongly on the underlying particle size distribution (Kaur and Kelly, 2023a; Kuula et
119 al., 2020; Ouimette et al., 2024). Although the PMS sensors are inefficient at measuring particles with diameters > 1
120 μm (Kaur and Kelly, 2023a; Kuula et al., 2020; Ouimette et al., 2024), the PMS sensor can still provide reasonable
121 estimates of $\text{PM}_{2.5}$ concentrations when concentrations of particles $> 1 \mu\text{m}$ in diameter are elevated, as well as particles
122 $\leq 1 \mu\text{m}$ in diameter.

123

124 **2.1 Plantower PMS5003 and PMS6003 sensors**

125 Several studies have described the Plantower PMS5003 sensors and their laboratory and field performance (Barkjohn
126 et al., 2021, 2022; Ouimette et al., 2024; Ouimette et al., 2022; Sayahi et al., 2019). PMS5003 uses a fan to create
127 flow ($\sim 1.67 \text{ mL/sec}$), a red laser ($\sim 680 \text{ +/- } 10 \text{ nm}$), a scattering angle of 90° , and a photo-diode detector to measure
128 total scattering from a plume of particles (Kaur & Kelly, 2023a; Ouimette et al., 2022). The sensor converts the total
129 light scattering into several different air quality parameters, including particle counts in six bins ($>0.3 \mu\text{m}$, $>0.5 \mu\text{m}$,
130 $>1 \mu\text{m}$, $>2.5 \mu\text{m}$, $>5 \mu\text{m}$, and $>10 \mu\text{m}$), and PM_1 , $\text{PM}_{2.5}$, and PM_{10} using an embedded algorithm. The flow path

131 involves more than one 90° turn before particles reach the photodiode. Several other models of the Plantower PMS
132 sensor exist (i.e., PMS1003, 3003, 6003, 7003, 9003, A003, T003, X003). Kaur and Kelly (2023a) evaluated PMS6003
133 and found that the PMS5003 and PMS6003 exhibited similar performance to coarse PM. Many of the PMS models
134 have similar configurations and likely exhibit similar challenges with accurately measuring coarse PM, although this
135 has not been systematically evaluated.

136 This study used the PurpleAir network PMS sensors, i.e., PA-II. This study period began in 2017 and spanned several
137 years, during which time the PA-II nodes came in different configurations (PA-II, PA-II-SD, and PA-II-FLEX),
138 employed two different Plantower PMS sensors (PA-II and PA-II-SD: 5003 and PA-II-FLEX: 6003), and used different
139 firmware versions (6.06b, 7.02, and 7.04). Due to the lack of detailed documentation on how different firmware
140 versions affected sensor performance, no firmware-based exclusions were made. The PA-II-SD model is a PA-II sensor
141 variant that includes an SD card for data storage; both of these variations were included in the study. The PMS6003,
142 used in PA-II-FLEX, differs from PMS5003, primarily in the number of lasers used (as described in Kaur and Kelly
143 (2023a)), but its flow design, performance, and overall configuration are similar to the PMS5003 (Kaur and Kelly,
144 2023a). Accordingly, PA-II-FLEX data were not treated differently in this analysis. The ratio of $>0.5 \mu\text{m}$ to $0.3 \mu\text{m}$
145 (ratio greater than 0.4) was used to identify and exclude these alternate PMS5003, i.e., a PMS5003 version appeared
146 in June 2021 for a limited period of time and exhibited $\text{PM}_{2.5}$ concentrations that were biased low (Searle et al., 2023).
147 For the remaining part of the manuscript, the sensors will be referred to as PMS sensors.

148

149 **2.2 Sensor selection, data access, and cleaning**

150 This study evaluated 109 PMS sensors at 75 different US EPA monitoring sites with hourly FEM measurements of
151 $\text{PM}_{2.5}$ and/or PM_{10} . The US EPA provided measurements from 28 of these 109 collocated sensors, which were
152 previously used by Barkjohn et al. (2021). These 28 sensors are a subset of the 50 sensors originally used in the
153 Barkjohn paper because: 5 sensors were collocated with 24-hour averaged FRM measurements; 6 had less than 3
154 months of collocated measurements; 5 had poor correlation (R^2 less than 0.5, after removing the coarse-rich days using
155 FEM based coarse fraction and PM_{10} concentrations); 2 were situated at beach; and 4 were already downloaded as
156 part of the 77 publicly available sensors (discussed below). The two sensors located at the beach were excluded due
157 to the high humidity and high sea salt concentrations. Of the remaining 81 sensors, 77 were publicly available sensors,
158 and raw data was downloaded (2-min frequency) using PurpleAir's Data Download Tool (v1.3.5), and 4 additional
159 PMS5003s were available from the authors' group at the University of Utah. The publicly available sensors were
160 considered collocated if the sensor had the same GPS coordinates (latitude and longitude) as the EPA monitoring site;
161 if the sensor did not have the same coordinates but was within 0.8 km, the sensor was treated as a "nearby" sensor.
162 Thirteen of the 77 sensors were "nearby" sensors, which increased spatial diversity by adding 13 additional monitoring
163 sites. This study spanned from January 2017 to May 2025; however, data availability varied by sensor, depending on
164 its deployment dates. The supplementary materials include sensor IDs, the corresponding collocated EPA monitoring
165 site IDs, and each sensor's data availability (Tables S1, S2, S3) and a map with the 75 EPA monitoring sites used in
166 this study (Figure S1).

167 The downloaded measurements included particle counts in the six size bins, RH, and pm2.5_alt. All the sensors used
168 in this study had a minimum of three months of reasonably continuous data. The PMS measurements were cleaned,
169 partially following guidelines by Barkjohn et al. (2022). Specifically, the 2-min averages were converted to hourly
170 measurements if 27 or more 2-minute stamps existed in an hour ($>90\%$ completion). Otherwise, the measurement
171 was considered incomplete and not further analyzed. Next, the hourly measurements of dual nodes were considered
172 valid if (a) the difference between the pm2.5_alt values for A and B nodes of PA was less than $5 \mu\text{g}/\text{m}^3$, or (b) the
173 relative percentage difference was less than 61%. Barkjohn et al. (2022) used pm2.5_cf_1 ($\text{PM}_{2.5}$ mass concentration
174 reported by PMS sensor using a correction factor = 1), while this study used the pm2.5_alt to clean the PM
175 measurements. We selected pm2.5_alt because pm2.5_cf_1 can exhibit random elevated values (order of 1000s)

176 (Barkjohn et al., 2021), even when the number counts in the six bins are in a reasonable range. The pm2.5_alt is
177 calculated directly from the bin counts (Wallace, 2023) and is less susceptible to random spikes. This study also used
178 the PMS sensor's reported RH (using BME280, Bosch Sensortec, Germany) measurements. Therefore, PM
179 measurements with missing RH were excluded from the study. This resulted in the removal of <5% of the measurement
180 for 94 sensors, between 5–10 % for 7 sensors, between 10–22% for 6 sensors, and 34.7% and 64.9% for the CA15
181 and CO3 sensors.

182

183 **2.3 FEM measurements**

184 FEM measurements of PM_{2.5} and PM₁₀ were accessed from the AQS site (Download Files | AirData | US EPA, 2025)
185 for the period between Jan 2017–July 2024 (this data was unavailable after July 2024). For the remaining period, i.e.,
186 between July 2024–May 2025, the data was accessed through the AirNow API (AirNow API Documentation, 2025).

187 Most sites employed the beta attenuation and broadband spectroscopy method (i.e., Teledyne T640 and T640x) for
188 Federal Equivalent Method (FEM) hourly PM_{2.5} and PM₁₀ measurements. A few sites also used FDMS (filter dynamic
189 measurement system) in conjunction with a TEOM (tapered element oscillating microbalance) and laser light
190 scattering (GRIMM) for hourly PM measurements. Table S1, Table S2, and Table S3 detail the methods used for PM_{2.5}
191 and PM₁₀ measurement at each site.

192 Some sites had multiple parameter occurrence codes (POCs), either from different measurement methods or from
193 multiple instruments using the same method operating concurrently. For sites with two different methods active
194 simultaneously, measurements from the method with the greater number of measurements was used. For sites equipped
195 with the Teledyne T640X and Teledyne T640, this study used the POC corresponding to the EPA-corrected
196 measurements (Regulations.gov, 2025).

197 The FEM measurements were used in two ways in this study. First, they were used to calculate the coarse fraction
198 (CF), which was subsequently used to assess the effectiveness of the proposed method (Section 2.5) in identifying
199 periods with a high proportion of coarse particles. Dust-dominated conditions are typically characterized by high CF
200 values (>0.7)(Sugimoto et al., 2016). Second, they were used to evaluate the performance of the derived corrections.

201 When both FEM PM_{2.5} and PM₁₀ measurements were available, the coarse fraction (CF) was calculated as:

202
$$CF = \frac{PM_{10} - PM_{2.5}}{PM_{10}} \quad (1)$$

203 Where PM₁₀ and PM_{2.5} were concentrations in $\mu\text{g}/\text{m}^3$. Of the 109 sensors evaluated in this study, 30 sensors did not
204 have CF data for their evaluation period, and 36 sensors had CF data for 90% of their evaluation period. A total of 35
205 sensors had CF data for 40–90% of their evaluation period, and the remaining 8 sensors had CF data for less than 30%
206 of their evaluation period.

207

208 **2.4 Parameters**

209 This study used the following parameters developed from the PMS sensors to identify potential PM measurements
210 dominated by dust:

211 1. Ratio of mass in the coarse fraction to submicron fraction (C_to_SM): This ratio was defined as:

212
$$C_to_SM = \frac{M_{2.5-5} + M_{5-10}}{M_{0.3-0.5} + M_{0.5-1}} \quad (2)$$

213

214 Where M_{i-j} represents the mass concentration ($\mu\text{g}/\text{m}^3$) provided by the PMS sensor in the bin with size bin $i-j$
215 μm . The $\overline{M_{i-j}}$ is the average of valid M_{i-j} measurements from node A and node B of the PMS sensors. The M_{i-j} ,
216 used here and previously by Wallace et al. (Wallace, 2023), was calculated as:

217
$$M_{i-j} = \frac{4}{3}\pi \left(\frac{\sqrt{i-j}}{2}\right)^3 * N_{i-j} * 10^{-2} \quad (3)$$

218 The N_{i-j} represents the number counts of particles (#/dl) in the size bin $i-j \mu\text{m}$. The density was assumed to be 1
219 g/cm^3 , although density cancels out in the $C_{\text{to_SM}}$ calculation. The 10^{-2} accounts for the unit conversions in
220 the equation (μm^3 to m^3 ; g/cm^3 to $\mu\text{g}/\text{m}^3$; and 1/dl to 1/ m^3).

221 Because the particle counts in the 2.5–5 μm and 5–10 μm size bins are much lower than in smaller bins, mass
222 concentrations were used instead of number concentrations to obtain more stable and interpretable ratios. The
223 $C_{\text{to_SM}}$ parameter was used to identify potential PM measurements dominated by dust. This approach builds on
224 the rationale presented in Ouimette et al. (2024) and discussed in the Introduction. Briefly, although coarse PM
225 has a low probability of correct classification, the coarse bin will register elevated counts during dust-dominated
226 PM measurements. Consequently, the $C_{\text{to_SM}}$ ratio becomes elevated during dust events.

227 2. RH: PMS sensor RH measurements are biased low by approximately 10%–20% (Mathieu-Campbell et al., 2024).
228 This bias tended to increase at higher RH, although the PA's RH measurements generally show good correlation
229 with regulatory RH measurements ($R^2 > 0.9$) (Mathieu-Campbell et al., 2024). Dust events are typically associated
230 with low RHs (<40–60%) (Csavina et al., 2014), as higher humidity tends to inhibit dust suspension and promotes
231 faster resettling of particles. We used an RH of 50%, as measured by the PMS sensor, as a threshold for detecting
232 dust. It should be noted that an RH of 50% reported by the PMS sensor corresponds to an actual RH of ~70%.
233 The cutoff of 50% is supported by Figure S2, which illustrates that elevated $C_{\text{to_SM}}$ with high CF was
234 predominantly associated with RH less than 50%. This study also explored dust-dominated PM measurements
235 identified without the use of RH, and the results are discussed in the supplementary section S1.

237 **2.5 Methods for identifying potential dust-dominated PM measurements**

238 Our method included two approaches. The first focuses on post-processing the sensor measurements to identify
239 potential dust-dominated PM measurements and to develop appropriate corrections for subsequent applications. The
240 second approach emphasizes real-time identification of potential dust-dominated PM measurements. Both approaches
241 use the parameters $C_{\text{to_SM}}$ and RH. The post-processing approach establishes the framework for real-time detection,
242 as it provides a clearer way to illustrate the methodology. However, the same real-time approach could also be applied
243 to post-processing the sensor data.

245 **2.5.1 Post-processing approach**

246 To identify potential dust-dominated PM measurements, two sensor-specific $C_{\text{to_SM}}$ based thresholds (threshold1
247 and threshold2) were defined using the full dataset for each sensor.

248 • Threshold1 was calculated as the sum of the median of $C_{\text{to_SM}}$ and a factor (F of 2.5) times the median
249 absolute deviation (MAD) of the $C_{\text{to_SM}}$.

251
$$\text{Threshold1} = \text{Median}(C_{\text{to_SM}}) + F \times \text{MAD}(C_{\text{to_SM}}) \quad (4)$$

252
$$\text{MAD} = \text{Median}(|C_{\text{to_SM}} - \text{Median}(C_{\text{to_SM}})|) \quad (5)$$

253 • Threshold2 was defined as the maximum of:

255 I. Three times the slope (with the intercept fixed at zero) from a linear regression of C_to_SM (y-axis)
256 against pm2.5_alt (x-axis), or
257 II. A value of 0.584, i.e., three times the median slope of the slopes from all the sensors evaluated in this
258 study.

259 Figure 1 displays Threshold1 and Threshold2 for a subset of representative sensors (for selected sensors with a history
260 of windblown dust impacts). Threshold1 was primarily used to differentiate clean days from those with elevated coarse
261 particle concentrations. Because dust-dominated PM typically occurs under specific meteorological conditions (e.g.,
262 during dust events or wildfires), most measurements were expected to reflect low coarse PM concentrations.
263 Consequently, most C_to_SM values represent these low-coarse concentration conditions, and the overall median
264 serves as a baseline C_to_SM for such conditions. The outliers in the C_to_SM would represent high coarse
265 concentration measurements. To identify these outliers, we excluded the measurements near the baseline by setting a
266 threshold, i.e., 2.5 times the MAD of the median. Previous studies have reported that F values of 3, 2.5, or 2 are
267 effective for detecting outliers (Leys et al., 2013), with F = 3 considered conservative and F = 2.5 moderately
268 conservative.

269 Threshold2 helped differentiate between potential dust-dominated PM from other sources that may also increase
270 C_to_SM. For example, during wildfires, both PM₁₀ and PM_{2.5} levels are typically elevated, which could lead to high
271 C_to_SM values, but also high pm2.5_alt concentrations. Threshold2, defined by the slope between pm2.5_alt and
272 C_to_SM (Figure 1), serves as a threshold to filter out high C_to_SM values that are not associated with dust-
273 dominated PM, specifically when both C_to_SM and pm2.5_alt are high.

274 Threshold1 and threshold2 were calculated using all available measurements, irrespective of the availability of FEM
275 PM_{2.5} concentrations. A measurement was labeled as a potential dust-dominated PM measurement if:

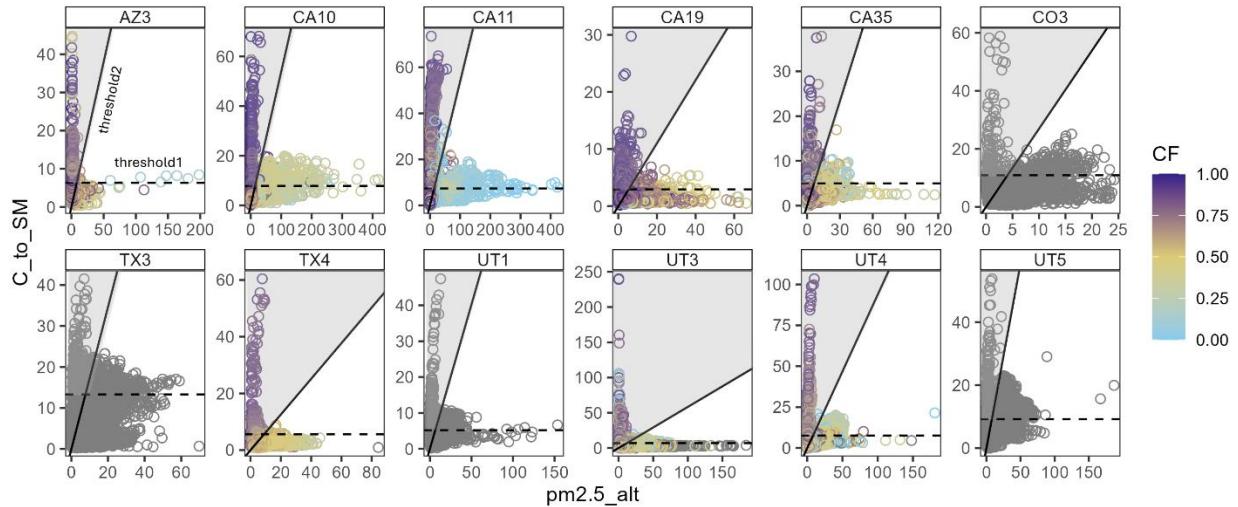
276 • C_to_SM exceeded threshold1, and
277 • C_to_SM/pm2.5_alt exceeded threshold2, and
278 • RH from the PA measured less than 50%

279

280 **2.5.2 Real-time detection of the dust-dominated PM measurements**

281 For real-time potential dust-dominated PM measurements detection, threshold1 was defined as the median of
282 C_to_SM plus 2.5 times its MAD, calculated from the preceding 336 hourly measurements (14 days). Thus, threshold1
283 was dynamic. This 14-day window was selected to match the temporal coverage of the PA real-time map, which
284 provides the most recent 14 days of hourly measurements.

285 Threshold2 was set at a fixed value of 0.584, from the measurements discussed in the post-processing approach
286 (Section 2.5.1). This fixed threshold of 0.584 was selected to avoid using a slope calculated from just 336 points,
287 which can be highly sensitive to outliers, as a few extreme values can distort the slope.



288

289 **Figure 1:** pm2.5_alt vs. C_to_SM. Each point represents an hourly averaged sensor measurement, colored by the
 290 FEM-calculated CF. The black dashed line represents threshold1, and the black solid line represents threshold2. The
 291 shaded grey region indicates measurements identified as potential dust-dominated PM measurements. Grey circles
 292 represent times when either PM_{2.5} or PM₁₀ was unavailable, preventing the calculation of CF. The comparison of
 293 pm2.5_alt vs. C_to_SM for the remaining sensors is shown in Figure S3.

294

295 2.5.3 Evaluating the effectiveness of the two approaches in selecting dust-dominant PM conditions

296 Figure 1 and Figure S3 show that high C_to_SM tended to occur at low pm2.5_alt values, and measurements identified
 297 as potentially dust-dominant using threshold1 and threshold2 generally corresponded to elevated CF values. We
 298 evaluated the effectiveness of our two approaches by examining how the potential dust-dominant measurements
 299 corresponded to various bins of FEM CF values (0–0.25, 0.25–0.5, 0.5–0.7, and >0.7). High CF values can occur
 300 under low PM₁₀ conditions, when small PM concentrations lead to increased variability in the ratio and do not
 301 necessarily indicate dust-dominant conditions. We established criteria for “true dust-dominant PM”, defined when CF
 302 >0.7 and FEM PM₁₀ concentrations >100 µg/m³ and compared how PMS-derived PM_{2.5} (pm2.5_alt) compares with
 303 FEM PM_{2.5} concentrations under true dust-dominant conditions. Note that a universally accepted definition of dust-
 304 dominant conditions does not yet exist.

305 Even during periods classified as true dust-dominant, PMS sensors can estimate PM_{2.5} reasonably well, as shown in
 306 Figure S4, which compares PMS-derived PM_{2.5} (pm2.5_alt) with FEM PM_{2.5} concentrations. Agreement between
 307 PMS and FEM measurements under these conditions likely reflects the presence of mixed aerosol conditions, in which
 308 coarse dust particles coexist with submicron aerosols that contribute to PM_{2.5} and are detectable by the PMS sensor.
 309 The primary objective of the thresholds defined here is to identify conditions under which the PMS sensor
 310 underestimates PM_{2.5}. Accordingly, PM_{2.5} underestimation was defined as measurements for which pm2.5_alt was less
 311 than 0.25 times the corresponding FEM PM_{2.5} concentration. For the true dust-dominant periods (CF >0.7 and PM₁₀
 312 >100 µg/m³), the analysis quantified the fraction of measurements exhibiting PM_{2.5} underestimation that were
 313 correctly identified by the thresholds. Of the 109 sensors evaluated, 79 sensors had sufficient data to calculate CF and
 314 were included in this analysis.

315

316

317

318 **2.5.4 Correction of measurements identified as dust-dominated PM measurements**

319 The pm2.5_alt concentration was corrected (referred to as adj_pm2.5_alt) using a non-linear regression model in R
320 (4.4.0) that incorporated pm2.5_alt, C_to_SM, threshold1, and a scaling factor A. Measurements identified as potential
321 dust-dominated PM measurements based on threshold1, threshold2, and RH thresholds were combined across all
322 sensors for the post-processing approach and real-time approach. These pooled measurements were then used to
323 estimate factor A for each approach through non-linear regression, as follows:

324
$$\text{adj_pm2.5_alt} \sim \text{FEM PM}_{2.5} = \frac{\text{C_to_SM}}{\text{threshold1} * \text{A}} * \text{pm2.5_alt} \quad (6)$$

325 Threshold2 was not included in the correction equation because its sole purpose was to exclude measurements with a
326 low CF that produced elevated C_to_SM values. In contrast, threshold1 was applied to normalize C_to_SM values,
327 enabling measurements from all sensors to be pooled together. This normalization ensured that the correction was not
328 disproportionately influenced by sensors with high C_to_SM values. By normalizing with threshold1, data from all
329 sensors could be combined to derive a single factor (A).

330

331 **2.6 Analysis**

332 Data analysis was performed using R (4.4.0). The primary focus of the analysis was to compare pm2.5_alt with FEM
333 PM_{2.5} concentrations, with an emphasis on potential dust-dominated PM measurements, and to evaluate the
334 effectiveness of the applied correction approach. No additional corrections (i.e., adjustments for RH or FEM
335 instrument calibration) were applied to pm2.5_alt. This study focused solely on the comparison between pm2.5_alt
336 and FEM PM_{2.5}, and adj_pm2.5_alt and FEM PM_{2.5}. The performance of our correction approach was evaluated using
337 the difference in the mean bias error (MBE, $\mu\text{g}/\text{m}^3$) and root mean square error (RMSE, $\mu\text{g}/\text{m}^3$; normalized RMSE
338 represented as nRMSE) before and after correction of pm2.5_alt.

339
$$\text{MBE} = \frac{1}{n} \sum_{i=1}^n (\text{pm2.5_alt}_i - \text{FEM PM2.5}_i) \quad (7)$$

340
$$\text{MBE_adj} = \frac{1}{n} \sum_{i=1}^n (\text{adj_pm2.5_alt}_i - \text{FEM PM2.5}_i) \quad (8)$$

341
$$\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^n (\text{pm2.5_alt}_i - \text{FEM PM2.5}_i)^2} \quad (9)$$

342
$$\text{RMSE_adj} = \sqrt{\frac{1}{n} \sum_{i=1}^n (\text{adj_pm2.5_alt}_i - \text{FEM PM2.5}_i)^2} \quad (10)$$

343
$$\Delta\text{RMSE} = \text{RMSE_adj} - \text{RMSE} \quad (11)$$

344
$$\text{nRMSE} = \frac{\text{RMSE}}{\text{PM}_{2.5}} \quad (12)$$

345
$$\text{nRMSE_adj} = \frac{\text{RMSE_adj}}{\text{PM}_{2.5}} \quad (13)$$

346 MBE, MBE_adj, RMSE, RMSE_adj, nRMSE, nRMSE_adj, and ΔRMSE were calculated only for those
347 measurements identified as potential dust-dominated PM measurements; the remaining measurements were not
348 corrected and not included in the calculation. Measurements identified using the real-time approach were corrected
349 using three different values of A: (1) A derived from a non-linear regression (Eq. 6) using all measurements identified
350 by the real-time approach; (2) A derived from a non-linear regression (Eq. 6) using measurements identified by the
351 post-processing approach; and (3) sensor-specific A values, derived from sensor-specific non-linear regressions (Eq.
352 6) using real-time measurements for each sensor.

353 In the main manuscript, we present results for 12 representative sensors that have collocated measurements and are
354 affected by windblown dust, including sensors in Utah, Arizona, Texas, Colorado, and California. The results for the
355 remaining locations are discussed in the supplementary material.

356

357 **3 Results and discussion**

358 **3.1 Measurements identified as a potential dust-dominated PM using the thresholds**

359 Table S4 summarizes the counts of the threshold-based identified measurements, which identified 0 – 3785 (post-
360 processing approach: 0 – 9.00 % of the sensor’s total hourly measurements) and 0 – 4513 (real-time approach: 0 –
361 9.62 % of the sensor’s total hourly measurements) hourly measurements as potential dust-dominated PM
362 measurements. These counts did not consider the availability of FEM PM_{2.5} measurements. The real-time approach
363 generally identified more measurements than the post-processing approach (Figure S5, Table S4). This outcome was
364 expected because the real-time method used a dynamic threshold1, whereas the post-processing method used a
365 constant threshold1. A dynamic threshold1 accommodated shifts in the C_to_SM baseline (defined in Section 2.5.1),
366 which can occur when a sensor operates for extended periods (example in Figure S6) or when a PMS sensor is replaced
367 within a node (example in Figure S6), resulting in C_to_SM baseline shifts due to differences in sensor-specific
368 performance characteristics.

369 Seasonal variability in C_to_SM further complicated the use of a constant threshold1 (example in Figure S6). When
370 most measurements originated from seasons with elevated PM concentrations, the overall threshold1 was biased
371 upward, leading to the rejection of high-coarse concentration measurements during seasons with lower C_to_SM
372 values. The reverse was held when measurements were dominated by low-concentration seasons. In contrast, the
373 dynamic threshold1 adjusted for these seasonal shifts, thereby improving the ability to identify dust-dominated PM
374 measurements (Figure S6).

375 Figure S7 compares the number of PMS measurements identified as potential dust-dominated PM measurements to
376 the CF, grouped by CF bins (0–0.25, 0.25–0.5, 0.5–0.7, and >0.7). The majority of potential dust-dominated
377 measurements were associated with the CF > 0.7 bin ($67.1 \pm 23.4\%$ for the post-processing approach and $70.2 \pm 20.8\%$
378 for the real-time approach), followed by the bin between 0.5 and 0.7 ($18.9 \pm 17.1\%$ and $19.2 \pm 15.9\%$, respectively).
379 Fewer than 8.50% of measurements fell within the 0.25–0.5 bin, and fewer than 5.50% fell within the 0–0.25 bin. This
380 distribution of potential dust-dominated PM measurements, with most measurements in CF > 0.7, supported the use
381 of the thresholds derived in this study. The CF between 0.5 and 0.7 could have represented dust mixed with other
382 sources.

383 Tables 1 and S5 summarize counts of true dust-dominant PM measurements and measurements with PMS PM_{2.5}
384 underestimation across all sensors. For the 12 representative sensors (CF available for 8 sensors, Table 1),
385 approximately 20% of measurements identified using our thresholds were true dust-dominant PM measurements, and
386 roughly 16% were underestimated ($\text{pm2.5_alt} / \text{PM}_{2.5} < 0.25$). The post-processing and real-time approaches captured
387 $68.4 \pm 24.7\%$ and $72.6 \pm 22.2\%$, respectively, of all measurements corresponding to true dust-dominated PM
388 measurements. When restricted to underestimated PMS PM_{2.5} measurements meeting the same criteria, $86.5 \pm 14.9\%$
389 (post-processing) and $89.7 \pm 9.9\%$ (real-time) were captured. Across the remaining 71 sensors (Table S5), 11–12% of
390 measurements identified using our thresholds were true dust-dominant PM measurements, and 7–10% exhibited PMS
391 PM_{2.5} underestimation. Although these remaining 71 sensors had a smaller fraction of true dust-dominant PM, they
392 accounted for $60.6 \pm 30\%$ and $66.7 \pm 25.6\%$ of the underestimated PMS PM_{2.5} measurements, in the post-processing
393 and real-time approaches, respectively.

394

395 **Table1:** Counts of measurements with available CF; true dust-dominant measurements ($CF > 0.7$ and $PM_{10} > 100$
 396 $\mu\text{g}/\text{m}^3$); and true dust-dominated PM measurements with underestimated PMS $PM_{2.5}$ concentration ($pm2.5_{\text{alt}}/PM_{2.5} < 0.25$). Counts are reported for all measurements, for measurements identified using the post-processing approach,
 397 and for measurements identified using the real-time processing approach. Four of the 12 representative sensors did
 398 not have the appropriate measurements to calculate CF. Table S6 summarizes the counts for the remaining sensors.
 399

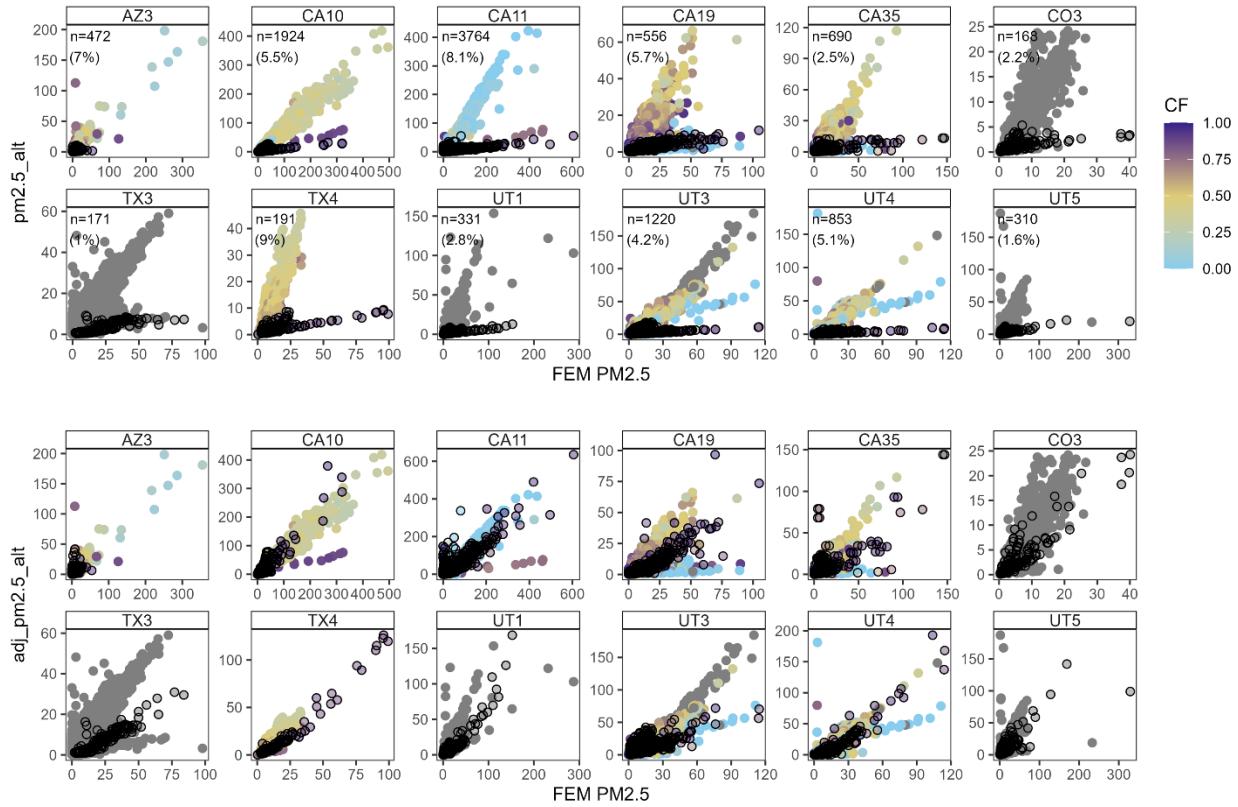
Sensor Name	CF available			True dust-dominated PM ($CF > 0.7$ & $PM_{10} > 100 \mu\text{g}/\text{m}^3$)			True dust-dominated PM & underestimated ($CF > 0.7$ & $PM_{10} > 100 \mu\text{g}/\text{m}^3$ & $pm2.5_{\text{alt}}/PM_{2.5} < 0.25$)		
	all	post-processing	real-time	all	post-processing	real-time	all	post-processing	real-time
AZ3	6713	472	581	70	40	41	47	37	37
CA10	34892	1895	2065	488	372	380	377	341	340
CA11	45865	3754	4461	898	817	861	823	771	798
CA19	9642	552	590	709	281	295	251	207	208
CA35	27470	683	779	354	97	151	151	82	112
TX4	2132	190	140	33	32	32	30	30	30
UT3	25609	1179	1363	187	149	156	148	144	144
UT4	16753	847	1026	106	84	89	86	82	84

400

401

402 3.2 $PM_{2.5}$ vs. $pm2.5_{\text{alt}}$: post-processing approach

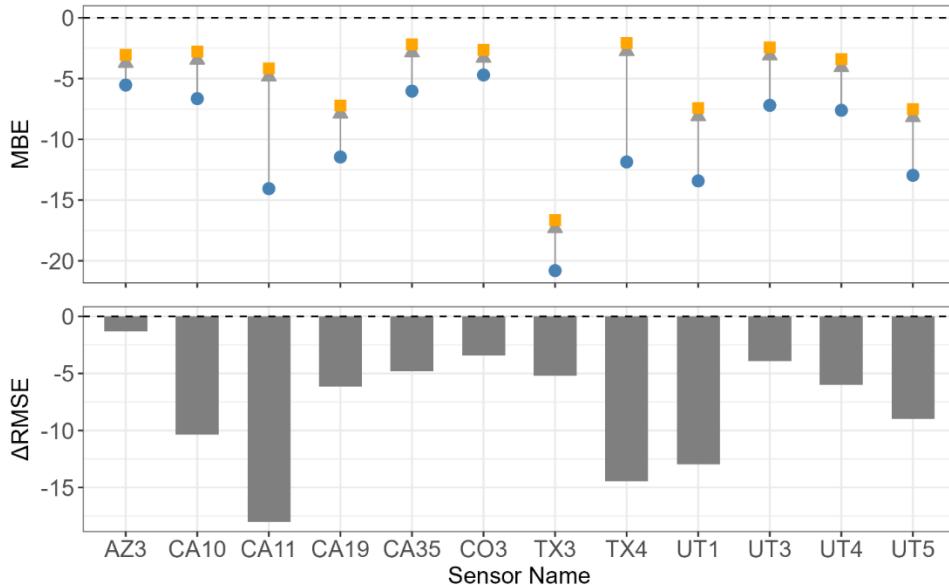
403 Figure 2 (top) compares the $pm2.5_{\text{alt}}$ with FEM $PM_{2.5}$ concentrations, with measurements identified as potential
 404 dust-dominated PM marked as black circles, for the 12 representative sensors. The identified measurements
 405 corresponded predominantly to cases in which $pm2.5_{\text{alt}}$ underestimated FEM $PM_{2.5}$, typically associated with CF
 406 > 0.7 . The potential dust-dominant measurements identified from all sensors were pooled, and using Eq. 6, factor A
 407 was estimated at 0.702. The corrections were applied to measurements identified as potentially dust-dominated PM,
 408 while all other observations remained unchanged. Figure 2 (bottom) illustrates the measurements after correction. The
 409 coefficient of determination (R^2 , using just the identified measurements) increased from 0.290 for $pm2.5_{\text{alt}}$ versus
 410 FEM $PM_{2.5}$ to 0.653 for $adj_pm2.5_{\text{alt}}$ versus FEM $PM_{2.5}$. Sensor-specific changes in R^2 are presented in Table S6.
 411 Comparisons of $pm2.5_{\text{alt}}$ and FEM $PM_{2.5}$ for the remaining sensors were presented in Figures S8 and S9.



412

413 **Figure 2:** Post-processing approach: (top) Hourly averaged pm2.5_alt compared with FEM PM_{2.5} measurements.
 414 Black open circles indicate measurements identified as dust-dominated PM measurements. (bottom) Hourly averaged
 415 adj_pm2.5_alt compared with FEM PM_{2.5} measurements. The color of the solid circles corresponds to the CF. The
 416 grey solid circles represent times when either PM_{2.5} or PM₁₀ was unavailable, preventing the calculation of CF. n
 417 denotes the number of measurements identified as potential dust-dominated PM measurements, for a subset of data
 418 when FEM PM_{2.5} data were available. Table S4 shows the total number of potential dust-dominated PM measurements,
 419 regardless of FEM PM_{2.5} availability. Comparisons of pm2.5_alt and FEM PM_{2.5} for the remaining sensors were
 420 presented in Figures S8 and S9.

421



422

423 **Figure 3:** Post-processing approach: (top) MBE ($\mu\text{g}/\text{m}^3$) with respect to FEM PM_{2.5} before and after correcting
 424 pm_{2.5}_alt. The blue dot represents the MBE before correction, while the orange square represents the MBE after
 425 correction (MBE_{adj}). The grey arrow highlights the direction of the MBE shift after correction. (bottom) change in
 426 RMSE (ΔRMSE , $\mu\text{g}/\text{m}^3$). Comparisons of MBE and RMSE for the remaining sensors are presented in Figure S10,
 427 Table S4, and Table S7. Table S7 also reports ΔnRMSE for all the sensors.

428

429 Figure 3 presents MBE, MBE_{adj}, and ΔRMSE . MBE value closer to zero indicates better sensor performance,
 430 meaning that the sensor-estimated PM_{2.5} concentrations are more consistent with the FEM PM_{2.5} measurements. For
 431 the 12 representative sensors shown in the main manuscript, MBE decreased by $52.4 \pm 16.9\%$ on average, with MBE
 432 ranging between -20.8 and $-4.71 \mu\text{g}/\text{m}^3$ and MBE_{adj} ranging between -16.7 and $-2.07 \mu\text{g}/\text{m}^3$. These results indicate
 433 that although the sensor's PM_{2.5} estimation improved it remained less than FEM PM_{2.5} after correction. For these 12
 434 sensors, RMSE also decreased by $42.3 \pm 15.9\%$, with ΔRMSE ranging between -18.0 and $-1.3 \mu\text{g}/\text{m}^3$, indicating a
 435 reduction in error following correction. The corresponding nRMSE shows the same trends as those for RMSE, and
 436 these values can be found in Table S7.

437 For the remaining sensors (Figure S10, Table S4, and Table S7), 82 sensors showed decreases in MBE, with MBE
 438 ranging between -14.6 and $-1.54 \mu\text{g}/\text{m}^3$ to MBE_{adj} between -7.60 and $0.76 \mu\text{g}/\text{m}^3$, i.e., a bias error reduction of 49.6
 439 $\pm 22.9\%$. The RMSE decreased by $27.2 \pm 14.3\%$ for 72 sensors (ΔRMSE ranging between -15.8 and $-0.0965 \mu\text{g}/\text{m}^3$)
 440 and increased for 23 sensors (ΔRMSE ranging between 0.127 and $15.9 \mu\text{g}/\text{m}^3$). Five sensors (Figure S10) showed a
 441 decrease in MBE (with MBE_{adj} ranging from -3.52 to $-0.818 \mu\text{g}/\text{m}^3$), but an increase in ΔRMSE (from 11.2 to 17.5
 442 $\mu\text{g}/\text{m}^3$). Extreme overcorrection of a few measurements for these five sensors was likely responsible for this behavior.

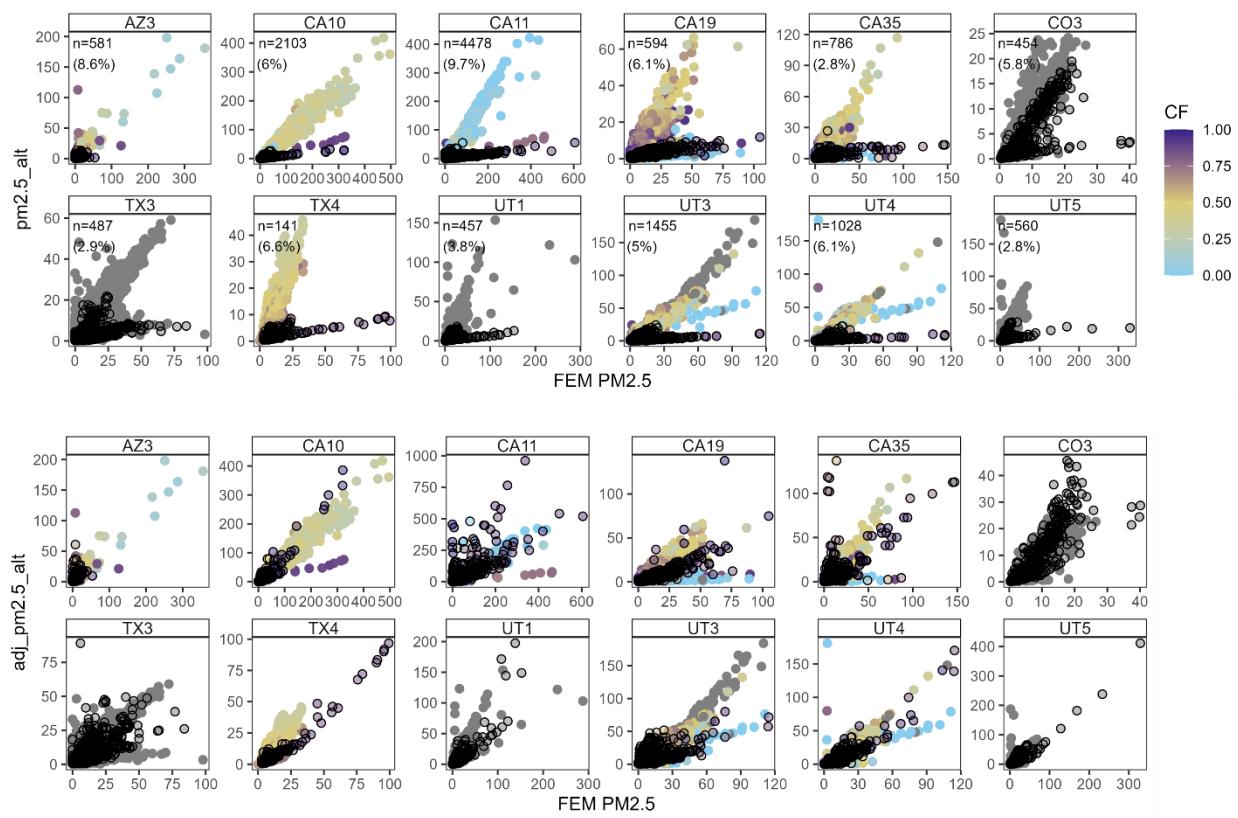
443 Thirteen sensors exhibited MBE_{adj} greater than $1 \mu\text{g}/\text{m}^3$ and positive ΔRMSE s (Figure S10 and Table S7), indicating
 444 the correction led to an overestimation of the PMS PM_{2.5} concentrations. Among the sensors with positive MBE_{adj}
 445 (Figure S10), 7 had fewer than 60 potential dust-dominated PM measurements ($<0.6\%$, Table S4), and these 7
 446 belonged to locations in Alaska, Iowa, Oregon, Washington, and Vermont that are infrequently affected by dust. Even
 447 for sensors with positive MBE_{adj}, the corrected pm_{2.5}_alt concentration remained within the sensor's expected range
 448 (Figure S9). For two sensors, no measurements were identified as potential dust-dominated PM.

449 It is important to note that the locations of most sensors were identified based on the PA public map, and no physical
 450 verification of collocation was available, except for 4 sensors maintained by the authors' group and the sensor list
 451 provided by the EPA. Given this uncertainty, some variability in MBE and RMSE outcomes were expected.

452

453 3.3 Real-time processing: pm2.5_alt vs. FEM PM_{2.5}

454 Figure 4 (top) compares the pm2.5_alt with FEM PM_{2.5} concentrations, with measurements identified as potential
 455 dust-dominated PM marked as black circles, for the 12 representative sensors, using the real-time approach. The
 456 potential dust-dominant measurements identified from all sensors were pooled, and using Eq. 6, factor A was estimated
 457 at 0.998. The corrections were applied to measurements identified as potentially dust-dominated PM, while all other
 458 observations remained unchanged. The real-time approach identified measurements were also corrected using an A of
 459 0.702 (derived using the post-processing approach) and sensor-specific As. Figure 4 (bottom) illustrates the
 460 measurements after correction using an A of 0.702. The coefficient of determination (R^2 , using just the identified
 461 measurements), irrespective of the A values, increased from 0.262 for pm2.5_alt versus FEM PM_{2.5} to 0.513 for
 462 adj_pm2.5_alt versus FEM PM_{2.5}. Sensor-specific changes in R^2 are presented in Table S6.



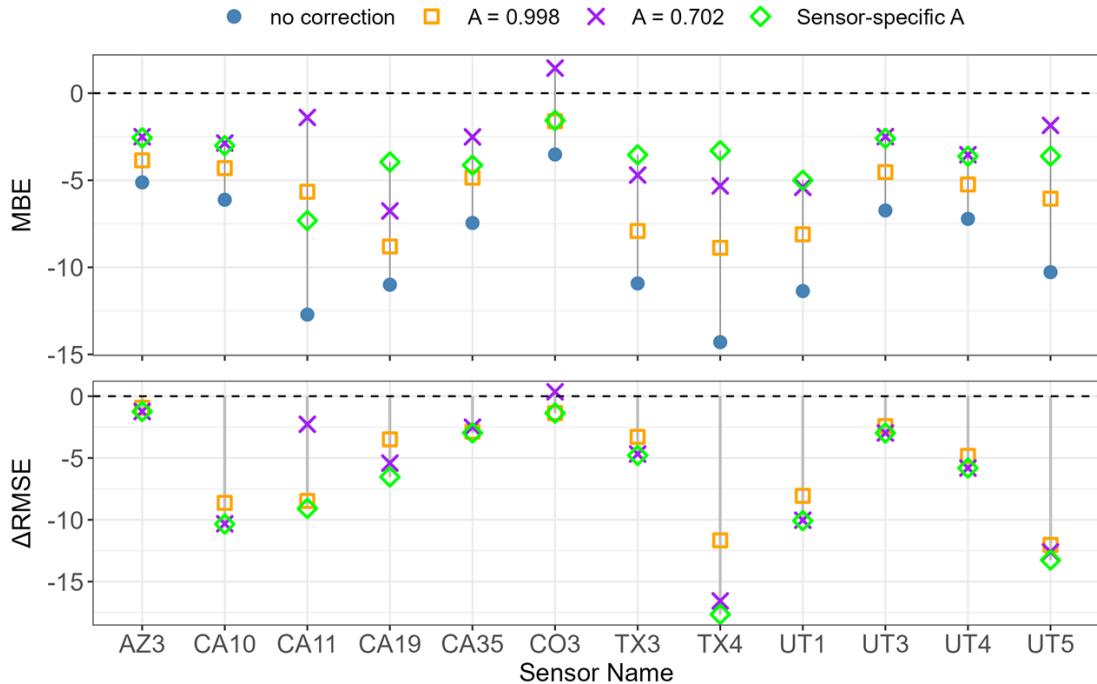
463

464

465 **Figure 4:** Real-time approach: (top) Hourly averaged pm2.5_alt values compared to FEM PM_{2.5} measurements.
 466 (bottom) Hourly averaged adj_pm2.5_alt, corrected using an A of 0.702, compared with FEM PM_{2.5} measurements.
 467 The color of the solid circles corresponds to the CF. The grey solid circles represent times when either PM_{2.5} or PM₁₀
 468 was unavailable, preventing the calculation of CF. Black open circles represent measurements identified as potential
 469 dust-dominated PM measurements. n denotes the number of measurements identified as potential dust-dominated PM
 470 measurements, for a subset of data when FEM PM_{2.5} data were available. Table S4 shows the total number of potential

471 dust-dominated PM measurements, regardless of FEM PM_{2.5} availability. Figure S11 shows comparisons of pm2.5_alt
 472 and FEM PM_{2.5} for the remaining sensors. Figure S12 and Figure S13 compare the adj_pm2.5_alt with FEM PM_{2.5},
 473 for A of 0.998 and sensor-specific As, respectively.

474



475

476 **Figure 5:** Real-time approach: (top) MBE with respect to FEM PM_{2.5} before and after correcting pm2.5_alt using an
 477 A of 0.998, 0.702, and sensor-specific A. The blue dot represents the MBE before correction, while the orange square,
 478 purple cross, and green diamond represent the MBE after correction (MBE_{adj}) using an A of 0.998, 0.702, and
 479 sensor-specific A, respectively. (bottom) change in RMSE (ΔRMSE) with respect to FEM PM_{2.5} before and after
 480 correcting pm2.5_alt using an A of 0.998, 0.702, and sensor-specific A. The orange square, purple cross, and green
 481 diamond represent the ΔRMSE after correction using an A of 0.998, 0.702, and sensor-specific A, respectively. Figure
 482 S14, Table S4, and Table S7 show comparisons of MBE and MBE_{adj}, and ΔRMSE for the remaining sensors. Table
 483 S7 also reports ΔRMSE for all the sensors.

484

485 Figure 5 compares the MBE and RMSE before and after correction using different values of A for the 12 representative
 486 sensors. The results indicate that the corrected PMS PM_{2.5} concentrations agreed better with the FEM PM_{2.5}
 487 concentrations during periods potentially dominated by dust, regardless of the A value. The sensor-specific A and A
 488 value of 0.998 led to decreases in MBE and RMSE and did not cause overestimates of the PM_{2.5} concentration
 489 compared to the FEM PM_{2.5} concentration. Using an A of 0.702 caused one sensor (CO3) to slightly overestimate
 490 PM_{2.5} concentration compared to the FEM, with an increase in MBE from $-3.52 \mu\text{g}/\text{m}^3$ to $1.44 \mu\text{g}/\text{m}^3$.

491 Figure S14, Table S4, and Table S7 presents changes in MBE and RMSE for the remaining 95 sensors (no
 492 measurements identified with the thresholds for 2 sensors) using different values for A. Applying a correction factor
 493 with A = 0.998 reduced MBE for 91 sensors by $24.7 \pm 12.7\%$ on average and RMSE for 80 sensors by $14.5 \pm 9.96\%$
 494 with ΔRMSE between -8.53 and $-0.026 \mu\text{g}/\text{m}^3$. This correction (A = 0.998) caused an increase in MBE for four sensors
 495 (MBE_{adj} between 0.318 and $4.06 \mu\text{g}/\text{m}^3$) and RMSE for 12 sensors (ΔRMSE between 0.025 and $11.0 \mu\text{g}/\text{m}^3$),
 496 suggesting inconsistent performance across sensors. Application of a correction factor with A = 0.702 resulted in MBE

497 decreases for 83 sensors by $55.4 \pm 19.9\%$ (with MBE_{adj} varying between -7.58 and $-0.0035 \mu\text{g}/\text{m}^3$) and RMSE
498 decreases for 71 sensors by $24.8 \pm 14.5\%$ (with ΔRMSE in -13.3 to $-0.0422 \mu\text{g}/\text{m}^3$). This correction caused increases
499 in MBE at 13 sensors (with MBE_{adj} between 0.313 and $8.76 \mu\text{g}/\text{m}^3$). For 11 of these 13 sensors, RMSE also increased
500 (MBE_{adj} between 0.13 and $6.78 \mu\text{g}/\text{m}^3$, and ΔRMSE between 0.11 and $17.96 \mu\text{g}/\text{m}^3$, respectively), with 6 sensors
501 belonging to locations in Alaska, Oregon, Washington, and Vermont that are infrequently affected by dust. For a few
502 sensors (NV3, CA14, CA21, CO1, and CO2), a decrease in MBE was accompanied by an increase in RMSE (positive
503 ΔRMSE), indicating sensitivity to a small number of overcorrected observations.

504 The sensor-specific A correction produced the greatest improvement in performance, yielding the largest reduction in
505 MBE across sensors (mean reduction of $58.9 \pm 23.9\%$ across 85 sensors) and a decrease in RMSE of $28.9 \pm 19.4\%$
506 for 82 sensors (Figure S14; Table S7). Although seven sensors exhibited increases in both MBE ($24.9 \pm 17.1\%$) and
507 RMSE ($\Delta\text{RMSE} = 0.32\text{--}2.61 \mu\text{g}/\text{m}^3$) following correction, and six additional sensors showed reduced bias but
508 increased RMSE ($\Delta\text{RMSE} = 0.28\text{--}0.63 \mu\text{g}/\text{m}^3$), these cases reflect a trade-off between improved mean agreement and
509 increased variability. Importantly, for sensors with increased RMSE, the magnitude of ΔRMSE using the sensor-
510 specific correction was substantially smaller ($0.28\text{--}2.61 \mu\text{g}/\text{m}^3$) than that observed under the uniform-A correction
511 ($0.024\text{--}10.9 \mu\text{g}/\text{m}^3$ for $A = 0.998$ and $0.111\text{--}17.9 \mu\text{g}/\text{m}^3$ for $A = 0.702$), indicating greater robustness of the sensor-
512 specific approach.

513 Overall, these results highlight that while uniform correction factors can reduce bias for many sensors, they may
514 introduce overcorrection and increased error at others. The sensor-specific correction provided a more balanced
515 adjustment across the network, with reduced sensitivity to overcorrection and smaller increases in absolute error where
516 performance degrades. However, implementing sensor-specific A requires calibration against a reference instrument
517 before deployment, ideally under a range of PM concentrations and compositions representative of the target
518 environment. This requirement limits scalability and may not be feasible for geographically diverse networks. Thus,
519 there is a trade-off: a fixed A offers simplicity and consistency for a broad distribution of sensors, while a sensor-
520 specific A improves accuracy but reduces generality.

521

522 **4 Limitations**

523 This study has several limitations, primarily related to the use of PMS sensors and the assumptions made in selecting
524 and interpreting the data. First, most PMS sensors used in this analysis were identified from the publicly available PA
525 map, and their physical locations and deployment conditions could not be independently confirmed. It is possible that
526 some of the sensors selected were not truly collocated with the FEM instruments. Second, PA nodes are user-deployed
527 and can be moved or reconfigured at any time. A user might relocate the entire sensor, swap sensor nodes, or even
528 replace hardware without any indication in the metadata. Such changes can alter sensor performance or the
529 environmental context of the measurements (e.g., from outdoor to indoor), potentially affecting C_to_SM values and
530 the thresholds used for dust-dominated PM measurement detection. These untracked changes may lead to
531 inconsistencies in the correction approach, either causing genuine dust-dominated PM measurements to be missed or
532 non-dust days to be mistakenly corrected due to a sudden shift in sensor behavior. Additionally, the correction method
533 depends on long-term consistency in sensor performance. Any drift in sensor response (deSouza et al., 2023),
534 contamination of the sensor inlet, changes in the PMS production process (i.e., (Searle et al., 2023)), or firmware
535 updates may also influence measurement characteristics and correction effectiveness. A potential limitation of this
536 approach is that it may be less effective under consistently high-dust conditions, as the baseline correction assumes
537 that the environment is relatively clean most of the time. Finally, this study evaluated PMS5003/6003s, and the
538 proposed methods would need to be evaluated for other PMS models. Despite these limitations, the general trends and
539 methodology proposed in this manuscript can provide a useful framework for real-time and retrospective identification
540 of possible dust-dominated PM measurement using PMS sensors. However, future work should aim to validate sensor-
541 reference collocation and investigate the impact of node-level changes on the robustness of corrections.

542 Some potentially problematic measurements were not explicitly excluded in this study. These included: (i) periods
543 with all zero counts in bins $>0.5 \mu\text{m}$ throughout the sampling duration; (ii) spurious temperature readings (e.g., $\sim -$
544 129°F ($\sim -89^\circ\text{C}$)) persisting over the study period; and (iii) inconsistent particle count assignments, such as higher
545 counts in the $>0.5 \mu\text{m}$ bin compared to the $>0.3 \mu\text{m}$ bin, or in the $>2.5 \mu\text{m}$ bin compared to the $>5 \mu\text{m}$ bin, which
546 sometimes resulted in negative pm2.5_alt concentrations. While the thresholds developed in this study may have
547 excluded many of these problematic data points, they may also have inadvertently excluded valid dust-dominated PM
548 measurements.

549

550 **5 Future Work**

551 Our approach for identifying elevated coarse particle concentrations could be extended to improve PM₁₀ estimation
552 from low-cost sensors. Furthermore, in conjunction with back-trajectory models, meteorological data, or satellite
553 imagery, this method could help identify the sources of PM₁₀ plumes, such as dust sources, construction activity, or
554 agricultural emissions. In addition, if A could be defined for each sensor based on laboratory calibration under
555 controlled conditions, it could significantly enhance the accuracy of real-time dust-dominated PM measurement
556 detection and correction, although a strategy for addressing sensor performance changes over time would still be
557 needed. This could enhance both the scalability and robustness of using low-cost sensors, such as the PMS, for dust-
558 dominated PM monitoring in diverse environmental settings.

559

560 **6 Conclusion**

561 This study demonstrates that PMS5003/6003 sensors, despite their well-known limitations in detecting coarse
562 particles, can be used to identify and provide estimates of PM_{2.5} concentration during dust-dominated periods using
563 only the sensor's reported outputs. By leveraging particle counts in the coarser and submicron bins and RH, we
564 developed real-time thresholds (threshold1 and threshold2) that can identify potential dust-dominated PM
565 measurements without reliance on external datasets. Between 0 and 3785 hourly averaged PM_{2.5} measurements (0 –
566 9.00%) from each sensor were identified as potential dust-dominated PM measurements with the post-processing
567 approach, and 0 – 4513 measurements (0 – 9.62%) with the real-time approach. The real-time method consistently
568 identified more dust-dominated PM measurements, owing to its dynamic threshold1, which better accounted for
569 seasonal and sensor-specific variability. Most potential dust-dominated PM measurements were associated with coarse
570 fraction values >0.7 (67–70%) as measured by FEMs, confirming that the thresholds targeted conditions when PMS
571 sensors most strongly underestimated FEM PM_{2.5}. The correction of PMS PM_{2.5} estimates (pm2.5_alt) using the post-
572 processing approach reduced MBE by approximately 50% ($52.4 \pm 16.9\%$ for the 12 representative sensors and $49.6 \pm$
573 22.9% for the remaining 85 sensors) and decreased RMSE for 84 sensors (-18.0 to $-0.0965 \mu\text{g}/\text{m}^3$). A small subset of
574 sensors (≤ 13) exhibited increases in MBE and RMSE, likely due to overcorrection or limited dust-influenced
575 observations; however, corrected concentrations remained within the expected sensor response range. For the real-
576 time correction approach, the magnitude of adjustment depended on the value of A, with uniform corrections using A
577 = 0.998 and A = 0.702 reducing MBE and RMSE for most sensors (e.g., A = 0.998 reduced MBE by $24.7 \pm 12.7\%$ for
578 91 sensors, and A = 0.702 reduced MBE by $55.4 \pm 19.9\%$ for 83 sensors), although overcorrection occurred for a
579 limited number of sensors, resulting in increases in MBE (up to $8.76 \mu\text{g}/\text{m}^3$) and RMSE (up to $17.96 \mu\text{g}/\text{m}^3$). The
580 sensor-specific correction yielded the greatest overall improvement, reducing MBE by $58.9 \pm 23.9\%$ across 85 sensors
581 and RMSE by $28.9 \pm 19.4\%$ for 82 sensors, suggesting the most robust agreement with FEM PM_{2.5} during dust-
582 influenced periods. Overall, the framework developed here improves PMS5003 performance under elevated dust
583 loading, reduces PM_{2.5} underestimation, and enhances the utility of low-cost sensors for dust monitoring in regions
584 with limited FRM/FEM coverage.

585

586

587 **7 Acknowledgement**

588 Research reported in this publication is based upon work supported by the National Science Foundation under grant
589 no. 2012091 (Collaborative Research Network Cluster: Dust in the Critical Zone) and under grant no. 2322009
590 (CIVIC-Stage2: TRACK A: Community Resilience through Engaging, Actionable, Timely, High-Resolution Air
591 Quality Information – CREATE-AQI). The authors wish to thank Dr. Karoline Barkjohn (US EPA) for the valuable
592 feedback on the manuscript and for providing a collocation dataset of PA sensors and regulatory monitors. This EPA
593 collocation dataset would not have been possible without the partnership of many air monitoring agencies and other
594 partners, including the State of Alaska, Citizens for Clean Air (Alaska), Maricopa County Air Quality Department,
595 San Luis Obispo County Air Pollution Control District, Mojave Desert Air Quality Management District, California
596 Air Resources Board, Santa Barbara County Air Pollution Control District, Ventura County Air Pollution Control
597 District, South Coast Air Quality Management District and its Air Quality Sensor Performance Evaluation Center
598 (AQ-SPEC), Colorado Department of Public Health and Environment, Delaware Division of Air Quality, Sarasota
599 County Government, Georgia Environmental Protection Division, Iowa Department of Natural Resources, Kansas
600 Department of Health and Environment, Missoula County, Montana Department of Environmental Quality, Forsyth
601 County Office of Environmental Assistance and Protection, Clean Air Carolina, Quapaw Nation, Oklahoma
602 Department of Environmental Quality, Virginia Department of Environmental Quality, State of Vermont, Puget Sound
603 Clean Air Agency, and Wisconsin Department of Natural Resources. Thanks to PurpleAir for allowing access to their
604 data at no cost. AI-assisted tools were used to edit the original drafts of the manuscript to enhance the clarity and
605 readability of the text.

606

607 **8 Conflict of interest**

608

609 Kerry E. Kelly has a financial interest in the company Tellus Networked Solutions, LCC, which commercializes
610 solutions for environmental monitoring. Their technology was not used as part of this work.

611

612 **9 Author contribution**

613

614 KK and TM gathered data. KK conceptualized the research and analyzed the data. KK developed the original draft,
615 and TM and KEK reviewed and edited the original draft. KEK provided supervision and acquired funding.

616

617 **10 References**

618 Air Quality Egg: *Air Quality Egg - Science is Collaboration*. <https://airqualityegg.com/home>, last access: 09 August
619 2025.

620 AirGradient: *Outdoor Air Quality Monitor*. <https://www.airgradient.com/outdoor/>, last access: 09 August 2025.

621 Airly: *Air Quality Monitoring. Monitor in UK & Europe. Airly Data Platform and Monitors | Airly*.
622 <https://airly.org/en/>, last access: 09 August 2025.

623 AirNow Data Management Center: *AirNow-Tech: Home*. <https://www.airnowtech.org/>, last access: 09 August 2025.

624 Ardon-Dryer, K., Clifford, K. R., & Hand, J. L. (2023). Dust Under the Radar: Rethinking How to Evaluate the
625 Impacts of Dust Events on Air Quality in the United States. *GeoHealth*, 7(12), e2023GH000953.
626 <https://doi.org/10.1029/2023GH000953>

627 Ardon-Dryer, K., Dryer, Y., Williams, J. N., & Moghimi, N. (2020). Measurements of PM2.5 with PurpleAir under
628 atmospheric conditions. *Atmospheric Measurement Techniques*, 13(10), 5441–5458.
629 <https://doi.org/10.5194/AMT-13-5441-2020>,

630 Ardon-Dryer, K., Gill, T. E., & Tong, D. Q. (2023). When a Dust Storm Is Not a Dust Storm: Reliability of Dust
631 Records From the Storm Events Database and Implications for Geohealth Applications. *GeoHealth*, 7(1).
632 <https://doi.org/10.1029/2022GH000699>

633 Barkjohn, K. K., Gantt, B., & Clements, A. L. (2021). Development and application of a United States-wide
634 correction for PM2.5 data collected with the PurpleAir sensor. *Atmospheric Measurement Techniques*, 14(6),
635 4617–4637. <https://doi.org/10.5194/AMT-14-4617-2021>,

636 Barkjohn, K. K., Holder, A. L., Frederick, S. G., & Clements, A. L. (2022). Correction and Accuracy of PurpleAir
637 PM2.5 Measurements for Extreme Wildfire Smoke. *Sensors*, 22(24), 9669.
638 [https://doi.org/10.3390/S22249669/S1](https://doi.org/10.3390/S22249669)

639 Brahney, J., Heindel, R. C., Gill, T. E., Carling, G., González-Olalla, J. M., Hand, J., Mallia, D. V., Munroe, J. S.,
640 Perry, K., Putman, A. L., Skiles, S. M., Adams, B. R., Aanderud, Z., Aarons, S., Aguirre, D., Ardon-Dryer, K.,
641 Blakowski, M. B., Creamean, J. M., Fernandez, D., ... Merrill, T. (2024). Dust in the Critical Zone: North
642 American case studies. *Earth-Science Reviews*, 258, 104942.
643 <https://doi.org/10.1016/J.EARSCIREV.2024.104942>

644 Clarity: *Low-Cost Air Quality Monitoring & Measurement* | Clarity Movement Co. <https://www.clarity.io/>, last
645 access: 09 August 2025.

646 Cowell, N., Chapman, L., Bloss, W., & Pope, F. (2022). Field Calibration and Evaluation of an Internet-of-Things-
647 Based Particulate Matter Sensor. *Frontiers in Environmental Science*, 9, 798485.
648 [https://doi.org/10.3389/FENVS.2021.798485/BIBTEX](https://doi.org/10.3389/FENVS.2021.798485)

649 Csavina, J., Field, J., Félix, O., Corral-Avitia, A. Y., Sáez, A. E., & Betterton, E. A. (2014). Effect of wind speed and
650 relative humidity on atmospheric dust concentrations in semi-arid climates. *Science of The Total Environment*,
651 487(1), 82–90. <https://doi.org/10.1016/J.SCITOTENV.2014.03.138>

652 deSouza, P., Barkjohn, K., Clements, A., Lee, J., Kahn, R., Crawford, B., & Kinney, P. (2023). An analysis of
653 degradation in low-cost particulate matter sensors. *Environmental Science: Atmospheres*, 3(3), 521–536.
654 <https://doi.org/10.1039/D2EA00142J>

655 EPA: *Regulations.gov*. <https://www.regulations.gov/document/EPA-HQ-OAR-2023-0642-0031>, last access: 09
656 August 2025.

657 EPA: *Download Files | AirData | US EPA*. https://aqs.epa.gov/aqsweb/airdata/download_files.html, last access: 09
658 August 2025.

659 EPA AirNow Data Management Center: *AirNow API Documentation*. <https://docs.airnowapi.org/>, last access: 09
660 August 2025.

661 Gautam, P., Ramirez, A., Bair, S., Arnott, W. P., Chow, J. C., Watson, J. G., Moosmüller, H., & Wang, X. (2025a).
662 Sizing Accuracy of Low-Cost Optical Particle Sensors Under Controlled Laboratory Conditions. *Atmosphere*,
663 16(5), 502. [https://doi.org/10.3390/ATMOS16050502/S1](https://doi.org/10.3390/ATMOS16050502)

664 Gautam, P., Ramirez, A., Bair, S., Arnott, W. P., Chow, J. C., Watson, J. G., Moosmüller, H., & Wang, X. (2025b).
665 Sizing Accuracy of Low-Cost Optical Particle Sensors Under Controlled Laboratory Conditions. *Atmosphere*,
666 16(5), 502. [https://doi.org/10.3390/ATMOS16050502/S1](https://doi.org/10.3390/ATMOS16050502)

667 Goudie, A. S. (2014). Desert dust and human health disorders. *Environment International*, 63, 101–113.
668 <https://doi.org/10.1016/J.ENVINT.2013.10.011>

669 Hahnenberger, M., & Nicoll, K. (2012). Meteorological characteristics of dust storm events in the eastern Great
670 Basin of Utah, U.S.A. *Atmospheric Environment*, 60, 601–612.
671 <https://doi.org/10.1016/J.ATMOSENV.2012.06.029>

672 Hand, J. L., Gill, T. E., & Schichtel, B. A. (2017). Spatial and seasonal variability in fine mineral dust and coarse
673 aerosol mass at remote sites across the United States. *Journal of Geophysical Research: Atmospheres*, 122(5),
674 3080–3097. <https://doi.org/10.1002/2016JD026290>

675 He, M., Kuerbanjiang, N., & Dhaniyala, S. (2020). Performance characteristics of the low-cost Plantower PMS
676 optical sensor. *Aerosol Science and Technology*, 54(2), 232–241.
677 <https://doi.org/10.1080/02786826.2019.1696015>

678 Hong, G. H., Le, T. C., Tu, J. W., Wang, C., Chang, S. C., Yu, J. Y., Lin, G. Y., Aggarwal, S. G., & Tsai, C. J. (2021).
679 Long-term evaluation and calibration of three types of low-cost PM2.5 sensors at different air quality
680 monitoring stations. *Journal of Aerosol Science*, 157, 105829.
681 <https://doi.org/10.1016/J.JAEROSCI.2021.105829>

682 Hua, J., Zhang, Y., de Foy, B., Mei, X., Shang, J., Zhang, Y., Sulaymon, I. D., & Zhou, D. (2021). Improved PM2.5
683 concentration estimates from low-cost sensors using calibration models categorized by relative humidity.
684 *Aerosol Science and Technology*, 55(5), 600–613. <https://doi.org/10.1080/02786826.2021.1873911>

685 Jaffe, D. A., Miller, C., Thompson, K., Finley, B., Nelson, M., Ouimette, J., & Andrews, E. (2023). An evaluation of
686 the U.S. EPA's correction equation for PurpleAir sensor data in smoke, dust, and wintertime urban pollution
687 events. *Atmospheric Measurement Techniques*, 16(5), 1311–1322. <https://doi.org/10.5194/AMT-16-1311-2023>

688 Kaur, K., & Kelly, K. E. (2023a). Laboratory evaluation of the Alphasense OPC-N3, and the Plantower PMS5003
689 and PMS6003 sensors. *Journal of Aerosol Science*, 171, 106181.
690 <https://doi.org/10.1016/J.JAEROSCI.2023.106181>

691 Kaur, K., & Kelly, K. E. (2023b). Performance evaluation of the Alphasense OPC-N3 and Plantower PMS5003
692 sensor in measuring dust events in the Salt Lake Valley, Utah. *Atmospheric Measurement Techniques*, 16(10),
693 2455–2470. <https://doi.org/10.5194/AMT-16-2455-2023>

694 Kaur, K., Krall, J. R., Ivey, C., Holmes, H., & Kelly, K. E. (2025). Long-term PM2.5 source apportionment at 12
695 sites in the western United States from 2000-2020. *Atmospheric Pollution Research*, 102779.
696 <https://doi.org/10.1016/j.apr.2025.102779>

697 Kelley, M. C., & Ardon-Dryer, K. (2021). Analyzing two decades of dust events on the Southern Great Plains region
698 of West Texas. *Atmospheric Pollution Research*, 12(6), 101091. <https://doi.org/10.1016/J.APR.2021.101091>

699 Kim, K. T., Kim, H., Jeong, S., Lee, Y. S., Zhao, X., & Kim, J. Y. (2025). Coincidence effect of a low-cost
700 particulate matter sensor: Observations from environmental chamber tests at diverse particle concentrations.
701 *Atmospheric Pollution Research*, 16(9), 102581. <https://doi.org/10.1016/j.apr.2025.102581>

702 Kosmopoulos, G., Salamalikis, V., Wilbert, S., Zarzalejo, L. F., Hanrieder, N., Karatzas, S., & Kazantzidis, A.
703 (2023). Investigating the Sensitivity of Low-Cost Sensors in Measuring Particle Number Concentrations
704 across Diverse Atmospheric Conditions in Greece and Spain, *Sensors* 23(14), 6541.
705 <https://doi.org/10.3390/s23146541>

706 Kuula, J., Mäkelä, T., Aurela, M., Teinilä, K., Varjonen, S., González, Ó., & Timonen, H. (2020). Laboratory
707 evaluation of particle-size selectivity of optical low-cost particulate matter sensors. *Atmospheric Measurement
708 Techniques*, 13(5), 2413–2423. <https://doi.org/10.5194/AMT-13-2413-2020>,

709 Lei, H., Wang, J. X. L., Tong, D. Q., & Lee, P. (2016). Merged dust climatology in Phoenix, Arizona based on
710 satellite and station data. *Climate Dynamics*, 47(9–10), 2785–2799. [https://doi.org/10.1029/2010JD014784](https://doi.org/10.1007/S00382-016-2997-
711 7/METRICS</p><p>712 Lewis, J. M., Kaplan, M. L., Vellore, R., Rabin, R. M., Hallett, J., & Cohn, S. A. (2011). Dust storm over the Black
713 Rock Desert: Larger-scale dynamic signatures. <i>Journal of Geophysical Research Atmospheres</i>, 116(6).
714 <a href=)

715 Leys, C., Ley, C., Klein, O., Bernard, P., & Licata, L. (2013). Detecting outliers: Do not use standard deviation
716 around the mean, use absolute deviation around the median. *Journal of Experimental Social Psychology*,
717 49(4), 764–766. <https://doi.org/10.1016/J.JESP.2013.03.013>

718 Magi, B. I., Cupini, C., Francis, J., Green, M., & Hauser, C. (2020). Evaluation of PM2.5 measured in an urban
719 setting using a low-cost optical particle counter and a Federal Equivalent Method Beta Attenuation Monitor.
720 *Aerosol Science and Technology*, 54(2), 147–159. <https://doi.org/10.1080/02786826.2019.1619915>

721 Mai, C., Wang, Z., Chen, L., Huang, Y., Li, M., Shirazi, A., Altaee, A., & Zhou, J. L. (2025). Field-based calibration
722 and operation of low-cost sensors for particulate matter by linear and nonlinear methods. *Atmospheric
723 Pollution Research*, 16(12), 102676. <https://doi.org/10.1016/J.APR.2025.102676>

724 Malings, C., Tanzer, R., Hauryliuk, A., Saha, P. K., Robinson, A. L., Presto, A. A., & Subramanian, R. (2020). Fine
725 particle mass monitoring with low-cost sensors: Corrections and long-term performance evaluation. *Aerosol
726 Science and Technology*, 54(2), 160–174. <https://doi.org/10.1080/02786826.2019.1623863>

727 Masic, A., Bibic, D., Pikula, B., Blazevic, A., Huremovic, J., & Zero, S. (2020). Evaluation of optical particulate
728 matter sensors under realistic conditions of strong and mild urban pollution. *Atmospheric Measurement
729 Techniques*, 13(12), 6427–6443. <https://doi.org/10.5194/AMT-13-6427-2020>,

730 Mathieu-Campbell, M. E., Guo, C., Grieshop, A. P., & Richmond-Bryant, J. (2024). Calibration of PurpleAir low-
731 cost particulate matter sensors: model development for air quality under high relative humidity conditions.
732 *Atmospheric Measurement Techniques*, 17(22), 6735–6749. <https://doi.org/10.5194/amt-17-6735-2024>

733 NASA Earthdata: *MODIS Near Real-Time Data* | *NASA Earthdata*.
734 <https://www.earthdata.nasa.gov/data/instruments/modis/near-real-time-data>, last access: 09 August 2025.

735 Nilson, B., Jackson, P. L., Schiller, C. L., & Parsons, M. T. (2022). Development and evaluation of correction
736 models for a low-cost fine particulate matter monitor. *Atmospheric Measurement Techniques*, 15(11), 3315–
737 3328. <https://doi.org/10.5194/AMT-15-3315-2022>,

738 Ouimette, J., Arnott, W. P., Laven, P., Whitwell, R., Radhakrishnan, N., Dhaniyala, S., Sandink, M., Tryner, J., &
739 Volckens, J. (2024). Fundamentals of low-cost aerosol sensor design and operation. *Aerosol Science and
740 Technology*, 58(1), 1–15. <https://doi.org/10.1080/02786826.2023.2285935>

741 Ouimette, J. R., Malm, W. C., Schichtel, B. A., Sheridan, P. J., Andrews, E., Ogren, J. A., & Arnott, W. P. (2022).
742 Evaluating the PurpleAir monitor as an aerosol light scattering instrument. *Atmospheric Measurement
743 Techniques*, 15(3), 655–676. <https://doi.org/10.5194/amt-15-655-2022>

744 Patel, M. Y., Vannucci, P. F., Kim, J., Berelson, W. M., & Cohen, R. C. (2024). Towards a hygroscopic growth
745 calibration for low-cost PM2.5 sensors. *Atmospheric Measurement Techniques*, 17(3), 1051–1060.
746 <https://doi.org/10.5194/AMT-17-1051-2024>,

747 PurpleAir: *Worldwide, Ranked Data by PurpleAir*.
748 https://location.purpleair.com/countries?layers=us_epa_aqi%2Caire_y_salud%2Caustralian_aqi%2Cbrazilian_pm25%2Caqhi_plus%2Cchinese_aqi%2Ceuropean_aqi%2Cindia_naqi%2Cindonesia_ispu%2Cnew_south_wales_pm_2_5%2Ctasmania_pm_2_5%2Cuk_daily_aqi%2Cc, last access: 09 August 2025.

750

751 QuantAQ: *QuantAQ*. <https://quant-aq.com/>, last access: 09 August 2025.

752 Raheja, G., Nimo, J., Appoh, E. K. E., Essien, B., Sunu, M., Nyante, J., Amegah, M., Quansah, R., Arku, R. E.,
753 Penn, S. L., Giordano, M. R., Zheng, Z., Jack, D., Chillrud, S., Amegah, K., Subramanian, R., Pinder, R.,
754 Appah-Sampong, E., Tetteh, E. N., ... Westervelt, D. M. (2023). Low-Cost Sensor Performance
755 Intercomparison, Correction Factor Development, and 2+ Years of Ambient PM2.5 Monitoring in Accra,
756 Ghana. *Environmental Science and Technology*, 57(29), 10708–10720.
757 https://doi.org/10.1021/ACS.EST.2C09264/ASSET/IMAGES/LARGE/ES2C09264_0009.JPG

758 Robinson, M. C., & Ardon-Dryer, K. (2024). Characterization of 21 years of dust events across four West Texas
759 regions. *Aeolian Research*, 67–69, 100930. <https://doi.org/10.1016/J.AEOLIA.2024.100930>

760 Sandhu, T., Robinson, M. C., Rawlins, E., & Ardon-Dryer, K. (2024). Identification of dust events in the greater
761 Phoenix area. *Atmospheric Pollution Research*, 15(11), 102275. <https://doi.org/10.1016/J.APR.2024.102275>

762 Sayahi, T., Butterfield, A., & Kelly, K. E. (2019). Long-term field evaluation of the Plantower PMS low-cost
763 particulate matter sensors. *Environmental Pollution*, 245, 932–940.
764 <https://doi.org/10.1016/J.ENVPOL.2018.11.065>

765 Searle, N., Kaur, K., & Kelly, K. (2023). Technical note: Identifying a performance change in the Plantower PMS
766 5003 particulate matter sensor. *Journal of Aerosol Science*, 174, 106256.
767 <https://doi.org/10.1016/J.JAEROSCI.2023.106256>

768 Si, M., Xiong, Y., Du, S., & Du, K. (2020). Evaluation and calibration of a low-cost particle sensor in ambient
769 conditions using machine-learning methods. *Atmospheric Measurement Techniques*, 13(4), 1693–1707.
770 <https://doi.org/10.5194/AMT-13-1693-2020>,

771 Sugimoto, N., Shimizu, A., Matsui, I., & Nishikawa, M. (2016). A method for estimating the fraction of mineral dust
772 in particulate matter using PM2.5-to-PM10 ratios. *Particuology*, 28, 114–120.
773 <https://doi.org/10.1016/J.PARTIC.2015.09.005>

774 Tellus: *TELLUS Air Quality Monitoring Data and Solutions*.
775 https://www.tellusensors.com/?utm_term=air%20quality%20sensor&utm_campaign=%2A%2ALP%20Search%20-Device&utm_source=adwords&utm_medium=ppc&hsa_acc=4349704448&hsa_cam=21839194498&hsa_grp=170850629202&hsa_ad=718136201884&hsa_src=g&hsa_tgt=aud-2266742649017%3Akw-297848703289&hsa_kw=air%20quality%20sensor&hsa_mt=p&hsa_net=adwords&hsa_ver=3&gad_source=1&gad_campaignid=21839194498&gbraid=0AAAAAotNhB5506-Pvvvw6nag3j37RFy9&gclid=CjwKCAjw_fnFBhB0EiwAH_MfZsOaSkaCFNg7XJaW72ZOGdgJrqCvhANE_nfUngolN6dIKmj8KU9WiHxoCgmsQAvD_BwE, last access: 09 August 2025.

783 Tong, D. Q., Dan, M., Wang, T., & Lee, P. (2012). Long-term dust climatology in the western United States
784 reconstructed from routine aerosol ground monitoring. *Atmos. Chem. Phys*, 12, 5189–5205.
785 <https://doi.org/10.5194/acp-12-5189-2012>

786 Tryner, J., L'Orange, C., Mehaffy, J., Miller-Lionberg, D., Hofstetter, J. C., Wilson, A., & Volckens, J. (2020).
787 Laboratory evaluation of low-cost PurpleAir PM monitors and in-field correction using co-located portable
788 filter samplers. *Atmospheric Environment*, 220, 117067. <https://doi.org/10.1016/J.ATMOSENV.2019.117067>

789 Tryner, J., Mehaffy, J., Miller-Lionberg, D., & Volckens, J. (2020). Effects of aerosol type and simulated aging on
790 performance of low-cost PM sensors. *Journal of Aerosol Science*, 150, 105654.
791 <https://doi.org/10.1016/J.JAEROSCI.2020.105654>

792 Tse, J., & Liang, L. (2025). Evaluating PurpleAir Sensors: Do They Accurately Reflect Ambient Air Temperature?
793 *Sensors*, 25(10), 3044. <https://doi.org/10.3390/S25103044/S1>

794 Vogt, M., Schneider, P., Castell, N., & Hamer, P. (2021). Assessment of Low-Cost Particulate Matter Sensor Systems
795 against Optical and Gravimetric Methods in a Field Co-Location in Norway. *Atmosphere* 2021, Vol. 12, Page
796 961, 12(8), 961. <https://doi.org/10.3390/ATMOS12080961>

797 Wallace, L. (2023). Cracking the code—Matching a proprietary algorithm for a low-cost sensor measuring PM1 and
798 PM2.5. *Science of The Total Environment*, 893, 164874. <https://doi.org/10.1016/J.SCITOTENV.2023.164874>

799 Wallace, L., Zhao, T., & Klepeis, N. E. (2022). Calibration of PurpleAir PA-I and PA-II Monitors Using Daily Mean
800 PM2.5 Concentrations Measured in California, Washington, and Oregon from 2017 to 2021. *Sensors*, 22(13),
801 4741. <https://doi.org/10.3390/S22134741/S1>

802 Weissert, L. F., Henshaw, G. S., Clements, A. L., Duvall, R. M., & Croghan, C. (2025). Seasonal effects in the
803 application of the MOment MAtching (MOMA) remote calibration tool to outdoor PM2.5 air sensors.
804 *Atmospheric Measurement Techniques*, 18(15), 3635–3645. <https://doi.org/10.5194/AMT-18-3635-2025>,

805

806

807