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Abstract. Understanding Earth resilience—the capacity of the Earth system to absorb and regenerate from perturbations—is
key to assessing risks from anthropogenic pressures and sustaining a safe operating space for humanity within planetary
boundaries. Classical resilience indicators are designed for autonomous systems with fixed attractors, but the Earth system is
fundamentally non-autonomous and out of equilibrium, calling for new ways of defining and quantifying resilience.

Here, we introduce a path-resilience approach that assesses how perturbations deviate from and return to a reference trajec-
tory of a conceptual climate model replicating the glacial-interglacial cycles of the Late Pleistocene. We generate two types
of perturbation ensembles: a stochastic ensemble and a single-event ensemble, and compute two complementary metrics:
the Reference Adherence Ratio (RAR)—defined as the fraction of stochastic trajectories that remain within a narrow band
around the unperturbed trajectory—and return time—defined as the time a single perturbed trajectory takes to return to the
reference path. Together, these metrics reveal strong temporal variation in resilience across the glacial-interglacial cycles. We
find that RAR increases markedly during deglaciations and peaks in interglacial periods, while return times generally shorten
as the system approaches interglacial conditions—indicating that certain phases of the cycles act as convergence zones and
potential anchors of Earth system stability. As the Earth system departs from such stable interglacial regimes under ongoing
anthropogenic forcing, understanding the resilience of these trajectories—and what it may take to return to them—becomes
increasingly important.

These results highlight that resilience in non-autonomous systems is inherently path-dependent and illustrate a promising
first step toward its quantification. Further research is needed to develop more general resilience indicators suitable for complex,

forced dynamical systems.
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1 Introduction

Quantifying Earth system resilience is essential for evaluating the planet’s capacity to withstand and regenerate from growing
human-induced stresses, such as greenhouse gas emissions and land-use changes (Rockstrom et al., 2021; Anderies et al.,
2023). As humanity continues to transform the climate system and the biosphere, understanding the processes that strengthen
or undermine its stability becomes increasingly important (Yi et al., 2024). Such knowledge is crucial for developing strategies
to regenerate and revitalise Earth system resilience, ultimately helping society return to a safe operating space within planetary
boundaries (Richardson et al., 2023; Caesar et al., 2024; Folke et al., 2010).

The concept of resilience has been explored from multiple disciplinary perspectives, giving rise to diverse definitions. Two
predominant forms have traditionally defined the field: engineering resilience (Holling, 1996), which concerns linear stability
analysis and the rate of return to equilibrium after small perturbations, and ecological resilience, which addresses the re-
silience of nonlinear dynamical systems with multiple stable states and their capacity to maintain essential functions while
transitioning between different regimes (Holling, 1973). Related terms such as stability, robustness, and persistence are often
used interchangeably despite subtle differences, creating definitional diversity that has spread across social and natural sci-
ences (Krakovska et al., 2024; Anderies et al., 2013). To navigate this complexity, the question of resilience of what to what?
(Holling, 1973; Tamberg et al., 2022) has become a guiding framework — clarifying which system components are meant to be
sustained, which properties are at risk, and which disturbances are relevant. Here, this question is interpreted as the resilience
of the glacial-interglacial ice volume trajectory to perturbations, i.e., the capacity of the ice-climate-carbon system to remain
close to its characteristic large-scale path in face of external shocks.

This framework gains particular relevance when examining Earth’s climate history. Palacoclimate variability during the
Cenozoic offers important insights into the Earth system’s changing stability and resilience, as there is evidence for alternative
attractors (Westerhold et al., 2020) and resilience loss before major climate shifts and hyperthermal events in that period (Setty
et al., 2023).

Building on this palaeoclimate context, the glacial-interglacial cycles of the Late Pleistocene offer a compelling test case
for studying Earth system resilience, due to their regularity and sensitivity to external forcing (Milankovitch, 1920; Lisiecki
and Raymo, 2005). These cycles involve transitions between long glacial periods with large continental ice sheets and shorter
interglacials with reduced ice volume, paced by variations in Earth’s orbital configuration—eccentricity, obliquity, and pre-
cession—which act faster than the system’s internal adjustment times. The dominance of the ~100,000-year cycle in the Late
Pleistocene, despite weak direct insolation forcing at that frequency, poses a long-standing puzzle in palaeoclimate dynamics
(Imbrie et al., 1993), with a variety of proposed solutions (e.g., Willeit et al., 2019; Abe-Ouchi et al., 2013). The Earth system
can thus be viewed as a non-equilibrium, externally forced system, following a quasi-periodic trajectory shaped by the interplay
between astronomical forcing and internal feedbacks.

Over the past 800,000 years, this glacial-interglacial rhythm has been remarkably persistent (Lisiecki and Raymo, 2005).
However, model studies suggest that anthropogenic greenhouse gases already present in the atmosphere may delay the next

glacial inception by over 100,000 years (Ganopolski et al., 2016), marking a significant departure from the quasi-periodic limit
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cycle that has dominated recent Earth history. Continued warming raises the risk of a further shift toward "Hothouse Earth"
conditions that last occurred millions of years ago, conditions that modern human societies would likely be unable to adapt to
(Steffen et al., 2018; Kauthold et al., 2025). The resilience of Holocene-like interglacial states, which define the safe operating
space delineated in the planetary boundary framework (Rockstrom et al., 2024), must therefore be understood within a non-
equilibrium framework, as such interglacial states naturally occur as part of a dynamically evolving glacial-interglacial cycle.
Observational evidence already hints at systemic weakening, including reduced carbon sink capacity in land-systems (Ke et al.,
2024) particularly in the Amazon (Brienen et al., 2015; Gatti et al., 2021), and amplified feedbacks in the ocean-atmosphere
system and other tipping elements (Wunderling et al., 2024). While this study does not address such future scenarios directly,
they underscore the need to understand Earth system resilience.

Classical resilience indicators—such as return time to equilibrium, eigenvalue-based stability measures, or potential well
depth—are poorly suited for systems like the glacial-interglacial cycle. These metrics are typically developed for autonomous
systems with fixed-point attractors and assess resilience as the rate of return to such a state after perturbation (Krakovska et al.,
2024). The Earth system, by contrast, is fundamentally non-autonomous, driven by time-dependent forcings such as orbital
variations and, more recently, anthropogenic influences. These drivers operate on shorter timescales than the system’s intrinsic
adjustment times, resulting in transient dynamics that do not converge to equilibrium. Consequently, conventional indicators
fail to meaningfully characterise resilience in this context.

To address this limitation, a conceptual shift is made toward path resilience (Anderies et al., 2023). Rather than asking
whether the system returns to a stable state, the focus here is on how perturbed trajectories deviate from — and eventually return
to — a reference trajectory. In this framing, the path itself becomes the object of resilience analysis, making it more appropriate
for externally forced, non-equilibrium systems. Returning to the "resilience of what to what?" framework, resilience is defined
here as the resilience of the glacial-interglacial ice volume trajectory to perturbations in ice volume, with the "sustainant" being
the historical reference trajectory, and the "disturbance" being imposed stochastic variability or pulse-like shocks, representing
internal variability and external shocks respectively.

In this study, we employ a reduced-complexity climate model developed by Talento and Ganopolski (2021). The model
captures essential large-scale feedbacks among global ice volume, atmospheric CO5, and global mean temperature. Its low
dimensionality makes it computationally efficient and particularly suitable for long-term ensemble simulations designed to ex-
plore dynamical behaviour under perturbations. Our goal is not to produce detailed predictions, but to develop and demonstrate
a transparent methodology for measuring path-wise Earth system resilience that can be extended to more complex models.

We generate two perturbation ensembles: a stochastic ensemble with low-amplitude continuous noise, following the Hassel-
mann framework (Hasselmann, 1976), to represent unresolved fast processes; and a single-event ensemble, in which the system
is shocked once at a selected time point and then allowed to evolve deterministically. We apply two complementary diagnos-
tics: the Reference Adherence Ratio (RAR), which measures how closely perturbed trajectories follow a reference path; and
the return time, which quantifies how long it takes trajectories to rejoin and remain near the reference. Together, these metrics

operationalise path resilience in a non-autonomous dynamical systems setting.
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The paper is organised as follows: Section 2 describes the model setup and governing equations; Section 3 introduces
the perturbation ensembles and resilience metrics, and presents the results; Section 4 discusses model limitations and their

implications; and Section 5 summarises the main conclusions and outlines future directions.

2  Model Setup

This section describes the reduced-complexity climate model of Talento and Ganopolski (2021) used to simulate glacial-
interglacial dynamics on orbital timescales. The model represents the co-evolution of three globally averaged variables: ice
volume anomaly v(t), atmospheric CO4 concentration COx(t), and global mean temperature anomaly 7'(¢). These compo-
nents are coupled through a single first-order differential equation describing ice sheet evolution, alongside two diagnostic
relationships for temperature and atmospheric carbon dioxide.

The model is explicitly non-autonomous, with time-dependent orbital forcing as the sole external driver. Internal feedbacks
include the ice-albedo effect, dynamic carbon cycle responses, and a memory term reflecting the persistence of ice sheets
over multi-millennial timescales. These mechanisms jointly enable the model to reproduce key features of Quaternary glacial
variability, such as the characteristic asymmetric ice volume cycles.

The model is governed by three coupled equations. The global ice volume evolution is described by:

dv _ biw —bav®? = by(f — f) — balog(COy)
dt N 1- bSMv

+b67 (1)

where f(t) is the time-dependent orbital forcing, f its long-term mean, log denotes the natural logarithm, and M, (t) a

memory term that accounts for the integrated ice volume over the past 7 = 30 kyr:

M (1) = %ﬂt_fv(x) dr if 4 <0, @
0 otherwise.

This term plays a key role in reproducing the asymmetric shape of the glacial cycles by accelerating ice volume collapse
during deglaciations. The memory timescale 7 = 30 kyr, adopted from Talento and Ganopolski (2021), is consistent with the
typical lithospheric adjustment time to ice sheet loading. Ice volume anomaly v is unitless and normalised to zero at pre-
industrial levels and unity at the last glacial maximum.

Atmospheric CO5 concentration (in units of ppm) is determined by:

d
CO3 = 1T — cov — c3min <d1t)’0> + ¢4+ Anthco,, 3)

where ¢4 = 278 ppm is fixed to represent pre-industrial CO4 levels, and Anthco, captures externally imposed anthro-

pogenic emissions. In this study, we focus on natural dynamics and set Anthco, = 0.
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Finally, global mean temperature anomaly (in units of K) is given by:

Cco
T = dyv +dslog (ﬂ;) 4)

where the first term represents the ice-albedo effect, and the second captures the greenhouse effect of COy approximated by
its logarithmic dependence on concentration relative to the pre-industrial baseline.

Figure 1 compares the simulated ice volume trajectory with the palaeo-reconstruction from Spratt and Lisiecki (2016), along
with the imposed orbital forcing and frequency spectra. Using a model calibration as described in Section 2.2, the model

captures both the amplitude and dominant periodicities of Quaternary glacial cycles reasonably well, making it a solid basis

120 for the perturbation experiments in this study.
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Figure 1. Model validation against palaco-reconstructions over the past 800 kyr. (a) orbital forcing anomaly f’ = f — mean(f). (b) ice
volume anomaly from the model compared to palaeo reconstructions from Spratt and Lisiecki (2016), with Marine Isotope Stage (MIS)

interglacial boundaries marked. (¢) frequency spectra of the model output compared to the palaco reconstruction.

In the model, orbital forcing f represents maximum summer insolation at 65°N, which drives the glacial-interglacial cycles
(Laskar et al., 2004). Talento and Ganopolski used a parameterisation in which insolation was decomposed into obliquity obl(t)
and climatic precession pre(t) components, using a least-squares fit as in Jackson and Broccoli (2003), and recombined into a

scaled linear combination to form a proxy for orbital forcing:
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f(t) = pre(t) + (obl(#) — (obl)), (5)

with v = 1.04 optimised to maximise the correlation with the critical CO, threshold. The mean orbital forcing f entering the
ice volume equation is calculated over a [—1000, +1000] kyr window to define deviations from long-term average insolation.

The orbital forcing dataset is available online (Talento, 2021) and is applied here without modification.
2.1 Model Constraints and Limitations

Like all reduced-complexity models, this model employs simplifying assumptions and explicit constraints. These choices are
detailed in the original study by Talento and Ganopolski (2021), but we briefly highlight two constraints that are important for
this work.

The most important constraint for our resilience analysis is that global ice volume is constrained not to fall below its pre-
industrial level (v > 0), reflecting the present-day as the zero anomaly baseline. This approach leads to interglacials being
represented by extended periods of zero ice-volume anomaly, which does not fully capture the gradual transitions seen in
palaeoclimate data. This artificial boundary may create an illusion of enhanced stability during interglacial periods, as perturbed
trajectories cannot deviate below this constraint.

The model also imposes a constraint to simulate the mid-Brunhes transition, a shift around 400 kyr BP after which inter-
glacials became notably stronger. This change is not well explained by orbital forcing alone and is likely linked to external
factors not captured by the model. To approximate this behaviour, ice volume is not allowed to fall below 0.05 before 400 kyr
BP. This, however, introduces a sharp drop from 0.05 to O at the time of the transition, which does not realistically reflect the

gradual nature of the transition.
2.2 Numerical Implementation

Talento and Ganopolski (2021) originally implemented the model in MATLAB. We re-implemented it in Python and integrated
it using a forward Euler scheme with a time step of At =1 kyr, consistent with the original study. The memory term M, (¢)
is calculated using a trapezoidal approximation of the integral over the past 30 kyr. This numerical setup provides sufficient
accuracy to reproduce key features of glacial-interglacial cycles while remaining computationally efficient for ensemble exper-
iments. To ensure the model reaches a steady state before comparison with palaeo data, each simulation is extended by 200 kyr
prior to the start of the observational window.

To calibrate the model’s nine tuneable parameters, we employed a Metropolis-Hastings Markov Chain Monte Carlo (MCMC)
approach. We follow the original calibration strategy and optimise the model ice volume output by comparing it against re-
constructed ice volume anomalies from the Spratt and Lisiecki (2016) sea-level stack spanning the past 800 kyr, and obtain a
Pearson correlation coefficient of 0.892 with the reconstruction. Notably, the parameters co and c3, which govern the sensitivity

of COx, to ice volume and its rate of change (Eq. 3), differ substantially from the original values. This may reflect structural dif-
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ferences in implementation or sensitivity in the calibration process. Further details on the MCMC setup and likelihood function

are provided in Appendix A.

3 Perturbation Experiments and Indicators of Path Resilience
3.1 Experiment I: Stochastic Ensemble and Reference Adherence Ratio (RAR)

To investigate the resilience of the glacial-interglacial trajectory under persistent, small-scale disturbances (e.g. representing
internal variability), we extend the model with a stochastic noise component and analyse its effect on an ensemble of simu-
lations. Specifically, we generate 20,000 ice volume trajectories subject to continuous Gaussian perturbations with standard
deviation o = 0.001. This ensemble allows us to assess how closely the system remains aligned with its unperturbed reference
path over time. To quantify this behaviour, we introduce the Reference Adherence Ratio (RAR), a non-autonomous resilience
indicator that measures the fraction of ensemble members staying within a tolerance band of o = 0.001 around the reference
trajectory. In the following, we first describe the stochastic extension to the model, then introduce the RAR and present the

results.
3.1.1 Stochastic Extension to the Model

We extend the model with a stochastic component following Hasselmann’s approach to stochastic climate modelling (Has-
selmann, 1976), where unresolved processes are modelled as noise. A general Stochastic Differential Equation (SDE) can be

written as

AX; = p(Xp,t) dt + o (X, t) AW, (6)

where X is the state variable at time ¢, i is the deterministic drift term, o is the diffusion term controlling the strength of
random fluctuations, and dWW; is a Wiener process (Brownian motion) with independent Gaussian fluctuations of mean zero
and variance proportional to the time step.

We apply this to the ice volume equation, which is the only differential equation in our model. Millennial-scale oscillatory
variability in the polar cryosphere is well documented, including Dansgaard-Oeschger events (Dansgaard et al., 1989) and
Heinrich events (Heinrich, 1988), which may be driven by internal ice sheet mechanisms, shifts in ocean heat transport, and
changes in atmospheric circulation or solar variability (Berger et al., 2016; Ghil and Lucarini, 2020).

Taking ¢ = dv/dt, X; = v(t) and o = const, we obtain the following stochastic differential equation for ice volume:

do— (blv — bav®/2 — b3(f — f) — balog (COy)

s +b6) dt + od W, )

We compute dWW; by sampling from a normal distribution with mean zero and standard deviation v At = 1 (since At = 1 kyr,
the time step of the simulation), formally replacing the Explicit Euler Method with the Euler-Maruyama method (Maruyama,
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1959). This enables us to run model ensembles with different noise realisations and investigate alternative ice volume trajecto-

ries and their statistics.
3.1.2 Noise Amplitude Selection

The amplitude of stochastic forcing, o, is a key parameter controlling the strength of internal variability represented in the
model. To find an appropriate value, we first consider the standard deviation of residuals between modeled and observed ice
volume trajectories (o = 0.1) as a physically motivated starting point. However, this value causes the characteristic 100 kyr
spectral peak to disappear, see Figure 2. Reducing the noise to o = 0.001 restores the 100 kyr peak while maximising ensemble
spread within the constraints of spectral consistency. Figure 2 explores the impact of varying ¢ on model behavior and spectral
properties. As noise increases, trajectories become more dispersed and the glacial-interglacial cycles are obscured. Even at
lower noise levels, substantial deviations from the deterministic reference can occur, particularly during glacial periods. We

use o = 0.001 for subsequent resilience analyses, as it preserves the key spectral features of the glacial-interglacial cycle.

(a)
o=1e—-05
o = 0.0001
o = 0.001
o=0.01
o=0.1
| I I I
—-800 —-700 —600 —-500 —400 —-300 —-200 -—100 0 0 23 41 100
Time (kyr) Mean period (kyr)

Figure 2. Impact of varying noise levels on stochastic ice volume trajectories and their frequency spectra. (a) 500 stochastic ice volume
trajectories for different noise levels o € {0.1,0.01,0.001,0.0001,0.00001}. (b) associated mean frequency spectra (black line) compared
to palaeo data Spratt and Lisiecki (2016) (grey shading).



195

200

205

210

215

https://doi.org/10.5194/egusphere-2025-5058
Preprint. Discussion started: 28 November 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

3.1.3 Reference Adherence Ratio (RAR)

To quantify how strongly the ensemble trajectories cluster around the reference path, we introduce the Reference Adherence
Ratio (RAR). This metric measures the fraction of ensemble members that remain within a tolerance band of width « around

the reference trajectory—the deterministic trajectory—at each time step:

1 N

RAR(t) = ;1 (Ji () — vret (t)] < @), ®)
where 1(-) is the indicator function, v;(t) is the ice volume of the ith ensemble member, and N is the ensemble size. A
high RAR indicates that trajectories remain close to the reference path, suggesting high resilience to stochastic perturbations.

Conversely, a low RAR suggests that small random disturbances lead to substantial divergence, implying lower resilience.
3.1.4 RAR Results and Interpretation

We compute the RAR on an ensemble of 20,000 stochastic trajectories using a tolerance of o = 0.001, chosen to match the
amplitude of the stochastic forcing while remaining sensitive to meaningful deviations.

Figure 3b shows the resulting RAR time series, alongside the unperturbed reference trajectory (Figure 3a). RAR values vary
substantially over time, typically falling below 0.2 during glacial periods and rising above 0.8 during interglacials.

The elevated RAR during interglacials suggests a higher capacity to absorb perturbations. However, this may be partly an
artefact of the model’s hard constraint that ice volume cannot drop below its pre-industrial value (v > 0). When active, this
lower bound prevents downward excursions and can artificially boost the RAR by limiting the spread of perturbed trajectories.

More indicative of genuine resilience are the increases in RAR that occur during the deglaciation phases—periods of rapid
ice loss—when the constraint is not yet active and the system is free to evolve. The convergence of ensemble members toward
the reference trajectory during these transitions points to enhanced dynamical stability intrinsic to the system, not enforced by
model boundaries.

Changing the tolerance value of « shifts the absolute RAR values slightly but does not significantly affect the overall pattern
(see Figure B1 in the appendix).
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Figure 3. Reference Adherence Ratio (RAR) as a measure of Earth system resilience. (a) 20,000 stochastic ice volume trajectories
(black) and the reference (deterministic) trajectory (pink). (b) RAR over time, quantifying the proportion of ensemble members that remain
within a small tolerance (a = 0.001) of the reference. Interglacial periods (highlighted in pink) are associated with markedly higher RAR

values, indicating enhanced resilience.

3.2 Experiment II: Single-Event Perturbation Ensemble and Return Time

To complement the stochastic ensemble, we also assess the system’s resilience to isolated, abrupt perturbations using a single-
event perturbation ensemble. This setup probes the system’s ability to recover from discrete shocks applied at specific times
along the reference trajectory, rather than from continuous background variability.

At each time step within the simulation window ¢ € [—800, —1] kyr, we generate an ensemble of 20 trajectories by applying
a one-time perturbation to the ice volume variable, with an amplitude drawn uniformly from the interval [—0.01,+0.01],
resulting in a total of 16,000 perturbed trajectories. The system then evolves deterministically from that point onward. This
perturbation amplitude is an order of magnitude larger than the stochastic noise used in the previous experiment (¢ = 0.001),

and is meant to represent more shock-like disturbances.
3.2.1 Definition of Return Time

We define the return time Tg as the first time a perturbed trajectory re-enters a narrow band around the reference trajectory and

stays within it for the remainder of the simulation:

Tr=inf{t >0:V7r >¢,|0(7) —v(7)| < a}, )

10
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where v is the perturbed trajectory, v is the reference trajectory, and « is a strict convergence threshold. We run each trajectory
1000 kyr beyond the perturbation to allow sufficient time for return. If the perturbation does not push the trajectory outside the
a-band initially, we assign T = 0.

Return time provides a temporal measure of path resilience, indicating how quickly the system recovers from an isolated
shock. Short return times suggest high resilience; long return times indicate prolonged deviation. Conceptually, this aligns with
classical engineering resilience metrics (Krakovskd et al., 2024) but is applied here to recovery toward a reference trajectory,
not a fixed point.

Our return criterion is deliberately strict: unlike exponential decay-based definitions (e.g., 1/e recovery), it requires sustained
convergence. This avoids falsely classifying temporary re-approaches as recovery—particularly important in a non-autonomous

system where external forcing may later drive re-divergence.
3.2.2 Return Time Results and Interpretation

We compute return times using a strict convergence threshold of o = 1075, chosen to ensure persistent re-alignment of per-
turbed and reference trajectories. Figure 4 presents the results: Figure 4a shows 16,000 perturbed trajectories (black) alongside
the unperturbed reference (pink), while Figure 4b displays the distribution of return times for perturbations applied at each time
step. The black line shows the median return time, and the blue shaded region marks the full range across all perturbations.

Return times vary substantially over the glacial-interglacial cycle, generally decreasing as the system approaches interglacial
conditions. In particular, MIS11 and the Holocene stand out as strong convergence zones, with many long excursions returning
to the reference path. This suggests higher resilience during these periods. One likely explanation is their unusual length: both
MIS11 and the Holocene are exceptionally long interglacials due to orbital forcing, providing extended windows for perturbed
trajectories to realign (Past Interglacials Working Group of PAGES, 2016).

Sensitivity tests using larger perturbation amplitudes and more ensemble members (up to 100 per time step) increased the
spread of return times but did not change the overall temporal pattern. Likewise, moderately relaxing the convergence threshold
« shifts absolute return times but preserves the key structure of the results. This confirms that our findings are robust to these

parameter choices.

11
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Figure 4. Return time to reference trajectory as a measure of Earth system resilience. (a) Ice volume trajectories from 16,000 single-
event perturbations (black) and the unperturbed reference trajectory (pink) over the last 800 kyr. Interglacial periods are highlighted in pink.
(b) Distribution of return times for perturbations applied at each time step. The black line shows the median return time, while the blue
shaded region indicates the full range (minimum to maximum) of return times across all perturbations at each time. Shorter return times

correspond to higher resilience. Return time is defined relative to a strict convergence threshold of o = 107°.

4 Discussion

In this study, we introduced a perturbation-based approach to exploring Earth System resilience, aiming to move beyond
traditional attractor-based concepts. By analysing how perturbed trajectories deviate from and return to a reference path, we
quantified the system’s time-varying resilience over the last 800 kyr of glacial-interglacial dynamics. Our results reveal a
strongly state-dependent pattern: during some periods, perturbed trajectories remain tightly clustered around the reference,
while during others they diverge widely.

Our stochastic ensemble results align with previous findings by Mitsui and Crucifix (2016), who showed that the timing of
stochastic forcing in conceptual climate models can influence the duration and nature of transient excursions. We build on this
by explicitly quantifying such detours using resilience metrics—specifically the Reference Adherence Ratio (RAR) and return
time—and showing that sensitivity to perturbations depends systematically on the system’s position along the glacial cycle.

In particular, MIS11 and the Holocene stand out as strong convergence points where many trajectories recover. Their unusual
length and stability, a feature also emphasised in model-based studies of glacial pacing dynamics (Ganopolski, 2024), may
explain this exceptional behaviour. More generally, interglacial periods consistently show lower variance in the ensemble,
with perturbed trajectories tending to cluster more tightly around the reference path compared to glacial periods, which aligns
with paleoclimate evidence showing that natural temperature variability was lower during interglacial conditions (Rehfeld
et al., 2018). These findings suggest that Earth System resilience not only differs between glacial and interglacial states, with

interglacials being more resilient, but also peaks during key transition periods when the system rapidly reorganises. Some of
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these patterns may, however, be influenced by structural features of the model. We address these limitations in more detail

below.
4.1 Model Limitations

Several limitations of the model should be kept in mind when interpreting the results. Most importantly, the apparent resilience
during interglacials may partly be an artefact of a hard lower bound imposed on ice volume (v > 0), which prevents trajectories
from falling below pre-industrial levels. This constraint leads to extended periods of zero ice volume and artificially suppresses
variability during interglacials, potentially inflating both RAR and return time convergence. Future work should compare
results across models without such constraints to assess the extent of this effect.

A further limitation lies in the model’s non-Markovian structure. It includes a memory term that integrates ice volume over
the past 30 kyr, making it effectively infinite-dimensional and preventing the use of standard Jacobian-based stability analysis.
This justifies our simulation-based approach, but also limits direct comparisons with studies that rely on linearised stability
frameworks.

Finally, the model lacks self-sustained oscillations, which have been proposed as key ingredients in explaining the 100,000-
year glacial pacing problem (Ganopolski, 2024). Our results therefore reflect the resilience of a purely forced system and may
change in models that include internally driven oscillations. A natural next step is to validate the findings with a more complex
model, but given the need for large ensembles, there are computational challenges. It may be possible using Earth system
models of intermediate complexity like CLIMBER-X, which can simulate 10,000 simulation years per day on a node with 16
CPUs (Willeit et al., 2022, 2023). If run on a more powerful cluster, one could generate a single 1 million year simulation
in around 20 days, but it becomes clear that large ensembles are limited. Fully integrated Earth system models would require
computational resources that make comparable ensemble experiments currently impractical.

Despite these limitations, our approach connects to a broader shift in how resilience is conceptualised and operationalised

in non-autonomous systems, as discussed next.
4.2 Relationship to Existing Research

Classical resilience indicators are designed for autonomous systems near equilibrium, where concepts like basins of attraction
and return time to fixed points are well-defined. Several studies have highlighted the lack of tools for analysing resilience in
forced, transient systems (Krakovska et al., 2024). Our approach addresses this gap by using ensemble perturbations to evaluate
system stability over time, offering a first step toward quantifying resilience in non-autonomous systems.

We see this work as a practical example of path resilience thinking, applied to palaeoclimate dynamics. The concept of path
resilience (Anderies et al., 2023) shifts the focus from return to equilibrium states to return to a reference trajectory—making
it more appropriate for externally forced systems like the glacial-interglacial cycle.

Related work by Medeiros et al. (2023) uses time-varying Jacobians and eigenvectors to assess sensitivity in ecological

communities. While powerful, their method assumes differentiable, Markovian dynamics. In contrast, our model includes a
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memory term—an integral over past ice volume—which makes standard Jacobian-based methods inapplicable. This motivates
our use of a model-agnostic, simulation-based strategy that can handle non-Markovian dynamics.

Our approach builds on Hasselmann’s programme for stochastic climate modelling (Hasselmann, 1976), where unresolved
processes are treated as noise. This perspective laid the foundation for analysing climate variability through probabilistic
ensemble dynamics and has recently been extended by Lucarini and Chekroun (2023) and others through operator-theoretic
methods. In particular, transfer operator theory provides a systematic framework for describing the evolution of probability
distributions in phase space and has been used to study mixing, regime transitions, and responses in high-dimensional systems.
These methods offer conceptual and computational tools that could support more general resilience indicators—especially in
systems with complex dynamics and non-equilibrium behaviour.

However, while transfer operator methods are well developed for autonomous, Markovian systems, they are not yet fully
applicable to systems with memory (non-Markovian dynamics), and a general theoretical framework for analysing stability
and resilience in non-autonomous systems—such as those driven by orbital forcing—remains underdeveloped (Froyland et al.,

2010; Lucarini and Chekroun, 2023).

5 Conclusion

As humanity continues to push the Earth system toward novel and potentially unstable states, understanding the resilience of
both past and projected trajectories becomes increasingly critical. The approach developed here represents a step toward that
goal by enabling resilience analysis in systems that do not settle into traditional equilibrium states.

We introduced a simulation-based method to assess Earth system resilience across glacial-interglacial cycles. By apply-
ing perturbations to a reduced-complexity climate model and analysing trajectory responses, we show that resilience varies
markedly over time and depends on the system’s state at the moment of disturbance.

Our findings reveal that resilience fluctuates throughout the glacial-interglacial cycle, reflecting the evolving dynamical
landscape of the system. Interglacial periods—particularly MIS11 and the Holocene—consistently draw perturbed trajectories
back toward the reference path, suggesting enhanced recovery capacity linked to their unusual duration. Deglaciation phases
show similar behaviour, with trajectories reconverging even before interglacial conditions are reached. The reference adherence
ratio and return time provide useful, albeit preliminary, indicators of resilience in non-autonomous systems.

These results mark initial progress toward quantifying resilience in settings where traditional equilibrium-based tools fall
short. The path-resilience framework shifts focus from fixed-point attractors to the stability of entire trajectories—an essential
perspective for assessing the resilience of transient climate states as the Earth system moves into uncharted territory under
anthropogenic forcing.

Several limitations must be acknowledged. The model’s hard lower bound on ice volume may inflate apparent resilience
during interglacials, and its non-Markovian structure prevents standard stability analysis. Moreover, the model lacks self-
sustained oscillations that could influence glacial pacing. Despite these simplifications, the study demonstrates the potential of

trajectory-based resilience assessment in externally forced systems.
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Future work should test and extend this framework across other conceptual and intermediate-complexity models such as
CLIMBER-X (Willeit et al., 2022, 2023) and LOVECLIM (Goosse et al., 2010). Developing more advanced resilience indi-
cators for non-autonomous dynamics remains a key priority—promising directions include transfer operator theory, pullback
attractors, random dynamical systems, and finite-time Lyapunov exponents.

This line of research aligns with Hasselmann’s view of the climate as a stochastically forced dynamical system. Recent
work by Lucarini and colleagues (Lucarini and Chekroun, 2023) has begun to formalise this perspective, paving the way for
robust, operator-based resilience metrics. Advancing these ideas could deepen our understanding of Earth system resilience

and support the development of general tools for resilience assessment.

Code availability. Code and data used in this study are available at https://doi.org/10.5281/zenodo.16603222 (Harteg, 2025).
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Appendix A: Model Calibration via Metropolis-Hastings MCMC

To recalibrate the model described by Talento and Ganopolski (2021), a Metropolis-Hastings Markov Chain Monte Carlo
(MCMCO) algorithm (Hastings, 1970) was implemented, targeting agreement between simulated and reconstructed ice volume
anomalies over the past 800 kyr based on the sea-level stack from Spratt and Lisiecki (2016). The recalibration achieved a
Pearson correlation coefficient of 0.892.

The algorithm proceeds as follows:

1. An initial model run m(p) is generated using the published parameter set p from Talento and Ganopolski (2021), as

shown in Table A1.

2. One parameter p; is randomly selected and perturbed by a small factor drawn from a normal distribution N (1,0) with
o =0.05:

pi =N(1,0.05) - p;, (AD)
resulting in a new candidate parameter set p.

3. A model run m(p) is performed using the perturbed parameters, and the likelihood of the resulting ice volume time

series is computed as:

tend

L=— Z [Umodel(t) — Upalaeo (t)]2 - PLGM - PCOz) (AZ)
t=1

where Pp,gnM penalises poor agreement with the Last Glacial Maximum:
Pram = ol —o(tram))®  with  a = 1000, (A3)

and Pco, discourages solutions with unrealistically high CO4 concentrations:

tend
Poo, = »_ (max[0,COx(t) — 300]). (A4)
t=1
4. The perturbed model is accepted with probability:
Paccept = min (LGXP([A/ - L)) 3 (AS)
where L is the likelihood of the candidate model. Otherwise, the previous model is retained.

5. Steps 2-4 are repeated for N = 5000 iterations per chain.

To ensure robustness, the procedure was repeated for 1000 independent chains, each with a different random seed. The
best-fitting model across all runs achieved a maximum correlation of 0.892, with the corresponding parameter values listed in

Table Al. These calibrated parameters were used for all simulations in this study unless stated otherwise.
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Table Al. Unrounded model parameters from Talento and Ganopolski (2021) and from the Metropolis-Hastings MCMC recalibration per-

formed in this study. These parameters were used for all simulations unless stated otherwise.

Parameter Talento and Ganopolski (2021) This study (MCMC)
b1 0.22 0.21225019974916653
bo 0.29 0.2836925345028339
bs 0.0008 0.0008174423131295259
by 0.095 0.095

bs 0.18 0.18964641973723284
bg 0.53 0.5261626610099003
c 17.28 17.824476083652947
ca -31.95 -24.49497200960442
cs3 -120.0 -47.76302777426819
¢4 (fixed) 278 278

dy (fixed) -3 -3

ds (fixed) 5.56 5.56

370 Appendix B: RAR Sensitivity to Tolerance

Figure B1 shows the Reference Adherence Ratio (RAR) computed across 50 different absolute tolerance values ranging from
5 x 107° to 5 x 10~3. While the absolute magnitude of RAR varies with the threshold, the timing and structure of peaks and
troughs remain consistent, indicating that RAR captures robust features of the system’s path resilience across a wide parameter

range.
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Figure B1. Sensitivity of the Reference Adherence Ratio (RAR) to different convergence thresholds, «. (a) unperturbed reference trajectory
(black) and 1,000 stochastic ensemble members (pink). (b) RAR values computed for 50 tolerance levels (colour scale), ranging from

5x 107" to 5 x 1073, Results are computed for 1,000 trajectories.
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