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Abstract: This study investigates the impact of Essential Climate Variables (ECVs) on the respiration rate
of polar planktonic foraminifera Neogloboquadrina pachyderma and subpolar Turborotalita quinqueloba and
20  Neogloboquadrina incompta to advance our understanding of foraminifera physiology and geochemical proxy
interpretation for species living in understudied subpolar and polar environments. Respiration rates were measured
on a total of 166 specimens collected during two field campaigns to the Nordic Seas. To size-normalise respiration
rates we measured cavity volume and maximum diameter using x-ray microcomputed tomography (micro-CT)
(3\/cavity volume = (0.56 (max ©)-0.38)). Our results show that the physiological response of foraminifera sharing
25 overlapping environments is diverse, with N. pachyderma exhibiting remarkable stability over large gradients in
temperature, salinity, carbonate chemistry, dissolved oxygen and nutrients. Conversely, N. incompta and T.
quinqueloba have a much stronger thermal response. The difference between species is best described by their
respective Qo (the factor by which the rate of respiration changes with a 10°C increase in temperature) values of
1.41 for N pachyderma and 3.45 and 4.55 for N. incompta and T. quinqueloba, respectively. We also find a
30 significant relationship between cavity volume and respiration rate (Logo respiration rate = 0.399 (Logo cavity
volume) - 5.785)) for all three species analysed here, which is consistent with marine protists globally. We
conclude that respiration is unlikely to influence geochemical proxies and therefore past climate reconstructions

derived from N. pachyderma, however, this may not apply to N. incompta and T. quinqueloba.

1. Introduction

35  Planktonic foraminifera are relatively eurythermal and inhabit a wide range of temperatures and environments
while maintaining species-specific temperature preferences (Chabaane et al. 2024). Accordingly, many species
can be found across large temperature gradients exceeding 10°C, and yet, studies focussing on temperate and
tropical species have found a strong influence of temperature and cell volume on respiration and growth rate

indicating a strong influence of changing environments on foraminifera physiology (Rink et al., 1998; Lombard
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40  etal., 2009; Burke et al., 2025). However, little is known about how subpolar and polar planktonic foraminifera
respiration responds to temperatures below 10°C and other ECVs such as salinity, carbonate chemistry, and
nutrients. Specifically, there are no observations of the physiological processes underlying the growth and
response of these species to environmental stressors such as modern Arctic Amplification (the warming of the
Arctic at four times the global mean rate) (Serreze and Barry, 2011; Rantanen et al., 2022). Critically, this gap in

45 our knowledge, limits our understanding of how foraminifera will adapt to rapid environmental change and our

ability to predict the future resilience of these ecosystems.

Respiration also significantly influences foraminiferal shell chemistry by modifying the seawater chemistry in the
microenvironment surrounding the test (Schiebel and Hemleben, 2017). For example, increased respiration has
been shown to alter carbon isotope (8'*C) values (used in reconstructing past changes in water mass properties or
50 productivity) (Spero and Lea, 1993, 1996) and Mg/Ca ratios (for inferring past sea surface or bottom water
temperatures) (Rink et al., 1998; Koéhler-Rink and Kiihl, 2001; Eggins et al., 2004). Respiration influences these
proxies because O, consumption lowers the pH in the diffusive boundary layer, which in turn alters the carbonate
chemistry transported to the site of calcification (Wolf-Gladrow et al., 1998; de Nooijer et al., 2014). This raises
concerns about non-thermal factors that may alter foraminiferal geochemistry and affect the reliability of
55 temperature reconstructions. Investigating how respiration in polar and subpolar species responds to temperature
and other ECVs is thus key to evaluating whether such physiological processes may introduce uncertainties into

geochemical proxies recorded in their shells.

Within the polar oceans, Neogloboquadrina pachyderma is the dominant planktonic foraminifera species (Al-
Sabouni et al., 2007; Husum and Hald, 2012; Chaabane et al., 2024), making up more than 90% of the total

60 assemblages in waters <4°C ( Spindler, 1996; Greco et al., 2019; Bertlich et al., 2021) and up to 23% of the
calcium carbonate CaCOs3 flux to the sediments north of 50° (Tell et al. 2022). Neogloboquadrina pachyderma
maintains a unique adaptation to these extremely cold and diverse environments including low temperatures (-2
to +12°C) and large gradients in salinity (~30 — 35 psu) including brine channels with salinities of up to 80 psu,
and pH (7.8 - 8.8) (e.g., Spindler and Dieckmann, 1986; Manno et al., 2012; Bertlich et al., 2021; Zamelczyk et

65 al. 2021; Westgard et al., 2023). The closely related foraminiferal species Neogloboquadrina incompta typically
inhabits subpolar surface waters (relative abundance >50%) where sea surface temperatures (SSTs) range between
10 and 18°C. The largest abundances of N. incompta occur at salinities ranging between 31 and 35 psu (Greco et
al., 2020). Turborotalita quinqueloba is most abundant in subpolar waters of the West Spitzbergen Current
(Volkmann, 2000) and the Barents Sea with recent studies in that area reporting maximum relative abundances of

70 26% (Meilland et al., 2019; Anglada-Ortiz et al., 2025). Its maximum abundance occurs at a salinity of 35 psu
(Natland, 1938).

The objective of this study is to measure the respiration rates of polar (N. pachyderma) and sub-polar (N. incompta
and 7. quinqueloba) foraminifera to assess the relationship between respiration and ECVs (temperature, salinity,
pH, dissolved oxygen, alkalinity, and QCa), including nutrients (Silicate (SiO:), Dissolved Inorganic Carbon
75 (DIC), Phosphate (PO4*), and Total Organic Nitrogen (TON)) for these species. This will allow us to test the
hypothesis that temperature has a direct effect on respiration rates as observed in temperate and tropical species
(Lombard et al, 2009). Similarly, we will test the physiological dependence of external pH and carbonate

chemistry on respiration rates in non-spinose planktonic foraminifera species, which is hypothesized to be reduced
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due to higher energy requirements of calcification under low pH conditions (Davis et al., 2017). Although earlier
80 research on nutrients such as PO4* and SiO, found they are not directly utilised by foraminifera, with their primary
effects instead arising through impacts on primary productivity (Schiebel et al., 2001), more recent research on
benthic foraminifera has found that POs** can be accumulated for energy metabolism, pH regulation, and
osmoregulation (Glock et al., 2020, 2025), a capacity that may likewise occur in planktonic foraminifera.
Including these variables therefore allows us to explore potential indirect effects and assess whether environmental
85 variability contributes to physiological stress or metabolic shifts which could be demonstrated through changes
in respiration. The results will allow us to assess the importance of respiration for polar and subpolar planktonic
foraminifera and thereby further our understanding on their ability to adapt to rapid environmental change. In
addition, our results will allow us to review the importance and implications of respiration for geochemical proxies

measured in these three species.

90 Determining the response of respiration to temperature requires accurate measurements of individual foraminiferal
respiration under controlled settings. Recent advancements in micro-sensor periphery technology, particularly the
nano-respiration and rosette methodology developed by Unisense (Lopes et al., 2005; Nielsen et al., 2007), have
significantly improved the reproducibility required to detect extremely low respiration rates encountered in
smaller sized planktonic foraminifera species e.g. < 200 pum living in polar and subpolar environments. The

95  automated rosette allows for more repetition due to faster analysis time compared to traditional manual profiling
and enhanced throughput which minimises stress on specimens during experimentation. In addition, the precise
determination of internal foraminiferal biovolume is required for size normalisation, since cell size may correlate
positively with respiration as in both benthic (Hannah et al., 1994; Geslin et al., 2011) and other planktonic
foraminifera (Burke et al., 2025). Methods for accurately estimating biovolume vary in the literature, often relying

100 on geometric approximations (e.g. Hannah et al., 1994; Cesbron et al., 2016; Geslin et al., 2011; Macuite et al.,
2023), however, the use of high-resolution micro-CT scanning (Burke et al., 2020) provides a more accurate means

to assess internal volume and will enable us to refine the metabolic relationships between size and respiration rate.

2. Methods
105 2.1. Sample collection and processing

Living specimens of N. pachyderma, N. incompta, and T. quinqueloba analysed in this study were obtained during
two oceanographic cruises on the RV Celtic Explorer in July/August 2023 (CE23011) and on the RV Helmer
Hansen (ARCLIM-24-1) in June 2024 (Table 1 and Fig. 1). Plankton samples were collected using 100 um
vertical-closing HydroBios multinets and 63 um vertical-closing WP2 nets, respectively. Seawater samples were
110 collected with Niskin bottles attached to a CTD profiler and filtered using a vacuum pump with 0.2 pm Whatmann
filters Type G/C and refrigerated. Live foraminifera were picked directly from the plankton net samples and
transferred into a petri dish for an initial bath to remove debris and algae attached to the foraminifera. For the first
set of experiments in 2023, a small brush and a dissecting microscope were used to select and transfer living
specimens into culture wells (CE23011), placed in an incubator set to the towed environment of the samples, and
115 allowed to rest for at least 12 h and no longer than 24 h before respiration rate measurements were performed on

board (CE23011). Foraminifera were not fed prior to respiration measurements to be consistent with common
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125

practice on similar planktonic foraminifera respiration studies (Davis 2017; Rink 1998; Burke 2025; Lombard

2009).

For the second set of experiments performed in 2024, all collected specimens were transferred from the initial
bath into 75 ml culture bottles and placed into a cold room set at 8 °C during the cruise. After the initial 24 h
resting period, the foraminifera were fed 40 pL of a live diatom solution, a self-replicating food source (Fabbrini
et al., submitted). Subsequently, culture bottles were transferred into incubators set at experimental temperatures
of2°C, 5°C, 8 °C and 13 °C for at least 48 h before flux measurements were performed in the Culturing Laboratory
at UiT the Arctic University of Norway. An additional feeding of algae (Nannochloropsis sp.) took place 7 days
after sampling. All experiments in 2024 were carried out within 11 days of sampling.

Table 1 Metadata, ecological and carbonate chemistry data for analysed samples. NA indicates no data collected
at these stations.

Station Taxon Start End Lat Long Depth SST Sal DIC Ak pH
[ID] [N] [E] [m] [oC] [psu] [pmolkg]

CE23011_1  N.incompta  23/07/2023 24/07/2023 55.64 -14.01 40 13 3545 2138 2309 798
CE23011_2  N. pachyderma 28/07/2023 29/07/2023 71.63 -8.42 50 1 3458 2156 2276 7.93
CE23011_8.1 N. pachyderma 02/08/2023 04/08/2023 74.25 -10.07 75 3.5 3492 2172 2300 8.12
CE23011_10  N. pachyderma 04/08/2023 05/08/2023 70.5 -17.09 100 0.5 3457 2158 2293 8.07
CE23011_11  N. pachyderma 05/08/2023 06/08/2023 67.87 -21.77 125 2.5 3476 2169 2298 8.06
CE23011_12  N. pachyderma 07/08/2023 08/08/2023 65.42 -28.33 20 10 35.09 2110 2317 8.08
N. incompta ;

N. pachyderma
CE23011_17  N. pachyderma 11/08/2023 11/08/2023 60.18 -39.13 50 6 3491 2168 2299 8.09
CE23011_18  N. pachyderma 12/08/2023 13/08/2023 58.25 -45.64 45 7.5 3466 2129 2185 7.89
CE23011_19  N. pachyderma 13/08/2023 14/08/2023 57.55 -48.52 35 6 347 2134 2296 8.11
CE23011_20  N. incompta 16/08/2023  17/08/2023 56.36 -27.89 10 14 35.04 2080 2311 8.09
HH24-PN-856 N. pachyderma 06/06/2024 06/06/2024 72.13 5.1 50 75 351 NA NA NA
HH24-PN-866 T. quinqueloba 07/06/2024 07/06/2024 71.21 11.5 50 8 35 NA NA NA

CE23011_16 10/08/2023  10/08/2023 62.75 -37.51 20 10 349 2112 2305 8.09
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130  Figure 1 Image showing the station locations for cruise CE23011 on the RV Celtic Explorer (2023). Stations
S856 and S866 are the sampling sites for ARCLIM-24-1 cruise on the RV Helmer Hansen (2024). Map created
using ODV (Schlitzer, 2022). Site symbol colour represents the ocean temperature at the tow depth of the
sample site.

135 2.2 Carbonate Chemistry

Total alkalinity of seawater samples was determined onboard cruise CE23011 using an Apollo SciTech AS-ALK3
Total Alkalinity Titrator. This instrument operates on the principle of Gran titration, whereby approximately 0.1
M hydrochloric acid is incrementally added to 20 mL aliquots of seawater maintained at 20 °C. The resulting
titration curve is used to construct a Gran function from which total alkalinity is calculated. The pH measurements
140  were conducted using an Orion 8302BNUMD Ross Ultra pH/ATC Triode probe, which was calibrated daily using
Thermo Scientific buffer solutions at pH 4.01, 7.00, and 10.01. The concentration of the titrant (HCl) was
standardised by titrating Certified Reference Material (CRM) Batch 208 for Oceanic CO: analysis, prepared by
Dr. Andrew Dickson (Scripps Institution of Oceanography), a minimum of three times. Calibration was repeated
until the relative standard deviation (RSD) of the calculated HCI concentration from at least two titrations was
145 below 0.01%. CRM Batch 208 was also used as a quality control standard, analysed approximately every fifth
sample. When treated as a sample, Batch 208 yielded a standard deviation of 7.69 umol/kg and an RSD of 0.35%.
Replicate analyses were performed on every second sample, with an average difference of 8.43 pmol/kg and a
relative average difference of 0.37%. Following titration, alkalinity values were converted from pmol/L to

pumol/kg using the equation of state and subsequently corrected for instrumental drift using Batch 208.

150  DIC samples of seawater were collected in 500ml glass bottles and poisoned on board with 0.2ml mercuric
chloride. DIC concentrations were measured with an LI-5350A DIC analyser coupled with an LI-850 infrared gas

analyser. Briefly, 1.5 mL aliquots of seawater were acidified to convert all DIC to CO: gas, which was then
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quantified by the gas analyser. Calibration of the DIC analyser was performed at the beginning and end of each

analytical batch (comprising eight sample triplicates) using Batch 208 in triplicate volumes of 1.2 mL, 1.5 mL,
155 and 1.8 mL. Additional triplicate analyses of Batch 208 were conducted after each batch of eight sample triplicates

to monitor instrument performance. Standard deviation of averages for Batch 208 triplicates was 1.35 pmol/kg

across all sample runs. Carbonate system parameters, including A[COs], were calculated from measured alkalinity

and DIC using CO2sys version 25b06 (Lewis and Wallace, 1998). We used the equilibrium constants of Lueker

et al. (2000), the KSOs constant from Dickson, total boron from Uppstrom (1974), the KF from Dickson and Riley
160 (1979), and default values for PO.* and SiO, of 0 mol/kg.

2.3 Oxygen measurements

During CE23011, we performed single-specimen respiration measurements on board the RV Celtic Explorer
within 24 hours of collection, using the same (filtered) seawater and temperature as foraminifera were collected
165 in. Given the large latitudinal gradient of the survey (e.g., 55 - 74°N), this allowed us to perform measurements
over a large gradient for most ECVs analysed here. The following year, we collected foraminifera from a single
station. We incubated them at different temperatures in the laboratory at UiT before performing respiration
measurements in a temperature-controlled laboratory setting. This dual approach allowed us to evaluate the

importance of food, rest and setting (ship vs lab) for the reproducibility of the results.

170 Measurements on single foraminifera were performed using the NanoRespiration system developed by
Unisense™. It includes the Unisense MicroProfiling System coupled with a micro-rosette of seven fused glass
capillaries (@ = 0.68 mm, length = 3+0.2 mm), a rosette holder and a metal frame which allows exact positioning
and movement of the microsensor tip into the glass capillary (see Fig. 2 for set-up diagram). Oxygen profiles were
measured using Clark-type microsensors of 50 um tip diameter with guard cathodes (Revsbech, 1989), a fx-6

175 UniAMP multi-channel amplifier, and SensorTrace PRO v1.9 software from Unisense™. Each sensor was
calibrated prior to each experiment using a 0% oxygen solution using either the premade ascorbate solution
prepared by Unisense™ or dissolving Sodium Sulphite PryoScience™ capsules in 50 ml of distilled water and a

100% oxygenated seawater solution using filtered seawater and an aquarium pump.
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Figure 2 Diagram adapted from Unisense (2025) showing the nano respiration set-up used to measure oxygen
gradients on single foraminifera. The image on the bottom right shows a close-up of the Nanorespirometer Unit
(e.g., rosette) and microsensor entering one of the glass capillaries.

185 Prior to analysis each glass capillary of the sample rosette was flushed with DI water and placed into an ultrasonic
bath for 30 seconds. Once cleaned and DI water removed, the rosette was placed into a Petri dish filled with
filtered seawater set at the precise temperature of incubation for each experiment. All glass capillaries were flushed
with filtered seawater carefully removing any remaining bubbles in each capillary. Then, one living foraminifera
(colourful, pseudopodia present) was placed per capillary, keeping one well empty as a control. The room

190 temperature was maintained within 5 °C of the experiment temperature to avoid large fluctuations for the
foraminifera during transfer from the incubator into the rosette. Once the transfer was complete, the loaded sample
rosette was placed into the rosette holder and submerged in a jacketed beaker filled with filtered seawater at the
exact temperature chosen for the experiment. Temperature was maintained to within 0.1°C using a Julabo
circulator, circulating antifreeze into the jacket of the beaker. Foraminifera in the submerged rosette were

195 acclimatised for 45-60 minutes. Seawater in the beaker was constantly agitated with air using an aquarium pump
to maintain fully oxygenated seawater above the capillaries. Once acclimatised the position of the sensor was
calibrated using a micromanipulator, a PC-controlled motor unit (Woelfel et al., 2009) and a mounted dissecting
microscope to ensure the sensor enters each capillary opening. Oxygen profiles were set to begin 400 um above
and end at 2000 um inside each capillary, with step sizes of 200 um. Measurements at each depth were performed

200 after allowing the sensor to equilibrate for 5 seconds, and each profile was repeated three times. The oxygen
gradient in each capillary was measured using the average slope between 800 um and 2000 um inside the capillary
for each triplicate measurement to determine individual respiration rate (IRR) measurements (Macuite et al., 2023)
using Fick’s first law of diffusion J = -D x dC/dx where D is the oxygen diffusion coefficient at a given temperature
(Broecker and Peng 1974), and dC/dZ is the measured oxygen gradient inside the capillary tube.

205 To account for background respiration, one capillary in each rosette was maintained as a blank, containing only
seawater without any foraminifera. Respiration rates from these blanks were measured in triplicate, and the
average value was subtracted from the respiration rates of the experimental chambers to yield a blank-corrected

average respiration rate. Blank respiration values averaged at 14.83+11.50 pmol h™! ind™'. Additional tests were
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conducted using dead foraminifera specimens that had been previously dehydrated to assess background
210 respiration in the absence of metabolic activity. Five dead specimens were tested, yielding an average respiration

rate of 17.00+5.83 pmol h™" ind™', which is indistinguishable from the average procedural blank.
2.4. Maximum diameter and cell volume reconstructions

Determining biovolumes using X-ray microcomputed tomography (Micro-CT) scanning for all individuals
included in this study (n = 166) was not feasible. We therefore opted to establish a robust empirical relationship

215 between maximum diameter and cube root cavity volume for 7. quinqueloba, N. pachyderma, and N. incompta,
as previously suggested by Burke et al. (2020). Since the three species investigated exhibit similar low trochospiral
coiling morphologies (Darling et al., 2006; El Bani Aluna et al., 2018; Pearson and Kucera, 2018), they are suited
for this joint methodology and analysis. For micro-CT analysis tests were glued to a Kapton tube using a mix of
tragacanth gum and MQ water, following a modified protocol from Coletti et al. (2018), Iwasaki et al. (2015),

220 Siccha et al. (2023) and Fabbrini et al. (2025). The Kapton tube was placed on a sample holder and scanned with
the ZEISS Xradia 620 Versa, at the University of Galway.

The sample holder was placed between the X-ray source with a source-to-detector distance of 58 mm (Source-
Rotation Axis distance: -20mm; Detector-Rotation Axis distance 38 mm), providing a voxel resolution of 240 nm
per pixel using the 20X objective magnification in binning 1 mode. The instrument was operated at 120 kV and
225 17.5W, employing no energy filter to optimise transmission and the contrast-to-noise ratio. A total of 1601
radiographs were acquired over a 360° sample rotation range with an exposure time of 10 seconds per radiograph.
The raw transmission images (.txrm) were reconstructed for each specimen using a commercial image
reconstruction software package (ZEISS XMReconstructor) (ZEISS, 2024), which employs a filtered back-
projection algorithm to generate the final reconstructed and corrected three-dimensional file. The final

230 reconstructed files (.txm) were then exported as a stack of .tif image files for further study.

In addition, each foraminifer was imaged immediately after oxygen profiling using a Moticam X5 Plus (Motic
Instruments Inc., [2024]) Wi-Fi camera mounted on a Zeiss Stemi 395 and the Motic Images Plus 3.1 ML software.
After calibration, this software was used to measure the maximum diameter of the foraminifera in pm, completed
under 64x magnification. The maximum diameter refers to the longest straight line that passes through the widest

235  part of the foraminifera, typically measured through the final chamber (Fig. 4).

2.5. Biometry

The exported micro-CT image stacks were segmented using the software Amira 3D Pro (Stalling et al., 2005).
Manual thresholding was applied to isolate the tests and background, and the paintbrush tool was used to remove
240 infilling or extraneous particles, such as cytoplasm. The segmented tests were rendered as volumes using the
watershed algorithm. The maximum diameter was measured for all specimens using the measurement tool on the
3D volume rendering of the test in the same orientation as the optical microscope. The internal voids of all
chambers were then isolated and rendered as a separate volume using the “Ambient Occlusion” function in Amira
3D Pro, which filled the negative volume virtually (Baum and Titschack, 2016; Titschack et al., 2018). The

245 internal volume of the combined chambers and of the pores within the test wall (Fig. 4) was then measured using
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the label analysis function in Amira (Kiss et al., 2023).

Respiration rates were analysed in two ways. First, we used cell volume to size-normalise respiration rates and
evaluate the response of the specimens to changes in temperature and other essential climate variables. A common
way to estimate the influence of temperature on a physiological rate is the use of the Q,, value, which quantifies
250 the rate increase for a 10 °C increase. Q1 was calculated following Eq. (1) (adapted from Schmidt-Nielsen, 1997):

10

(T2=T1) (Eq.1)

log1o Q10 = (logioR, —l0gyo Ry).

Where R, is the respiration rate at the higher temperature, R, is the respiration rate at the lower temperature, T;
is the lower temperature, and T, is the higher temperature. It is essential to recognise that, although the use of a
Q, is a convenient measure, it varies as a function of the temperature range being considered (Lombard et al.,
255 2009). For example, when calculating the Q1o value for N. pachyderma, we excluded the lab-based experiment at

13 °C since it lies outside of this species' typical habitat range.

Secondly, we normalised respiration rates to 5°C, 15°C and 24°C to evaluate the influence of cell volume on
respiration rates. 24°C was chosen to facilitate comparative analysis with previous work, particularly that of
Lombard et al. (2009), thereby enabling meaningful contextual interpretation of the current dataset. 15°C
260  represented a thermal midpoint across all experiments, minimising physiological deviation and ensuring that
species were assessed under temperatures approximating their average environmental exposure. 5°C served as the
low-temperature condition, selected for its relevance for N. pachyderma, the focal species of this investigation.

Using a Q4 value of 3.18 from Lombard et al. (2009), and Qo values derived for N. pachyderma, N. incompta

and 7. quinqueloba in this study (see Table 4) following Eq. (2):

24—t

265 R,=R. Q& (Eq.2)

“ %10

Where R, is the respiration rate at X °C, R, is the respiration rate at the measured temperature, and t is the

measured temperature.

3. Results

270 3.1. Cell volume reconstructions

Cavity volume and maximum diameter using micro-CT scans were assessed for a subset of 39 specimens (23.5%).
These include 19 new specimens from this study (e.g., N. pachyderma (n=7), N. incompta (n=5), and T.
quinqueloba (n=7) and the reanalysis of 20 .tiff stacks of scanned N. pachyderma (n=9), N. incompta (n=8) and
T. quinqueloba (n=3) previously published in Burke et al. (2020). An independent paired student t-test comparing
275 the maximum diameters reported in Burke et al. (2020) and the measurements of the same scans using Amira in
the current study had a p-value of <0.01, (95% Confidence Interval (C.I.) [1.65-7.4 4um]) meaning there is a
0.61% to 2.75% difference between measurements reported in Burke et al. (2020) and reported here for the same

foraminifera.
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Table 2 Summary of maximum diameter and cube root volume measurements of the 39 specimens that were
280  scanned for volume reconstructions.

N. pachyderma [n=16] N.incompta [n=13] T. quinqueloba [n=10]

Mean max O [pum] 2443 284.2 195.8
Range O [um] 165.48 to 315.5 168.36 to 349.08 136.91 to 263.33
Mean biovolume ¥/ [um] 136.3 160.14 106.8
Biovolume range ¥ [nm] 86.33to 171.11 119.19 to 180.99 72.76 to 144.25
Vcavityvolume=a(max Q) +b a=0.61;b=-1031 a=0.50;b=+13.19 a=0.60; b=-10.51
¥ =0.90; p <0.01 ©=0.93; p <0.01 ¥ =0.99; p <0.01

2001 Taxon

B N. incompta (Burke)
N. incompta (This Study)
® N. pachyderma (Burke)
N. pachyderma (This Study) L]
A Turborotalita quinqueloba (Burke)

150 Turborotalita quinqueloba (This Study)
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Figure 3 Combined max @ (um) vs \3/cavity volume (um) for N. pachyderma, N. incompta and T. quinqueloba
showing trendline, slope and R? value. The source data for this figure is available in Table S2

285
The relationship between the max® (um) and \3/cavity volume for all 39 specimens analysed here (Fig. 3) follows
Eq. 3):
Ycavity volume = (0.56 + 0.02)max® + (—0.38 + 5.47) (Eq.3)

n=39,r>=0.95, p <0.01. For species-specific equations, please see Table 2. Volume reconstructions performed
290 in this study are significantly smaller than previous estimates that are based on the assumption that the cavity
volume corresponds to 75% of the closest geometric shape (e.g., sphere for species analysed) that can be fitted
around the maximum diameter of the foraminifera (e.g., Hannah et al., 1994; Geslin et al., 2011; Cesbron et al.,
2016; Macuite et al. 2023). A comparison of both techniques shows that using 75% of a sphere to estimate cavity
volume overestimates actual biovolume by 47+7.37%. Specifically, for each of the species analysed, the
295 relationship between the volume of a sphere based on the max @ (um) and micro-CT-based cavity volume
reconstructions was 35.36 + 4.57% for N. pachyderma, 33.21 + 6.09% for N. incompta and 37.69 + 5.67% for T.
quinqueloba. We also note that the protocol for analysing cavity volumes used in this study led to significantly

smaller cavity volumes (28% difference, paired t-test p>0.01) when compared to Burke et al. (2020).

The main difference between methods is that we used the ambient occlusion function in Amira (Titschack et al.,
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300 2018), which allows the segmentation of the shell and measurements of the internal volume of the tests, excluding
the shell, while in Burke et al. (2020) external meshes were imported into MeshLab software, where they were
resurfaced and replaced with watertight “wrap” mesh, which closes all apertures and pores, allowing the interment
of the cavity volume of the entire test by subtracting the CaCO3 volume from the wrap volume. This method
appears to overestimate cavity volumes, since the reported cavity volumes exceed the volume of a sphere fitted to

305 the maximum diameter of each test by a mean of 115 = 27 % for N. incompta, 137 + 20 % for N. pachyderma and
179 + 6 % for T. quinqueloba.

Max Diameter

Figure 4: Example of volume rendering of a specimen of N. pachyderma selected for 3D volume analysis in
310 Amira 3D Pro. This figure shows the internal voids of the chambers, porosity, and the white line indicates the
maximum diameter (Max Diameter) for this specimen. Scale bar 50 pm.

3.2. Respiration Rates

Here we use the multispecies relationship between . cavity volume (um) and max @ (um) defined in section 3.1.
315 to size-normalise the respiration rates. For the ship-based CE23011 cruise dataset from 2023, we recorded mean
size-normalised respiration rates of 59.22 pmol hr! ind!' (95% C.I. [53.32 - 65.13]) for N. pachyderma over a
temperature gradient of 9.5°C measured between 0.5 - 10°C. For N. incompta we record higher mean size-
normalised respiration rates of 198.99 pmol hr'! ind"! with a larger variability (95% C.1. [169.48-228.50]) analysed
over a smaller temperature gradient of 4°C measured between 10°C and 14°C. For the laboratory-based dataset
320 (Tromse 2024), the mean size-normalised respiration rates for N pachyderma were comparable to the ship-based
data (e.g., 62.71 pmol hr! ind' (95% CI: [57.45, 67.97])). Mean size-normalised respiration rates for I.
quinqueloba, are also low at 45.75 pmol hr™! ind ™' with low variability (95% CI: [31.99, 59.50]) over a temperature
gradient of 11°C measured between 2-13°C for both species. While Hemleben (1989) and Stangeew et al., (2001)
noted the presence of symbionts in 7. quinqueloba, their presence remains elusive in other studies (e.g., Takagi et
325 al., 2019; Hoogakker et al. (2022); Kanbur, 2025), and none of the specimens analysed in this study bore

symbionts. Thus, calculated respiration rates were not for adjusted photosynthesis as in Lombard et al. (2009) for
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O. universa, G. ruber and G. siphonifera.

The sensitivity of size-normalised respiration rates and temperature for tropical and subtropical planktonic
foraminifera is best described by an exponential or Arrhenius relationship, rather than a simple linear one
330 (Lombard et al., 2009). We therefore plot the log, size-normalised respiration rates against temperature for our
analysis. The logio size-normalised respiration rates (pmol hr! ind'um') against temperature are shown in Fig.
Sa for all species. For all other essential climate variables such as, pH, salinity, alkalinity, Qc,, dissolved oxygen
(Fig. 5), SiO, (uM), Dissolved Inorganic Carbon, PO4> (uM), and Total Organic Nitrogen (uM), size-normalised
respiration rates are shown in Fig 5 b-f and Fig. 6. In Table 3 we report correlation statistics for each variable and
335 show that there is no significant correlation between respiration rates of N. pachyderma and any of the ECVs
measured here. For N. incompta we have a more limited dataset measured over a narrower range in environmental
gradients and find significant correlations notable for temperature, SiO», salinity, fluorescence, dissolved O, pH
and Qc, (Table 3). A detailed correlation matrix, which explores these relationships further, is available in Table

S1.

340 Correlation statistics, between logio size-normalised respiration and temperature and Qo values are reported in
Table 4 for all species. We find that temperature accounts for a greater proportion of the variance in respiration
for N. incompta (1> = 0.45) and T. quinqueloba (r>= 0.71) than for N. pachyderma (r*> = 0.05). The sensitivity to
temperature is explained by the Q1o values determined for each species. N. pachyderma exhibits a low Q1o of 1.41
between 0.5°C and 10 °C. In contrast, N. incompta and T. quinqueloba demonstrate a much higher Q1o of 3.58 and

345 4.53 over 10-14°C and 2-13°C, respectively.
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350 Figure 5: Box and whisker plots of the effect of essential climate variables on Size Normalised Respiration
based on biovolume (pmol hr! ind™!) in N. pachyderma, N. incompta and T. quinqueloba (a) Temperature °C and
(b) pH; (c) Salinity (psu) and (d) Alkalinity (meq L™"); (¢) QCa and (f) Dissolved Oxygen (ml L'). Boxes extend
from the data's lower to upper quartile values, with a line at the median. Whiskers indicate 1.5 times the
interquartile distance. Red dots mark the mean. Logio Size normalised respiration and laboratory data are only
355 available for (a). The source data for this figure is available in Tables S3 and S4.
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Figure 6: Box and whisker plots of the effect of nutrients on Size Normalised Respiration based on Biovolume
(pmol hr! ind") in N. pachyderma and N. incompta. (a) SiO2(uM kg™!) and (b) Dissolved Inorganic Carbon (uM
360  kg'); (c) POs* (uM kg™') and TON (uM kg!). Boxes extend from the lower to upper quartile values of the data,
with a line at the median. Whiskers indicate 1.5 times the inter-quartile distance. The red dots mark the means.
The source data for this figure is available in Table S3 and S4

Table 3: Quantification of the correlations between size-normalised respiration and essential climate variables
and nutrients in N. pachyderma and N. incompta. Blue shading denotes significant correlations (p < 0.01), while
365 orange shading indicates lower levels of statistical significance.

N. pachyderma N. incompta
[n=72] [n=28]
r? p-value r? p-value
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TON 0.001 p=0.85 0.010 p=0.64

PO4 0.028 p=0.18 0.005 p=0.74

SiO2 0.026 p=0.19 0374 p=0.001
Salinity 0.022  p=0.23 0.694 p<0.001
Turbidity 0.001 p=0.85 0.003 p=0.814
Fluorescence 0.002 p=0.70 0.602  p<0.00]
DIC 0.040 p=0.1 0.160  p=0.047

Dissolved 0;  0.001 p=0.83 0428  P<0.001
Alkalinity 0.003 p=0.66 0206 p=0.02

pH 0.002 p=0.72 0.602 p<0.001
QCa 0.007 p=0.5 0228 p=0.008

Table 4: Quantification of the correlations and Qo between logio size-normalised respiration and temperature in
N. pachyderma, N. incompta and T. quinqueloba for in-situ (2023) and laboratory (2024) measured respiration.

Species Source n Range (°C) Qo SD r? p-value
N. pachyderma In-situ 68 0.5-10 1.41 0.203 0.05 p=0.08
N. incompta In-situ 25 10-14 3.58 0.162 0.45 p<0.01
T. quinqueloba Lab data 23 2-13 4.53 0.29 0.71 p<0.01

370 3.3. Comparison to previously published respiration rates on planktonic foraminifera

To quantify the effect of temperature on size-normalised respiration rates, we combined our dataset with previous
studies carried out by Lombard et al. (2009) on Orbulina universa, Globigerinoides ruber and Globigerinella
siphonifera, by Rink et al. (1998) on O. universa and Burke et al. (2025) on Globorotalia menardii, Pulleniatina
obliquiloculata, Hastigerina pelagica, O. universa and G. ruber. (Fig. 7). Cell volumes for N. pachyderma, N.
375 incompta and T. quinqueloba were computed using the relationship between cavity volume and maximum
diameter (Fig. 3) derived in this study. Results show that the respiration rates of all planktonic foraminifera

included here follow Eq. (4):
Log1oRpiovorume = 0.11t — 5.54 (Eq.4)

Where Ruyiovolume 18 the respiration rate normalised by biovolume, and t is the temperature at which the respiration
380 rate was measured (r> = 0.62, n =201 and p < 0.001). We found that when normalised to 5 °C, 15 °C and 24 °C
(Fig. 8), respiration rates scale positively with biovolume across all datasets. The relationships are best described

by linear regression following:

Rx = m-BV +c Eq. (5):
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385 Figure 7: The effect of temperature (°C) on log;o size-normalised respiration rate (pmol O; hr! ind!' pm™' ) in
this study and previously published data (Rink et al., 1998; Lombard et al., 2009 and Burke et al., 2025). The
grey shaded regions represent the 95% confidence bounds of the regression model. The source data for this
figure is available in Table S5

The relationships described by Eq. (5) across different temperatures are:

390 (@) R, =0.39+0.03BV —6.72 + 0.21(r2 = 0.4, n = 201, p < 0.01)
(b) Rys = 0.56 + 0.04BV — 7.38 + 0.24(r% = 0.51, n = 201, p < 0.01)
() Rys =0.69 + 0.05BV — 7.93 + 0.34(r2 = 0.48, n = 201, p < 0.01)

Where Ry = Logio respiration rate normalised to x°C and BV= Log1o Biovolume (um?). The steepest slope occurs
when normalizing to 24 °C (R24=0.69 + 0.05), followed by 15 °C (Ris=0.56 + 0.04), and 4 °C (R+=0.39 + 0.03).
395  R?values range between 0.40 and 0.51, indicating that while biovolume is a significant predictor of respiration,
other biological or environmental factors likely contribute to the observed variability. Nevertheless, the consistent

significance (p < 0.01) across all regressions underscores the robustness of the biovolume-respiration relationship.
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Figure 8 Scaling of individual planktonic respiration rates as a function of estimated biovolume with respiration

normalised either using species-specific Qios established in this study or a uniform Q1o of 3.18 from Lombard et

al., 2009. Data includes previously published sources (Rink et al., 1998; Lombard et al., 2009 and Burke et al.,

2025). Panels show normalisation to (a) 4 °C, (b) 15 °C and (c) 24 °C. Grey shaded regions represent the 95%
405 confidence intervals of the regression models. The source data for this figure is available in Table S8

4. Discussion

4.1 Respiration Rates and Environmental Stability

One of the most striking findings of this study is the metabolic stability of N. pachyderma across a wide range of
410 ECVs and nutrients. Respiration rates in N. pachyderma are stable across pH (7.89-8.12), salinity (34.57-35.09
psu), dissolved oxygen (2.31-2.66 ml/L), alkalinity (2185-2317 meq/L), and Qc, (1.22-3.52) as well as nutrients
(Fig. 6). This physiological resilience suggests that the polar genotype of N. pachyderma (Type I in Darling et al.,
2004) evolved to adapt to the extreme and variable environment of the Arctic Ocean. Only when exposed to
temperatures outside of its habitat range in the laboratory (e.g., 13°C), we recorded a small but significant increase

415 in respiration rate.

The low thermal sensitivity of N. pachyderma, is reflected in a Qo value of 1.41 (Table 4) across the 0.5 °C to 10
°C range (based on ship-based data) and suggests a successful physiological adaptation to cold environments.
Low Q1o values have been interpreted as characteristic of the optimal temperature range of a species in its natural
habitat (Wieser, 1973). This suggests that N. pachyderma (Type I) functions at its metabolic optimum in present-

420 day Arctic conditions. Notably, respiration rates do not decline at the low temperatures measured, unlike in other
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species, which often exhibit constrained metabolic activity under extreme cold conditions.

Molecular evidence presented by Darling et al., (2004, 2007) suggests that the N. pachyderma population
presently living at high northern latitudes became isolated during the onset of Northern Hemisphere Glaciations,
between 1.8 and 1.5 million years ago, a period marked by the expansion of the polar ice sheets and the
425 establishment of persistently cold oceanic conditions. Furthermore, Kucera and Kennett (2002) proposed that the
species-specific cold-water affinity of N. pachyderma may have evolved in response to the onset of the 100,000-
year glacial-interglacial climate cycles during the Middle Pleistocene. Furthermore, an increase in N. pachyderma
shell sizes over the last 1.1 million years may represent an adaptive response to cold environments of the
Quaternary (Huber et al. 2000). The current polar affinity of N. pachyderma may thus represent an evolutionary

430 legacy of this climatic transition.

Likewise, spinose planktonic foraminifera such as 7. quinqueloba exhibit distinct evolutionary and physiological
traits that reflect their adaptation to surface ocean environments. Their spines enhance prey capture and buoyancy
and often support photosymbiotic relationships with algae (though no symbionts were seen in this study), enabling
survival in oligotrophic waters (Anderson & Bé, 1976; Hemleben et al., 1989). In this study, 7. quinqueloba
435 displayed a high Quo value of 4.54, indicating that this subpolar species exhibits a particularly strong temperature
dependence, which is likely to impact its metabolism, potentially affecting its growth and overall survival
(Mundim et al. 2020). This contrasts with the lower Quo of 1.41 observed in the non-spinose, N. pachyderma, but
is consistent with Qo values around 3.18 derived for other spinose species such as G. ruber, G. siphonifera, and
O. universa (Lombard et al. 2009), suggesting divergent thermal strategies linked to morphology and trophic
440 mode. The metabolic divergence observed here between spinose and non-spinose planktonic foraminifera likely
contributes to the latitudinal partitioning of planktonic foraminiferal assemblages, with spinose taxa dominating
tropical zones and non-spinose forms prevailing in subpolar and polar regions (Bé & Tolderlund, 1971, Ying et
al., 2023). However, even within closely related species such as N. incompta and N pachyderma, our observations
suggest that the metabolic response to environmental conditions varies across foraminiferal taxa (Lombard et al.
445 2009).

4.2 Volume Scaling and Metabolic Allometry

While a positive log-log relationship between biomass, weight or volume and respiration is usually observed in
micro/meiofauna (e.g. Fenchel and Finlay, 1983; Gerlach et al. 1985; Moens et al., 1999; Moodley et al., 2008),
mixed results have been reported for this relationship in foraminifera. Some studies have found a positive
450 correlation (Bradshaw et al. 1961; Geslin et al., 2011; Macuite et al. 2023), while others have not (Hannah et al.,
1994; Nomaki et al., 2007). However, neither Hannah et al. (1994) nor Nomaki et al. (2007) use micro CT scanning
to estimate biovolumes. Nomaki et al. (2007) used the relationship between test size and organic content
(Altenbach, 1985), while Hannah et al. (1994) used 75% of the best-fitting geometric shape to estimate total
internal test volume, a methodology with potential issues as suggested in section 3.1. above. Our results showed
455 a positive linear correlation between respiration and biovolume (Fig. 8) across the polar and subpolar populations
of N. pachyderma, N. incompta, and T. quinqueloba, consistent with pelagic foraminiferal species exclusively
growing in warmer subtropical and tropical oceans (Burke et al., 2025; Lombard et al., 2009 and Rink et al., 1998).

This supports earlier findings that body size is a significant determinant of metabolic rate in foraminifera (Rink et
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al., 1998; Geslin et al., 2011).

460 Furthermore, our analysis (Fig. 8) reveals a consistent and positive scaling relationship between biovolume and
respiration rates across all temperature normalisations (5 °C, 15 °C, and 24 °C). This demonstrates that larger
planktonic foraminifera exhibit higher metabolic rates, even when respiration is normalised to account for
temperature effects using both species-specific and uniform Qo values (Table 4). In panel (b) of Fig. 8, which
shows respiration normalised to 15 °C, we observe a crossover point in size-normalised respiration rates for N.

465 incompta and N. pachyderma. This intersection suggests a potential physiological tipping point below 15 °C,
where the metabolic efficiency of N. pachyderma begins to exceed that of N. incompta. This aligns with observed
shifts in assemblage dominance across temperature gradients, with N. pachyderma prevailing in colder polar
waters and N. incompta in subpolar to temperate regions (Bé and Hutson, 1977; Al-Sabouni et al., 2007; Husum
and Hald, 2012; Chaabane et al., 2024). This crossover may reflect species-specific thermal sensitivities and could

470  play arole in defining their biogeographic boundaries. It also highlights the value of using species-specific Qio

values to resolve fine-scale metabolic differences that may underlie broader ecological patterns.

Our results are broadly consistent with Kleiber’s Law, which predicts sublinear scaling of metabolic rate with
body size (Kleiber, 1932). We observed positive, sublinear relationships between respiration and biovolume across
all temperature-normalised datasets, with slopes increasing from 0.39 at 5 °C to 0.69 at 24 °C. While Kleiber’s
475 canonical % exponent is not fully met, the trend supports the principle that larger foraminifera have higher, but
less-than-proportional, metabolic rates. Interestingly, DeLong et al. (2010) showed that metabolic scaling varies
across evolutionary transitions—being super linear in prokaryotes, linear in protists, and sublinear in metazoans.
Our findings place planktonic foraminifera, unicellular eukaryotes, closer to metazoan-like metabolic behaviour,
possibly due to their structural complexity, calcification, or ecological specialisation. This suggests that metabolic
480 constraints in foraminifera may reflect both their unicellular nature and their functional convergence with more

complex organisms.
4.3 Proxy Reliability

A central concern for proxy-based climate reconstructions is the potential impact of physiological processes on
shell geochemistry (Pérez-Huerta and Andrus, 2010). Variations in calcification and respiration rate in non-spinose
485 species can alter pH and carbonate chemistry in the foraminiferal microenvironment, potentially affecting Mg/Ca,
3"'B, §'%0 and 8"C values in (Wolf-Gladrow et al., 1999; Zeebe and Sanyal, 2002). However, our data show that
respiration in N. pachyderma remains stable across both temperature and pH gradients typically encountered in
its natural range (Fig. 5). Respiration rates are also consistent and stable across a large range of other ECVs
measured, suggesting that respiration is unlikely to introduce significant uncertainties into geochemical-based
490 palacotemperature reconstructions for this species. These results also agree well with the recent §''B-pH
calibration for N. pachyderma that shows 8''B values for this species are consistently offset from seawater borate
(de la Vega et al, 2025). Consequently, our findings alleviate concerns about physiological confounding due to
respiration. However, this may not be the case for N. incompta and T. quinqueloba. The elevated Qio values for
these two species may call for the development of species-specific calibration equations that consider the influence

495 of respiration for accurate proxy application.

4.4 Conclusions
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By avoiding overestimation biases inherent in geometric models, micro-CT-derived biovolumes strengthen the
foundation for future studies on respiration in foraminifera. These methodological improvements enhance the
accuracy of single-specimen respiration rate assessments and facilitate more accurate interspecies comparisons.
500 Furthermore, our study demonstrates that there is no significant relationship between respiration and temperature
or other ECVs (salinity, pH, dissolved oxygen, alkalinity, and QCa) or nutrients (SiOz, DIC, PO+*, and TON) in
N. pachyderma, suggesting this polar species has a strong thermal resistance and is well adapted to its unique
environment. On the other hand, T quinqueloba and N. incompta exhibit a statistically significant relationship
between respiration and temperature, demonstrating large physiological diversity among planktonic foraminifera
505 inhabiting overlapping climate zones. Additionally, we demonstrate a strong relationship between biovolume and
respiration rate, underscoring the importance of size grading when using proxies. We conclude that for N.

pachyderma respiration is unlikely to influence geochemical climate proxies.

Data and materials availability

510  All data needed to evaluate the conclusions in the paper are presented in the paper and/or the Supplementary

Materials.
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