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Abstract. In mountainous regions, intense rainfall can trigger thousands of landslides within hours. The
drivers that control the occurrence of such landslides, and the methods for predicting the zones
susceptible to their initiation have been extensively studied. Yet, for many of the most severe disasters

20  associated with these landslide events, the main impacts on local communities occurred far from the
source areas where most modelling efforts are focused. Sediments mobilized high on slopes by rainfall-
triggered landslides can be transported many kilometres downstream, causing significant impacts along
their path, while also feeding river systems with large amounts of sediments and consequently
increasing flood risks. Such chain of cascading hazards significantly increases the destructive potential

25  of landslides as well as their impact zone. Effective risk mitigation must therefore address not just
susceptibility to initiation but also landslide mobility and hazard interactions—yet such studies remain
rare.

With this work, we emphasize the importance of capturing what we refer to as the landslide—debris-rich
flood continuum (landslide source, runout and related debris-rich floods) for accurate inventory,

30  susceptibility and exposure mapping when landslide mobility is high — as it is often the case for extreme
rainfall events. We apply this approach in two districts of eastern Zimbabwe (> 8000 km?), severely
impacted by Cyclone Idai in March 2019. Using simple, replicable methods, we mapped over 14,000
(mostly) shallow landslides and 94 km? of debris-rich flood-affected zones. These data informed
detailed susceptibility and exposure models that distinguish between the processes involved. Our results

35  show that around 226,000 individuals live in areas of moderate to high susceptibility to landslide or
debris-rich floods — closely matching official figures of those affected by the cyclone. Notably, landslide
sources account for only about one-fifth of this total exposure. This highlights the need to consider the
entire hazard continuum. Our approach also exemplifies how simple, open-access tools and data can be
highly effective for hazard and risk analyses across of the globe.

40
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45 1. Introduction

1.1. Context and objectives

Mountainous regions typically feature closely interconnected earth surface processes linked to hillslope
material mobilization. These interactions increase the potential for cascading hazards, and consequently
the overall risks faced by local communities (Gill and Malamud, 2014; Jacobs et al., 2016; Cutter, 2018;
50 Tilloy et al., 2019; Gill et al., 2020; Lee et al., 2024; Yanites et al., 2025). Landslides are a striking
example of this. Their most significant impact on populations and infrastructure often occurs not at the
source, but through the transfer and deposition of the landslide material in downslope areas and channels
where communities are commonly located (Mergili et al., 2018, 2019; Roback et al., 2018; Milledge et
al., 2019). It is through this sequence of interconnected, sediment-transporting processes that many
55 landslide events turn into disasters (Mergili et al., 2019; Wallace et al., 2022; Lee et al., 2024).

Two key factors determine the role of landslides in cascading hazards (Roback et al., 2018): (i) mobility,
indicated by runout distance and volume (Legros, 2002; Iverson et al., 2015); and (ii) connectivity, or
how much landslide material enters river channels (Wohl et al., 2019). Mobility — and destructive
potential — is typically amplified by mixing hillslope material with large runoff volumes during intense

60 rainfall and by erosion and entrainment of additional material like soils, rocks and, vegetation (Iverson
and Ouyang, 2015; Pudasaini and Krautblatter, 2021). These mechanisms can turn landslides triggered
high on hillslopes into high-mobility debris-rich flows that transport slope material several kilometres
downstream from the source area (Iverson et al., 1997; McGuire et al., 2024) and ultimately contribute
to the formation of debris-rich (flash) floods (Slater et al., 2015; Croissant et al., 2017; Bennett et al.,

65  2025). Together, these cascading effects expand both the destructive potential and impact zones of the
initial landslides (e.g., Jacobs et al., 2016).

Such a continuous sequence of linked sediment-gravity flows (landslides) and fluid-gravity flows
(debris to water floods) exemplifies a chain of cascading land hazards — a topic that has received
growing attention in recent literature (e.g., Tilloy et al., 2019; Brenna et al., 2020; Gill et al., 2020;
70  Keck et al., 2024; Arango-Carmona et al., 2025; Yanites et al., 2025). The cascading land hazards
framework (Yanites et al., 2025) broadly encompasses all linked chains of processes that move water
and sediment across Earth’s surface, in which one event directly influences the likelihood or intensity
of another. This differs from compounding hazards, which refers to co-occurrence and amplification of
events that are statistically independent (Yanites et al., 2025). Identifying and constraining such
75  cascading chain of hazard is critical for comprehensive risk assessment (Gill and Malamud, 2014;
Cutter, 2018; De Angeli et al., 2022). Although the importance of these interactions has long been
recognized (e.g., van Westen et al., 2006), they remain underrepresented in hazard, risk and exposure
assessments (Gill et al., 2020; Sharma et al., 2023; de Vilder et al., 2024). Despite growing landslide
susceptibility research (e.g., Reichenbach et al., 2018; Merghadi et al., 2020), the vast majority of
80  studies remain focused on landslide initiation, often overlooking mobility and cascading effects (Di
Napoli et al., 2021). A number of exceptions exist (e.g., Kritikos and Davies, 2015; Fan et al., 2017,
Melo et al., 2019; Mergili et al., 2019; Di Napoli et al., 2021; Van Den Bout et al., 2022; Zhou et al.,
2022; Dubey et al., 2023; Keck et al., 2024), but they typically rely on complex and data-demanding
models that constrain them to small-case studies (Fan et al., 2017; Mergili et al., 2019). Likewise,
85  exposure mapping — i.e. the identification of populations and infrastructure at risk — remains a relatively
underexplored dimension of (cascading) hazard research (Emberson et al., 2020; Lin et al., 2023).

Here, we demonstrate the value of explicitly considering the cascading chain of hazards encompassing
landslides to debris-rich floods for inventory, susceptibility, and exposure mapping alongside extreme
triggering events. We show the benefits of our approach in two districts of eastern Zimbabwe, severely
90  impacted by Cyclone Idai in March 2019, where landslide and flood hazards data remain scarce. Using
simple, replicable methods, we offer insights into this extreme event’s consequences, producing
comprehensive products to guide land use planning, mitigation, and risk reduction in the region.
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1.2. The 2019 Cyclone Idai and its associated landslides in eastern Zimbabwe

95  Cyclone Idai (Fig. 1a) ranks among the deadliest storms ever recorded in the southern hemisphere (Devi,
2019). In March 2019, it caused widespread flooding across Mozambique, Malawi, and Zimbabwe,
resulting in thousands of fatalities and affecting over three million people — many already in need of
humanitarian assistance (Chatiza, 2019). In eastern Zimbabwe, the extreme rainfall (300450 mm
between 15-19 March— nearly half the region’s annual average of ~1000 mm; IMERG-GPM satellite

100  estimates (Huffman et al., 2019), see Fig. 1a) triggered thousands of highly mobile landslides that severely
impacted mountain communities in the Chimanimani and Chipinge districts (e.g., Chatiza, 2019;
Chanza et al., 2020).

Beyond human and infrastructural losses, the geomorphic impacts — ranging from sediment
redistribution to disrupted ecosystem services — were substantial (Das and Wegmann, 2022). Most

105  landslides consisted of shallow soil/regolith and debris slides/avalanches, typically initiating on steep,
clay-rich, deeply weathered slopes (Das and Wegmann, 2022; see Fig. 1bc). These shallow landslides
were often highly mobile, with the frequent transitions to debris flows. These flows carved clear debris
trails from the hillslope into main river channels, with evident signs of material erosion and entrainment
(Fig. 1b, Ic). Ultimately, they fed into sediment-laden floods that impacted communities tens of

110  kilometres downstream (Fig. 1d). This cascading sequence — from landslide initiation to debris flows
and sediment-rich floods — was central to the disaster’s scale, highlighting the need to explicitly analyse
such hazard chains for effective mitigation.

Our work focuses on the Chimanimani and Chipinge districts in eastern Zimbabwe, home to
approximately 560,000 inhabitants (Zimbabwe National Statistics Agency, 2022) across ~8,600 km?.

115  These were the most severely affected districts in Zimbabwe, also hosting the majority of landslides
triggered by Cyclone Idai. As in much of the Global South — and particularly in Africa — this region
suffers from a lack of research on geo-hydrological hazards and risks (Broeckx et al., 2018; Dewitte et
al., 2022).
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120 Fig. 1. Landslides and debris-rich flood triggered by Cyclone Idai in eastern Zimbabwe | a. Cumulative
rainfall from March 13-20, 2019, estimated by IMERG-GPM satellite (0.1° x 0.1° resolution; (Huffman et al.,
2019)). Focus districts in eastern Zimbabwe are highlighted in red. b. Highly mobile landslides triggered by
Cyclone Idai near Ngangu Township, Chimanimani (July 2021), with ¢. zoom on their runout zones and d. related
debris-rich flood deposits. Panel b shows clear debris trails from shallow landslides, with evidence of erosion and

125 entrainment, particularly visible in panel ¢, which contributed to severe impacts in Chimanimani Town. Photos
taken ~2.5 years after the event (O M. Vanmaercke).

1.3 Introducing the concept of landslide — debris-rich flood continuum

130  The cascading land hazards framework is intentionally broad (Yanites et al., 2025). To more precisely
describe the tightly coupled and progressive sequence of sediment-transporting phenomena observed
alongside Idai, we introduce the concept of the landslide—debris-rich flood continuum. We distinguish
three interconnected stages, marked by decreasing sediment-to-water ratios: landslide source, runout,
and debris-rich flood (Fig. 2). While these stages typically occur successively along topographic

135  profiles, their boundaries remain porous in terms of process classification — potentially encompassing a
range of mass movement types, including shallow soil and debris slides, debris avalanches, debris flows,
hyperconcentrated flows, debris floods, and (debris-rich) (flash) floods (e.g., Hungr et al., 2014; Church
and Jakob, 2020). The landslide source refers to the failure zone, where material detaches from the
slope. Runout zones are typically channelized paths where entrainment and deposition occur, often

140  influenced by runoff and/or the merging of multiple slope failures. Finally, debris-rich floods involve
water-dominated flows in high order channels, but that are capable of transporting slope material far
beyond the immediate vicinity of the landslides and their runout (Fig. 2).
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145  Fig. 2. | Illustration and definition of the landslide—debris-rich flood continuum, showing landslide source,
landslide runout, and associated debris-rich flood zones as mapped in this study. Locations of the initiation points
used during the manual inventory (INV_02-POINT) are also indicated. Adapted from Highland and Bobrowsky
(2008).

150 2. Data and methods

2.1  Mapping the zones affected by Idai

We followed a three-step methodology to map and classify the areas affected by Cyclone Idai. First, we
manually mapped parts of the two districts to build a reference inventory for training and validation.
Second, we automatically identified all the zones impacted based on satellite images. Third, we

155  classified these zones according to the process at play (i.e., landslide source, runout, or debris-rich
flood).

2.1.1  Step 1: manual mapping for model training and validation (INV_01-POLY, INV_02-POINT)
We first created two manually mapped datasets to train and validate subsequent products. INV_01-
POLY consists of a detailed classification of affected and unaffected zones over ~1,300 km? (~15% of
160 the study area), using 3-m resolution PlanetScope imagery from late March—early April 2019 (Fig. 3a).
We mapped 1,240 landslide source zones (2.3 km?; avg. size 1,860 m?), 200 runout zones (3.3 km?; avg.
size 16,700 m?), and 54 debris-rich flood deposits (27 km?; avg. size 482,000 m?), along with ~1265
km? of unaffected areas. INV_02-POINT is a point dataset of ~14,900 landslide initiation points across
the full study area, digitized using very-high-resolution Google Earth imagery (April 2019—June 2021),
165  with points placed at the headscarp of each landslide (see Fig. 2; Fig. 3b).

2.1.2  Step 2: automatic detection of affected zones
We compared Normalized Difference Vegetation Index (NDVI) on pre- and post-event Sentinel-2
satellite images to map impacted areas. This simple metric proved sufficient for accurate delineation as
the affected zones had a clear visual and spectral signature immediately following the events. To
170  perform this analysis, we used the open-source HazMapper application (Scheip and Wegmann, 2021)
in Google Earth Engine, which generates "greenest-pixel" composites over one-month periods before
and after mid-March 2019. This approach reduces the influence of clouds and phenological variability
by retaining only the highest NDVI value per pixel within the time window.
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The resulting NDVI gain/loss maps, produced at a 10-m resolution (Sentinel-2 resolution), were

175  compared with INV_01-POLY to determine an optimal threshold for delineating impacted areas. Six
NDVI thresholds (from —8% to —18%) were tested; a threshold of —12% yielded the best performance,
correctly identifying 97% of mapped landslide source, runout, and debris-rich flood zones, with
omission and commission errors of 0.55% and 2.6%, respectively. The small omission error indicates
that nearly all impacted areas were captured, while the slightly higher commission error was primarily

180  due to unrelated deforestation activities occurring within the one-month analysis window. These false
positives, which had a typical signature, were manually removed.

2.1.3  Step 3: classification of affected zones (INV_03-AUTO)
We developed a multinomial logistic regression model to classify the automatically detected impacted
zones into three process types: landslide source, runout, and debris-rich flood (INV_03-AUTO; see
185  Fig. 2, Fig. 3¢). The model, implemented in Python using the Scikit-learn library (Pedregosa et al.,
2011), was trained on the INV_01-POLY dataset using a cross-entropy loss function. To address class
imbalance (e.g., the larger spatial extent of debris-rich flood deposits), we applied the Synthetic
Minority Oversampling Technique (SMOTE) to oversample minority classes and downsample the
majority class. 70% of the mapped pixels were used for training and 30% for testing.

190  To differentiate between the various processes occurring along the slope profile, we selected predictors
that capture where mass is likely to be mobilized, transported, or deposited. These are primarily
topographic factors that reflect slope geometry, drainage, and terrain position. Predictors for the model
were derived from the Copernicus GLO-30 digital elevation model (DEM, see Table 1). Specifically
we used: i) local downward relief (calculated within a 200 m radius); ii) topographic wetness index

195  (TWI); iii) topographic position index (TPI) over 300 m radius (Weiss, 2001); iv) normalized
steepness index (Ksn), capturing slope and upstream contributing area characteristics (Vanmaercke et
al., 2020); v) flow accumulation, weighted by a continental landslide susceptibility map (Broeckx et
al., 2018) to give more importance to drainage paths likely to receive material from upslope failures;
and vi) forest cover and forest loss (2014-2018) from Hansen et al. (2013), reflecting vegetation-related

200  controls on slope stability in tropical regions (e.g., Depicker et al., 2021a, 2021b). All predictors were
normalized (mean-centered and scaled by standard deviation) and calculated at original 30-m DEM
resolution. The classification was performed with upsampled predictors to exploit the 10-m resolution
map of impacted zones derived from Sentinel-2 data.

To address potential multicollinearity among predictors, we applied a three-step procedure: (1) Pearson
205  correlation analysis to flag variable pairs with |r] > 0.8, (2) Variance Inflation Factor (VIF) computation

to identify variables with VIF > 10, and (3) iterative removal of highly collinear variables based on both

criteria. Model performance was then compared across three feature sets: 1) all predictors, ii) predictors

with collinear variables removed, and iii) the top-5 features from univariate tests. As the full predictor

set delivered the highest test accuracy, all variables were retained for final model training and
210  susceptibility mapping.
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215  Table 1. | Landslide predictors used in the logistic regression models for both inventory classification
(Section 2.1.3) and susceptibility analyses (Section 2.2), grouped by theme following Reichenbach et
al. (2018). Note: HazMapper NDVI loss* was used only for the classification model, see section 2.2 .

theme predictor variables units original source
resolution

Morphology Slope m/m 30m Copernicus DEM
Upslope Curvature rad.m-1 30 m Copernicus DEM
Local Downward Relief m 30 m Copernicus DEM
Mean Local Relief m 30 m Copernicus DEM

Hydrology Distance to River m 30m Copernicus DEM
Fl. Acc weighted by landslide susceptibility 30 m ;ﬁ?g‘g‘fgs DEM + Broeckx
Topographic Wetness Index (TWI) 30 m Copernicus DEM
Topographic Position Index (TPI) 30 m Copernicus DEM
K m0.3 30m Copernicus DEM

Landcover Forest Cover 30 m Hansen et al., 2013
Forest Loss [2014 - 2018] 30m Hansen et al., 2013

Idai impact zones* HazMapper NDVI loss* 10m Sentinel-2

Model performance was evaluated using receiver operating characteristic (ROC) curves, precision—

220  recall curves, and prediction rate curves. ROC curves quantify the ability to separate classes through
the area under the curve (AUC), while precision—recall curves provide complementary insight, being
more sensitive to omission errors (i.e., false negatives), offering additional information on class-wise
prediction accuracy. Prediction rate curves were also used, given their relevance for assessing the spatial
predictive power of susceptibility models (e.g., Zézere et al., 2017). They illustrate the proportion of

225  landslides expected to fall within a given susceptibility class, thereby providing an actual measure of
the model’s success rate.

To assess the role of individual predictors, we also trained univariate models and computed ROCyi
scores, averaged over 10-fold cross-validation (Depicker et al., 2020), with higher values reflecting
stronger class discrimination. Additionally, the influence of predictors in the multivariate model was
230  quantified using odds ratios (OR), derived from the three process models and calculated with 10-fold
cross-validation. Finally, model stability was tested through repeated cross-validation using the full set
of predictors, revealing minimal coefficient variability (<1%), suggesting robust model performance.
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Fig. 3. Inventory and classification of landslide source, runout and debris-rich flood. | a. Manual polygon-

235 based inventory (INV_01-POLY) of parts of the two districts, used for training and validating the logistic
regression model (cf. sections 2.1.3 and 2.2). b. Manual inventory of landslides initiation points triggered by Idai
across the entire two districts (INV_02-POINT), with each point representing a single landslide. ¢. Automatic
inventory of the classified impacted zones for the two entire districts (INV_03-AUTO).

240

2.2 Assessing the landscape susceptibility

We applied a similar modelling approach as in section 2.1.3 to assess the susceptibility of each pixel of
the two districts to one of the three processes in the landslide — debris-rich flood continuum (or none).
The logistic regression model uses the same environmental predictors as before (Table 1), except for
245  the HazMapper-calculated NDVI loss, which was excluded to avoid overfitting to Idai event.
Collinearity and feature-selection analyses were repeated, and ultimately all features were used. For
interpretability and cross-model comparison, susceptibility values were classified into five categories:
very low, low, moderate, high, and very high, following Stanley and Kirschbaum (2017). Each category
contains twice as many pixels as the next highest, ensuring consistency across models and highlighting
250  the most susceptible areas. In addition to accuracy metrics obtained from validation pixels from the
manual polygon inventory (INV_01-POLY), we assessed model predictions against the automatically
generated inventory of thousands of landslides and debris-rich floods from section 2.1.3 (INV_03-
AUTO), which was not used for susceptibility model construction. This inventory provides a large,
spatially unbiased dataset covering the entire study area, compared to ~15% coverage by INV_01-
255  POLY.
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Note that the debris-rich flood susceptibility model was restricted to mountainous areas, where

sediment-laden flows are most likely; farther downstream, sediment concentrations decrease and flash

floods behave differently, making them harder to assess with our available data and approach. Flat

areas, known to artificially inflate model performance (Brenning, 2012), were also excluded from the
260  landslide source zone analysis.

2.3 Mapping the population and building exposure

Exposure assessment seeks to identify population and infrastructure at risk, in order to prioritize risk
management and future mitigation efforts (Emberson et al., 2020; Dubey et al., 2023). This is achieved
265 by intersecting the susceptibility with population distribution and building/infrastructure footprints. We
produced exposure estimates for each of the three susceptibility models: landslide source, runout, and
debris-rich flood (section 2.2). In terms of elements potentially at risk, we considered the population
(density and individual buildings) and key infrastructure (roads, bridges, schools, health centres;
Supplementary Fig. 1). For this, we combined (typically incomplete) OpenStreetMap building data with
270  Facebook High Resolution Population Density Maps (30 x 30 m estimates; last updated 2022; Tiecke
et al., 2017) and Google Open Buildings (individual footprints; last updated 2022; Sirko et al., 2021),
retaining only buildings with >65% confidence. Infrastructure data were obtained from the UNESCO
Regional Office for Southern Africa (mostly from digitized areal imagery) and combined with
OpenStreetMap. Overlaying these datasets with susceptibility maps resulted in pixel-based exposure
275  maps for both districts and classifications of exposure levels for individual buildings and infrastructure.
Additionally, population and building data were compared to observed extent of Idai impacts to assess
consistency between exposure estimates and figures reported by NGOs and government sources.

280 3. Results

3.1 Idai’s impacts inventory

We identified 130 km? impacted by landslides and debris-rich floods (~1.5% of the total area of 8,600
km?; Fig. 4). Most landslides occurred in eastern Chimanimani, which is more mountainous and
received higher rainfall totals (average 330 mm, with ~1,300 km? receiving >350 mm between 15-19

285  March 2019 based on satellite estimates). In contrast, rainfall over Chipinge averaged 230 mm, with no
areas exceeding 330 mm (IMERG-GPM satellite estimates; Fig 5a).
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Fig. 4. Automatically detected impacted areas and classification (INV_03-AUTO). | a. Red zones indicates
areas affected by landslides or debris-rich floods (i.e., zones where the vegetation has been damaged, removed

290 and/or covered by sediments) alongside Idai for Chimanimani (North) and Chipinge (South) districts. These zones
were identified by comparing of pre and post-event Sentinel-2 composites. Pale blue and dark blue contours show
cumulative rainfall >300 and >350 mm (satellite estimates) from 13-20 March 2019; other areas received >200
mm. b. Zoom on impacted areas in Chimanimani district. Elongated shapes indicate debris-rich flood zones, while
small features on upper hillslopes are landslides; long runouts often connect the two. ¢. Detailed zoom on Ngangu

295 Township, Chimanimani, showing automatic classification of landslide source, runout, and debris-rich flood
(INV_03-AUTO). Definitions of these zones are illustrated in Fig. 2.

Automatic classification (INV_03-AUTO, Fig. 4c) detected 11,800 landslide source areas (mean 1,450
m?, median 600 m?, total 17.3 km?), 11,500 runout areas (mean 1,500 m?, median 500 m?, total 17.1

300 km?), and 14,000 debris-rich flood areas (mean 6,700 m?, median 800 m?, total 94 km?). Most landslide-
affected zones are in Chimanimani (31 km? 91%), while debris-rich flood zones are more evenly
distributed (51 km? vs. 43 km? in Chipinge), mainly along rivers draining high landslide-density areas.
High landslide density areas are also typically associated with long runout zones, which channelled
large sediment volumes from hillslopes into rivers.

305  The logistic regression classifier performed well, achieving validation AUCs of 0.90 for runout, 0.94
for source, and 0.97 for debris-rich floods. Adding HazMapper NDVI gain/loss as a predictor increased
AUCs to 0.94-0.98, especially improving separation between runout and debris-rich flood classes.
Precision—recall scores ranged from 0.73 (runout) to 0.91 (debris-rich floods), improving to 0.82—0.94

10
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with HazMapper NDVI. Most misclassifications occurred between landslide source and runout classes.

310  About 11,000 of the 14,900 manually inventoried landslide initiation points (/NV_02-POINT) lie within
100 m of an automatic source area (73.8%, INV_03-4AUTO). Automatic delineation also identified 21%
fewer sources, reflecting both missed landslides and amalgamation of adjacent ones (Marc and Hovius,
2015).

Topographic variables were found key predictors (Table 2): slope for landslide source, susceptibility

315  weighted flow accumulation for runout, and local downward relief plus topographic wetness index
(TWI) for debris-rich floods. Though a weak predictor on its own, TWI was also an important (negative)
predictor for source and runout zones. Forest cover (but not recent loss) had no individual predictive
power yet contributed to multivariate models. Conversely, K was a strong individual predictor for
source and runout, but was less influential in the multivariate model.

320
Table 2. Predictor importance. | The relative importance of the predictors (Table 1) for modelling each process
individually is assessed through comparison of univariate AUC ROC,yi. The odds ratios (OR) are derived from
multivariate model and calculated with 10-fold cross-validation (CV).
landslide source landslide runout debris-rich flood
predictor ROCui  OR predictor ROCui  OR predictor ROCuwi OR
Slope 0.87 2.65 Flow Acc. Weighted 093 2.02 Topo. Wetness Index 0.87 8.43
Ksn 0.87 1.04 Ksn 087 1.29 Local Downward relief 0.86 0.07
Mean Local Reflief 0.84 1.13 Upslope Curvature 0.85 048 Topo. Position Index 082 036
Local Downward relief 0.79 1.1 Topo. Position Index 0.84 0.62 Flow Acc. Weighted 0.81 1.86
Topo. Wetness Index 0.78 037 Distance to River 0.77 041 Upslope Curvature 081 1.36
Forest Cover 0.75 157 Forest Cover 0.67 1.4 Distance to River 0.75 054
Flow Acc. Weighted 0.74 1.13 Mean Local Reflief 0.58 0.53 Mean Local Reflief 0.7 119
Topo. Position Index 0.74 0.55 Slope 0.58 0.76 Ksn 0.7 1.2
Distance to River 0.59  0.59 Local Downward relief 05 112 Slope 0.68 543
Upslope Curvature 0.56 0.94 Forest loss ['14- '18] 0.5 1.11 Forest Cover 0.55 2.12
Forest loss ['14-'18] 0.5 097 Topo. Wetness Index 049 035 Forest loss ['14- 18] 0.5 1.05
325

3.2 Susceptibility

The susceptibility models for the three distinct processes (Figs. 5 and 6) highlight how different hazards
clearly affect specific landscape zones. A clear gradient emerges with altitude and slope, shaping the
susceptibility to landslide sources, landslide runout, and debris-rich floods. Prediction rate curves

330 indicate that, over an unspecified time frame, 83% of future runout zones are expected to fall within the
20% of the study area identified as most susceptible. Predictive accuracy is even higher for landslide
sources (87%) and debris-rich floods (95%).

11



https://doi.org/10.5194/egusphere-2025-5056
Preprint. Discussion started: 22 October 2025 EG U S p h e re\

(© Author(s) 2025. CC BY 4.0 License.

Preprint repository

landslide source g : landslide runout ; debris-rich floods
susceptibility susceptibility 2 susceptibility
M very low £ M very low 7 I very low
T low T low ‘ I low

moderate : moderate p moderate
" high 85 " high ; / [ high
B very high , [ § : I very high \ - ; B very high

Figure 5. Susceptibility maps. | Maps showing susceptibility to a. landslide source, b. landslide runout and ec.
335 debris-rich flood in Chimanimani and Chipinge districts.
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Fig. 6. Susceptibility maps — zoom on Chimanimani. | Maps showing susceptibility to being a a. landslide
source area, b. landslide runout zone and ¢. debris-rich flood zone. d. Automatic inventory (INV_03-AUTO) of
340 landslides and debris-rich floods in the same area. The extent of the area shown here is indicated in Fig. 5c.

3.3  Exposure

Many settlements in the two districts exhibit high exposure (Fig. 7), with an uneven spatial distribution
of the population creating notable contrasts between susceptibility and exposure maps. Importantly,

345  these figures highlight significant discrepancies in exposure to the three processes around the landscape.
As expected, areas with the highest exposure to landslides and runout are predominantly located in the
mountainous regions. In contrast, areas west of the two districts, along the main streams, show high
population and building exposure to debris-rich floods.

13



https://doi.org/10.5194/egusphere-2025-5056
Preprint. Discussion started: 22 October 2025
(© Author(s) 2025. CC BY 4.0 License.

EGUsphere\

b c
(%]
-0
L
iandslide source andslide source
susceptibility exposure
M very low M very low
low M low - buildings exposed to
moderate B moderate E ‘{ landslide source
high ™ high « buildings | # 18 000
B very high very high > 50 buildings/km?2
! 1
1
d e f
15 km
|
i/
n
-0
L
i
4 1'
/[ landslide runout ~ landslide runout G
7 susceptibility exposure gy
W very low Chiuwe /
- ;:)e\:ly low [ ] |gv\r,y 7 buildings exposed to
moderate p ~" landslide runout
ﬁ;ﬁera'e = high - buildings | # 34 000
I very high very high > 50 buildings/km2
1

g h
15 km
Birchenoug!
(%] Bridge
- 3
N

4
debris-rich flood “debris-rich flood

G susceptibility exposure
Il very low I very low i buildings exposed to
low M ow ~* debris-rich flood
m;:era‘e = ﬁ;ﬁe’a‘e Ma - buildings | # 65 000
350 u lvery high Ivery high > 50 buildirlugs/km2
Fig. 7. Susceptibility and exposure levels. | Susceptibility, population and building exposure to a-c. landslide
source, d-f. landslide runout, g-i. debris-rich flood. Hotspots of building exposure (> 50 buildings/km?) are circled
in orange. # indicates estimates of the number of buildings in moderate to very high exposure zones. Colour scales
are comparable across the susceptibility and exposure maps.
355  Because most people settle in relatively flat areas near streams and floodplains, much more individuals

and buildings are exposed to landslide runout and debris-rich flood than to landslide sources (Table 3a).
Overall, 29% of the population (~120,000 people) and 30% of buildings (~65,000) lie in zones with
moderate to very high susceptibility to debris-rich floods, which account for only 11% of the study area.
For landslide runout, the exposed share is lower, with 17% of the population and 16% of buildings
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within susceptible zones covering 9.6% of the area. Exposure is lowest for landslide source
susceptibility, where 9% of the population and 8% of buildings are located in zones covering 9.7% of
the study area. Intersecting our detailed polygon inventory (INV_03-AUTO) with the mapped affected
areas (Fig. 4a,b) further shows that about 23,000 buildings and 48,000 people—roughly 8% of all
buildings and 8.5% of the population in Chimanimani and Chipinge districts (Zimbabwe National
Statistics Agency, 2022) — are located within 100 meters of affected areas (Table 3b). Exposure of key
infrastructures is substantial, with at least 60% for each type located in moderate or higher susceptibility
zones — higher percentage than that of all buildings. Details and breakdowns by infrastructure type are
provided in Supplementary Material.

Table 3. Estimating exposure of buildings and population. | a. Distribution of the number of buildings in the
different susceptibility classes. The total number of buildings (Google Open Buildings, last updated in 2022; Sirko
et al., 2021) and people (Facebook High Resolution Population Density Maps, last updated in 2022; Tiecke et al.,
2017) located in moderate to very-high susceptibility areas is also provided. b. Number of buildings and people
in a zone affected by landslide source, runout or debris-rich flood alongside Idai in March 2019.

Landslide Debris-rich
a. buildings in susceptibility class Landslide source runout flood

very low 156200 | 72% 130900 | 60% 86600 | 40%
low 42600 | 20% 51300 | 24% 65000 | 30%
moderate 13100 | 6% 21900 | 10% 32700 | 15%
high 4300 | 2% 10900 | 5% 26500 | 12%
very high 300 | 0% 1500 | 1% 5700 | 3%

Buildings in moderate to very high classes
(total = 117 000 | 54%)

Population in moderate to very high classes
(total = 226 000 | 43%))

18000 | 8% 34000 | 16% 65000 | 30%

36000 | 9% 70000 | 17% 120000 | 29%

b. buildings and population nearby a zone affected by Idai (% of all buildings/population)

Buildings within 100 m of affected zone 3700 | 1.3% 7300 | 2.5% 11700] 4.3%
Population within 100 m of affected zone 7300 | 1.3% 16400 | 2.9% 24300| 5.3%

4. Discussion

We mapped 130 km? (1.5% of the two districts) as being directly affected by landslides or debris-rich
floods, with 14,900 individual landslide initiation points — remarkably high for a single event (e.g., see
Emberson et al. (2022)). The severity of the impacts triggered by Idai (see section 1.2 and e.g., Chatiza,
2019; Devi, 2019) reflects both the region’s high population density and vulnerability, and the cascading
chain of processes we described as the landslide—debris-rich flood continuum.

Our estimates suggest that ~226,000 people live in areas of moderate to high susceptibility to landslides
and debris-rich floods (Table 3a) — nearly half the district population. These numbers closely match
official figures of individuals affected by Idai (192,000-270,000; Chatiza, 2019; IFRC, 2020). Notably,
exposure to landslide sources account for less than one-fifth of total exposed people and buildings,
while landslide runouts affect about twice as many, and debris-rich floods over three times as many
(Table 3). This pattern results from the concentration of settlements along gently sloping, higher-order
channels prone to landslide runout and flooding (Mergili et al., 2018, 2019; Roback et al., 2018;
Milledge et al., 2019), and underlines a critical point: effective risk reduction demands accounting for
the entire landslide—debris-rich flood continuum.

15



https://doi.org/10.5194/egusphere-2025-5056
Preprint. Discussion started: 22 October 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

Our work illustrates how large parts of a landscape can have low likelihoods of landslide initiation but
can nonetheless be very exposed to landslide-derived material, particularly during rare but extreme
events. Yet, most landslide inventories, susceptibility or exposure assessments still focus only on
395  landslide initiation (Reichenbach et al., 2018; Milledge et al., 2019; Emberson et al., 2022), introducing
major uncertainties in estimates of landslide frequency, size, and overall hazard and risk (van Westen
et al., 2006; Tanyas et al., 2017; Emberson et al., 2022; Bhuyan et al., 2025). Likewise, highly mobile
landslides can deliver substantial sediment loads, amplifying both immediate and delayed flood risk
(Slater et al., 2015; Croissant et al., 2017; Bennett et al., 2025). This highlights the need to integrate
400  geomorphological hazards into flood risk evaluation (Slater et al., 2015; Brenna et al., 2023).

The sequence of processes at hillslope level — landslides on steep mountain ridges, runouts in flow
accumulation zones directly downslope, and debris-rich floods in low-relief, high topographic wetness
areas — nevertheless enables the development of simple yet accurate statistical models using only a few
and easy to obtain topographic predictors. Accuracy assessment attests high accuracy in identifying
405  affected areas, classifying process stages, and estimating susceptibility and exposure. Most confusion
occurs between landslide source and runout, which is expected since these stages belong to the same
process where sediment scouring and deposition may follow one another and for which even manual
delineation is complex. Because all three stages share similar spectral signatures but occur at distinct
locations along the hillslope, topographic predictors proved decisive. Expectedly (e.g., Milledge et al.,
410  2019; Emberson et al., 2022), slope, local downward relief and topographic wetness index emerged as
strong predictors (Table 2), with the last two indicating where landslide-derived sediments tend to
accumulate. Weighted flow accumulation was likewise a key predictor of runout, primarily highlighting
channels draining susceptible slopes. It is already effective despite the coarse susceptibility model used
for weighting, and its performance could likely be improved by incorporating regional or landslide
415  source-specific models. By contrast, neither deforestation nor forest cover had a significant role in
predicting sources or runouts (e.g. (Maki Mateso et al., 2023), suggesting limited land-cover influence
on landslide occurrence; at least in the case of Idai. Similar patterns are reported for other extreme
rainfall-triggered (e.g., Marc et al., 2018) or earthquake-triggered landslide events (e.g., Wenchuan;
Fan et al., 2018), and major flash floods (Merz et al., 2021), where trigger magnitude and distribution
420  outweigh land-use effects. Finally, while more advanced approaches (e.g., object-based mapping such
as ALADIM; Deprez et al., 2022) or physically-based models of landslide runouts (e.g., Mergili et al.,
2019; Wallace et al., 2022; Keck et al., 2024) may provide incremental gains, our simple workflow
delivers fast, flexible, and transparent results — a crucial advantage for both researchers and decision-
makers (Amatya et al., 2023; Dahal and Lombardo, 2023).

425  The cascading chain of hazard triggered by Cyclone Idai is not unique. Yet, as long as risk management
strategies continue to focus on isolated hazards rather than their cascading effects, human and natural
systems will remain vulnerable to interacting processes (Gill et al., 2020; Sharma et al., 2023)
responsible for some of the world’s most devastating disasters (Mergili et al., 2019; Wallace et al.,
2022; Lee et al., 2024). This may also help explain why disaster risk reduction policies often appear

430 ineffective (Nohrstedt et al., 2021). This challenge is particularly acute in tropical mountain regions,
where cascading processes are frequent and rural communities highly vulnerable — especially in
underreported areas such as Africa (Dewitte et al., 2021; Sekajugo et al., 2024; Arango-Carmona et al.,
2025).

435 5. Conclusion

This study provides a strong reminder of the need to move beyond a narrow focus on landslide initiation
and to account for the entire landslide—debris-rich flood continuum for effective risk mitigation,
particularly in the context of extreme climatic events like Cyclone Idai. Using simple and replicable
methods, we mapped over 14,000 landslides and developed susceptibility and exposure models for two
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440  districts in eastern Zimbabwe. We estimate that ~226,000 people live in areas of moderate to high
susceptibility, closely matching official figures of those affected by Cyclone Idai. Crucially, in the two
districts, the main impacts on local communities often occurred far downstream from the landslide
initiation areas, with sediment transfer via high-mobility landslides and debris-rich floods significantly
amplifying the destructive potential and impact zones.

445  Our assessment shows that landslide initiation alone accounting for just one-fifth of the total exposure,
underscoring the need to consider not only initiation but also subsequent mass movement and flood
processes for accurate hazard and exposure assessment. Moreover, since runout and debris-rich flood
zones are strongly controlled by flow accumulation and river patterns (weighted by susceptibility), they
can be predicted with reasonable precision at the regional scale using limited input data. Overall, our

450  findings demonstrate that integrating the concept of landslide—debris-rich flood continuum into hazard
assessments is essential for effective mitigation but also relatively straightforward. We also show that,
even in data-poor regions, simple approaches based on open-access tools and datasets can yield
valuable, actionable insights.

455 6. Datasets

The landslide and debris-rich flood inventories, susceptibility and exposure maps, and location of

buildings in moderate to high exposure maps are available for download from UNESCO IHP Water

Information Network System https://doi.org/10.63253/nii4g2ac. Sentinel data are made available by

ESA through e.g. the Copernicus Data Space Ecosystem. All computer codes used in this work are
460  available from the authors upon reasonable request.
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Fig. Al. Land cover, population density and key infrastructure in Chimanimani and Chipinge districts. |

485 These layers were used to calculate the population and infrastructure exposure to landslide and debris-rich flood.
Land cover: © ESA; population: © Facebook High Resolution Population Density Maps; key infrastructure: ©
UNESCO and © OpenStreetMap contributors 2024. Distributed under the Open Data Commons Open Database
License (ODbL) v1.0.

490  Analysis of the exposure of key infrastructures (Supplementary Fig. 2), shows that a minimum of 60%
of all the infrastructure per type are located in zones with moderate or higher susceptibility to landslides
and debris-rich floods. Only 14 (out of 188) bridges are located in zones with low susceptibility to
landslide runout or debris rich floods. It is 22 (out of 61) for health facilities, 56 (out of 150) for primary
schools and 19 (out of 48) for secondary schools for the three processes. It is also noteworthy that in

495  zones of moderate to very high susceptibility, the proportion of key infrastructure at risk, including
schools, health facilities, and bridges, is higher than that of all buildings.
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