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Abstract. In mountainous regions, intense rainfall can trigger thousands of landslides within hours. The 
drivers that control the occurrence of such landslides, and the methods for predicting the zones 
susceptible to their initiation have been extensively studied. Yet, for many of the most severe disasters 
associated with these landslide events, the main impacts on local communities occurred far from the 20 
source areas where most modelling efforts are focused. Sediments mobilized high on slopes by rainfall-
triggered landslides can be transported many kilometres downstream, causing significant impacts along 
their path, while also feeding river systems with large amounts of sediments and consequently 
increasing flood risks. Such chain of cascading hazards significantly increases the destructive potential 
of landslides as well as their impact zone. Effective risk mitigation must therefore address not just 25 
susceptibility to initiation but also landslide mobility and hazard interactions—yet such studies remain 
rare.  

With this work, we emphasize the importance of capturing what we refer to as the landslide–debris-rich 
flood continuum (landslide source, runout and related debris-rich floods) for accurate inventory, 
susceptibility and exposure mapping when landslide mobility is high – as it is often the case for extreme 30 
rainfall events. We apply this approach in two districts of eastern Zimbabwe (> 8000 km²), severely 
impacted by Cyclone Idai in March 2019. Using simple, replicable methods, we mapped over 14,000 
(mostly) shallow landslides and 94 km² of debris-rich flood-affected zones. These data informed 
detailed susceptibility and exposure models that distinguish between the processes involved. Our results 
show that around 226,000 individuals live in areas of moderate to high susceptibility to landslide or 35 
debris-rich floods – closely matching official figures of those affected by the cyclone. Notably, landslide 
sources account for only about one-fifth of this total exposure. This highlights the need to consider the 
entire hazard continuum. Our approach also exemplifies how simple, open-access tools and data can be 
highly effective for hazard and risk analyses across of the globe.   
 40 
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1. Introduction 45 

1.1. Context and objectives 

Mountainous regions typically feature closely interconnected earth surface processes linked to hillslope 
material mobilization. These interactions increase the potential for cascading hazards, and consequently 
the overall risks faced by local communities (Gill and Malamud, 2014; Jacobs et al., 2016; Cutter, 2018; 
Tilloy et al., 2019; Gill et al., 2020; Lee et al., 2024; Yanites et al., 2025). Landslides are a striking 50 
example of this. Their most significant impact on populations and infrastructure often occurs not at the 
source, but through the transfer and deposition of the landslide material in downslope areas and channels 
where communities are commonly located (Mergili et al., 2018, 2019; Roback et al., 2018; Milledge et 
al., 2019). It is through this sequence of interconnected, sediment-transporting processes that many 
landslide events turn into disasters (Mergili et al., 2019; Wallace et al., 2022; Lee et al., 2024).   55 

Two key factors determine the role of landslides in cascading hazards (Roback et al., 2018): (i) mobility, 
indicated by runout distance and volume (Legros, 2002; Iverson et al., 2015); and (ii) connectivity, or 
how much landslide material enters river channels (Wohl et al., 2019). Mobility – and destructive 
potential –  is typically amplified by mixing hillslope material with large runoff volumes during intense 
rainfall and by erosion and entrainment of additional material like soils, rocks and, vegetation (Iverson 60 
and Ouyang, 2015; Pudasaini and Krautblatter, 2021). These mechanisms can turn landslides triggered 
high on hillslopes into high-mobility debris-rich flows that transport slope material several kilometres 
downstream from the source area (Iverson et al., 1997; McGuire et al., 2024) and ultimately contribute 
to the formation of debris-rich (flash) floods (Slater et al., 2015; Croissant et al., 2017; Bennett et al., 
2025). Together, these cascading effects expand both the destructive potential and impact zones of the 65 
initial landslides (e.g., Jacobs et al., 2016).   

Such a continuous sequence of linked sediment-gravity flows (landslides) and fluid-gravity flows 
(debris to water floods) exemplifies a chain of cascading land hazards – a topic that has received 
growing attention in recent literature (e.g., Tilloy et al., 2019; Brenna et al., 2020; Gill et al., 2020; 
Keck et al., 2024; Arango-Carmona et al., 2025; Yanites et al., 2025). The cascading land hazards 70 
framework (Yanites et al., 2025) broadly encompasses all linked chains of processes that move water 
and sediment across Earth’s surface, in which one event directly influences the likelihood or intensity 
of another. This differs from compounding hazards, which refers to co-occurrence and amplification of 
events that are statistically independent (Yanites et al., 2025). Identifying and constraining such 
cascading chain of hazard is critical for comprehensive risk assessment (Gill and Malamud, 2014; 75 
Cutter, 2018; De Angeli et al., 2022). Although the importance of these interactions has long been 
recognized (e.g., van Westen et al., 2006), they remain underrepresented in hazard, risk and exposure 
assessments (Gill et al., 2020; Sharma et al., 2023; de Vilder et al., 2024). Despite growing landslide 
susceptibility research (e.g., Reichenbach et al., 2018; Merghadi et al., 2020), the vast majority of 
studies remain focused on landslide initiation, often overlooking mobility and cascading effects (Di 80 
Napoli et al., 2021). A number of exceptions exist (e.g., Kritikos and Davies, 2015; Fan et al., 2017; 
Melo et al., 2019; Mergili et al., 2019; Di Napoli et al., 2021; Van Den Bout et al., 2022; Zhou et al., 
2022; Dubey et al., 2023; Keck et al., 2024), but they typically rely on complex and data-demanding 
models that constrain them to small-case studies (Fan et al., 2017; Mergili et al., 2019). Likewise, 
exposure mapping – i.e. the identification of populations and infrastructure at risk – remains a relatively 85 
underexplored dimension of (cascading) hazard research (Emberson et al., 2020; Lin et al., 2023). 

Here, we demonstrate the value of explicitly considering the cascading chain of hazards encompassing 
landslides to debris-rich floods for inventory, susceptibility, and exposure mapping alongside extreme 
triggering events. We show the benefits of our approach in two districts of eastern Zimbabwe, severely 
impacted by Cyclone Idai in March 2019, where landslide and flood hazards data remain scarce. Using 90 
simple, replicable methods, we offer insights into this extreme event’s consequences, producing 
comprehensive products to guide land use planning, mitigation, and risk reduction in the region.  
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1.2. The 2019 Cyclone Idai and its associated landslides in eastern Zimbabwe 

Cyclone Idai (Fig. 1a) ranks among the deadliest storms ever recorded in the southern hemisphere (Devi, 95 
2019). In March 2019, it caused widespread flooding across Mozambique, Malawi, and Zimbabwe, 
resulting in thousands of fatalities and affecting over three million people – many already in need of 
humanitarian assistance (Chatiza, 2019). In eastern Zimbabwe, the extreme rainfall (300–450 mm 
between 15–19 March– nearly half the region’s annual average of ~1000 mm; IMERG-GPM satellite 

estimates (Huffman et al., 2019), see Fig. 1a) triggered thousands of highly mobile landslides that severely 100 
impacted mountain communities in the Chimanimani and Chipinge districts (e.g., Chatiza, 2019; 
Chanza et al., 2020).  

Beyond human and infrastructural losses, the geomorphic impacts – ranging from sediment 
redistribution to disrupted ecosystem services – were substantial (Das and Wegmann, 2022). Most 
landslides consisted of shallow soil/regolith and debris slides/avalanches, typically initiating on steep, 105 
clay-rich, deeply weathered slopes (Das and Wegmann, 2022; see Fig. 1bc). These shallow landslides 
were often highly mobile, with the frequent transitions to debris flows. These flows carved clear debris 
trails from the hillslope into main river channels, with evident signs of material erosion and entrainment 
(Fig. 1b, 1c). Ultimately, they fed into sediment-laden floods that impacted communities tens of 
kilometres downstream (Fig. 1d). This cascading sequence – from landslide initiation to debris flows 110 
and sediment-rich floods – was central to the disaster’s scale, highlighting the need to explicitly analyse 
such hazard chains for effective mitigation.  

Our work focuses on the Chimanimani and Chipinge districts in eastern Zimbabwe, home to 
approximately 560,000 inhabitants (Zimbabwe National Statistics Agency, 2022) across ~8,600 km². 
These were the most severely affected districts in Zimbabwe, also hosting the majority of landslides 115 
triggered by Cyclone Idai. As in much of the Global South – and particularly in Africa – this region 
suffers from a lack of research on geo-hydrological hazards and risks (Broeckx et al., 2018; Dewitte et 
al., 2022). 
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Fig. 1. Landslides and debris-rich flood triggered by Cyclone Idai in eastern Zimbabwe | a. Cumulative 120 
rainfall from March 13–20, 2019, estimated by IMERG-GPM satellite (0.1° × 0.1° resolution; (Huffman et al., 
2019)). Focus districts in eastern Zimbabwe are highlighted in red. b. Highly mobile landslides triggered by 
Cyclone Idai near Ngangu Township, Chimanimani (July 2021), with c. zoom on their runout zones and d. related 
debris-rich flood deposits. Panel b shows clear debris trails from shallow landslides, with evidence of erosion and 
entrainment, particularly visible in panel c, which contributed to severe impacts in Chimanimani Town. Photos 125 
taken ~2.5 years after the event (© M. Vanmaercke).  

 

 

1.3 Introducing the concept of landslide – debris-rich flood continuum 

The cascading land hazards framework is intentionally broad (Yanites et al., 2025). To more precisely 130 
describe the tightly coupled and progressive sequence of sediment-transporting phenomena observed 
alongside Idai, we introduce the concept of the landslide–debris-rich flood continuum. We distinguish 
three interconnected stages, marked by decreasing sediment-to-water ratios: landslide source, runout, 
and debris-rich flood (Fig. 2). While these stages typically occur successively along topographic 
profiles, their boundaries remain porous in terms of process classification – potentially encompassing a 135 
range of mass movement types, including shallow soil and debris slides, debris avalanches, debris flows, 
hyperconcentrated flows, debris floods, and (debris-rich) (flash) floods (e.g., Hungr et al., 2014; Church 
and Jakob, 2020). The landslide source refers to the failure zone, where material detaches from the 
slope. Runout zones are typically channelized paths where entrainment and deposition occur, often 
influenced by runoff and/or the merging of multiple slope failures. Finally, debris-rich floods involve 140 
water-dominated flows in high order channels, but that are capable of transporting slope material far 
beyond the immediate vicinity of the landslides and their runout (Fig. 2). 
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Fig. 2. | Illustration and definition of the landslide–debris-rich flood continuum, showing landslide source, 145 
landslide runout, and associated debris-rich flood zones as mapped in this study. Locations of the initiation points 
used during the manual inventory (INV_02-POINT) are also indicated. Adapted from Highland and Bobrowsky 
(2008). 

 

2. Data and methods 150 

2.1 Mapping the zones affected by Idai 

We followed a three-step methodology to map and classify the areas affected by Cyclone Idai. First, we 
manually mapped parts of the two districts to build a reference inventory for training and validation. 
Second, we automatically identified all the zones impacted based on satellite images. Third, we 
classified these zones according to the process at play (i.e., landslide source, runout, or debris-rich 155 
flood).  

2.1.1 Step 1: manual mapping for model training and validation (INV_01-POLY, INV_02-POINT) 
We first created two manually mapped datasets to train and validate subsequent products. INV_01-
POLY consists of a detailed classification of affected and unaffected zones over ~1,300 km² (~15% of 
the study area), using 3-m resolution PlanetScope imagery from late March–early April 2019 (Fig. 3a). 160 
We mapped 1,240 landslide source zones (2.3 km²; avg. size 1,860 m²), 200 runout zones (3.3 km²; avg. 
size 16,700 m²), and 54 debris-rich flood deposits (27 km²; avg. size 482,000 m²), along with ~1265 
km² of unaffected areas. INV_02-POINT is a point dataset of ~14,900 landslide initiation points across 
the full study area, digitized using very-high-resolution Google Earth imagery (April 2019–June 2021), 
with points placed at the headscarp of each landslide (see Fig. 2; Fig. 3b). 165 

2.1.2 Step 2: automatic detection of affected zones  
We compared Normalized Difference Vegetation Index (NDVI) on pre- and post-event Sentinel-2 
satellite images to map impacted areas. This simple metric proved sufficient for accurate delineation as 
the affected zones had a clear visual and spectral signature immediately following the events. To 
perform this analysis, we used the open-source HazMapper application (Scheip and Wegmann, 2021) 170 
in Google Earth Engine, which generates "greenest-pixel" composites over one-month periods before 
and after mid-March 2019. This approach reduces the influence of clouds and phenological variability 
by retaining only the highest NDVI value per pixel within the time window. 
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The resulting NDVI gain/loss maps, produced at a 10-m resolution (Sentinel-2 resolution), were 
compared with INV_01-POLY to determine an optimal threshold for delineating impacted areas. Six 175 
NDVI thresholds (from –8% to –18%) were tested; a threshold of –12% yielded the best performance, 
correctly identifying 97% of mapped landslide source, runout, and debris-rich flood zones, with 
omission and commission errors of 0.55% and 2.6%, respectively. The small omission error indicates 
that nearly all impacted areas were captured, while the slightly higher commission error was primarily 
due to unrelated deforestation activities occurring within the one-month analysis window. These false 180 
positives, which had a typical signature, were manually removed. 

2.1.3 Step 3: classification of affected zones (INV_03-AUTO) 
We developed a multinomial logistic regression model to classify the automatically detected impacted 
zones into three process types: landslide source, runout, and debris-rich flood (INV_03-AUTO; see 
Fig. 2, Fig. 3c). The model, implemented in Python using the Scikit-learn library (Pedregosa et al., 185 
2011), was trained on the INV_01-POLY dataset using a cross-entropy loss function. To address class 
imbalance (e.g., the larger spatial extent of debris-rich flood deposits), we applied the Synthetic 
Minority Oversampling Technique (SMOTE) to oversample minority classes and downsample the 
majority class. 70% of the mapped pixels were used for training and 30% for testing. 

To differentiate between the various processes occurring along the slope profile, we selected predictors 190 
that capture where mass is likely to be mobilized, transported, or deposited. These are primarily 
topographic factors that reflect slope geometry, drainage, and terrain position. Predictors for the model 
were derived from the Copernicus GLO-30 digital elevation model (DEM, see Table 1).  Specifically 
we used: i) local downward relief (calculated within a 200 m radius); ii) topographic wetness index 
(TWI); iii) topographic position index (TPI) over 300 m radius (Weiss, 2001); iv) normalized 195 
steepness index (Ksn), capturing slope and upstream contributing area characteristics (Vanmaercke et 
al., 2020); v) flow accumulation, weighted by a continental landslide susceptibility map (Broeckx et 
al., 2018) to give more importance to drainage paths likely to receive material from upslope failures; 
and vi) forest cover and forest loss (2014-2018) from Hansen et al. (2013), reflecting vegetation-related 
controls on slope stability in tropical regions (e.g., Depicker et al., 2021a, 2021b). All predictors were 200 
normalized (mean-centered and scaled by standard deviation) and calculated at original 30-m DEM 
resolution. The classification was performed with upsampled predictors to exploit the 10-m resolution 
map of impacted zones derived from Sentinel-2 data. 

To address potential multicollinearity among predictors, we applied a three-step procedure: (1) Pearson 
correlation analysis to flag variable pairs with |r| > 0.8, (2) Variance Inflation Factor (VIF) computation 205 
to identify variables with VIF > 10, and (3) iterative removal of highly collinear variables based on both 
criteria. Model performance was then compared across three feature sets: i) all predictors, ii) predictors 
with collinear variables removed, and iii) the top-5 features from univariate tests. As the full predictor 
set delivered the highest test accuracy, all variables were retained for final model training and 
susceptibility mapping. 210 
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Table 1. | Landslide predictors used in the logistic regression models for both inventory classification 215 
(Section 2.1.3) and susceptibility analyses (Section 2.2), grouped by theme following Reichenbach et 
al. (2018). Note: HazMapper NDVI loss* was used only for the classification model, see section 2.2 . 

theme predictor variables units original 
resolution 

source 

Morphology Slope m/m 30 m Copernicus DEM 
 

Upslope Curvature rad.m‐1 30 m Copernicus DEM 
 

Local Downward Relief m 30 m Copernicus DEM 
 

Mean Local Relief m 30 m Copernicus DEM 
 

    

Hydrology Distance to River m 30 m Copernicus DEM 
 

Fl. Acc weighted by landslide susceptibility  30 m 
Copernicus DEM +  Broeckx 
at al. 2018  

Topographic Wetness Index (TWI)  30 m Copernicus DEM  

Topographic Position Index (TPI)  30 m Copernicus DEM 

 Ksn m0.3  30 m Copernicus DEM 
 

    

Landcover Forest Cover  30 m Hansen et al., 2013 
 

Forest Loss [2014 - 2018]  30 m Hansen et al., 2013 

Idai impact zones* HazMapper NDVI loss* 10 m Sentinel-2 

    

 

Model performance was evaluated using receiver operating characteristic (ROC) curves, precision–
recall curves, and prediction rate curves. ROC curves quantify the ability to separate classes through 220 
the area under the curve (AUC), while precision–recall curves provide complementary insight, being 
more sensitive to omission errors (i.e., false negatives), offering additional information on class-wise 
prediction accuracy. Prediction rate curves were also used, given their relevance for assessing the spatial 
predictive power of susceptibility models (e.g., Zêzere et al., 2017). They illustrate the proportion of 
landslides expected to fall within a given susceptibility class, thereby providing an actual measure of 225 
the model’s success rate. 

To assess the role of individual predictors, we also trained univariate models and computed ROCuni 
scores, averaged over 10-fold cross-validation (Depicker et al., 2020), with higher values reflecting 
stronger class discrimination. Additionally, the influence of predictors in the multivariate model was 
quantified using odds ratios (OR), derived from the three process models and calculated with 10-fold 230 
cross-validation. Finally, model stability was tested through repeated cross-validation using the full set 
of predictors, revealing minimal coefficient variability (<1%), suggesting robust model performance. 
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Fig. 3. Inventory and classification of landslide source, runout and debris-rich flood. | a. Manual polygon-
based inventory (INV_01-POLY) of parts of the two districts, used for training and validating the logistic 235 
regression model (cf. sections 2.1.3 and 2.2). b. Manual inventory of landslides initiation points triggered by Idai 
across the entire two districts (INV_02-POINT), with each point representing a single landslide. c. Automatic 
inventory of the classified impacted zones for the two entire districts (INV_03-AUTO). 

 

 240 

2.2 Assessing the landscape susceptibility  

We applied a similar modelling approach as in section 2.1.3 to assess the susceptibility of each pixel of 
the two districts to one of the three processes in the landslide – debris-rich flood continuum (or none). 
The logistic regression model uses the same environmental predictors as before (Table 1), except for 
the HazMapper‐calculated NDVI loss, which was excluded to avoid overfitting to Idai event. 245 
Collinearity and feature‐selection analyses were repeated, and ultimately all features were used. For 
interpretability and cross‐model comparison, susceptibility values were classified into five categories: 
very low, low, moderate, high, and very high, following Stanley and Kirschbaum (2017). Each category 
contains twice as many pixels as the next highest, ensuring consistency across models and highlighting 
the most susceptible areas. In addition to accuracy metrics obtained from validation pixels from the 250 
manual polygon inventory (INV_01‐POLY), we assessed model predictions against the automatically 
generated inventory of thousands of landslides and debris‐rich floods from section 2.1.3 (INV_03‐
AUTO), which was not used for susceptibility model construction. This inventory provides a large, 
spatially unbiased dataset covering the entire study area, compared to ~15% coverage by INV_01‐
POLY. 255 
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Note that the debris‐rich flood susceptibility model was restricted to mountainous areas, where 
sediment‐laden flows are most likely; farther downstream, sediment concentrations decrease and flash 
floods behave differently, making them harder to assess with our available data and approach. Flat 
areas, known to artificially inflate model performance (Brenning, 2012), were also excluded from the 
landslide source zone analysis. 260 

 

2.3 Mapping the population and building exposure 

Exposure assessment seeks to identify population and infrastructure at risk, in order to prioritize risk 
management and future mitigation efforts (Emberson et al., 2020; Dubey et al., 2023). This is achieved 
by intersecting the susceptibility with population distribution and building/infrastructure footprints. We 265 
produced exposure estimates for each of the three susceptibility models: landslide source, runout, and 
debris-rich flood (section 2.2). In terms of elements potentially at risk, we considered the population 
(density and individual buildings) and key infrastructure (roads, bridges, schools, health centres; 
Supplementary Fig. 1). For this, we combined (typically incomplete) OpenStreetMap building data with 
Facebook High Resolution Population Density Maps (30 × 30 m estimates; last updated 2022; Tiecke 270 
et al., 2017) and Google Open Buildings (individual footprints; last updated 2022; Sirko et al., 2021), 
retaining only buildings with >65% confidence. Infrastructure data were obtained from the UNESCO 
Regional Office for Southern Africa (mostly from digitized areal imagery) and combined with 
OpenStreetMap. Overlaying these datasets with susceptibility maps resulted in pixel-based exposure 
maps for both districts and classifications of exposure levels for individual buildings and infrastructure. 275 
Additionally, population and building data were compared to observed extent of Idai impacts to assess 
consistency between exposure estimates and figures reported by NGOs and government sources. 
 
 

3. Results 280 

3.1 Idai’s impacts inventory 

We identified 130 km² impacted by landslides and debris-rich floods (~1.5% of the total area of 8,600 
km²; Fig. 4). Most landslides occurred in eastern Chimanimani, which is more mountainous and 
received higher rainfall totals (average 330 mm, with ~1,300 km² receiving >350 mm between 15–19 
March 2019 based on satellite estimates). In contrast, rainfall over Chipinge averaged 230 mm, with no 285 
areas exceeding 330 mm (IMERG-GPM satellite estimates; Fig 5a). 
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Fig. 4. Automatically detected impacted areas and classification (INV_03-AUTO). | a. Red zones indicates 
areas affected by landslides or debris-rich floods (i.e., zones where the vegetation has been damaged, removed 
and/or covered by sediments) alongside Idai for Chimanimani (North) and Chipinge (South) districts. These zones 290 
were identified by comparing of pre and post-event Sentinel-2 composites. Pale blue and dark blue contours show 
cumulative rainfall >300 and >350 mm (satellite estimates) from 13–20 March 2019; other areas received ≥200 
mm. b. Zoom on impacted areas in Chimanimani district. Elongated shapes indicate debris-rich flood zones, while 
small features on upper hillslopes are landslides; long runouts often connect the two. c. Detailed zoom on Ngangu 
Township, Chimanimani, showing automatic classification of landslide source, runout, and debris-rich flood 295 
(INV_03-AUTO). Definitions of these zones are illustrated in Fig. 2. 

 

Automatic classification (INV_03-AUTO, Fig. 4c) detected 11,800 landslide source areas (mean 1,450 
m², median 600 m², total 17.3 km²), 11,500 runout areas (mean 1,500 m², median 500 m², total 17.1 
km²), and 14,000 debris-rich flood areas (mean 6,700 m², median 800 m², total 94 km²). Most landslide-300 
affected zones are in Chimanimani (31 km², 91%), while debris-rich flood zones are more evenly 
distributed (51 km² vs. 43 km² in Chipinge), mainly along rivers draining high landslide-density areas. 
High landslide density areas are also typically associated with long runout zones, which channelled 
large sediment volumes from hillslopes into rivers. 

The logistic regression classifier performed well, achieving validation AUCs of 0.90 for runout, 0.94 305 
for source, and 0.97 for debris-rich floods. Adding HazMapper NDVI gain/loss as a predictor increased 
AUCs to 0.94–0.98, especially improving separation between runout and debris-rich flood classes. 
Precision–recall scores ranged from 0.73 (runout) to 0.91 (debris-rich floods), improving to 0.82–0.94 
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with HazMapper NDVI. Most misclassifications occurred between landslide source and runout classes. 
About 11,000 of the 14,900 manually inventoried landslide initiation points (INV_02-POINT) lie within 310 
100 m of an automatic source area (73.8%, INV_03-AUTO). Automatic delineation also identified 21% 
fewer sources, reflecting both missed landslides and amalgamation of adjacent ones (Marc and Hovius, 
2015). 

Topographic variables were found key predictors (Table 2): slope for landslide source, susceptibility 
weighted flow accumulation for runout, and local downward relief plus topographic wetness index 315 
(TWI) for debris-rich floods. Though a weak predictor on its own, TWI was also an important (negative) 
predictor for source and runout zones. Forest cover (but not recent loss) had no individual predictive 
power yet contributed to multivariate models. Conversely, Ksn was a strong individual predictor for 
source and runout, but was less influential in the multivariate model. 

 320 

Table 2. Predictor importance. | The relative importance of the predictors (Table 1) for modelling each process 
individually is assessed through comparison of univariate AUC ROCuni. The odds ratios (OR) are derived from 
multivariate model and calculated with 10-fold cross-validation (CV).  

landslide source 
 

landslide runout 
 

debris-rich flood 

predictor ROCuni OR   predictor ROCuni OR   predictor ROCuni OR 

Slope 0.87 2.65 
 

Flow Acc. Weighted 0.93 2.02 
 

Topo. Wetness Index 0.87 8.43 

KSN 0.87 1.04 
 

KSN 0.87 1.29 
 

Local Downward relief 0.86 0.07 

Mean Local Reflief 0.84 1.13 
 

Upslope Curvature 0.85 0.48 
 

Topo. Position Index 0.82 0.36 

Local Downward relief 0.79 1.1 
 

Topo. Position Index 0.84 0.62 
 

Flow Acc. Weighted 0.81 1.86 

Topo. Wetness Index 0.78 0.37 
 

Distance to River 0.77 0.41 
 

Upslope Curvature 0.81 1.36 

Forest Cover 0.75 1.57 
 

Forest Cover 0.67 1.4 
 

Distance to River 0.75 0.54 

Flow Acc. Weighted 0.74 1.13 
 

Mean Local Reflief 0.58 0.53 
 

Mean Local Reflief 0.7 1.19 

Topo. Position Index 0.74 0.55 
 

Slope 0.58 0.76 
 

KSN 0.7 1.2 

Distance to River 0.59 0.59 
 

Local Downward relief 0.5 1.12 
 

Slope 0.68 5.43 

Upslope Curvature 0.56 0.94 
 

Forest loss ['14- '18] 0.5 1.11 
 

Forest Cover 0.55 2.12 

Forest loss ['14- '18] 0.5 0.97 
 

Topo. Wetness Index 0.49 0.35 
 

Forest loss ['14- '18] 0.5 1.05 

 

 325 

3.2 Susceptibility 

The susceptibility models for the three distinct processes (Figs. 5 and 6) highlight how different hazards 
clearly affect specific landscape zones. A clear gradient emerges with altitude and slope, shaping the 
susceptibility to landslide sources, landslide runout, and debris-rich floods. Prediction rate curves 
indicate that, over an unspecified time frame, 83% of future runout zones are expected to fall within the 330 
20% of the study area identified as most susceptible. Predictive accuracy is even higher for landslide 
sources (87%) and debris-rich floods (95%). 
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Figure 5. Susceptibility maps. | Maps showing susceptibility to a. landslide source, b. landslide runout and c. 
debris-rich flood in Chimanimani and Chipinge districts.  335 
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Fig. 6. Susceptibility maps – zoom on Chimanimani. | Maps showing susceptibility to being a a. landslide 
source area, b. landslide runout zone and c. debris-rich flood zone. d. Automatic inventory (INV_03-AUTO) of 
landslides and debris-rich floods in the same area. The extent of the area shown here is indicated in Fig. 5c.  340 

 

3.3 Exposure 

Many settlements in the two districts exhibit high exposure (Fig. 7), with an uneven spatial distribution 
of the population creating notable contrasts between susceptibility and exposure maps. Importantly, 
these figures highlight significant discrepancies in exposure to the three processes around the landscape. 345 
As expected, areas with the highest exposure to landslides and runout are predominantly located in the 
mountainous regions. In contrast, areas west of the two districts, along the main streams, show high 
population and building exposure to debris-rich floods. 
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 350 

Fig. 7. Susceptibility and exposure levels. | Susceptibility, population and building exposure to a-c. landslide 
source, d-f. landslide runout, g-i. debris-rich flood. Hotspots of building exposure (> 50 buildings/km²) are circled 
in orange. # indicates estimates of the number of buildings in moderate to very high exposure zones. Colour scales 
are comparable across the susceptibility and exposure maps. 

Because most people settle in relatively flat areas near streams and floodplains, much more individuals 355 
and buildings are exposed to landslide runout and debris-rich flood than to landslide sources (Table 3a). 
Overall, 29% of the population (~120,000 people) and 30% of buildings (~65,000) lie in zones with 
moderate to very high susceptibility to debris-rich floods, which account for only 11% of the study area. 
For landslide runout, the exposed share is lower, with 17% of the population and 16% of buildings 
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within susceptible zones covering 9.6% of the area. Exposure is lowest for landslide source 360 
susceptibility, where 9% of the population and 8% of buildings are located in zones covering 9.7% of 
the study area. Intersecting our detailed polygon inventory (INV_03-AUTO) with the mapped affected 
areas (Fig. 4a,b) further shows that about 23,000 buildings and 48,000 people—roughly 8% of all 
buildings and 8.5% of the population in Chimanimani and Chipinge districts (Zimbabwe National 
Statistics Agency, 2022) – are located within 100 meters of affected areas (Table 3b). Exposure of key 365 
infrastructures is substantial, with at least 60% for each type located in moderate or higher susceptibility 
zones – higher percentage than that of all buildings. Details and breakdowns by infrastructure type are 
provided in Supplementary Material. 
 
 370 
Table 3. Estimating exposure of buildings and population. | a. Distribution of the number of buildings in the 
different susceptibility classes. The total number of buildings (Google Open Buildings, last updated in 2022; Sirko 
et al., 2021) and people (Facebook High Resolution Population Density Maps, last updated in 2022; Tiecke et al., 
2017) located in moderate to very-high susceptibility areas is also provided. b. Number of buildings and people 
in a zone affected by landslide source, runout or debris-rich flood alongside Idai in March 2019. 375 

a. buildings in susceptibility class  Landslide source 
Landslide 

runout 
Debris-rich 

flood 

very low 156200 | 72% 130900 | 60% 86600 | 40% 

low 42600 | 20% 51300 | 24% 65000 | 30% 

moderate 13100 | 6% 21900 | 10% 32700 | 15% 

high 4300 | 2% 10900 | 5% 26500 | 12% 

very high 300 | 0% 1500 | 1% 5700 | 3% 

Buildings in moderate to very high classes 
(total = 117 000 | 54%) 

18000 | 8% 34000 | 16% 65000 | 30% 

Population in moderate to very high classes 
(total = 226 000 | 43%)) 

36000 | 9% 70000 | 17% 120000 | 29% 

    

b. buildings and population nearby a zone affected by Idai (% of all buildings/population) 

Buildings within 100 m of affected zone 3700 | 1.3% 7300 | 2.5% 11700| 4.3% 

Population within 100 m of affected zone 7300 | 1.3% 16400 | 2.9% 24300| 5.3% 
 

4. Discussion 

We mapped 130 km² (1.5% of the two districts) as being directly affected by landslides or debris-rich 
floods, with 14,900 individual landslide initiation points – remarkably high for a single event (e.g., see 
Emberson et al. (2022)). The severity of the impacts triggered by Idai (see section 1.2 and e.g., Chatiza, 380 
2019; Devi, 2019) reflects both the region’s high population density and vulnerability, and the cascading 
chain of processes we described as the landslide–debris-rich flood continuum. 

Our estimates suggest that ~226,000 people live in areas of moderate to high susceptibility to landslides 
and debris-rich floods (Table 3a) – nearly half the district population. These numbers closely match 
official figures of individuals affected by Idai (192,000–270,000; Chatiza, 2019; IFRC, 2020). Notably, 385 
exposure to landslide sources account for less than one-fifth of total exposed people and buildings, 
while landslide runouts affect about twice as many, and debris-rich floods over three times as many 
(Table 3). This pattern results from the concentration of settlements along gently sloping, higher-order 
channels prone to landslide runout and flooding (Mergili et al., 2018, 2019; Roback et al., 2018; 
Milledge et al., 2019), and underlines a critical point: effective risk reduction demands accounting for 390 
the entire landslide–debris-rich flood continuum. 
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Our work illustrates how large parts of a landscape can have low likelihoods of landslide initiation but 
can nonetheless be very exposed to landslide-derived material, particularly during rare but extreme 
events. Yet, most landslide inventories, susceptibility or exposure assessments still focus only on 
landslide initiation (Reichenbach et al., 2018; Milledge et al., 2019; Emberson et al., 2022), introducing 395 
major uncertainties in estimates of landslide frequency, size, and overall hazard and risk (van Westen 
et al., 2006; Tanyaş et al., 2017; Emberson et al., 2022; Bhuyan et al., 2025). Likewise, highly mobile 
landslides can deliver substantial sediment loads, amplifying both immediate and delayed flood risk 
(Slater et al., 2015; Croissant et al., 2017; Bennett et al., 2025). This highlights the need to integrate 
geomorphological hazards into flood risk evaluation (Slater et al., 2015; Brenna et al., 2023).   400 

The sequence of processes at hillslope level – landslides on steep mountain ridges, runouts in flow 
accumulation zones directly downslope, and debris-rich floods in low-relief, high topographic wetness 
areas – nevertheless enables the development of simple yet accurate statistical models using only a few 
and easy to obtain topographic predictors. Accuracy assessment attests high accuracy in identifying 
affected areas, classifying process stages, and estimating susceptibility and exposure. Most confusion 405 
occurs between landslide source and runout, which is expected since these stages belong to the same 
process where sediment scouring and deposition may follow one another and for which even manual 
delineation is complex. Because all three stages share similar spectral signatures but occur at distinct 
locations along the hillslope, topographic predictors proved decisive. Expectedly (e.g., Milledge et al., 
2019; Emberson et al., 2022), slope, local downward relief and topographic wetness index emerged as 410 
strong predictors (Table 2), with the last two indicating where landslide-derived sediments tend to 
accumulate. Weighted flow accumulation was likewise a key predictor of runout, primarily highlighting 
channels draining susceptible slopes. It is already effective despite the coarse susceptibility model used 
for weighting, and its performance could likely be improved by incorporating regional or landslide 
source-specific models. By contrast, neither deforestation nor forest cover had a significant role in 415 
predicting sources or runouts (e.g. (Maki Mateso et al., 2023), suggesting limited land-cover influence 
on landslide occurrence; at least in the case of Idai. Similar patterns are reported for other extreme 
rainfall-triggered (e.g., Marc et al., 2018) or earthquake-triggered landslide events (e.g., Wenchuan; 
Fan et al., 2018), and major flash floods (Merz et al., 2021), where trigger magnitude and distribution 
outweigh land-use effects. Finally, while more advanced approaches (e.g., object-based mapping such 420 
as ALADIM; Deprez et al., 2022) or physically-based models of landslide runouts (e.g., Mergili et al., 
2019; Wallace et al., 2022; Keck et al., 2024) may provide incremental gains, our simple workflow 
delivers fast, flexible, and transparent results – a crucial advantage for both researchers and decision-
makers (Amatya et al., 2023; Dahal and Lombardo, 2023).   

The cascading chain of hazard triggered by Cyclone Idai is not unique. Yet, as long as risk management 425 
strategies continue to focus on isolated hazards rather than their cascading effects, human and natural 
systems will remain vulnerable to interacting processes (Gill et al., 2020; Sharma et al., 2023) 
responsible for some of the world’s most devastating disasters (Mergili et al., 2019; Wallace et al., 
2022; Lee et al., 2024). This may also help explain why disaster risk reduction policies often appear 
ineffective (Nohrstedt et al., 2021). This challenge is particularly acute in tropical mountain regions, 430 
where cascading processes are frequent and rural communities highly vulnerable – especially in 
underreported areas such as Africa (Dewitte et al., 2021; Sekajugo et al., 2024; Arango-Carmona et al., 
2025). 

 

5. Conclusion 435 

This study provides a strong reminder of the need to move beyond a narrow focus on landslide initiation 
and to account for the entire landslide–debris-rich flood continuum for effective risk mitigation, 
particularly in the context of extreme climatic events like Cyclone Idai. Using simple and replicable 
methods, we mapped over 14,000 landslides and developed susceptibility and exposure models for two 
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districts in eastern Zimbabwe. We estimate that ~226,000 people live in areas of moderate to high 440 
susceptibility, closely matching official figures of those affected by Cyclone Idai. Crucially, in the two 
districts, the main impacts on local communities often occurred far downstream from the landslide 
initiation areas, with sediment transfer via high-mobility landslides and debris-rich floods significantly 
amplifying the destructive potential and impact zones.  

Our assessment shows that landslide initiation alone accounting for just one-fifth of the total exposure, 445 
underscoring the need to consider not only initiation but also subsequent mass movement and flood 
processes for accurate hazard and exposure assessment. Moreover, since runout and debris-rich flood 
zones are strongly controlled by flow accumulation and river patterns (weighted by susceptibility), they 
can be predicted with reasonable precision at the regional scale using limited input data. Overall, our 
findings demonstrate that integrating the concept of landslide–debris-rich flood continuum into hazard 450 
assessments is essential for effective mitigation but also relatively straightforward. We also show that, 
even in data-poor regions, simple approaches based on open-access tools and datasets can yield 
valuable, actionable insights.  

 

6. Datasets 455 

The landslide and debris-rich flood inventories, susceptibility and exposure maps, and location of 
buildings in moderate to high exposure maps are available for download from UNESCO IHP Water 

Information Network System https://doi.org/10.63253/nii4g2ac.  Sentinel data are made available by 

ESA through e.g. the Copernicus Data Space Ecosystem. All computer codes used in this work are 
available from the authors upon reasonable request. 460 
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Appendix A. 

 

Fig. A1. Land cover, population density and key infrastructure in Chimanimani and Chipinge districts. | 
These layers were used to calculate the population and infrastructure exposure to landslide and debris-rich flood. 485 
Land cover: © ESA; population: © Facebook High Resolution Population Density Maps; key infrastructure: © 
UNESCO and © OpenStreetMap contributors 2024. Distributed under the Open Data Commons Open Database 
License (ODbL) v1.0. 

 
Analysis of the exposure of key infrastructures (Supplementary Fig. 2), shows that a minimum of 60% 490 
of all the infrastructure per type are located in zones with moderate or higher susceptibility to landslides 
and debris-rich floods. Only 14 (out of 188) bridges are located in zones with low susceptibility to 
landslide runout or debris rich floods. It is 22 (out of 61) for health facilities, 56 (out of 150) for primary 
schools and 19 (out of 48) for secondary schools for the three processes. It is also noteworthy that in 
zones of moderate to very high susceptibility, the proportion of key infrastructure at risk, including 495 
schools, health facilities, and bridges, is higher than that of all buildings.  
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Fig A2. Infrastructure exposure. | a. Level of exposure of schools to landslides (source and runout) and debris-500 
rich-floods. b. Level of exposure of health facilities to landslides (source and runout) and debris-rich-floods. c. 
Level of exposure of bridges to landslide runouts and debris-rich-floods. The # numbers indicate how many 
infrastructures are exposed per susceptibility classes. Bridge data © OpenStreetMap contributors 2024. 
Distributed under the Open Data Commons Open Database License (ODbL) v1.0.  

 505 
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