Shoreline exposure controls teal carbon accumulation in boreal lakes

Ana Lúcia Lindroth Dauner¹, Max O. A. Kankainen¹, Sakari Väkevä², Eero Asmala³, Marko Järvinen², Karoliina Koho³, Tom Jilbert¹

Correspondence to: Ana Lúcia Lindroth Dauner (ana.lindrothdauner@helsinki.fi; anadauner@gmail.com)

¹Environmental Geochemistry Group, Department of Geosciences and Geography, University of Helsinki, Gustaf Hällströmin Katu 2, Helsinki, 00560, Finland

²Finnish Environment Institute (Syke), Latokartanonkaari 11, Helsinki, 00790, Finland

³Geological Survey of Finland (GTK), Vuorimiehentie 5, P.O. Box 96, Espoo, 02151, Finland

15 Tables and Equations

Material and Methods

Study Area

Table S1. Water quality of sampled lakes (Syke, 2025).

Lake	Vesijärvi	Kallavesi	Oulujärvi	
Type	Large clearwater	Large humic	Large humic	
Chlorophyll-a [µg L ⁻¹]	5.1 (N basin) – 7.6 (S basin)	10.5 (S basin) – 12.1 (N basin)	5.7	
Total Phosphorus [µg L ⁻¹]	15 (N basin) – 33 (S basin)	20 (S basin) – 27 (N basin)	13	
Total Nitrogen [µg L-1]	351 (N basin) – 459 (S basin)	629 (S basin) – 719 (N basin)	351	
Colour [mg Pt L ⁻¹]	14 (N basin) – 25 (S basin)	65 (S basin) – 102 (N basin)	86	

Sampling procedure

Table S2. Coordinates (WGS84) of sampled sediment cores and description of sampled areas. Vegetation density is presented as all stems, followed by only *Phragmites australis* inside parenthesis.

Lake	Site	Zone	Latitude	Longitude	Depth of standing water [m]	Main vegetation	Vegetation density [stems m ⁻²]	Slope [distance depth ⁻¹]	Average fetch length [m]	
		landside	64.52355	26.81908	0.20	Equisetum, Carex	369 (0)	294		
	A	transitional	64.52355	26.81866	0.44	Equisetum	680 (0)		338	
		waterside	64.52355	26.81804	0.37	Equisetum, Carex	409 (0)			
		landside	64.35013	28.02235	0.21	Carex, Equisetum	61 (0)			
Oulujärvi	В	transitional	64.35030	28.02277	0.34	Equisetum, Carex	62 (0)	197	186	
		waterside	64.35048	28.02319	0.50	Equisetum, Carex	254 (0)			
		landside	64.28800	27.56502	0.15	Carex	156 (0)	108		
	С	transitional	64.28818	27.56543	0.29	Carex, Equisetum, Phragmites	220 (10)		108	2834
		waterside	64.28826	27.56564	0.55	Phragmites, Equisetum	157 (141)			
		landside	62.99400	27.51157	0.22	Phragmites, Carex	71 (17)			
	D	transitional	62.99382	27.51117	0.90	Phragmites	66 (66)	119	1161	
		waterside	62.99338	27.51018	1.05	Phragmites	33 (33)			
		landside	62.76276	27.68925	0.24	Phragmites	73 (73)			
Kallavesi	E	transitional	62.76285	27.68944	0.46	Phragmites	230 (230)	22	411	
		waterside	62.76294	27.68964	1.10	Phragmites	125 (125)			
		landside	62.78582	27.93125	0.60	Phragmites, Equisetum	113 (83)	227		
	F	transitional	62.78573	27.93124	1.13	Phragmites, Carex	63 (62)		784	
		waterside	62.78546	27.93123	1.23	Phragmites	68 (68)			

Table S2. Continuation.

Lake	Site	Zone	Latitude	Longitude	Depth of standing water [m]	Main vegetation	Vegetation density [stems m ⁻²]	Slope [distance depth ⁻¹]	Average fetch length [m]
		landside	61.17794	25.50480	0.10	Phragmites	119 (119)		
	G	transitional	61.17758	25.50481	0.15	Phragmites	197 (197)	169	1631
		waterside	61.17695	25.50484	0.75	Phragmites	165 (165)		
		61.07740	25.45393	0.05	Phragmites	98 (97)			
Vesijärvi		transitional	61.07740	25.45319	0.05	Phragmites, Equisetum	375 (330)	169	819
		waterside	61.07738	25.45189	0.70	Phragmites, Equisetum	79 (77)		
		landside	61.03494	25.59853	0.55	Phragmites	52 (52)		
	I	transitional	61.03495	25.59871	0.50	Phragmites	58 (58)	173	1314
		waterside	61.03495	25.59890	0.70	Phragmites	62 (62)		

Data analyses

40

Wet bulk density (WBD) and dry bulk density (DBD) were determined based on the sediment density corrected by organic matter content (Eq. 1 from the main text), the water content and the sample volume. Porosity Φ as a fraction of 1 and sediment content [%] were then used to calculate WBD and DBD (Eq. 2 and Eq. 3 in the main text). The step-by-step calculation follows bellow:

$$Water\ content\ [\%] = \frac{\text{Wet\ sample\ weight\ [g]-Dry\ sample\ weight\ [g]}}{\text{Wet\ sample\ weight\ [g]}}*100$$
(S1)

35 Sediment content
$$[\%] = 100 - Water content [\%]$$
 (S2)

$$Relative \ sediment \ volume = \frac{Sediment \ content \ [\%]}{Sediment \ density \ [g/_{cm^3}]}$$
 (S3)

Sediment volume
$$[\%] = 100 * \frac{Relative\ sediment\ volume}{Relative\ sediment\ volume+Water\ content\ [\%]}$$
 (S4)

Porosity Φ [fraction of 1] = $\frac{(100 - Sediment \ volume \ [\%])}{100}$ (S5)

Results

45

Table S3. Results from the post hoc Tukey Pairwise Comparison test used to compare grain size distribution across lakes and zones.

Significance codes based on *p*-value: ****: < 0.001; **** < 0.01; ***: < 0.05; :: < 0.1.

	Difference in means	p-adjusted	Significance
Across lakes			
Vesijärvi – Kallavesi	-22.3	0.0000	***
Oulujärvi – Kallavesi	3.5	0.5849	
Oulujärvi – Vesijärvi	25.8	0.0000	***
Across zones			
transitional – landside	7.0	0.1526	
waterside – landside	-10.3	0.0184	*
waterside - transitional	-17.3	0.0000	***

Table S4. Results from the post hoc Tukey Pairwise Comparison test used to compare total organic carbon (TOC) content across lakes, zones and grain size classes.

Abbreviations: C sand = coarse sands; M sand = medium sands; F sand = fine sands; VF sand = very fine sands.

Significance codes based on *p*-value: "***' < 0.001; "**' < 0.05; ".' < 0.05; ".' < 0.1.

	Difference in means	p-adjusted	Significance
Across lakes			
Vesijärvi - Kallavesi	-0.4	0.0054	**
Oulujärvi - Kallavesi	0.4	0.0072	**
Oulujärvi - Vesijärvi	0.8	0.0000	***
Across zones			
transitional - landside	0.1	0.9034	
waterside - landside	-0.4	0.0119	*
waterside - transitional	-0.4	0.0029	**
Across grain size classes	·		
M sand - C sand	-0.7	0.1464	
F sand - C sand	-0.4	0.5727	
VF sand - C sand	-0.3	0.8491	
silt - C sand	1.0	0.0040	**
F sand - M sand	0.3	0.4992	
VF sand - M sand	0.4	0.0678	
silt - M sand	1.7	0.0000	***
VF sand - F sand	0.1	0.8085	
silt - F sand	1.4	0.0000	***
silt - VF sand	1.3	0.0000	***

Table S5. Results from the post hoc Tukey Pairwise Comparison test used to compare sedimentary organic carbon (SOC) stocks across lakes, zones, vegetation types and grain size classes.

Abbreviations: C+M sand = coarse and medium sands; F+VF sand = fine and very fine sands.

Significance codes based on *p*-value: "*** < 0.001; "** < 0.01; "*' < 0.05; ".' < 0.1.

	Difference in means	p-adjusted	Significance
Across lakes			•
Vesijärvi - Kallavesi	-0.2	0.6670	
Oulujärvi - Kallavesi	0.3	0.4542	
Oulujärvi - Vesijärvi	0.5	0.1146	
Across zones			
transitional - landside	0.0	0.9812	
waterside - landside	-0.3	0.3462	
waterside - transitional	-0.4	0.2623	
Across vegetation types			
Mixed - Phragmites	-0.1	0.8906	
Others - Phragmites	0.6	0.0230	*
Others - Mixed	0.7	0.0272	*
Across grain size classes			
(F+VF) sand - (C+M) sand	-0.1	0.9425	
silt - (C+M) sand	0.7	0.0529	
silt - (F+VF) sand	0.8	0.0001	***

Table S6. Significance of the four environmental numerical parameters used to explain variations in sedimentary organic carbon (SOC) stocks using a generalized linear model (GLM; pseudo- R^2 : 0.69; n=27).

Significance codes based on *p*-value: "*** < 0.001; "** < 0.01; "*': < 0.05; ".': < 0.1.

	<i>t</i> -value	<i>p</i> -value	Significance	Regression Coefficient
Vegetation density [stems m ⁻²]	-1.781	0.0893		-0.00013
Water depth [m]	1.704	0.1031		0.10431
Slope [distance depth-1]	3.141	0.0049	**	0.00037
Average fetch length [m]	4.788	0.0001	***	0.00025

Figures

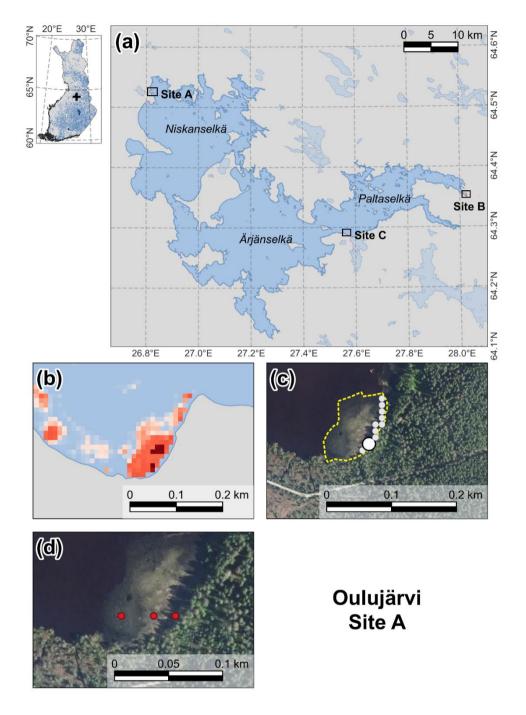


Figure S1. Location of sampling Site A in Oulujärvi (a), with details of: (b) the vegetation patch (Koponen et al., 2022); (c) the starting points of the transect following a grid of 10 x 10 m; (d) the location of the sediment cores following the transect of landside, transitional and waterside. Aerial images from Finnish National Geoportal (Orthophotos) (2023).

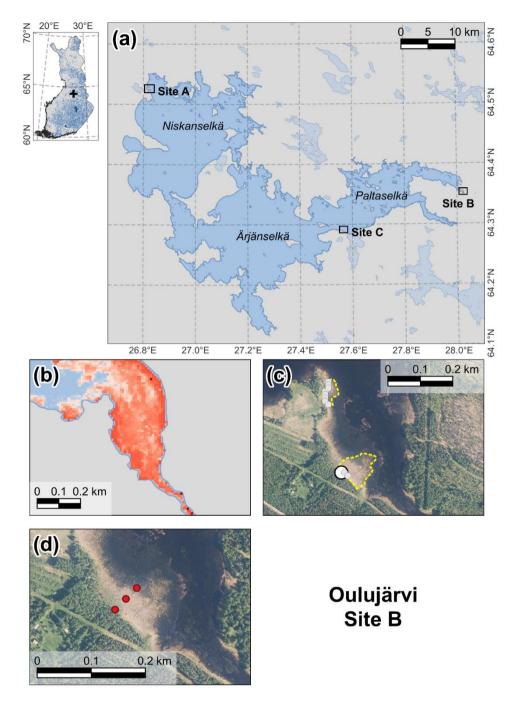


Figure S2. Location of sampling Site B in Oulujärvi (a), with details of: (b) the vegetation patch (Koponen et al., 2022); (c) the starting points of the transect following a grid of 10 x 10 m; (d) the location of the sediment cores following the transect of landside, transitional and waterside. Aerial images from Finnish National Geoportal (Orthophotos) (2023).

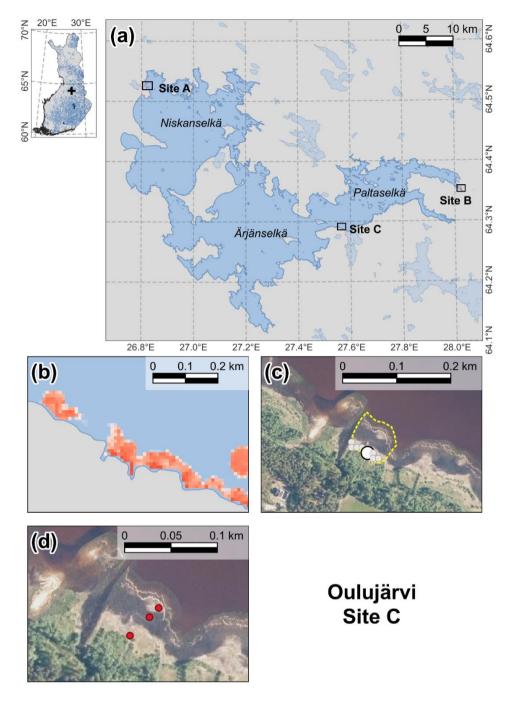


Figure S3. Location of sampling Site C in Oulujärvi (a), with details of: (b) the vegetation patch (Koponen et al., 2022); (c) the starting points of the transect following a grid of $10 \times 10 \text{ m}$; (d) the location of the sediment cores following the transect of landside, transitional and waterside. Aerial images from Finnish National Geoportal (Orthophotos) (2023).

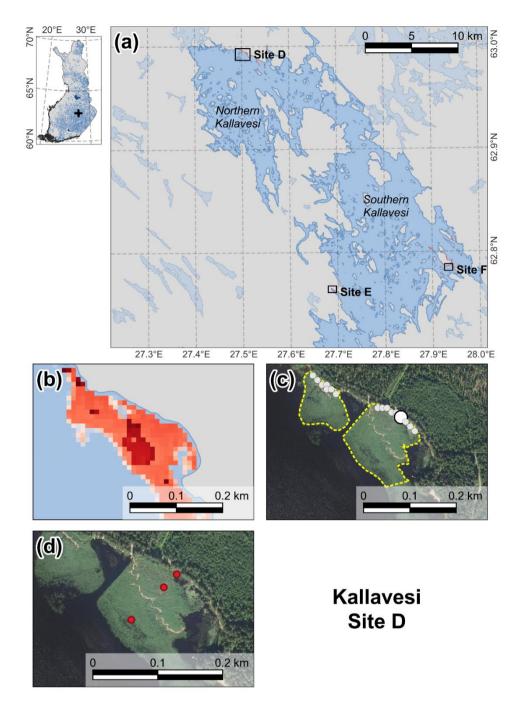


Figure S4. Location of sampling Site D in Kallavesi (a), with details of: (b) the vegetation patch (Koponen et al., 2022); (c) the starting points of the transect following a grid of 10 x 10 m; (d) the location of the sediment cores following the transect of landside, transitional and waterside. Aerial images from Finnish National Geoportal (Orthophotos) (2023).

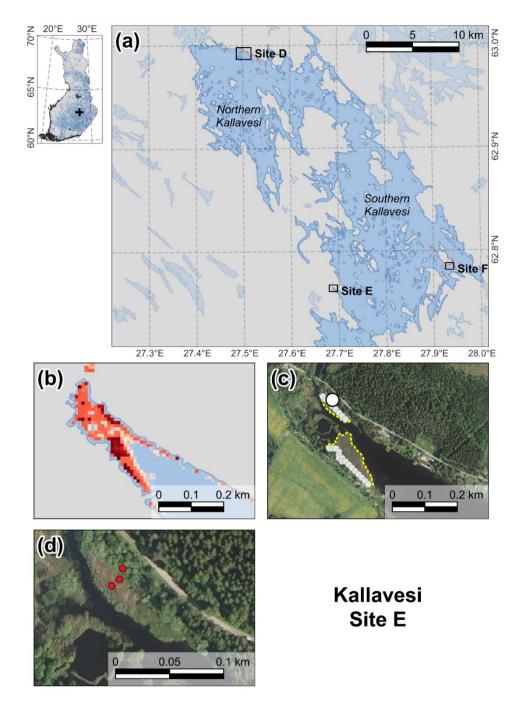


Figure S5. Location of sampling Site E in Kallavesi (a), with details of: (b) the vegetation patch (Koponen et al., 2022); (c) the starting points of the transect following a grid of 10 x 10 m; (d) the location of the sediment cores following the transect of landside, transitional and waterside. Aerial images from Finnish National Geoportal (Orthophotos) (2023).

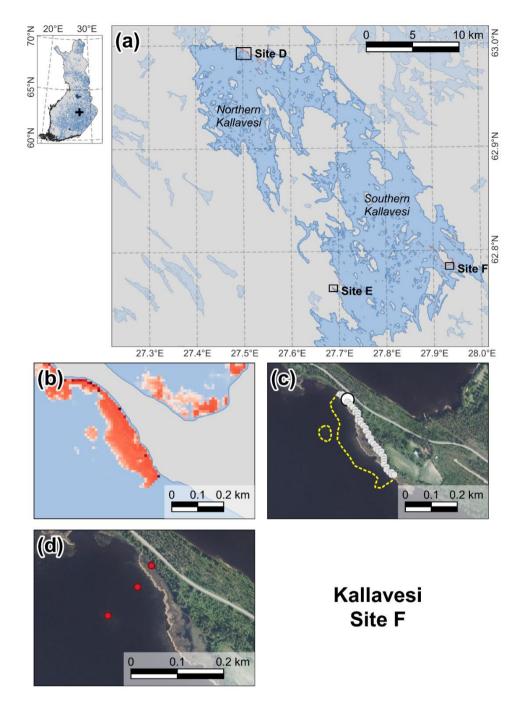


Figure S6. Location of sampling Site F in Kallavesi (a), with details of: (b) the vegetation patch (Koponen et al., 2022); (c) the starting points of the transect following a grid of 10 x 10 m; (d) the location of the sediment cores following the transect of landside, transitional and waterside. Aerial images from Finnish National Geoportal (Orthophotos) (2023).

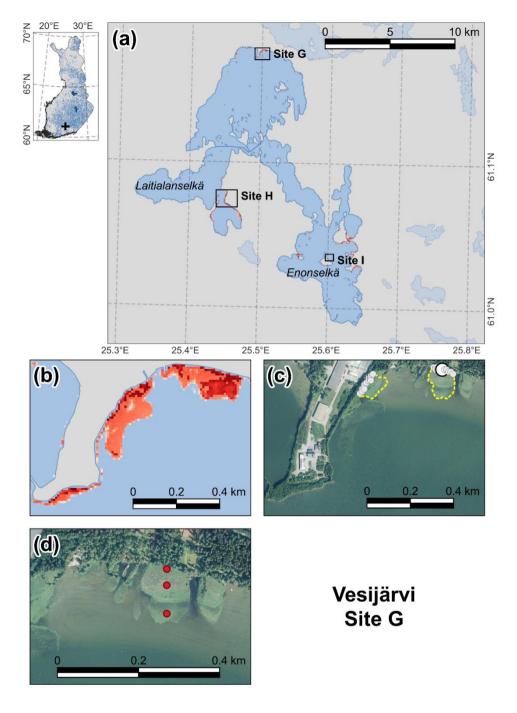


Figure S7. Location of sampling Site G in Vesijärvi (a), with details of: (b) the vegetation patch (Koponen et al., 2022); (c) the starting points of the transect following a grid of 10 x 10 m; (d) the location of the sediment cores following the transect of landside, transitional and waterside. Aerial images from Finnish National Geoportal (Orthophotos) (2023).

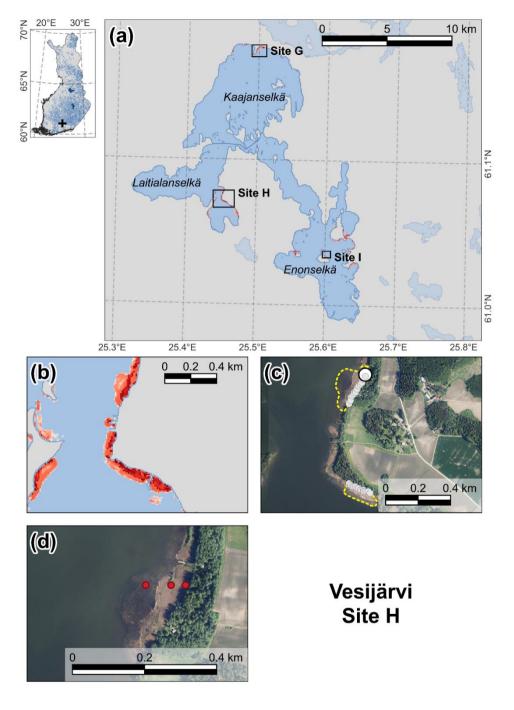


Figure S8. Location of sampling Site H in Vesijärvi (a), with details of: (b) the vegetation patch (Koponen et al., 2022); (c) the starting points of the transect following a grid of 10 x 10 m; (d) the location of the sediment cores following the transect of landside, transitional and waterside. Aerial images from Finnish National Geoportal (Orthophotos) (2023).

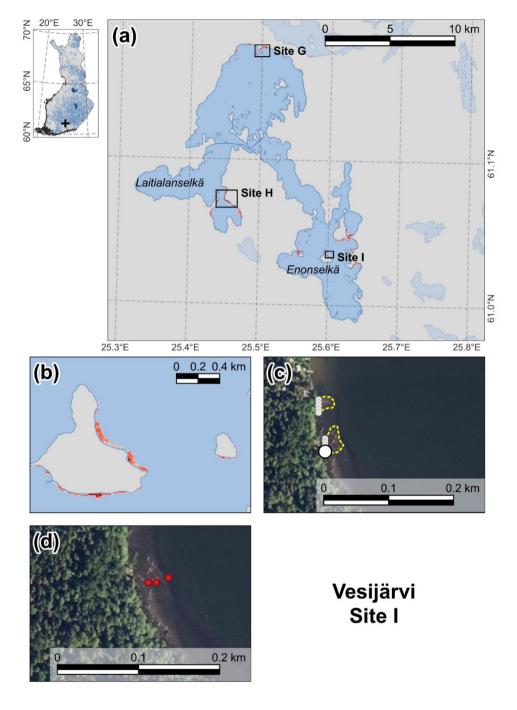


Figure S9. Location of sampling Site I in Vesijärvi (a), with details of: (b) the vegetation patch (Koponen et al., 2022); (c) the starting points of the transect following a grid of 5 x 5 m; (d) the location of the sediment cores following the transect of landside, transitional and waterside. Aerial images from Finnish National Geoportal (Orthophotos) (2023).

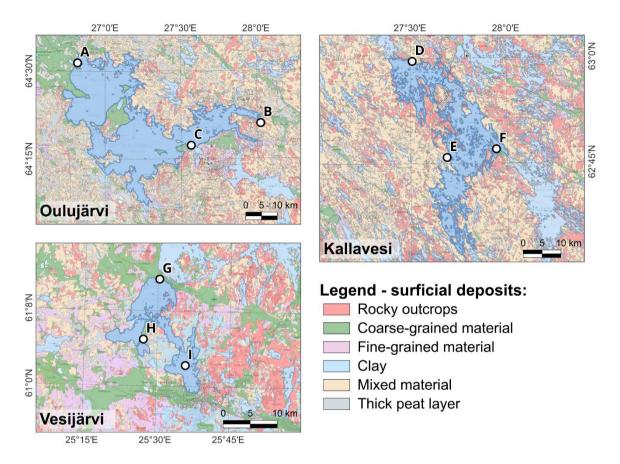


Figure S10. Main surficial deposits found in the surroundings of lakes Oulujärvi (top left panel), Kallavesi (top right panel) and Vesijärvi (bottom left panel) (GTK, 2024).

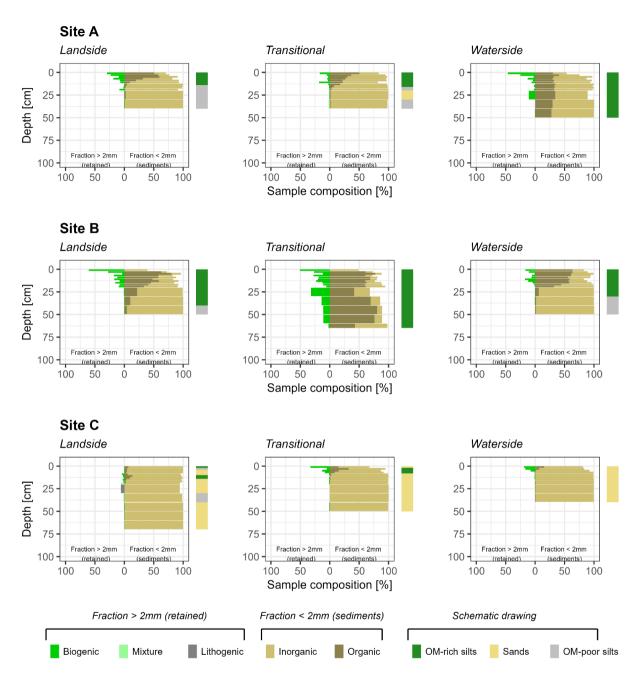


Figure S11. Sedimentary composition in sites A, B and C from lake Oulujärvi. Leftward bars represent the material retained in the 2 mm sieve, and rightward bars indicate the % of organic matter from the total sieved material. The schematic drawing on the right side of each bar plot shows a visual categorization based on grain-size and total organic carbon (TOC) content: "sands" ($d50 \ge 62.5$ mm), "OM-poor silts" (d50 < 62.5 and TOC $\le 5\%$) and "OM-rich silts" (d50 < 62.5 and TOC $\le 5\%$).

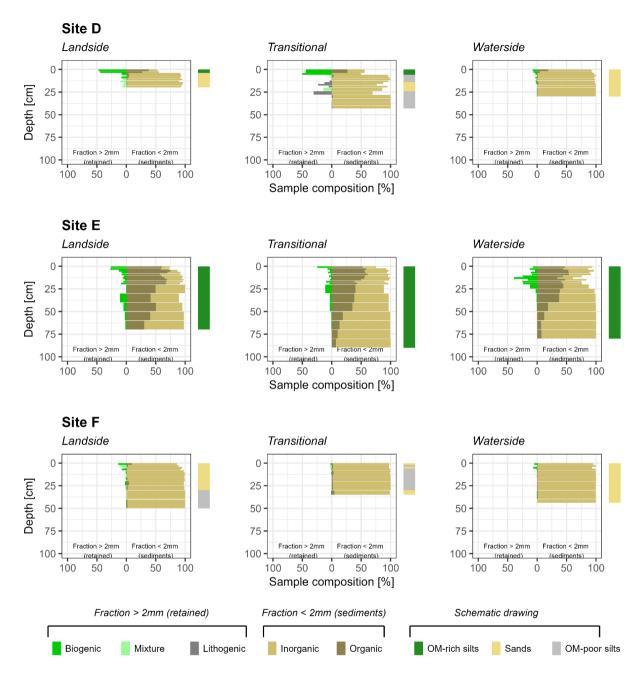


Figure S12. Sedimentary composition in sites D, E and F from lake Kallavesi. Leftward bars represent the material retained in the 2 mm sieve, and rightward bars indicate the % of organic matter from the total sieved material. The schematic drawing on the right side of each bar plot shows a visual categorization based on grain-size and total organic carbon (TOC) content: "sands" ($d50 \ge 62.5$ mm), "OM-poor silts" (d50 < 62.5 and TOC $\le 5\%$) and "OM-rich silts" (d50 < 62.5 and TOC $\le 5\%$).

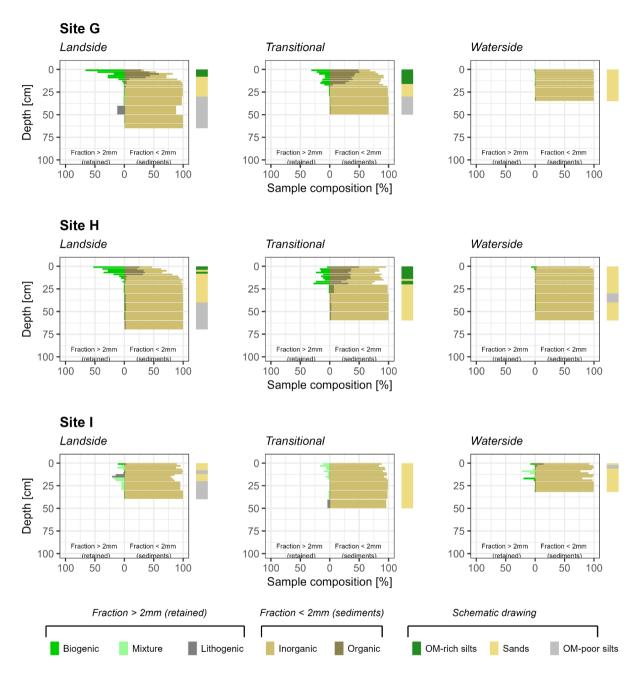


Figure S13. Sedimentary composition in sites G, H and I from lake Vesijärvi. Leftward bars represent the material retained in the 2 mm sieve, and rightward bars indicate the % of organic matter from the total sieved material. The schematic drawing on the right side of each bar plot shows a visual categorization based on grain-size and total organic carbon (TOC) content: "sands" ($d50 \ge 62.5$ mm), "OM-poor silts" (d50 < 62.5 and TOC $\le 5\%$) and "OM-rich silts" (d50 < 62.5 and TOC $\le 5\%$).

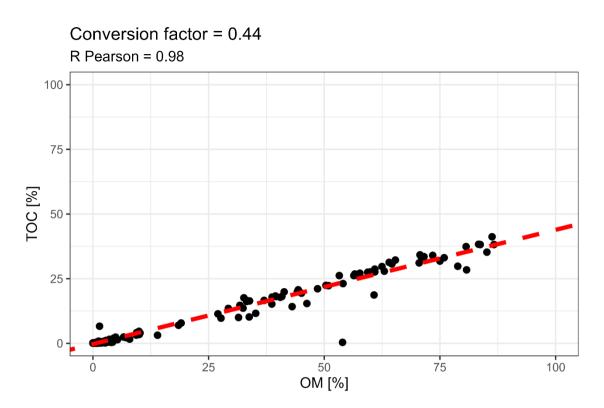


Figure S14. Scatterplot between organic matter (OM) and total organic carbon (TOC) content for 173 sediment samples.

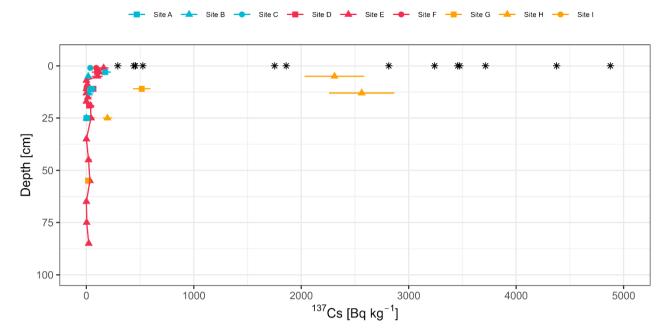


Figure S15. 137 Cs distribution in our cores [Bq kg $^{-1}$]. The * symbols indicate peak values of total 137 Cs deposition observed in deeper areas of the studied lakes (Junna et al., *in press*).

Figure S16. Pictures of selected sediment cores evidencing the clear unconformities between a surface layer rich in organic material and basal organic-poor material.

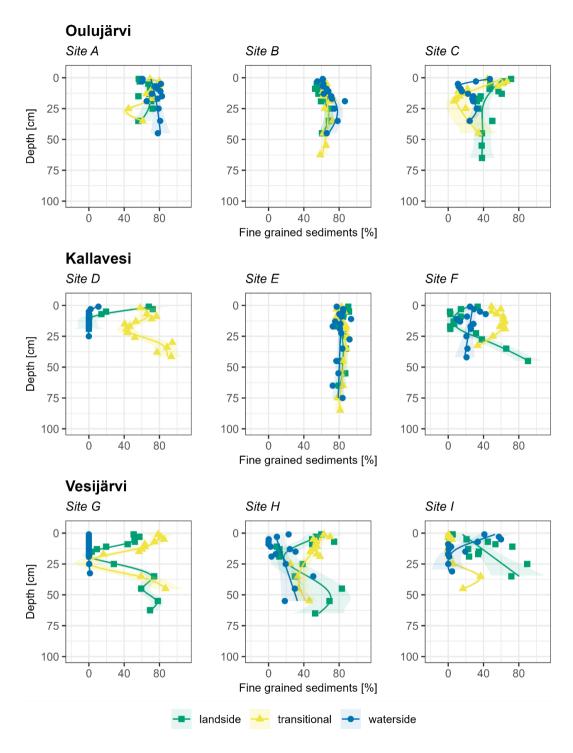


Figure S17. Vertical profiles of grain size distribution.

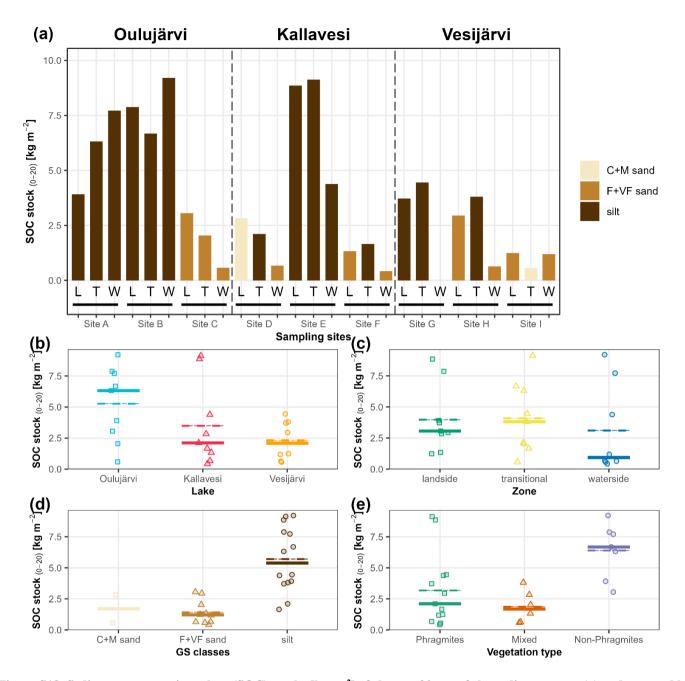


Figure S18. Sedimentary organic carbon (SOC) stocks $[kg \ m^{-2}]$ of the top 20 cm of the sediment cores (a) and grouped by lakes (b), shoreline zones (c), grain size classes (d) and vegetation type (e). Stock estimates consider only samples with > 1 % of organic matter. In panels (b) to (e), the dashed horizontal lines indicate the mean, and the continuous bold horizontal lines indicate the median. Abbreviations: L = landside zone; T = transitional zone; W = waterside zone; C+M = coarse and medium sands; E+VF = coarse and very fine sands. In (a), the bars are coloured according to the grain size averaged through the whole sediment core.

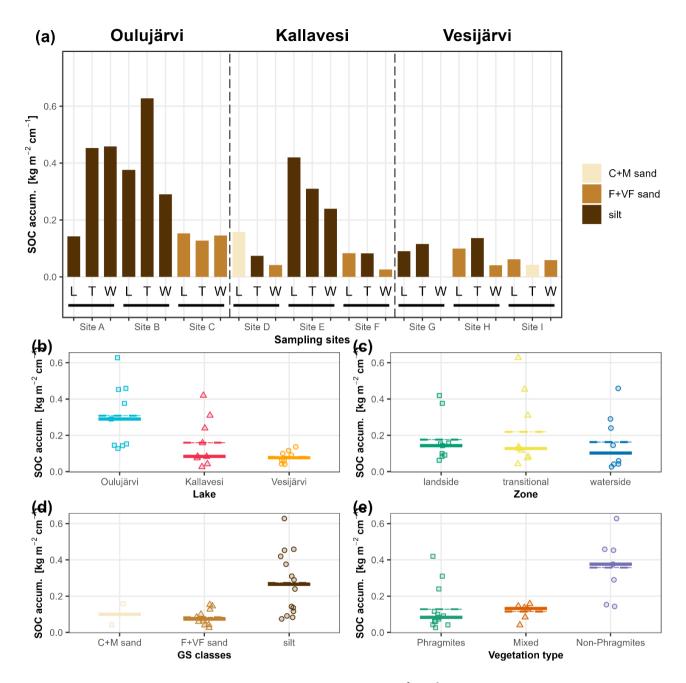


Figure S19. Sedimentary organic carbon (SOC) accumulation [kg m^{-2} cm $^{-1}$] of the sediment cores (a) and grouped by lakes (b), shoreline zones (c), grain size classes (d) and vegetation type (e). Accumulation estimates consider only samples with > 1 % of organic matter. In panels (b) to (e), the dashed horizontal lines indicate the mean, and the continuous bold horizontal lines indicate the median. Abbreviations: L = landside zone; T = transitional zone;

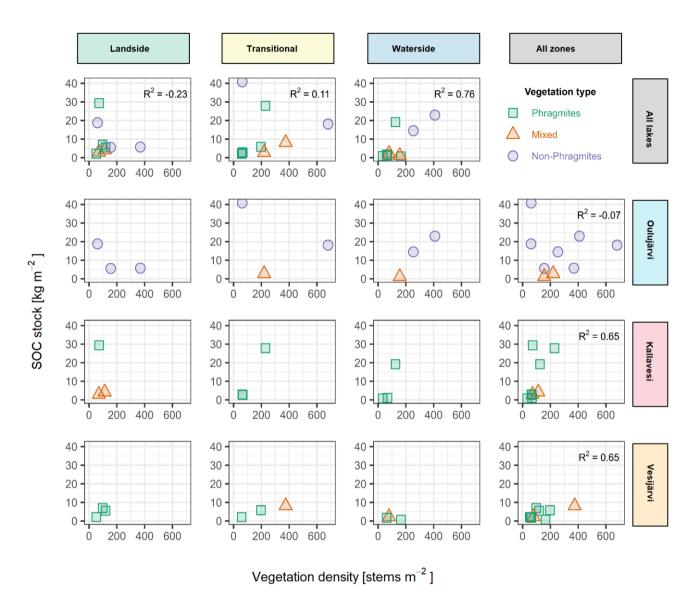


Figure S20. Comparison between sedimentary organic carbon (SOC) [kg m⁻²] and vegetation density [stems m⁻²], grouped by zones (columns), lakes (rows) and type of vegetation (symbol colours).

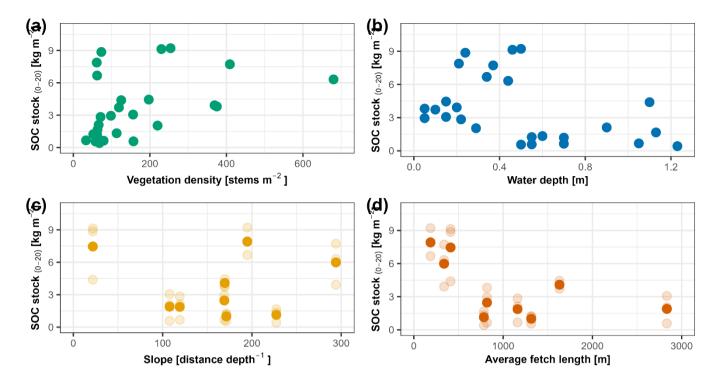


Figure S21. Relationship between sedimentary organic carbon (SOC) stocks [kg m⁻²] based on the top 20 cm of the sediment cores and environmental parameters: (a) vegetation density [number of helophyte stems, in stems m⁻²], (b) water depth [m], (c) slope (calculated as the distance between the landside and waterside sampling locations divided by the difference in their depth), (d) and the average fetch length [m]. In plots (c) and (d), the translucent points indicate the SOC stocks per zone (landside, transitional, waterside) in each site (A to I), while the opaque points indicate the average SOC stock estimates in each site.

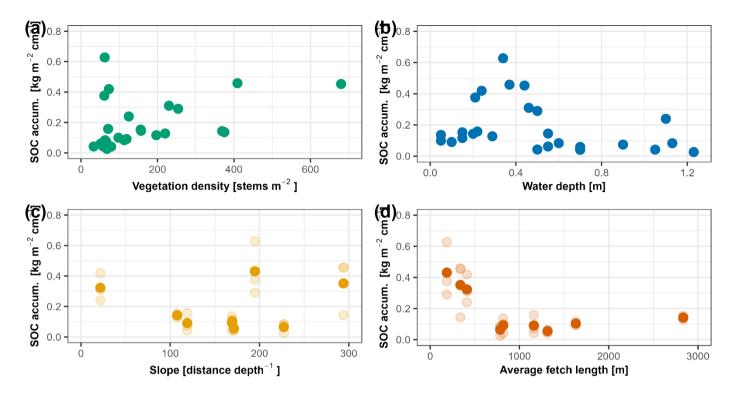


Figure S22. Relationship between sedimentary organic carbon (SOC) accumulation [kg m⁻² cm⁻¹] and environmental parameters: (a) vegetation density [number of helophyte stems, in stems m⁻²], (b) water depth [m], (c) slope (calculated as the distance between the landside and waterside sampling locations divided by the difference in their depth), (d) and the average fetch length [m]. In plots (c) and (d), the translucent points indicate the SOC stocks per zone (landside, transitional, waterside) in each site (A to I), while the opaque points indicate the average SOC stock estimates in each site.

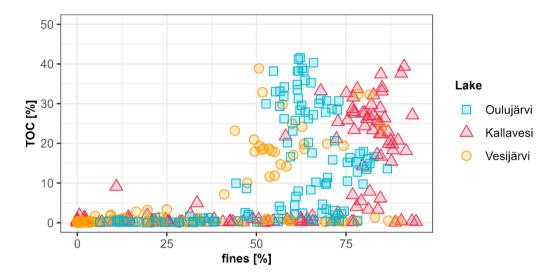


Figure S23. Relationship between total organic carbon (TOC, in % dw) with grain size distribution (% of fine-grained sediments (silt + clay)).

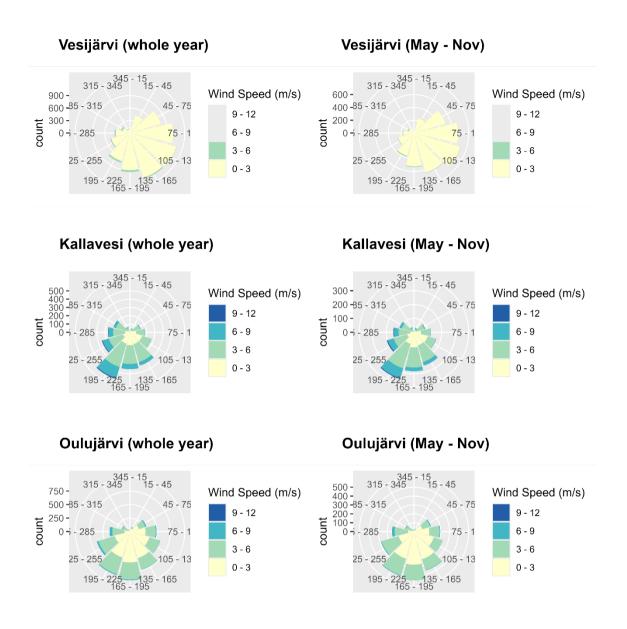


Figure S24. Wind roses of the three studied lakes, considering the whole year (left panels) and between May and November (no ice coverage, right panels) (FMI database, 2025).

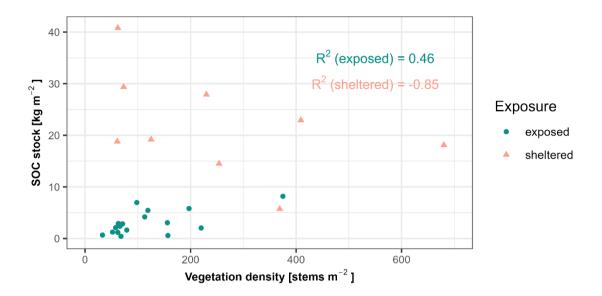


Figure S25. Comparison between sedimentary organic carbon (SOC) [kg m $^{-2}$] and vegetation density [stems m $^{-2}$], grouped by average fetch length ("exposed": fetch > 500 m; "sheltered": fetch <= 500 m).

References

105

FMI database (daily "Wind direction" and "Wind speed"): https://en.ilmatieteenlaitos.fi/download-observations, last access: 27 January 2025.

Maankamara: https://gtkdata.gtk.fi/maankamara/, last access: 3 April 2024.

Junna, T., Asmala, E., Mäkinen, J., Kortelainen, P., Jilbert, T., and Koho, K.: Land use as a key driver of increased organic carbon burial in boreal lakes, Biogeochemistry, n.d.

Koponen, S., Väkevä, S., Jokinen, A.-P., Virtanen, E., Viitasalo, M., Blenckner, T., and Cervo, A. de: Blue Carbon Habitats - a comprehensive mapping of Nordic salt marshes for estimating Blue Carbon storage potential, https://doi.org/10.6027/temanord2022-506, 2022.

Finnish National Geoportal (Orthophotos): https://kartta.paikkatietoikkuna.fi/?lang=en, last access: 17 July 2023.

Hertta database of Syke, 3rd River Basin Management Plan, data from 2012-2017: https://www.syke.fi/fi-fi/avoin tieto/ymparistotietojarjestelmat, last access: 21 January 2025.