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Abstract. Identifying aerosol sources is essential for designing effective air quality policies. This study introduces a novel

PM10 source apportionment approach – RASPBERRY (Real-time Aerosol Source apportionment using Physics-Based Exper-

imental data and multivaRiate factoR analYsis) – based on the analysis of aerosol physical properties, namely particle size

distributions and spectrally resolved light absorption. The availability of such measurements at high temporal resolution en-

ables aerosol source apportionment from real time to long-term scales. To demonstrate the implementation of RASPBERRY,5

we apply the method to a five-year hourly dataset (2020–2024) from an urban background site in the north-western Italian Alps,

combining observations from a cost-effective optical particle counter (Palas Fidas 200) and an aethalometer (Magee Scientific

AE33). RASPBERRY identifies six source factors contributing to PM10: traffic (9 %), biomass burning (10 %), two secondary

aerosol modes (condensation, 23 %, and droplet, 16 %), desert dust (21 %), and local dust resuspension (21 %). Hourly

resolved RASPBERRY estimates, averaged to daily values, show strong agreement with traditional chemical source appor-10

tionment techniques. Further validation is provided through comparisons with ground-based remote sensing (lidar-ceilometers,

sun photometers) and modelling tools (Validated ReAnalysis ensemble from the Copernicus Atmosphere Monitoring Service).

Selected real-time applications are also presented, including emergency surveillance during accidental events and the rapid

identification of long-range transport of secondary particles, desert dust, and smoke (Canadian wildfires, 2023–2024). Al-

though demonstrated at a single site, RASPBERRY is readily transferable to international air quality networks, as it relies on15

optical instruments commonly employed by regulatory authorities and environmental protection agencies.
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1 Introduction

Atmospheric aerosols have drawn significant attention for their impact on climate (IPCC, 2023) and their adverse impacts

on human health. In particular, particulate matter (PM) with aerodynamic diameter smaller than 10 µm (PM10) or 2.5 µm

(PM2.5) has been linked to cardiovascular, respiratory, and cerebrovascular diseases, as well as cancer (Chen and Hoek, 2020;20

Orellano et al., 2020). Consequently, PM is recognised as a critical air pollutant (European Environment Agency, 2024), to

which a large proportion of the global population remains exposed (World Health Organization, 2021; Targa et al., 2024).

Under the European Green Deal’s Zero Pollution Action Plan, the Council of the European Union recently adopted a revised

Ambient Air Quality Directive (AAQD, 2024/2881/EC, European Commission, 2024). This directive is more closely aligned

with WHO guidelines through the adoption of stricter air quality standards for key pollutants, including PM10 and PM2.5, and25

by introducing the monitoring of additional pollutants such as black carbon (BC) in aerosols. In anticipation of this regulatory

change and its implications for penalties imposed on member states exceeding the thresholds, and to tailor effective air quality

policies aimed at reducing morbidity and premature mortality (Guo et al., 2018; Bouscasse et al., 2022), the identification of

primary and secondary aerosol sources has become even more critical. Additionally, starting from the previous EU AAQD

Directive 2008/50/EC (European Commission, 2008, 2011), countries are allowed to exclude natural sources from PM ex-30

ceedances, making it important to discriminate anthropogenic contributions and natural ones. In southern Europe, for example,

transported mineral dust from the Sahara Desert represents a significant portion of PM10, contributing in some cases to over

5 µg m−3 to the annual average PM10 concentration (Querol et al., 2009; Aas et al., 2012; Pey et al., 2013; Barnaba et al., 2017;

Gobbi et al., 2019; Barnaba et al., 2022; Salvador et al., 2022).

The identification of PM emission sources – commongly referred to as source apportionment – is carried out either using35

models (source-oriented approach, Mircea et al., 2020) or through statistical analyses of multivariate observations (receptor-

oriented approach, Belis et al., 2019), with positive matrix factorisation (PMF) being the most widely used (Paatero and Tapper,

1994; Paatero et al., 2014). The receptor-oriented approach traditionally relies on offline chemical aerosol characterisation and

laboratory analyses of filter samples. This method is highly effective, as documented extensively in the literature (Hopke

et al., 2020), and is considered the ‘gold standard’ for PM source apportionment. However, it is labor-intensive, requiring40

significant manual effort and costs for sampling and analysis. Furthermore, the resulting information is often limited to daily

resolution, which overlooks sub-daily variations caused by emission sources and meteorological factors. Higher-resolution

sampling can be achieved during short-term campaigns (Pokorná et al., 2020), but this increases analytical workloads and

reduces the collected aerosol mass for the same sampling flux, necessitating more sensitive instruments to meet detection

limits.45

In recent years, automated instruments for online (in-field) chemical PM analyses have attracted significant interest. In-

struments such as the aerosol mass spectrometer (AMS, Jimenez et al., 2003) and its more compact and simpler to operate

counterpart, the aerosol chemical speciation monitor (ACSM, Ng et al., 2011b), enable real-time measurements of the chem-

ical composition and mass contributions of non-refractory aerosols, with a focus on the organic and fine fractions (Via et al.,

2023). Combined approaches that integrate online chemical analyses with aerosol optical property measurements (Valentini50
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et al., 2020; Barreira et al., 2024; Camman et al., 2024) have been explored, e.g. within the H2020 RI-URBANS project (Petit

et al., 2024), achieving comprehensive source apportionment. Despite these advances, the widespread deployment of online

chemical characterisation instruments remains challenging due to their high costs, operational complexity, and the expertise

required for their use. Moreover, even with such instruments, quick and accessible tools are needed for cross-validation or as

complementary strategies.55

In principle, any multivariate dataset obtained from automated instruments can be used in receptor modelling (Vecchi, 2023).

Particle size distributions (PSDs), for instance, can serve as alternatives or complements to chemical speciation (Vu et al., 2015;

Belis et al., 2019; Hopke et al., 2022). Indeed, several studies have explored the rich information provided by PSDs (Zhou et al.,

2004; Ogulei et al., 2007; Pey et al., 2009; Costabile et al., 2009; Thimmaiah et al., 2009; Dall’Osto et al., 2012; Wegner et al.,

2012; Cusack et al., 2013; Wang et al., 2013; Beddows et al., 2015; Krecl et al., 2015; Masiol et al., 2017a; Beddows and60

Harrison, 2019; Liang et al., 2020; Rivas et al., 2020; Wu et al., 2021; Kim et al., 2023; Kalkavouras et al., 2024; Vörösmarty

et al., 2024) and analysed their temporal and spatial variations (Beddows et al., 2014; Garcia-Marlès et al., 2024). Most PSD-

based studies focus on the number distribution of submicron particles (typically measured using scanning mobility particle

sizers) in nucleation or Aitken modes. In regulatory contexts, however, larger particles, which contribute more to PM10 and

partly to PM2.5 mass concentrations due to their greater volume, remain the primary focus.65

Extending PSD analysis to include accumulation and coarse modes (covering diameters of up to 2.5–10 µm or larger) has

been explored using aerodynamic particle sizers (APSs, Zhou et al., 2004, 2005a, b; Ogulei et al., 2006b, a; Gu et al., 2011;

Harrison et al., 2011; Sowlat et al., 2016; Masiol et al., 2016, 2017b; Leoni et al., 2018; Pokorná et al., 2020; Liang et al.,

2021; Song et al., 2021). Optical particle counters and sizers (OPCs/OPSs) are more affordable alternatives to APSs (Mazzei

et al., 2007; Yue et al., 2008; Cuccia et al., 2010; Khan et al., 2015; Sowlat et al., 2016; Hagan et al., 2019; Bihałowicz70

et al., 2023; Bousiotis et al., 2021; Ouaret et al., 2021; Bousiotis et al., 2023b, a; Qin et al., 2023; Kumar et al., 2024; Wang

et al., 2024a). Instead of measuring the aerodynamic diameter, these instruments quantify particle numbers and sizes based on

optical principles. However, converting optical diameters to aerodynamic diameters is not straightforward, as the OPC response

depends on particle properties such as refractive index and morphology (Ferrero et al., 2011, 2019; Chien et al., 2016). While

not critical for source apportionment purposes, these limitations have historically hindered the use of OPCs in such analyses.75

Recent technological and algorithmic advances, however, have mitigated some of these issues, even leading to the certification

of some OPCs as equivalent to gravimetric methods for PM mass concentration measurements (TÜV Rheinland Energie und

Umwelt GmbH, 2016; Marsteen and Hak, 2021). Consequently, many environmental agencies now integrate OPCs into air

quality networks, either alongside or as alternatives to traditional automated PM instruments. While OPCs are primarily used

to measure PM concentrations, their potential for providing PSDs remains underutilised.80

Aerosol optical properties such as light absorption coefficients – used to derive equivalent black carbon concentrations

(eBC) – have also been employed in source apportionment studies as proxies for chemical composition (Sandradewi et al.,

2008; Favez et al., 2010; Massabò et al., 2015; Bernardoni et al., 2017b; Ferrero et al., 2021; Rovira et al., 2025), sometimes in

combination with other techniques (Wang et al., 2012; Cusack et al., 2013; Beddows et al., 2015; Sowlat et al., 2016; Masiol
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et al., 2017a; Forello et al., 2019, 2023; Davulienė et al., 2024). The inclusion of BC in the new EU air quality directive85

2024/2881 is expected to further promote the use of optical instruments for characterising aerosol properties.

With the aim of combining the strengths of the PMF approach with the high resolution and affordability of aerosol physical

measurements, we present a novel source apportionment method based on aerosol physical/optical properties, named RASP-

BERRY (Real-time Aerosol Source apportionment using Physics-Based Experimental data and multivaRiate factoR analYsis).

Additionally, we evaluate its performances at an urban background station in Italy (Aosta). This site is influenced by multi-90

ple aerosol sources, including particle advection from the Po Valley (Diémoz et al., 2019a, b; Diémoz et al., 2021). Previous

investigations have demonstrated strong correlations at this location between source apportionment results derived from chem-

ical speciation and those based on PSDs obtained from OPCs (Palas Fidas 200). The main limitation in those studies was the

inability to fully separate, in the examined size range (0.18–18 µm), the finest particle modes associated with primary combus-

tion emissions (e.g., traffic and biomass burning) and secondary particles (e.g., sulfates) using size data from OPC alone. To95

overcome these limitations, the present work integrates OPC data with multiwavelength aerosol light absorption measurements

from an aethalometer (Magee Scientific AE33). Overall, this study has the following objectives:

1. Develop a simple and reproducible method for high temporal (hourly to sub-hourly) resolution PM source apportionment

using widely available automated instruments and software; provide a reproducible procedure that facilitates both the

analysis of large datasets and real-time implementation.100

2. Evaluate whether, and to which extent, PSDs in accumulation and coarse modes from cost-effective OPCs, routinely

used by environmental and air quality agencies to estimate PM concentrations, can provide valuable information for

PM10 source apportionment.

3. Apply the method over the long term and compare the results with those obtained from the more conventional chemical

approach.105

The work is organised as follows. Sect. 2 describes the experimental dataset and the measurement site; Sect. 3 outlines the

baseline source apportionment methodologies and the original development of RASPBERRY; Sect. 4 presents the results from

the new algorithm based on physical properties and the comparison with the chemical source apportionment; Sects. 5 and 6

provide the discussion and conclusions.

2 Experimental dataset110

This section provides an overview of the measurement site (Sect. 2.1), the automated in-situ instruments (Sect. 2.2), and the

remote sensing techniques employed to support data interpretation (Sect. 2.3). Chemical analyses conducted on the collected

filters, which serve as a reference for validating the new algorithm, are described in Sect. 2.4.
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Figure 1. (a) Italy observed from space by the MODIS Aqua radiometer on 29 December 2024 (NASA, 2024). The Aosta Valley, in the

northwestern Alps, is outlined in red. (b) Close-up of the Aosta Valley (red), bordered by France and Switzerland to the north and the

Piedmont region, within the Po basin in Italy, to the south. The city of Aosta is marked with a star.

2.1 Measurement site

Aosta (580 m a.s.l., 45.73 ◦N, 7.32 ◦E) is the capital of the Aosta Valley region in the northwestern Alps (Fig. 1a), has115

a population of approximately 33,000 and lies at the bottom of a valley surrounded by mountains exceeding 3500 m a.s.l

(Fig. 1b). The urban background air quality station of Aosta–Downtown, operated by the regional environmental protection

agency (ARPA Valle d’Aosta), is located in a residential and commercial area near a street and an outdoor parking lot (Fig. S1

in the Supplementary Materials, point P1). Yearly mean PM10 concentrations at the site ranged between 16 and 19 µg m−3

over the five years spanned by the study (2020–2024), with higher values during winter months, peaking at 35 µg m−3 on a120

monthly basis. This seasonal variation is attributed to both increased local emissions and meteorological conditions conducive

to pollutant accumulation (Agnesod et al., 1996). Previous studies (Diémoz et al., 2019a; Diémoz et al., 2020; Campanelli

et al., 2021; Mazzi et al., 2025) identified traffic and residential heating as significant pollution sources in winter, along with

road salting as a winter de-icing agent. Another probable local source at this urban site is a steel mill located 500 m south of

the station (Fig. S1, point P2), which influences PM levels downtown (Diémoz et al., 2021). As anticipated, PM concentrations125

are also modulated by mountain weather dynamics, including wintertime temperature inversions and cold-pool events reducing

atmospheric mixing, up-slope and down-slope winds favouring vertical exchange, and foehn winds contributing to fast drop of

pollutants and improved air quality. On a broader spatial scale (mesoscale), thermally driven winds transport pollutants from

the Po basin to the Alps (Diémoz et al., 2019a, b; Balestrini et al., 2024) on most sunny days from spring to autumn. The

Po basin is a well-documented atmospheric pollution hotspot, indeed the geographical and meteorological conditions typical130

of this densely populated and industrialised region in northern Italy lead to frequent exceedances of the EU daily PM limits.

Increased PM concentrations of secondary particles in Aosta–Downtown were found to correlate with these transport events
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(Diémoz et al., 2019b). Finally, on the synoptic scale, the region is periodically affected by desert dust transport (Fasano et al.,

2021), a typical feature of the Mediterranean basin.

Ground-based remote sensing instruments (described in Sect. 2.3) are operated at a nearby station, Aosta–Saint-Christophe,135

located 2.6 km east of the downtown site (Fig. S1, point P3). This station hosts the Aosta Valley atmospheric and solar

observatory (e.g., Fountoulakis et al., 2020). It is situated in a semi-rural residential area and is influenced by similar pollution

sources as the downtown location.

2.2 Automated in-situ instruments

The primary automated instruments installed at the Aosta–Downtown station in a temperature-stabilised shelter are sum-140

marised in Table 1 and detailed in the following sections. For homogeneity, and to enhance the signal-to-noise ratio (SNR), all

measurements were averaged to a common temporal resolution of 1 hour.

2.2.1 Palas Fidas 200 optical particle counter

Particle size distributions and PM concentrations are monitored by a Palas Fidas 200 (Palas GmbH, Karlsruhe, Germany),

an aerosol optical spectrometer designed for regulatory purposes and referenced in various studies (Di Antonio et al., 2018;145

Bousiotis et al., 2021; Ibrir et al., 2021; Diez et al., 2022; Maher et al., 2022; Van Poppel et al., 2023; Tanguy, 2023, 2024;

Mecca et al., 2024; Rodríguez and López-Darias, 2024; Jiang et al., 2025). The instrument determines PSDs in 63 logarithmi-

cally spaced bins across a range of 0.18–18 µm using the principle of light scattering from aerosols (the implications of the

finite minimum diameter detected by the instrument are discussed in Sect. 5). Based on the PSDs, the Palas Fidas 200 also

retrieves PM1, PM2.5, PM4, and PM10 concentrations, with equivalence certification by TÜV (TÜV Rheinland Energie und150

Umwelt GmbH, 2016) for PM2.5 and PM10. Details on the built-in proprietary retrieval algorithm, PM_ENVIRO_0011, can

be found in the manual (PALAS GmbH, 2016) and are reported in Sect. S2 together with a more exhaustive description of the

instrument operating principles and the sampling drying system.

For this study, which primarily focuses on PM10 mass concentrations, the number size distributions from the Palas Fidas

200 are further converted to volume size distributions (VSDs) under the assumption of spherical particle shape. Additionally,155

the resulting VSD is adjusted using the typical US-EPA efficiency curve for standardised sampling inlets as defined by EN

481 (with a 50 % cut-off at 10 µm) and detailed in the Palas Fidas 200 manual (PALAS GmbH, 2016). These conversion steps

are optional, as the PMF optimisation metric (introduced in Sect. 3.1, Eq. 3) includes a normalisation based on the estimated

uncertainty and is thus insensitive to the type of distribution provided. Nevertheless, we anticipate here that an important step

is to select a PM10 efficiency curve that includes diameter bins larger than 10 µm in the analysis, without cutting the VSD at160

10 µm, in order to improve the separation between desert dust and local resuspension contributions (Sects. 3.1 and 4.2).

6

https://doi.org/10.5194/egusphere-2025-5044
Preprint. Discussion started: 21 November 2025
c© Author(s) 2025. CC BY 4.0 License.



Table 1. Measurement stations and corresponding instrumentation employed in this study. The application purpose, the period of data

availability for each specific instrument and the portion employed in the present research are also listed.

Station Application Measured quantity Instrument Availability (used here)

Aosta

Downtown

Physical

apportionment

Physical

apportionment

Chemical

apportionment

Chemical

apportionment

Chemical

apportionment

Chemical

apportionment

Interpretative

support

Particle size distribution

and PM concentration

Light absorption by particles

Water-soluble anion-cation

daily concentration (offline)

EC/OC on PM10 samples

(offline)

Levoglucosan on PM10 samples

(offline)

Metals on PM10 samples

(offline)

NOx hourly concentration

Palas Fidas 200

Magee Sci. Aethalometer AE33

Dionex ion

chromatography system

Sunset thermo-optical analyser

Thermo Scientific Trace 1300

Varian 820-MS

Teledyne API200E

Horiba APNA370

September 2019–now

(2020–2024)

2020–now (2020–2024)

2017–2022 (2019–2022)

2017–2021a (2019–2021)

2019–2021a (2019–2021)

2000–2022b (2019–2022)

2004–2021 (2020–2021)

2021–now (2021–2024)

Aosta

Saint-

Christophe

Interpretative

support

Interpretative

support

Interpretative

support

Aerosol optical depth

and column properties

Aerosol backscatter profile

Aerosol backscatter profile

and depolarisation

Prede POM-02

Lufft CHM15k-Nimbus

Vaisala CL61

2012–now (2020–2024)

2015–now (2020–2024)

2022–now (2022–2024)

a The analysis is performed on 4 out of 10 days according to the laboratory schedule, except for 2020, when analyses are performed along with the metal and anion/cation

characterisation (on 6 out of 10 days).
b The analysis is performed on 6 out of 10 days according to the laboratory schedule.

2.2.2 Aerosol Magee Scientific AE33 aethalometer

The dual-spot Aerosol Magee Scientific AE33 aethalometer (Drinovec et al., 2015) continuously determines the light absorp-

tion coefficient, babs(λ), of particles deposited on a tape, at seven wavelengths spanning from ultraviolet (UV, 370 nm) to

infrared (IR, 950 nm). The spectral dependence of babs(λ) is commonly parameterised by an exponential function, defined165

by an Ångström Absorption Exponent (AAE; Zotter et al., 2017). The AAE facilitates the discrimination of carbonaceous
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aerosol species such as black/brown carbon (BC/BrC; Sandradewi et al., 2008). However, the optical properties of carbona-

ceous aerosols show large variability depending on the measurement location and period (Harrison et al., 2013; Bernardoni

et al., 2017b), and caution is advised when using predefined (a priori) AAE values.

The babs value at 880 or 950 nm can be converted to eBC mass concentration, expressed in ng m−3, using a mass absorption170

cross-section (MAC) coefficient. This conversion is actually operated by the instrument at all wavelengths, based on a set of

manufacturer-defined coefficients that scale inversely with wavelength, thus accounting for the theoretical spectral dependence

of black carbon absorption (Bond, 2001) and leading to the ‘nominal eBC’ (NeBC), as defined by Savadkoohi et al. (2024).

Employing NeBC(λ) ‘mass concentrations’ calculated as such instead of babs(λ) allows for a simpler computation of spectral

absorption differences. For instance, positive differences between NeBC mass concentrations in the UV and IR spectral ranges175

are indicators of UV-absorbing compounds, such as those associated with biomass burning. This quantity, often referred to

as ‘Delta-C’ in the scientific literature (Allen et al., 2011; Wang et al., 2011), is included as a variable in our PMF analysis

(Sect. 3.1.2):

Delta-C = NeBC(370 nm)−NeBC(880 nm) (1)

The choice of the upper limit (880 or 950 nm) is not critical. Conversely, we selected the lower limit based on both the180

correlation index between levoglucosan concentrations and aethalometer measurements at 370 nm, and the temporal patterns

of Delta-C (further details are provided in Sect. S3). Although recent research demonstrates that using instrument- and site-

specific parameters (Grange et al., 2020; Ferrero et al., 2024), or harmonised coefficients (Zanatta et al., 2016; Savadkoohi

et al., 2024), leads to more accurate determination of the absorption coefficients, we employ nominal values since the source

apportionment results within the examined time frame are influenced more by short-term temporal and spectral variations in185

aerosol light absorption than by the absolute accuracy of babs values.

Note that our algorithm directly incorporates 7-wavelength measurements from the aethalometer, in contrast to other studies

that rely on a priori assumptions of the AAE for the apportionment of fossil fuel and biomass burning sources (e.g., Sandradewi

et al., 2008; Beddows et al., 2015). Additional details regarding the aethalometer instrumental setup and maintenance can be

found in Sect. S4.190

2.2.3 Other in-situ surface instruments

Common regulated air pollutants are monitored at the Aosta–Downtown station. In this study, we employ NOx hourly con-

centrations determined with Teledyne API200E and Horiba APNA370 chemiluminescent analysers as proxy for combustion

processes in a posteriori correlation analysis. We opted not to include gases in the source apportionment, unlike some previ-

ous studies (Zhou et al., 2005a; Ogulei et al., 2007; Thimmaiah et al., 2009; Chan et al., 2011; Sowlat et al., 2016; Masiol195

et al., 2017b; Rivas et al., 2020; RI-URBANS, 2024), as gases might undergo different processes compared to PM10 and their

photochemical behaviour can be highly dependent on meteorological conditions.
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2.3 Remote sensing techniques

Ground-based active and passive remote sensing instruments (Table 1) provide a three-dimensional view of the atmosphere,

supporting and enhancing the interpretation of in situ surface measurements. In particular, two automated lidar-ceilometers200

(ALCs) – a Lufft CHM15k-Nimbus and a Vaisala CL61 –, contributing to the national ALC network ALICENET (Bellini

et al., 2024, 2025), are used to determine the particle backscatter coefficient and to derive other geophysically relevant quanti-

ties, such as particle mass concentration, along the vertical profile. Additionally, volume depolarisation (δp) profiles from the

CL61 instrument are carefully analysed to infer the shape (spherical or irregular) and, consequently, the likely source/type, of

suspended particles in the atmosphere (Goi et al., 2025).205

A Prede POM-02 sun photometer is also used to derive the amount and the aerosol properties integrated over the atmo-

spheric column (Diémoz et al., 2014; Fasano et al., 2021). Its calibration and processing are centralised within the Skynet

network (Campanelli et al., 2024). Specifically, direct-sun irradiance measurements are processed using the sunrad code (Es-

tellés et al., 2012) to determine aerosol optical depth (AOD) at 11 wavelengths and the Ångström extinction exponent. Aerosol

size distribution and optical properties are instead retrieved from radiance data collected in the almucantar and principal plane210

using the Skyrad Pack MRI version 2 software (Kudo et al., 2021). As this latter technique requires the entire almucantar/prin-

cipal plane to be cloud-free and above the local mountain horizon, the present study also employs the algorithm by O’Neill

et al. (2001), which is based solely on direct-sun measurements and the spectral variation of the Ångström exponent, to sepa-

rately estimate the fine- and coarse-mode AOD fractions. Although this approach provides less information content, it enables

a greater number of retrievals, including those performed under scattered cloud conditions and at low solar elevation. The215

fine/coarse AOD fraction retrievals are then used to identify the presence of transported desert dust within the atmospheric

column.

2.4 Chemical analyses

PM10 samples were collected daily on filters and analysed offline at ARPA laboratory until 2022 (2021 for EC/OC and lev-

oglucosan), following methods described in previous studies (Diémoz et al., 2019b; Diémoz et al., 2021). Key details are220

summarised below, while additional information can be found in the cited publications. Due to limited availability of sampling

equipment and laboratory resources, certain analyses were conducted every day, whereas others alternated on different days

(Table 1), further highlighting the substantial effort required to maintain continuous and comprehensive chemical analyses.

PM10 collected on PTFE-coated glass fiber filters using an SM200 low-volume sequential sampler (1 m3 h−1) was analysed

daily to determine concentrations of water-soluble anions and cations, i.e. Cl−, NO−3 , SO2−
4 , Na+, NH+

4 , K+, Mg2+, and225

Ca2+. These were measured using ion chromatography with a Dionex system (AQUION/UCS-1000 modules) based on the

CEN/TR 16269:2011 guideline. In contrast, PM10 collected on quartz fiber filters with an MCZ Micro-PNS LVS16 low-volume

sequential sampler (2.3 m3 h−1) was analysed for elemental/organic carbon (EC/OC) and levoglucosan on 4 out of every 10

days on average, and for metals on the remaining 6 days. EC/OC was determined using the thermo-optical transmission method

in accordance with the EUSAAR-2 protocol (Cavalli et al., 2010), while levoglucosan was analysed via gas chromatography230
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with flame ionisation detection (GC-FID) after acetonitrile-based solid-liquid extraction. Metals (Cr, Cu, Fe, Ni, Pb, Zn, As,

Cd, Mo, and Co) were quantified using coupled plasma mass spectrometry after acid mineralisation of the filter in aqueous

solution.

The alternating schedule prevents simultaneous analysis of all species. Therefore, two separate datasets are considered for

chemical source apportionment:235

– Dataset 1 (2019–2021): includes water-soluble ions, EC/OC, and levoglucosan. This dataset is useful to separate the

main aerosol emission sources, allowing differentiation between liquid (fossil) fuels and solid (wood) combustion based

on EC/OC and levoglucosan.

– Dataset 2 (2019–2022): includes water-soluble ions and metals. This dataset is better suited for constraining crustal

elements and the steel-mill contribution, but lacks the ability to further separate combustion sources accurately.240

Chemical speciation is employed here as an independent reference dataset to validate the new physical source apportionment.

The integration of physical and chemical properties in a joint analysis is reserved for future studies.

3 Baseline and novel approaches to source apportionment: from PMF to RASPBERRY

3.1 Source apportionment methods

The source apportionment methods employed in this study are mainly based on the PMF technique, as implemented in the245

US Environmental Protection Agency (EPA) PMF v5.0 tool (United States Environmental Protection Agency, 2014). The EPA

PMF software is well-established and widely used by numerous agencies, making it a robust starting point for developing an

algorithm that can be easily replicated by other users.

PMF aims to factorise the matrix X, whose m columns represent the series of analysed species or measured variables, and

the n rows correspond to the respective samples, into the product of a source contribution matrix G (n×p) and a source profile250

matrix F (p×m):

X = GF+E (2)

where p is the user-defined number of factor profiles and E represents the matrix of the residuals from the factorisation.

To ensure the elements of both G and F have physical meaning, the factorisation is constrained such that all values are non-

negative. In other words, PMF decomposes a multivariate dataset with a large number (m) of variables into a smaller set255

of p fixed profiles F, attributable to different emission sources, and their corresponding time-varying contributions G. The

factorisation is performed by minimising the squared sum of the residuals E, scaled by the uncertainties u of the variables, i.e.

the objective function Q:

10

https://doi.org/10.5194/egusphere-2025-5044
Preprint. Discussion started: 21 November 2025
c© Author(s) 2025. CC BY 4.0 License.



Q =
n∑

i=1

m∑

j=1

[
xij −

∑p
k=1 gik fkj

uij

]2

(3)

In this study, PMF is applied twice: once using chemical data (hereafter referred to as ‘chemical PMF’, Sect. 3.1.1) and once260

using optical-dimensional data (hereafter referred to as ‘physical PMF’, Sect. 3.1.2, as a first step of the complete ‘physical

source apportionment’ of RASPBERRY, Sect. 3.2).

3.1.1 Configuration of the chemical PMF

The chemical PMF setup closely follows the methodology described by Diémoz et al. (2019b) and Diémoz et al. (2021). An

important difference in this study is the use of PM10 concentrations from the Palas Fidas 200 as the total variable for the chem-265

ical PMF, replacing the data from a previously co-located Opsis SM200 beta attenuation monitor (no longer available in the

period under investigation). This change also ensures consistency with the physical PMF, based on hourly PM10 concentrations

and size distributions from the Palas Fidas 200 instrument. Analytical error fractions and detection limits reported by ARPA

chemical laboratory are applied using an equation-based approach (Norris et al., 2014) to estimate total uncertainties for each

sample/species combination. As outlined in Sect. 2.4, two separate chemical PMF analyses are performed due to the alternating270

sampling schedule and differing chemical characterisations. Further information on the configuration of the chemical PMF is

reported in Sect. S5.

3.1.2 Configuration of the physical PMF

The physical PMF analysis incorporates hourly averages of volume size distributions derived from the Palas Fidas 200 and

multiwavelength optical absorption data obtained from the aethalometer. For the size-related measurements, we employ 63275

VSD bins ( dV
dlogD ) with mid-point diameters (D) ranging from 0.2 to 17.17 µm, without any channel grouping (further details

are provided in Sect. S6). For the optical absorption part, we include multiwavelength measurements from the aethalometer,

specifically NeBC at all wavelengths from 470 to 950 nm and Delta-C as defined in Eq. 1. NeBC(370 nm) is excluded to avoid

collinearity with Delta-C. The PM10 concentration measured by the Palas Fidas 200 is retained as the ‘total variable’ (Norris

et al., 2014).280

It is worth emphasising that dimensional and optical absorption information is combined in this study within a single PMF

analysis. This approach differs from the methodology presented, for example, in Beddows and Harrison (2019), where two

separate PMFs are conducted sequentially – one based on chemical information and the other on size distribution data – to de-

termine the size distributions associated with specific chemical characteristics. Our approach also differs from those of Cuccia

et al. (2010) and Mazzei et al. (2007), who performed a post-hoc multi-linear regression between particle number measured in285

different size bins and source contributions from a prior chemical/elemental PMF. Conversely, our method integrates dimen-

sional and light absorption properties into a unified PMF, both contributing to shaping the final solution and stabilising it by

reducing rotational ambiguity in the profiles (Emami and Hopke, 2017; Paatero, 2018; Belis et al., 2019).
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A critical step for achieving successful source apportionment is the definition of uncertainties to be inputted into the PMF

(Forello et al., 2023). Unfortunately, to the best of our knowledge, no thorough assessment exists for the measurement uncer-290

tainties or detection limits associated with the optical spectrometer used in this work. This challenge, commonly encountered

in studies dealing with particle distributions, is typically addressed pragmatically by finding a ‘heuristic uncertainty’ (Chueinta

et al., 2000; Ogulei et al., 2006b, 2007) through trial-and-error methods or iterative approaches that loop through all parameter

combinations to optimise a specific metric (Beddows et al., 2015). In this study, we adopt the same uncertainty framework

described by Vörösmarty et al. (2024), which is often employed in PMFs based on particle size/number distributions. The295

measurement uncertainty for each data point is modelled as:

σij = Aα(Nij + N j) (4)

where Nij is the size distribution for sample i and size channel j, N j is the time average in channel j, and A and α are free

parameters. The overall effective uncertainty is subsequently defined as:

sij = σij + C3 Nij (5)300

where C3 is an additional parameter to be tuned. For this study, the formulae utilise particle volume distributions (rather than

number distributions, N ) for the dimensional data, and NeBC mass concentrations at aethalometer wavelengths for the optical

absorption data.

When mixing different quantities in a single PMF, their residuals must be appropriately weighted in Q (Paatero, 2018). This

ensures that the influence of each quantity on the final solution (i.e., the total contribution of their scaled residuals in Q) is well305

balanced. Achieving an optimal solution required us several tests, as small variations in the uncertainty configuration often

produced unpredictable changes in the final outcome. Importantly, during this procedure, we avoided ‘tuning’ the results of

physical PMF to match those of chemical PMF, ensuring the independence of the two datasets. The whole process is discussed

in Sect. S6, where the final coefficients A, α and C3 selected for the PMF are also provided (Table S1). No additional modeling

uncertainty was included into the PMF.310

Seasonal splitting was attempted, but without satisfactory results. This is discussed in Sect. 5 (and Sect. S18). No normalisa-

tion for the dilution effect (Dai et al., 2020) was performed a priori on the input dataset, since under many conditions the wind

contributes to aerosol advection rather than dilution at the study site (Diémoz et al., 2019a). An alternative approach, based

on a posteriori meteorological normalisation and applied to the source-apportioned results (e.g. Grange and Carslaw, 2019;

Stirnberg et al., 2021), will be described in a forthcoming publication.315

3.2 Strategy to address large datasets, and real-time implementation of physical source apportionment

At this stage, two apparently unrelated challenges emerge:
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Figure 2. Overview of the RASPBERRY algorithm concept.

1. EPA PMF v5.0 notoriously encounters difficulties with large datasets, during both the factorisation phase and the subse-

quent diagnostic tests (United States Environmental Protection Agency, 2014). This is a concern for our dataset, which

consists of 70 species sampled at hourly intervals over five years. While Hopke et al. (2023) recently proposed a solution320

using the multilinear engine (ME-2) combined with specific scripts, this introduces additional complexity and licencing

constraints. Aggregating hourly measurements to a daily or longer timescale is an option, but it would smooth extreme

values (peaks and zeros) that help reduce rotational ambiguity in the PMF and would result in the loss of sub-daily

information.

2. As mentioned, a major objective of this study is to implement a real-time approach that quickly updates the source con-325

tributions as new data become available, without the need to re-run the PMF software. Moreover, we avoided solutions

relying on additional proprietary software (Chen et al., 2022).

These challenges prompted the development of a simplified strategy, outlined in Fig. 2, and consisting of the following steps:

a. A random subset of the whole data series is selected, which includes a few thousands of samples (rows of the X matrix

spanning all species). To maintain annual balance, equal sample numbers (1000) are taken from each season, resulting330

in 4000 samples (i.e. about 10 % of all available measurements in the Aosta–Downtown dataset). This random sampling

enables quicker PMF execution while preserving key features, such as peaks and zeros, in the original series without

averaging. Dall’Osto et al. (2012) followed a similar approach for the same reasons.
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b. The PMF is performed with this random subset as input, followed by diagnostic tests. This phase can be thought of as

‘training’ the algorithm. Stability of the solution has been ensured by manually repeating the factorisation with different335

random subsets.

c. We adopt the chemical mass balance principle (CMB, Watson et al., 1991), using the factor profiles (F matrix) previously

obtained during the ‘training phase’ along with the same uncertainties employed in the PMF. Such an extrapolation allows

us to estimate source contributions for both the samples excluded at point ‘a’ (for long-term dataset analyses) and new

measurements (e.g., for real-time implementation), assuming the profiles remain stable over time. A similar approach340

was previously followed by Ng et al. (2011a).

This CMB technique retrieves the source contribution matrix (G) by minimising the same Q metric used by the PMF (Eqs. 2–

3), which was employed to calculate both the profile and contribution matrices with the additional positivity constraint. This

simplified method corresponds to solving a weighted least square problem, i.e. every row i of G satisfies the equation (e.g.,

Aster et al., 2019):345

Gi∗ = Xi∗Wi (FWi)
+ (6)

Here, Wi is a diagonal matrix containing the inverse of the uncertainties given as input to the PMF for sample i and all

species j, s−1
ij , and ()+ denotes the Moore-Penrose inverse matrix. For this calculation, the column of F relative to the total

variable (F∗PM10 ) is excluded, as well as the total variable PM10 from X, leaving optical absorption data (NeBC concentrations

and Delta-C) and volume size distributions as predictors. The profile matrix (F) is derived from the PMF output tagged350

as ‘concentration of species’, yielding unitless retrieved contributions with an average of 1. To estimate the contribution to

PM10, the normalised time series are scaled by the average PM10 carried by each factor (F∗PM10 ). This calculation can be

implemented in any scientific programming environment using pseudo-inverse or singular value decomposition. In this study,

we used basic matrix operations in the R environment (R Core Team, 2022). Verification confirmed that, for samples included in

the training dataset, the results correspond with the PMF output (Fig. S5). The whole approach is referred to as RASPBERRY.355

As an additional remark, we emphasise that, in contrast to the nonlinear minimisation approach with positivity constraints

used by Beddows and Harrison (2019), our simpler weighted least squares method facilitates the identification of cases where

PMF profiles do not adequately represent the new measurements. Indeed, negative retrieval values may indicate that specific

measurements exhibit characteristics absent from the training dataset, thus providing useful information on the retrieval quality

to the user. In the dataset under investigation, this mostly occurs with coarse particles, with approximately 1.5 % exhibiting360

retrieved PM10 contributions below −0.5 µg m−3.

4 Results

The results of the chemical PMF are briefly presented in Sect. 4.1, followed by a detailed analysis of the overall RASPBERRY

results in Sect. 4.2, where we focus on the identified source profiles and their average contributions to PM10. Sect. 4.3 compares
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the novel methodology with the traditional source apportionment based on chemical characterisation. Finally, Sect. 4.4 show-365

cases the performances of the method during specific events, with a particular focus on the real-time algorithm capabilities.

4.1 Chemical PMF

For both chemical PMFs, using datasets 1 and 2 (Sect. 2.4), six-factor solutions were selected as optimal, based on the criteria

of source separation and physical interpretability. Their profiles and additional details on this selection process, along with the

associated quality metrics, are provided in Sect. S7, following current reporting recommendations (Paatero et al., 2014; Brown370

et al., 2015; Belis et al., 2019). These findings have already been discussed in previous studies (Diémoz et al., 2019b; Diémoz

et al., 2021), to which interested readers are referred. Therefore, only a brief summary is provided below.

From dataset 1 (anion/cation, EC/OC, and levoglucosan), the following factors are identified:

1. Vehicle traffic emissions, characterised by high EC concentrations and the absence of levoglucosan, with maximum

contributions in winter and moderate levels throughout the rest of the year. This profile also contains some Ca2+ and375

Mg2+, likely indicating non-exhaust particles from road dust resuspension associated with exhaust emissions (in-depth

discussion in Sect. S7).

2. Residential biomass burning, marked by elevated concentrations of levoglucosan, K+ and EC, and maximum contribu-

tions occurring in winter.

3. Sulfate-rich factor, dominated by high concentrations of sulfate and ammonium, with relatively stable contributions380

throughout the year.

4. Nitrate-rich factor, characterised by high concentrations of nitrate and ammonium, with maximum contributions ob-

served from autumn to spring.

5. Winter salting, identified by high concentrations of Na+ and Cl− and distinct contribution spikes in winter.

6. Crustal source, associated with elevated concentrations of Ca2+ and Mg2+, along with OC, and displaying stable con-385

tributions throughout the year.

In previous studies (Diémoz et al., 2019a, b; Diémoz et al., 2021), factors 3 and 4 rich in secondary compounds were primar-

ily attributed to the advection of polluted air masses being transported from the Po basin to the Alps. Secondary formation at a

more local level (e.g., Yue et al., 2008), potentially facilitated by pre-existing advected particles (Masiol et al., 2017a), cannot

be ruled out and will be the focus of future research.390

PMF analysis using dataset 2 produces similar results. However, in the absence of levoglucosan, the two combustion sources

(vehicle traffic emissions and residential biomass burning) combine into a single factor, strongly correlating with NOx. Ad-

ditionally, a distinct factor associated with the steel mill can be identified. This ‘industrial’ factor is characterised by elevated

concentrations of Cr, Ni, and Co, and contributions marked by peaks throughout the year. However, it has a marginal average

15

https://doi.org/10.5194/egusphere-2025-5044
Preprint. Discussion started: 21 November 2025
c© Author(s) 2025. CC BY 4.0 License.



contribution to PM10 at Aosta–Downtown and will not be considered in further analyses. With respect to dataset 2, only the395

two most important factors containing coarse particles (crustal and winter salting) will be used in the subsequent sections.

4.2 Physical PMF and RASPBERRY source apportionment

Physical PMF solutions with up to seven factors were explored, with the six-factor solution deemed the most suitable (an

in-depth examination of the selection criteria is provided in Sect. S8). Based on their profiles and the temporal patterns of

their PM10 contributions, the six factors are assigned to the following aerosol sources/types: traffic emissions, residential400

biomass burning, secondary aerosol in condensation and droplet modes, desert dust, and local dust resuspension. They are

named according to sources considered most representative or significant for each factor, while recognising that other primary

and secondary processes may also lead to formation of particles with similar dimensional/optical properties. Indeed, every

PMF represents a simplification of actual aerosol processes and six factors cannot fully describe the complexity of real-world

emission sources.405

Figure 3 presents the factor profiles for light absorption and volume size distribution. The continuous and light-coloured

lines (left y-axis scale, also marked with brighter colours) represent the absolute contributions to the VSD/NeBC (average over

the period 2020–2024), as obtained from the constrained run, together with an estimate of their uncertainty. The latter is derived

from the dQmax= 4 range of the DISP test (coloured area), i.e. the range associated with a maximum increase of 4 in the object

function Q (Eq. 3), often used as a proxy for rotational uncertainty in PMF profiles (e.g., Paatero et al., 2014; Masiol et al.,410

2017a). The dashed and darker lines (right y-axis scale, also marked with darker colours) indicate the percentage contribution

of each factor to every size/spectral channel.

With the chosen configuration, the PM10 concentration of the subset given as input to the PMF is reconstructed with high

accuracy by the factorisation (R2: 0.97, intercept: −0.99 µg m−3, slope: 1.07). All optical absorption and dimensional PMF

‘species’ show good reconstructions (R2> 0.9), with the exception of the six largest size fractions, with R2∼ 0.6. It should be415

emphasised that this level of agreement, even surpassing that observed in the chemical PMF, is partly attributable to the total

variable, PM10, and volume distributions being originally derived from one another by the Palas algorithm (PM_ENVIRO_0011;

in-depth discussion in Sect. 5).

The contribution time series of each factor to PM10 over the entire 2020–2024 period are obtained by applying Eq. 6 to

the whole dataset (a visual example of the procedure is presented in Fig. S6). The hourly absolute PM10 contributions are420

shown in Fig. S7. Figure 4 (together with Figs. S12–S17) displays their average at different temporal scales, the bold lines

representing the mean contributions and the coloured areas denoting the 95 % confidence interval around the mean. Average

relative (percentage) contributions, discussed later (Sect. 4.3), are presented in Figs. S11 and S18–S23.

The comparison between the sum of all factor contributions (reconstructed PM10) and the original PM10 measurements from

the Palas Fidas 200 (Fig. 5, including nearly 40,000 samples) exhibits similarly robust statistics as found for the physical PMF425

subsample (R2: 0.97, intercept: −0.85 µg m−3, slope: 1.06). For instance, only 5.6 % of the reconstructed PM10 data exhibit

discrepancies with respect to measurements exceeding 5 µg m−3, and less than 1 % exceeding 10 µg m−3.
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Figure 3. Light absorption (left column) and volume size distribution (right column) profiles of the six factors identified by the physical

PMF. The continuous and light-coloured lines (left y-axis scale, also marked with brighter colours) represent the absolute contribution of

each factor to the VSD/NeBC (average over the period 2020–2024), as obtained from the constrained run, together with an estimate of

its uncertainty (derived from the dQmax= 4 range of the DISP test, coloured area). Notice that the ranges of the six plots differ for better

visualisation. The dashed and darker lines (right y-axis scale, also marked with darker colours) indicate the percentage contribution of each

factor to every size/spectral channel. Note for the optical absorption part: the dotted vertical lines indicate the aethalometer wavelengths,

at which the spectral NeBC contributions are determined. NeBC(370 nm), not directly included in the PMF, was reconstructed as sum of

NeBC(880 nm) and Delta-C. This latter, here defined as NeBC(370 nm)−NeBC(880 nm), is represented both in absolute (circular marker

and coloured area) and percentage (square and darker marker) terms, in the right part of the plot. Also shown are the Ångström absorption

exponents (AAE) for three selected factors, calculated a-posteriori from the PMF results.
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(c) Coarse particles 

Figure 4. Average contributions to PM10 at different temporal scales for factors associated with (a) combustion processes, (b) secondary

processes, (c) coarse particles. The bold lines represent the mean contributions, while the coloured areas denote the 95 % confidence interval

around the mean.
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Figure 5. Comparison between measured PM10 and PM10 reconstructed by RASPBERRY, including nearly 40,000 samples. The colour scale

represents the density of the points. The regression statistics are reported in the plot.

The ratio between the PM mass associated with each factor and the corresponding particle volume concentration represents

the mean apparent mass density linked to that factor. These values are reported in Table S2. While most of them are of the

same order of magnitude as the expected bulk aerosol density of ∼1–2 g cm−3 (Hand and Kreidenweis, 2002; Pitz et al.,430

2003; Michael Geller and Sioutas, 2006; Hu et al., 2012), they systematically increase towards the finest modes. This trend

suggests that the OPC compensates for unmeasured particles with size below its sensitivity range. Particles emitted by traffic

are assigned the highest density. Based on the apparent density concept, PM concentrations for size fractions other than PM10

can be readily estimated using the same extrapolation algorithm with truncated size distributions (Fig. S8).

Finally, by taking advantage of the hourly resolution obtained with RASPBERRY, factor contributions can be correlated with435

wind measurements and other meteorological variables on an hourly timescale. The results, presented in Sect. S14, support the

source attribution discussed above.

4.2.1 Factors related to combustion processes

The first two factors are assigned to road traffic and residential biomass burning emissions, respectively. Indeed, they both

exhibit strong light absorption in their profiles (Figs. 3a and 3c), with NeBC contributions significantly different from zero440

as evident from the displacement interval of the perturbed variables (constrained DISP test, coloured areas). Traffic emissions

(Fig. 3a) show an average NeBC mass concentration of approximately 700 ng m−3 and a Delta-C of zero, indicating small

spectral variation from IR to UV wavelengths, as expected from BC-dominated particles. This factor accounts for about half

of the total NeBC at 370 nm and even more at longer wavelengths. Biomass burning (Fig. 3c) has a slightly lower contribution

to NeBC (400–600 ng m−3) and a Delta-C accounting for nearly 100 % of its total value, denoting increased absorption in445

UV wavelengths due to light-absorbing OC (BrC). Ex-post AAEs calculated using absorption coefficients at all wavelengths
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are 1.06 for road traffic and 1.79 for residential biomass burning. These values are consistent with established AAE ranges

of 0.9–1.1 for liquid (fossil) fuel combustion and 1.7–2.2 for biomass burning both at the surface (e.g., Sandradewi et al.,

2008; Bernardoni et al., 2017b; Zotter et al., 2017; Belis et al., 2019; Forello et al., 2023; Rovira et al., 2025) and for the total

atmospheric column (Russell et al., 2010).450

The size distributions of both factors (Figs. 3b and 3d) exhibit multimodal structures, indicating composite source contribu-

tions (Mazzei et al., 2007; Cuccia et al., 2010). A common feature, however, is their increase towards the lower limit of the

diameter scale, suggesting potentially higher VSD values for particles smaller than 180 nm, which is beyond the lower OPC

detection limit. We acknowledge the significant limitations in identifying traffic-related particles based on OPC-derived VSDs.

Notably, the largest number contribution from ‘fresh’ traffic exhaust particles typically lies within the Aitken mode (tens of455

nanometres, e.g. Costabile et al., 2009; El Haddad et al., 2009; Gu et al., 2011; Dall’Osto et al., 2012; Wu et al., 2021), which is

not captured by the OPC. Nevertheless, in our case, aethalometer measurements – characterised by high absorption coefficients

and an AAE close to 1, the commonly accepted theoretical value for black carbon (Liu et al., 2018) – play a fundamental role in

attributing this factor to traffic exhaust emissions, particularly to an ‘aged traffic’ component that has shifted to larger particle

sizes (Zhou et al., 2004; Yue et al., 2008; Pey et al., 2009; Gu et al., 2011; Liang et al., 2021). This interpretation is further460

supported by the associated temporal patterns discussed in the following paragraphs.

Some particles within this factor, especially those with diameters greater than 1 µm, may additionally originate from non-

exhaust emissions, and notably tyre and brake wear (Gietl et al., 2010; Harrison et al., 2011, 2012; Vu et al., 2015), road surface

abrasion and dust resuspension (Sowlat et al., 2016; Leoni et al., 2018; Masiol et al., 2016; Savadkoohi et al., 2025). Only a

small fraction of particles >5 µm is visible in this factor, as these latter are likely better represented by factor 6 (Sect. 4.2.3).465

The differing size fractions of exhaust and non-exhaust particles, along with their distinct atmospheric dispersion behaviours

and sensitivity to weather and pavement conditions, can lead to partial decorrelation between these particle types. This effect

is particularly evident in sub-daily measurements, where temporal patterns of the two fractions may shift relative to each other

(see further results on this aspect in Sect. 4.4.1). It is also worth noting that even source apportionments based on aerosol

chemical properties face limitations in attributing all coarse particles from non-exhaust emissions to traffic. However, in that470

case, the temporal decorrelation between exhaust and non-exhaust particles may be partially alleviated by use of daily averaged

data.

Regarding residential biomass burning, its average volume size distribution agrees with previous studies, which report

slightly larger sizes compared to traffic (Beddows et al., 2015), also due to ageing processes (Vu et al., 2015), and max-

ima around 100–200 nm (Gu et al., 2011; Friend et al., 2013). Biomass-related particles in the coarse range, such as K+, are475

additionally documented (Cuccia et al., 2010; Bernardoni et al., 2017a), highlighting the very broad size spectrum associated

to this source.

As a final remark on the size distributions, the dQmax= 4 region of both combustion-related factors (Figs. 3b and 3d) is the

largest among all PMF profiles in relative terms (so-called ‘interval ratio’, Brown et al., 2015). This likely reflects the greater

uncertainty in the VSDs of these factors.480
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The temporal patterns (Fig. 4a) reveal similarities and differences. Both factors show two maxima in their daily cycles,

with peaks in the morning/evening and minimum in the middle of the day. This reflects the daily evolution of the mixing

layer in the valley (Bellini et al., 2025) and the emission cycles, with traffic peaking during rush hours and biomass burning,

associated with operation of residential heating systems, peaking approximately three hours later. The differing behaviour of

the two emission sources becomes even more apparent when their relative contributions to PM10, rather than absolute values,485

are considered (Figs. S11a and S18–S19). Notably, biomass burning accounts for 30–40 % of nighttime PM10 during the winter

months. Seasonally, traffic emissions contribute quite consistently to PM10, however, during the cold season, the morning and

late afternoon peaks become more pronounced (Fig. S12), likely due to the reduced mixing height. A slight increase in PM10

from traffic during summer and a marked rise in December are observed (Fig. 4a), probably due to tourism (Diémoz et al.,

2021). Indeed, in winter Aosta is a prominent destination for skiers frequenting nearby snowfields, particularly during the490

winter holiday season. On the other hand, biomass burning is confined to winter.

Weekly trends further distinguish the two, with road traffic emissions showing a pronounced weekend effect, in contrast

to biomass burning. In particular, the Sunday morning peak of traffic emissions is remarkably damped compared to the other

days of the week (Fig. S12). This difference is confirmed by the Kruskal-Wallis test (e.g., Hollander et al., 2015), used to

check whether daily mean PM10 contributions are similar on weekdays and weekends (null hypothesis). The resulting p-values495

are 1×10−17 for traffic emissions, i.e. weekdays/weekend differences are statistically significant at the 5 % level, and 0.89

for biomass burning, i.e. no significant differences. Despite this, the biomass burning morning peak exhibits a slight week-

day/weekend difference, potentially indicating a weak interference from traffic emissions. A similar behaviour was identified

by Zotter et al. (2017), who suggested that the AAE of traffic emissions may vary throughout the day, with larger values –

mimicking that attributed to biomass burning – for fresh emissions. This effect is expected to be more pronounced in low BC500

concentration scenarios, such as in our study. If this is the case, the observed behaviour is intrinsic to any aethalometer source

apportionment model based on only two factors. An additional explanation proposed by the same authors involves the rapid

formation of secondary organic aerosol from the ageing of traffic (also Favez et al., 2010), which again leads to an increase in

AAE.

The overall contributions of these two factors to the total PM10 in the period 2020-2024 are 1.6 µg m−3 (9 %) for traffic505

and 1.8 µg m−3 (10 %) for biomass burning. These relatively low fractions reflect the generally unpolluted nature of the site,

with weak local emission sources. However, it should be noted that these values represent annual averages, whereas wintertime

concentrations can be significantly higher (e.g., Fig. S6).

As confirmation of the correct attribution of these factors, three long-term statistical considerations are provided. First, the

sum of the two factor contributions, representing combustion-related PM10, is correlated with the NOx concentration measured510

at the same station over the five-year period 2020–2024. Figure S9 shows that, despite the different physical states of the

pollutants (particles and gases), their relationship is linear, with a Pearson correlation coefficient of 0.93 (R2 = 0.87). Second,

the average daily cycle of PM10 concentrations attributed to traffic at Aosta–Downtown is compared with vehicle counts

recorded simultaneously 500 m to the south during a measurement campaign conducted in 2020–2021 (231 measurement days

distributed throughout the two years). Although rigorous and sophisticated methods exist to disentangle the effects of emissions515
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Figure 6. Comparison of the average daily cycle of the traffic emission contributions across different years, as retrieved by RASPBERRY,

for the period 9 March – 4 May. This interval includes the COVID-19-related ‘lockdown’ in 2020.

and meteorology (e.g., Grange and Carslaw, 2019), which will be the focus of a separate study, Fig. S10 confirms that the two

quantities are well correlated, exhibiting similar hourly and weekly patterns. Finally, the average daily cycle of traffic-related

contributions, as determined by RASPBERRY, is compared over the period 9 March – 4 May across different years (Fig. 6).

This period was selected as it corresponds, in 2020, to the strictest phase of the COVID-19 ‘lockdown’. The figure qualitatively

shows that the reduction in traffic emissions due to the containment measures had a marked impact on air quality in Aosta.520

While the overall PM10 concentrations did not vary substantially – partly due to the influence of meteorological conditions –

the effect of the lockdown on the composition of the aerosol mixture is clearly discernible. This finding updates the results of

Diémoz et al. (2021), providing unprecedented high-time-resolution insights into the ‘lockdown effect’.

4.2.2 Factors related to secondary particles

Based on prior literature and studies conducted in the region (Diémoz et al., 2019a, b), factors 3 and 4 are attributed to secondary525

particles in condensation and droplet modes (Costabile et al., 2009). Indeed, secondary aerosols are well-known contributors

to submicron particles in the accumulation mode (Pey et al., 2009; Gu et al., 2011; Harrison et al., 2011; Beddows et al.,

2015; Masiol et al., 2017a; Rivas et al., 2020), with many studies identifying two sub-modes at distinct diameters (Mazzei

et al., 2007; Fuzzi et al., 2015; Sowlat et al., 2016; Bernardoni et al., 2017a; Kalkavouras et al., 2024; Wang et al., 2024a).

In particular, our results indicate that their relative contributions to the volume size distribution peak at 250 nm for factor 3530

and 500 nm for factor 4 (Figs. 3f and 3h). These modes have been associated with different formation mechanisms: gas-phase

processes, resulting in smaller particles (the so-called ‘condensation’ mode, e.g. Masiol et al., 2016; Ogulei et al., 2006b),

and mixed-phase processes, yielding larger particles (the so-called ‘droplet’ mode). This attribution to secondary particles is

also consistent with their weak light absorption (Figs. 3e and 3g). In particular, secondary inorganic aerosols, rich in sulfate
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and nitrate, are generally characterised by low absorption coefficients (Savadkoohi et al., 2025). Nevertheless, the droplet535

mode exhibits greater variability in absorption coefficients and Delta-C, which may, for instance, indicate presence of organic

compounds (e.g., formation of organic nitrates).

The diurnal temporal patterns are remarkably similar, with a primary maximum in the late afternoon, a secondary peak

in the morning, and a minimum just after midday (Fig. 4b). The observed concentration daily maxima can be attributed to

two processes. First, and likely predominant, is the transport of polluted air masses, enriched in secondary particles, from the540

Po Basin to the Alps. This transport occurs regularly in the Aosta Valley during sunny days with weak synoptic circulation,

accounting for approximately 50 % of the days annually (Diémoz et al., 2019b) and peaking in the afternoon. During such

events, surface concentrations of fine secondary particles may be further amplified by reduced vertical mixing towards the

end of the day. The strongest and prolonged transport episodes, leading to accumulation of particles, are clearly visible as

peaks (Figs. S7c and S7d), which is confirmed by remote sensing techniques (some examples are provided in Sect. 4.4.3).545

A second, yet unexplored, reason for the afternoon increase could be the local formation of secondary particles after sunset,

facilitated by rising relative humidity, favourable meteorological conditions such as atmospheric stability, and presence of local

or advected particles promoting secondary formation through heterogeneous reactions. The subsequent nocturnal decrease in

concentrations is likely driven by drainage winds in the valley, as also observed for the traffic-related component. The sec-

ondary morning maximum could arise from several mechanisms: (i) local secondary particle formation linked to emissions,550

such as traffic during rush hours; (ii) entrainment of secondary particles from the nighttime residual layer, acting as a reservoir

overnight (Curci et al., 2015; Lampilahti et al., 2021); or (iii) the initial stages of a progressive accumulation of secondary

particles throughout the day, interrupted by a sudden concentration drop at midday due to enhanced vertical mixing (Bellini

et al., 2025). Determining the dominant process needs further investigation. Anyway, the absence of a weekend effect for both

factors, as indicated by p-values from the Kruskal-Wallis test well above 0.05 (0.69 for the condensation mode and 0.70 for555

the droplet mode), suggests that local anthropogenic emissions of aerosol precursors play a minor role. Instead, concentra-

tions appear to be predominantly influenced by regional-scale atmospheric circulation patterns, accumulation processes, and

meteorological/thermodynamic conditions.

Seasonally, the contributions to PM10 by condensation and droplet modes are comparable in winter, while from April to

September the condensation mode is dominant, accounting for up to 40–50 % on an hourly basis during the night (Figs. S20–560

S21). The decrease in the concentrations of the droplet mode factor during summer (Fig. 4b) is a well-documented phenomenon

attributed to less favourable formation conditions and the partitioning of compounds such as nitrate ammonium towards the

gas phase under warmer conditions (e.g., Aan de Brugh et al., 2012). The seasonal modulation of the condensation mode is

less clear, with a minimum in April–May followed by a rapid increase and a secondary peak in July. Very interestingly, the

same distinct minimum in the month of May has been found in Milan in ammonium sulfate concentrations by Colombi et al.565

(2024). The seasonal behaviour of the condensation mode factor may be linked to (i) varying mesoscale or synoptic circulation

patterns (e.g., the transport of sulfates from other European countries) or (ii) enhanced photochemical formation processes in

summer.
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The overall contributions of these factors to the total PM10 in the period 2020-2024 are 4.1 µg m−3 (23 %) for the condensa-

tion mode and 2.8 µg m−3 (16 %) for the droplet mode. These values closely correspond to those determined through chemical570

analyses by Diémoz et al. (2019b), who estimated the contribution of secondary aerosols (sum of sulfate- and nitrate-rich

factors) in Aosta–Downtown to be in the range of 30–40 %.

4.2.3 Factors related to coarse particles

Factors 5 and 6 represent coarse, predominantly non-light-absorbing, particles, as shown in Figs. 3i–l. We attribute them to the

long-range transport of mineral dust from desert areas and resuspension of soil particles of more local origin, respectively.575

For desert dust, this interpretation is mainly supported by results obtained using independent remote sensing techniques,

the analysis of back-trajectories and the CAMS Ensemble model, as discussed further below, as well as the characteristic

peak-like, impulsive time series of this factor (Gobbi et al., 2019, Fig. S7e) with an isolated average increase in July and a

minimum in December, shown in Fig. 4c. Another indicative feature of long-range transport is the weak dependence of the

PM10 contribution on the time of day and the day of the week, likely due to the ‘random’ arrival times of these air masses580

at the site via long-range circulation (Fig. 4c). The small but statistically significant decrease in weekend concentrations (p-

value = 2× 10−5 from the Kruskal-Wallis test) may be attributed to reduced resuspension of deposited dust by vehicular

traffic (Barnaba et al., 2017), or to minor contributions from other local sources. The size profile, peaking at approximately

5 µm, with the maximum contribution to VSD variance occurring over a relatively broad range of diameters centred around

2 µm, is consistent with existing scientific literature on desert dust transported towards Europe. For example, Gu et al. (2011)585

report that long-range transported dust in continental Europe, identified using lidar and satellite observations, typically has

diameters ranging from 0.7 to 3 µm, whereas locally resuspended coarse particles exhibit larger diameters. Comparable values

are reported in other studies (Struckmeier et al., 2016; Di Biagio et al., 2019; Herrero del Barrio et al., 2024). Mazzei et al.

(2007) note that desert dust in Genoa, Italy, is characterised by a broad range of diameters extending from 0.5 to over 4 µm. In

their review, Gobbi et al. (2019) state that clay-like dust typically has a size of ∼2 µm, while silt-like dust is larger, at around590

5 µm. Finally, Conte et al. (2020) demonstrate that desert dust accounts for the majority of variance in the 2.5–3 µm range,

consistent with our findings, also considering that their measurements were conducted in Lecce, further south in Italy.

Regarding optical properties, this dust factor does not exhibit significant light absorption, in contrast to previous findings

(Forello et al., 2019). However, unlike remote, pristine sites (Collaud Coen et al., 2004), the absorption by dust is often masked

in regions heavily influenced by other light-absorbing aerosols, such as traffic and biomass burning emissions (Tohidi et al.,595

2022; Rovira et al., 2025; Savadkoohi et al., 2025), due to its lower mass absorption efficiency (Yang et al., 2009). Moreover,

the absorption characteristics of desert dust can vary significantly depending on its source region (Di Biagio et al., 2019).

Hence, not all studies identify a dust factor with light-absorbing properties, even at southern European stations (e.g., Forello

et al., 2023). However, despite the uncertainty in NeBC encompassing the zero line in Fig. 3i, we note that the optical profile

of factor 5 increases at wavelengths shorter than 600 nm, consistent with expectations for dust (Collaud Coen et al., 2004;600

Di Biagio et al., 2019; Tohidi et al., 2022). For our study, the estimated AAE of approximately 3 agrees well with the upper

limit of AAE values for dust detected at AERONET sites (Russell et al., 2010).
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Figure 7. Information supporting the attribution of the ‘dust’ factor emerging from the physical PMF to mineral particles transported from

the desert. (a) Coarse-mode aerosol optical depth from the POM-02 sun photometer at 500 nm, derived in 2021, as an example, using direct-

sun measurements and the algorithm by O’Neill et al. (2001). The coloured vertical lines indicate episodes of desert dust transport along the

vertical column, with an arbitrary threshold set at coarse AOD > 0.15. Two cases are distinguished based on ALICENET ALC observations:

the elevated layer enters the mixing layer and reaches the surface (pink) or it remains aloft (light blue). (b) Hourly absolute contribution of

the dust factor to PM10 measured at the surface in the same period as in plot (a), as determined by RASPBERRY. (c) Concentration-weighted

trajectories obtained using the HYSPLIT model and factor 5 contributions over the entire 2020–2024 period. (d) Comparison of desert dust

in surface PM10 as retrieved by RASPBERRY and the CAMS Ensemble VRA model for the year 2022. The points represent daily averages

from both data sources, while the coloured area denotes the daily standard deviation of the hourly RASPBERRY retrievals. Red horizontal

lines: PM10 limit values introduced by the 2024/2881/EC AQ directive.
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As anticipated, ancillary information from remote sensing techniques and models confirms the correct attribution of this

factor. Figure 7a presents the coarse-mode AOD retrieved from the sun photometer using the algorithm by O’Neill et al. (2001)

(Sect. 2.3). The year 2021 is chosen as an example, as some of the strongest transport events in Europe occurred in that period605

(Rodríguez and López-Darias, 2024). An arbitrary minimum threshold of 0.15 on coarse-mode AOD is set to highlight the

most indicative episodes in the plot. Furthermore, based on the analysis of vertical profiles from the ALCs in Aosta–Saint-

Christophe, dust layers that remain primarily aloft (light blue, as exemplified in Figs. S24a and S24b), detected by the sun

photometer but not by the in-situ surface instruments, are discriminated from those that ultimately enter the mixing layer and

reach the ground (pink, Figs. S24c and S24d). In the latter cases, the contribution of the desert dust factor in RASPBERRY610

increases markedly (Fig. 7b), whereas for the former, the increase is negligible. This confirms that factor 5 serves as an effective

proxy for the presence of desert dust. Slight delays are occasionally observed between detection by remote sensing instruments

and peaks in the source apportionment. This may be attributed to various effects: (i) absence of photometer measurements

in cloudy days; (ii) time required for the layer to descend after being detected in the column or, in some cases, (iii) time

needed for the dust to be advected horizontally to the measuring station (and there accumulated) after entering the atmosphere615

elsewhere (e.g., the Po Basin). The third plot (Fig. 7c) presents the results of the concentration-weighted trajectory analysis

(CWT, e.g., Hsu et al., 2003), using the HYSPLIT model and the dust factor contribution as the weighting variable (more details

in Sect. S11). The figure clearly shows that the most likely source region for the particles attributed to factor 5 is northwestern

Africa.

In addition, a comparison of the daily average concentration of desert dust in surface PM10 from RASPBERRY and the620

CAMS Ensemble Validated Reanalysis (VRA, Colette et al., 2024) for the year 2022 is presented in Fig. 7d. This year was

selected as it corresponds to the study period currently under evaluation within the CAMS–National Collaboration Programme–

Italy (CAMS2_72IT_bis). The agreement between the two datasets is notable, both in terms of the timing of dust events (x-axis)

and the absolute concentrations (y-axis). The most pronounced differences in concentration occur during the June 2022 event,

with RASPBERRY showing peak values approximately twice as high as those from CAMS Ensemble VRA. Furthermore, a625

persistent non-zero background is observed in the RASPBERRY data throughout the year, which is not present in the CAMS

dataset.

The attribution of factor 6 to local coarse particles is supported by the pronounced weekend effect (p-value of 2× 10−26),

which indicates an anthropogenic origin (Fig. 4c). Moreover, this factor is shifted to larger diameters, with a peak of the

absolute contribution between 5 and 6 µm, and its variance contribution extending to the upper limit of diameters detectable by630

the Palas Fidas 200. Such large particles are unlikely to travel long distances. These particles may include: (i) crustal materials

resuspended from the road pavements by vehicular traffic (Sect. 4.2.1) or steelwork slag dust, both characterised by high

calcium and magnesium content; (ii) sodium chloride particles originating from road salting used in winter as a de-icing agent;

and (iii) pollen and other primary biogenic aerosols. The influence of road salting likely explains the observed increase in coarse

particle concentrations during December, January, and February (Fig. 4c, see also the case study presented in Sect. 4.4.1). The635

average diurnal pattern, with a peak around midday, resembles the evolution of the convection-driven aerosol layer height, as

determined in previous studies at the same site using automated lidar-ceilometers (Bellini et al., 2024, 2025), highlighting the
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role of local-scale mixing. At a closer examination (Figs. S16–S17), a single daily peak is observed at midday during January

and December. Conversely, in other months, two distinct peaks emerge. This phenomenon can be attributed to the influence

of local atmospheric (valley) circulation, where winds develop around midday and, if strong enough, erode the temperature640

inversion, dispersing particles into a larger volume of air. The two peaks are unlikely to originate from traffic emissions during

rush hours, as their separation remains evident even during the typical summer holiday months. Figure S25 illustrates this

behaviour on a representative summer day (18 July 2024). Vertical aerosol profile measurements from polarisation-sensitive

ALCs, such as the CL61 (Sect. 2.3), provide valuable information in this context, as high depolarisation ratio values are

indicative of the presence of irregularly shaped particles in the atmosphere. Notably, the morning increase and evening decrease645

in surface concentrations visible in Fig. S25 correspond well with the diurnal evolution of the depolarisation profiles. However,

around midday, when the particles are transported and mixed into a larger air volume at altitudes exceeding 1.2 km, surface

concentrations decrease. Another interesting feature is that in December the daily peak in coarse particle contribution is shifted

towards the afternoon, whereas in January it is more centred around noon or slightly shifted towards the morning. This fact

could indicate a different daily pattern in car traffic during the winter holiday period, as discussed in Sect. 4.4.1.650

The overall average contributions of these two factors to the total PM10 in the period 2020–2024 are 3.6 µg m−3 (21 %)

for desert dust and 3.7 µg m−3 (21 %) for local resuspension of coarser particles, together accounting for more than 40 %

of the total PM10. Such a large percentage contribution is justified by the substantial volume carried by these coarse particles

and the relatively low contributions from other local sources at this lightly polluted measurement site. In particular, according

to RASPBERRY desert dust estimates, 22 of the 36 PM10 daily exceedances recorded in Aosta–Downtown during the five-655

year study period (as defined by the 2024 AAQD; 16 of the 26 under the current AAQD) could in fact be excluded from

the count due to the contribution of natural sources. A slight overestimation of the desert dust contribution by RASPBERRY

may be possible, e.g. due leakage from other factors, such as local resuspension, or instrumental artefacts associated with

the measurement of irregularly shaped particles by OPCs. Despite these limitations, factor 5 remains highly effective for

identifying desert dust events and the overall results remain qualitatively consistent with similar dynamics observed in other660

southern European regions.

4.3 Comparison between chemical PMF and physical source apportionment

The results from RASPBERRY are compared with those obtained from the chemical PMF. To ensure comparability, source

contributions from RASPBERRY are averaged to daily values, and only dates common to both datasets are included in the

analysis. This limits the comparison to the subperiod 2020–2021 for chemical dataset 1 (with anion, cation, EC/OC, and665

levoglucosan) and 2020–2022 for dataset 2 (with anion, cation, and metals). Dataset 1 is particularly useful for discriminating

traffic emissions from residential biomass burning, based on levoglucosan, while dataset 2 is useful for characterising dust

particles using metals and has a longer record. The results are presented in Fig. 8. To evaluate the comparison, we use the

coefficients of the regression equation of the source contributions from the physical source apportionment (y) against the

chemical PMF (x), and the respective explained variance (R2). These coefficients are calculated using traditional ordinary670

least squares (OLS) regression. Given that the source contributions derived from the chemical PMFs are also affected by
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Figure 8. Comparison of daily averaged PM10 source contributions derived from the chemical PMF (abbreviated as ‘chem-PMF’ in the

figures) and RASPBERRY, presented using time series plots (left column) and scatter plots (right column) with regression equations displayed

within the plots. Both plot types include only samples from coincident dates across datasets, limiting the comparison to the subperiod 2020–

2021 for chemical dataset 1 (d1, with anion, cation, EC/OC and levoglucosan), and 2020–2022 for dataset 2 (d2, with anion, cation and

metals). Specifically: (a) and (b) represent our estimates of traffic emissions; (c) and (d) residential biomass burning; (e) and (f) secondary

particles, obtained as the sum of sulfate- and nitrate-rich factors from the chemical PMF, and condensation and droplet mode factors from

RASPBERRY; (g) and (h) coarse particles, calculated as the sum of road salting and crustal factors from the chemical PMF, and desert dust

and local dust resuspension from RASPBERRY. Note that two distinct datasets are used for the chemical SA: d1 for the plots in the first

three rows and d2 for the last row. Yellow points in panels (g) and (h) indicate data influenced by significant Saharan dust events. In (h), the

blue dashed regression line is calculated excluding these points. Red horizontal lines: PM10 limit values introduced by the 2024/2881/EC AQ

directive. 28
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uncertainties, we additionally report results obtained through the more robust Deming regression (DEM, e.g., Linnet, 1990),

together with Pearson’s linear correlation coefficient.

The comparison of traffic factors is depicted in Figs. 8a (time series) and 8b (scatter plot). From the first panel, it is evident

that the magnitude of contributions from both source apportionments is about the same, as are the overall seasonal trends.675

However, the point-to-point relationship illustrated in the second panel reveals some discrepancies, with a Pearson’s correlation

coefficient of ρ = 0.67 (R2 = 0.45). Furthermore, the regression coefficients deviate from the 1:1 line (OLS: y = 0.58x +

0.72 µg m−3; DEM: y = 0.80x + 0.42 µg m−3). This deviation can be attributed to difficulties in accurately identifying the

traffic factor, primarily due to the following reasons:

– Contributions from both source apportionments are relatively low, consistently remaining below 6 µg m−3.680

– The finite lower detection limit of the OPC does not allow to capture all aerosols emitted by traffic.

– The coarse resuspended fraction, which significantly contributes to the mass, may be characterised in slightly different

amounts in the chemical and the physical source apportionments, as discussed in Sect. S7. Distinguishing unambiguously

exhaust and non-exhaust particle contributions is a well-known challenge, frequently reported in the literature (Forello

et al., 2023).685

– As demonstrated in Sect. 4.2 and Fig. 3, the relative uncertainty associated with traffic emissions is one of the highest

among all dimensional profiles.

– The mass absorption cross-section (MAC) in aethalometer measurements may decrease in winter compared to summer,

as observed in several studies, e.g. Mousavi et al. (2019) in Milan and Savadkoohi et al. (2024) on a European scale.

Such seasonal variation is consistent with an underestimation of NeBC during winter, when concentrations are higher,690

and an overestimation during summer, when concentrations are lower, in RASPBERRY.

Conversely, an excellent agreement is observed for the residential biomass burning factor, with the contribution time series

from both source apportionments nearly overlapping and a regression very close to the 1:1 line (ρ = 0.95; R2 = 0.91; OLS:

y = 0.99x + 0.34 µg m−3; DEM: y = 1.05x + 0.27 µg m−3). Notably, the correlation achieved here between the two factors

surpasses that reported by Zotter et al. (2017) for the relationship between the wood-burning eBC fraction and levoglucosan695

(ρ = 0.77).

For the secondary particles, a question arises as to whether the separation between sulfate- and nitrate-rich modes in the

chemical PMF corresponds to that between condensation and droplet modes in RASPBERRY. Figure S26 indicates that, de-

spite a general similarity, some differences emerge. During the warm season, contributions from the sulfate-rich factor and

the condensation mode factor overlap (Fig. S26a). However, from late autumn to early spring, deviations become apparent.700

Similarly, discrepancies are observed between the nitrate-rich and droplet mode factors (Fig. S26c). These variations are re-

flected in the suboptimal regression results (sulfate/condensation: ρ = 0.71; R2 = 0.50; OLS: y = 0.87x+1.81 µg m−3; DEM:

y = 1.33x + 0.43 µg m−3; nitrate/droplet: ρ = 0.80, comparable to the value reported by Diémoz et al. (2019b); R2 = 0.65;
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OLS: y = 0.74x + 0.78 µg m−3; DEM: y = 0.90x + 0.40 µg m−3). This imperfect overlap could be explained in different

ways:705

– The differences observed between RASPBERRY and the chemical source apportionment may reflect the true nature of

aerosol composition, as nitrates could be distributed between condensation and droplet modes, potentially influenced by

their source region.

– Modelling inaccuracies in RASPBERRY may arise if factor profiles evolve over the course of the year (e.g., due to

seasonal variations in mode size), leading to cross-talk between species associated with condensation and droplet modes.710

– Differences in aerosol drying conditions between the OPC and filter-based sampling could result in divergent estimates

of the secondary volatile fraction.

– Further research is needed to better characterise the partitioning of organic compounds in the physical source apportion-

ment.

Nonetheless, when the sulfate- and nitrate-rich chemical factors are summed together and compared to the sum of the con-715

densation and droplet physical factors (Figs. 8e and 8f), the time series exhibit a stronger similarity, and the regression metrics

improve (ρ = 0.84; R2 = 0.70; OLS: y = 0.99x+1.62 µg m−3; DEM: y = 1.22x+0.39 µg m−3). This indicates that the total

concentration of these two fine, non-light-absorbing secondary factors is highly consistent across the source apportionments.

More importantly, from an environmental perspective, it accounts for the fraction of particulate matter originating from sec-

ondary formation.720

Finally, to compare the contributions of coarse particles assessed by both source apportionment techniques we aggregate the

road salting and crustal factors from chemical PMF with the desert dust and local dust resuspension factors from RASPBERRY.

This aggregation is necessary because chemical PMF does not allow for a clear distinction between desert dust and local dust

resuspension, while RASPBERRY does not differentiate between crustal material and road salting contributions. For this

purpose, the extended dataset 2 is utilised. Figures 8g and 8h indicate that, when considering all data, a reasonable agreement725

is achieved, albeit with some peaks in the source apportionment not reproduced by the chemical PMF (ρ = 0.77; R2 = 0.60;

OLS: y = 1.12x+0.99 µg m−3; DEM: y = 1.61x−1.60 µg m−3). Most of these peaks, which degrade the comparison results

by diverging above the upper scatter plot sector, can be attributed to intense Saharan dust events (highlighted in yellow and

identified using a threshold corresponding to the 95th percentile of the desert dust contribution). These events are likely not

optimally captured by the chemical PMF, or the corresponding PM10 estimates obtained by the OPC may not be very accurate.730

By excluding measurements exceeding the threshold, the comparison metrics improve (ρ = 0.82; R2 = 0.67; OLS: y = 0.95x+

1.36 µg m−3; DEM: y = 1.20x + 0.12 µg m−3). However, excluding not only the most pronounced events but the entire

contribution from desert dust in RASPBERRY would result in an approximate 20 % underestimation.

The contributions of all factors identified with RASPBERRY to PM10 over the entire analysis period are shown in Fig. 9a.

To facilitate comparison with the chemical source apportionment results, such as those obtained using dataset 1, only the735

subset of coincident days in 2020–2021 is considered (Figs. 9b and 9c). The relative contributions of the traffic and biomass
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(a) RASPBERRY
(whole data set 2020−2024)
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(c) Chemical source apportionment
(data set 1, 2020−2021)

Figure 9. Percentage contribution of the identified factors to PM10. (a) Physical source apportionment, whole dataset. (b) Physical source

apportionment, subset using the same dates as in the chemical dataset 1. (c) Chemical source apportionment using dataset 1.

burning factors are remarkably similar (9 % vs. 10 % for traffic using the physical and chemical methods, respectively; 10 %

vs. 9 % for biomass burning). Likewise, the contributions attributed to desert and local dust (19 % and 20 %, respectively)

closely match the ‘crustal’ factor identified through the chemical approach, though the 7 % contribution from road salting

in the chemical PMF should also be considered among the coarse particles. Additionally, the contributions of droplet-mode740

aerosols (RASPBERRY) and the nitrate-rich factor (chemical source apportionment) are identical (15 %). The contribution

of aerosols in condensation mode is slightly larger in 2020–2021 compared to 2020–2024, reaching 26 %, which exceeds the

20 % attributed to sulfate-rich aerosols by the chemical PMF. While these results are likely within the expected uncertainties

of both approaches, it is important to note that the factor definitions differ between methods, and their overlap is only partial.

4.4 High-time-resolution monitoring and real-time applications745

This section presents illustrative real-world examples where the application of RASPBERRY proves beneficial. In particular,

we highlight the advantages of its high-time-resolution and real-time capabilities. First, we describe examples showcasing the

detection of local aerosol sources and the quantification of their impact on surface concentrations (Sects. 4.4.1–4.4.2). We then

extend the analysis to larger-scale circulation patterns, presenting cases of particle transport occurring at meso- (Sect. 4.4.3)

and synoptic (Sect. 4.4.4) scales. Efforts have been made to include examples for each source identified through RASPBERRY.750

4.4.1 Traffic exhaust and non-exhaust: winter holidays 2024

The period from 27 to 31 December 2024 was characterised by high PM10 concentrations across the city, as indicated by

all urban quality monitoring stations. RASPBERRY attributes these elevated concentrations primarily to locally resuspended

coarse particles, whose hourly contribution reaches the PM10 daily average limit introduced by the 2024/2881/EC AQ directive

(45 µg m−3). The temporal pattern of these contributions remains remarkably consistent over the days (Fig. S32), with maxima755

occurring between 16:00 and 17:00 CET. This winter holiday period was marked by dry conditions, the inactivity of the steel
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Figure 10. Day/hour rectangle diagrams depicting the contributions to PM10 concentrations from 25 to 31 December 2024, as determined

by RASPBERRY: (a) traffic emissions (primarily exhaust and brake/tyre abrasion) and (b) coarse particle resuspension. The period of peak

coarse particle concentrations in the afternoon is highlighted with a dashed contour.

mill, and the absence of construction works within the city. In contrast, vehicular flow associated with winter tourism was

significant, making it an ideal case study for assessing the impact of exhaust and non-exhaust emissions from car traffic.

Retrievals from the physical source apportionment for factor 1 (‘traffic emissions’, primarily exhaust and brake/tyre abrasion,

Sect. 4.2.1) and factor 6 (‘local dust resuspension’) are presented in Fig. 10. The first factor (Fig. 10a) exhibits a primary760

maximum in the morning (around 10:00–11:00 CET), with no corresponding peak in the sixth factor. The same morning

peak is also clearly visible in nitric oxide (NO) concentrations (Fig. S33a), confirming its attribution to combustion (mainly

traffic) emissions. The afternoon peak in factor 6 (Fig. 10b) is also discernible in factor 1 and NO concentrations, though less

pronounced, suggesting a common traffic-related source. Notably, this coincides with the closing times of cable cars operating

between Aosta and nearby ski resorts, a well-known rush hour in the southern part of the city.765

Road salting is a strong candidate for the observed increase in coarse particles in the afternoon. Sodium chloride, commonly

used as a de-icing agent in the region, can reach daily average concentrations exceeding 20 µg m−3 on some winter days,
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nearly doubling those of the crustal-related factor in chemical PMF (Diémoz et al., 2019b; Diémoz et al., 2021). Since par-

ticle resuspension is strongly influenced by weather and pavement conditions, and in particular by surface moisture (Denby

et al., 2013), the absence of a morning increase in coarse particle concentrations during winter may be attributed to humid or770

frozen road surfaces. As the day progresses and the sun rises over the mountain horizon around midday, relative humidity de-

creases (Fig. S33b), likely leading to drier road conditions. This short sunlit period is also reflected in the wind speed diagram

(Fig. S33c), which shows a slight increase in wind speeds, though still very low and close to calm conditions (∼1 m s−1), likely

due to strong wintertime temperature inversions. While this weak atmospheric circulation is insufficient to resuspend particles

from the road surface on its own, it may contribute to lifting particles already resuspended by vehicular traffic. As the sun sets775

behind the mountains, resuspended coarse particles settle back onto the surface, while the simultaneous afternoon traffic peak

further contributes to the observed PM10 increase.

Although optical particle counters (OPCs) may partly overestimate sodium chloride concentrations (Chien et al., 2016), this

example highlights the significant (and unregulated, in the current AAQD) contribution of non-exhaust emissions, and notably

road salting in mountainous regions during winter, to PM pollution (McNamara et al., 2020; Grange et al., 2021). It is worth780

noting that these emissions are not expected to decline with the transition to electric vehicles. The example also underscores

the fact that exhaust and non-exhaust traffic emissions cannot be fully captured by a single source apportionment factor.

4.4.2 Local accidental fires: August 2022

Accidental fires are typical events requiring real-time and high-temporal-resolution air quality monitoring, as they demand

immediate attention from municipal surveillance bodies, the public, and the media. Since residential biomass burning con-785

tributions are negligible during the warm season (Fig. 4a), such events are relatively easy to spot in summer data. One such

incident occurred on the night of 22 August 2022, when a restaurant woodshed (used for a wood-fired oven) in the city center

caught fire. Although the event lasted only a few hours, it was clearly identified by a peak in the biomass burning component

(Fig. 11a), demonstrating the effectiveness of the ‘biomass burning’ source apportionment factor as a specific marker for such

occurrences. Due to the uncontrolled nature of the fire, the emitted aerosol spanned a broad size range, overlapping with other790

factors (Fig. 11b). Given the greater mass contribution of larger-mode factors, concentrations associated in this case with the

‘droplet mode’ peaked at a value of 80 µg m−3, i.e. nearly the total PM10 concentration, which may also reflect the presence

of organic compounds within this factor.

4.4.3 Advection of secondary aerosols and dust: March 2022

The mesoscale circulation between the Po Plain and the Alps frequently transports aerosol-rich air masses to the measuring795

site (Diémoz et al., 2019a, b), exacerbating air pollution and contributing to PM exceedances. An episode in March 2022 was

especially noteworthy due to the co-occurrence of such secondary aerosol transport and Saharan dust.

Figure 12a illustrates the RASPBERRY retrievals on 17–18 March, showing desert dust contributions at the beginning and

end of the period. The same dust event has been documented in other southern European countries (Micheli et al., 2024). In

contrast, the middle of the episode is dominated by an increase in droplet-mode particles, characteristic of wintertime secondary800
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Figure 11. RASPBERRY retrievals during an accidental fire in the city centre on the night of 22 August 2022. (a) The biomass burning

component effectively identifies the event and defines its duration. (b) Due to the nature of the incident and the uncontrolled combustion, the

emitted aerosol spans a broad size range, extending across condensation and droplet modes. Notice the different scales of the y-axes, which

have been optimised for ease of visualisation. The shaded areas (most noticeable for the biomass burning factor) represent an estimate of the

confidence intervals, based on the PM10 dQmax = 4 range from the DISP test (Table S2). Red horizontal lines: PM10 limit values introduced

by the 2024/2881/EC AQ directive plotted as reference.

aerosols, with PM10 contributions of up to 45 µg m−3. This is further supported by our chemical analyses, which indicate a

daily averaged PM10 contribution from the nitrate-rich factor identified by the chemical PMF larger than 25 µg m−3 on 18

March 2022 in Aosta–Downtown. The increase in droplet mode coincides with eastern surface winds exceeding 5 m s−1,

typical of the breeze circulation regime originating from the Po Basin. During the same period, secondary ammonium nitrate

and possibly secondary organic aerosols were indeed detected in the Po Valley by Aktypis et al. (2024) and Mattsson et al.805

(2024). Heterogeneous chemical interactions with mineral dust may have also played a role. A slight increase in PM10 from

condensation-mode aerosols is observed, but with much lower concentrations and a slightly different temporal pattern at the

end of the episode.

The surface dynamics explained by RASPBERRY are supported by the vertical profiles from ALCs. Figure 12b reveals

thick aerosol layers with high concentrations. Clouds prevented measurements above 2–2.5 km a.s.l, while also contributing810

to reduced mixing and increased concentrations at the surface. The vertical profiles of PM retrievals clearly show three distinct

transport phases, reflecting the peaks in surface concentrations. Additionally, the depolarisation profiles (Fig. 12c) help identify

the particle types throughout the episode: at the beginning and end of the episode, particles reaching the surface are irregularly
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Figure 12. Transport episode of secondary-rich aerosols and desert dust in March 2022. (a) PM10 contributions from the condensation mode,

droplet mode and desert dust factors, derived from RASPBERRY. Red horizontal lines: PM10 limit values introduced by the 2024/2881/EC

AQ directive plotted as reference. (b) Vertical profile of the particle backscatter coefficient measured by the CHM-15k ALC. The conversion

to PM concentrations using the ALICENET algorithms (Bellini et al., 2024) is also shown on a secondary scale (approximately proportional

to that of βp). (c) Volume depolarisation ratio from the CL61 ALC. Clouds at approximately 2 km a.s.l. prevented retrievals above that

altitude for most of the episode.

shaped (medium to high depolarisation ratios), which is characteristic of mineral dust. In the middle of the episode, the particles

are spherical (indicated by very low depolarisation ratios), which is typical of secondary aerosols. This episode highlights the815

value of physical source apportionment and active remote sensing techniques, particularly depolarisation-capable ALCs, in

disentangling complex aerosol dynamics during mixed transport events.

The case of a summertime advection of secondary-rich aerosols is presented in Fig. S34. This coincides again with eastern

surface winds, exceeding 8 m s−1. The RASPBERRY retrievals highlight the reversed roles of condensation (higher concen-
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trations) and droplet mode (lower concentrations) factors compared to winter, while vertical profiles emphasise the importance820

of the nighttime residual layer in contributing to surface concentrations (Curci et al., 2015).

4.4.4 Smoke from North American wildfires: the summers of 2023 and 2024

In summer 2023, and to a lesser extent in 2024, record-breaking wildfires affected Canada (Jones et al., 2024; Kolden et al.,

2024), and on several occasions, their smoke was transported across the North Atlantic, reaching Europe (Herrero del Barrio

et al., 2024; Filonchyk and Peterson, 2024; Wang et al., 2024b). This phenomenon was accurately predicted by models (e.g.,825

ECMWF Copernicus Atmosphere Monitoring Service, 2024) and monitored from space by satellite radiometers (EUMETSAT,

2023). For example, Figs. 13a and 13b present aerosol optical depth (AOD) retrieved from the Moderate-Resolution Imaging

Spectroradiometer (MODIS) onboard the Terra and Aqua satellites using the MAIAC algorithm, and carbon monoxide (CO)

concentrations at 500 hPa from daytime AIRS/Aqua measurements on 27 June and 22 July 2023. These data clearly reveal

high concentrations of both atmospheric constituents over Europe, and notably over the Aosta Valley (marked as a star in the830

plots).

Sudden increases in PM10 concentrations were recorded at the surface on the same days. RASPBERRY attributed these

increases to droplet-mode aerosols, which are rarely observed in summer (Fig. 4a). Conversely, the contribution by biomass

burning-related aerosols and condensation mode particles remained negligible throughout the episodes (Figs. 13c and 13d). The

attribution to the droplet mode can be explained by ageing processes during transport (Reid et al., 2005; Ditas et al., 2018). It is835

important to note that condensation-mode aerosols were also present in the same period but showed distinct temporal patterns

modulated by mesoscale circulation. For example, on 27 June (not shown) and in the morning of 28 June 2023 (Fig. S35),

winds at all altitudes over Aosta originated from the north-western quadrant. In the afternoon of 28 June 2023, the wind

direction shifted to the south-eastern quadrant, with back-trajectories clearly crossing the Po Basin. This change in air masses

explains the anti-correlation between droplet- and condensation-mode behaviours, likely indicating the replacement of aged840

smoke particles with secondary (sulfate-rich) aerosols. A similar shift in circulation occurred on 22 July 2023, after the second

event.

Although confirmation of the above interpretation based on chemical properties is not possible, as no chemical analysis was

conducted in 2023, the dynamics are clearly supported by ALC profiles (Figs. 13e–h) and sun photometer retrievals (discussed

later). The ALC measurements show that the surface PM10 increases coincide with the rapid entrainment of elevated aerosol845

layers (>4000 m a.s.l.) into the mixed layer near the surface. Not only is the timing of the droplet-mode concentration increases

highly consistent, but the RASPBERRY-derived PM concentrations at the surface and those retrieved from the ALC (using the

ALICENET algorithm) are of comparable magnitude (30–40 µg m−3 for the first event and approximately 20 µg m−3 for the

second event). The volume depolarisation ratio measured by the CL61 ALC within the intruding layer is close to zero, further

supporting the hypothesis of aged, nearly-spherical aerosols (Gialitaki et al., 2020; Damiano et al., 2024).850

As for the measurements from the sun photometer, the AOD at 500 nm shows an increase during both events, with maximum

values close to 0.8 on 27–28 June (first episode) and between 0.6 and 0.4 on 22–23 July (second episode). The extinction

Ångström exponent (in the 400–1020 nm range) remains around 1.5 in both cases, never reaching the high values typical of
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Figure 13. Transport of smoke from Canada to Europe in summer 2023. (a, b) Satellite images (27 June and 22 July 2023) with background

from MODIS/Terra corrected reflectance. Aosta is indicated by a star marker. Aerosol Optical Depth (AOD) at 470 nm, retrieved from the

MODIS spectroradiometer onboard the Terra and Aqua satellites (MAIAC algorithm, product MCD19A2, 1-km resolution), and carbon

monoxide concentrations at 500 hPa from daytime AIRS/Aqua measurements (v7 NRT, L2) are superimposed using two different colour

scales (source: worldview.earthdata.nasa.gov). (c, d) PM10 contributions from the condensation and droplet modes, derived from RASP-

BERRY. Red horizontal lines: PM10 limit values introduced by the 2024/2881/EC AQ directive plotted as reference. (e, f) Vertical profiles of

ALICENET PM retrievals, based on CHM-15k ALC particle backscatter measurements. (g, h) Volume depolarisation ratio from the CL61

ALC.

37

https://doi.org/10.5194/egusphere-2025-5044
Preprint. Discussion started: 21 November 2025
c© Author(s) 2025. CC BY 4.0 License.



fresh smoke from close sources. Single scattering albedo retrievals, consistently above 0.9 even at the shortest wavelengths,

indicate only weak light absorption by the particles (Dubovik et al., 2002; Yang et al., 2009). The size distribution presents a855

maximum in the accumulation mode between 0.2 and 0.3 µm radius (i.e., 0.4–0.6 µm diameter), thus validating – on average

along the atmospheric column – the particle size detected at the surface by the Palas Fidas and explaining the concentration

increase in the droplet mode observed by the algorithm. These sizes are larger compared to the condensation mode usually

present in summer (0.2–0.3 µm diameter), but are very consistent with published studies on aged smoke (Eck et al., 2009;

González et al., 2020) and notably on the same transport episode over Europe (Herrero del Barrio et al., 2024). In both860

episodes, neither the sun photometer nor the ALC provides evidence of other long-range transport phenomena such as desert

dust.

A similar event occurred in August 2024 (Sect. S17 and Fig. S36) during an aerosol sampling campaign at high-altitude

mountain stations in the Aosta Valley. Chemical analyses revealed a notable increase in organic compounds but negligible

variation in secondary inorganics, and will be the subject of a future publication (Favaro et al., 2025).865

Interestingly, in all cases, droplet-mode PM10 concentrations do not immediately return to baseline levels in the days follow-

ing the peak, in contrast to their rapid initial increase. This persistence suggests that, once smoke has entered the mixed aerosol

layer, it recirculates for several days before fully settling at the surface and being removed from the atmosphere, potentially

posing implications for human health.

5 Discussion870

After outlining the strengths of the method in the previous sections, we now discuss its main limitations and provide recom-

mendations for users interested in reproducing the experimental setup.

The main shortcomings originate from both instrument-specific issues and the combined analysis using multiple instruments:

– Technical instrument limitations. As noted in Sect. 1, OPC measurements may be influenced by particle refractive index

and morphology. Additionally, a general limitation of OPCs is their finite lower detection size. In our case, the Palas Fidas875

200 provides measurements only for particles larger than 0.18 µm. Consequently, the contribution of smaller particles

to PM10 mass must be inferred by the OPC algorithm based on concentrations in larger bins. Although these particles

are expected to have a minor impact on PM10 mass in Aosta due to their small volume, this limitation introduces some

uncertainties, particularly when analysing emission sources at sites dominated by fine modes, such as traffic, residential

biomass burning, and secondary aerosols in condensation mode.880

In this regard, we note that the ‘training’ phase of our algorithm can incorporate PM10 estimates from any instrument,

not necessarily the same OPC providing the size distribution, provided that the reference dataset is sufficiently long to

ensure robust statistics. Thus, the accuracy of our method strongly depends on that of the reference PM instrument,

and if a better reference instrument is available, the original PM estimates from the OPC can be further improved. In

principle, measurements with the gravimetric method could be used for this purpose. However, in such a case, the hourly885

observations from the OPC and the aethalometer would need to be degraded to the same time resolution as the gravimetric
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estimates (e.g., daily) before regression against mass, unless more advanced statistical techniques (e.g., multi-time PMF)

are employed. Moreover, long-term gravimetric datasets covering different seasons would be required.

On the other hand, even short-term comparisons (e.g. a few weeks) between the OPC and a reference PM10 instrument

can be beneficial, albeit outside the scope of a thorough algorithm calibration. Such comparisons enable the identification890

of potential scenarios where OPC-derived PM estimates may be inaccurate depending on the dominant particle type.

These include cases involving irregularly shaped desert dust particles, significant contributions from particles smaller

than the OPC detection limit, or aerosols with refractive indices that differ significantly from the calibration assumptions.

In these circumstances, the RASPBERRY approach, by differentiating among aerosol types, could be employed to

identify situations where PM estimates may be unreliable.895

– Potential circularity in PM10 estimates. This issue is directly linked to the previous discussion. In this study, due to the

absence of an independent PM10 reference instrument, the Palas Fidas 200 was used both to provide the size distribution

and to estimate PM mass concentration (certified as equivalent to the gravimetric method). Consequently, these two quan-

tities are not entirely independent, as the proprietary PM_ENVIRO_0011 OPC algorithm determines PM concentrations

from the size distribution using a methodology presumably similar to ours. One might argue that, without incorporating900

light absorption properties, the training phase of our source apportionment method would merely invert the internal OPC

algorithm. However, as explained earlier, our approach can be applied using independent PM10 reference instruments,

thereby preventing circularity on a general basis.

– Incomplete overlap between instruments. The OPC lower detection limit falls within the accumulation mode, whereas

the aethalometer primarily detects light-absorbing aerosols, which are predominantly submicron in size. The larger the905

gap between the particle size ranges covered by the two instruments, the more significant this issue becomes. In the worst

case, the PMF used during the training phase, based on OPC-derived size distributions and aethalometer spectral light

absorption, could fail to attribute volume and mass to the traffic and biomass burning factors. Fortunately, in our case,

the overlap appears sufficient to mitigate this issue and to allow the two instruments to function in synergy. Otherwise,

co-located measurements of ultrafine particles should be considered.910

– Limitations of the aethalometer model. Cases where the aethalometer model (Sandradewi et al., 2008) fails have been

reported in the literature, particularly for fresh emissions from traffic (Zotter et al., 2017) or wood burning (Grange et al.,

2020). One such case in our study, discussed in Sect. 4.2.1, likely resulted in a weak interference between the traffic and

biomass burning factors. In such situations, potential solutions include introducing an additional factor in the PMF to

account for fresh emissions or manually adjusting the AAE coefficients based on independent analyses. However, this915

remains an inherent limitation of source apportionment approaches relying on spectral light absorption properties, rather

than a RASPBERRY-specific issue.

– Source definition. In PMF, the operator plays a key role in defining and shaping factor profiles and assigning them to

specific sources. For instance, setting the uncertainties or applying constraints to improve profile separation are critical
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steps. Some flexibility exists in constraining profiles; for example, as discussed in Sect. S7, we opted not to suppress920

crustal particles in the traffic profile or modify it towards a more ‘traffic exhaust’ profile. Regardless of the adopted

strategy, ensuring consistency between the physical and chemical apportionments is crucial in such cases. Nevertheless,

while these issues are important, they are intrinsic to the PMF method rather than specific limitations of our approach.

– Stationarity of source profiles. In this study, a single PMF analysis was conducted on the entire dataset, encompassing

all seasons without distinction. However, several studies highlight the importance of applying PMF separately for each925

season (Ogulei et al., 2007; Yue et al., 2008; Masiol et al., 2017b; Vörösmarty et al., 2024) or even time of the day

(Bhandari et al., 2022) to account for changes in emissions and factor profiles due to environmental and human activity

patterns. Another approach is the rolling PMF (Parworth et al., 2015; Via et al., 2022), where a subset of the data is

processed in a moving time window. While application of such techniques may be critical for ultrafine particles, which

are highly sensitive to ambient conditions and exhibit rapid modal shifts (Zhou et al., 2004; Gu et al., 2011; Wang930

et al., 2013; Beddows et al., 2014; Vu et al., 2015; Masiol et al., 2017a; Rivas et al., 2020), accumulation-mode and

coarse-mode aerosols are likely less affected by such variations.

In this regard, in our study, we prioritised a straightforward methodology. However, for the sake of completeness, we

also explored seasonal PMF as a supplementary analysis (Sect. S18). To this end, four separate datasets, each containing

4000 random samples, were reprocessed using the same PMF configuration and constraints as the year-round PMF.935

This approach yielded unsatisfactory results, with high rotational ambiguity and insufficient zeros leading to instability,

particularly in winter and summer. Moreover, as noted by Rivas et al. (2020), seasonal splitting can introduce artificial

discontinuities between adjacent periods. For these reasons, we primarily adopted a year-round PMF approach.

Another limitation of using fixed source profiles is unsuitability for assessing long-term trends. Changes in emission

sources over time, such as variations in vehicle fleets, fuel types, or residential heating practices, could affect the size940

distribution and light absorption properties of aerosols (e.g., Grange et al., 2020), potentially compromising the results.

Instrumental sensitivity changes must also be carefully monitored and corrected, ideally through regular comparisons

with alternative techniques (e.g., EC measurements using the thermo-optical transmission method against NeBC from

the aethalometer).

Another important consideration concerns the retrieval uncertainty. To our knowledge, no rigorous and universally accepted945

techniques for estimating uncertainties in the contribution matrix, G, have been reported in the scientific literature (Paatero

et al., 2014), and only empirical methods exist. Based on our daily evaluation of the source apportionment results, we estimate

the sensitivity of the hourly PM10 retrievals to be in the order of a few µg m−3 (≲5 µg m−3). Contributions below this threshold

should be interpreted with caution, as they may not reliably indicate the actual presence of the corresponding aerosol type.

Indeed, minor interferences from other factors or the leakage of particles not adequately represented by a single profile can950

occur. Conversely, as demonstrated in the second part of this article, hourly concentrations exceeding this threshold correspond

to actual phenomena, corroborated by independent measurement techniques.
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We conclude this section with several recommendations for users interested in applying a method similar to the one described

here:

1. We recommend using OPCs with a minimum detection size of 200 nm or smaller. If this condition is not met, the overlap955

between particles detected by the OPC and the aethalometer may be too small, or even absent, potentially leading to

instability in the solution. Additionally, depending on the instrument used as the reference for PM measurements and

the dominant particle type at the measuring site, PM estimates with a high fraction of submicron particles could be

inaccurate if the minimum detection size is too large.

2. To address this, measurements of ultrafine particles may be beneficial to ensure that the entire size spectrum is captured960

(Yue et al., 2008). Even the use of simple condensation particle counters to determine the total particle number con-

centration could help compensate for the ‘missing’ ultrafine fraction not detected by the OPC. Although instruments

operating in different particle size ranges rely on distinct counting techniques and size definitions, perfect continuity

between instruments is not essential. Indeed, our method is based on relative variations within each size distribution bin

rather than absolute values.965

3. We also found that the maximum detection diameter is an important factor. Measurements extending slightly beyond

10 µm, yet still within the efficiency curve of standardised PM10 sampling inlets (with a 50 % cut-off at 10 µm), proved

useful for distinguishing local resuspension from desert dust transport. This confirms earlier suggestions (Yue et al.,

2008) that including larger particle sizes (10–20 µm) might be helpful to detect and separate mechanically generated

coarse-mode aerosols.970

4. We believe that the main advantage of RASPBERRY is its ability to provide source apportionment with high time

resolution and reduced effort compared to chemical methods. However, it should not be viewed as a simple alternative

to aerosol chemical characterisation. Instead, we strongly recommend careful comparison of the physical and chemical

source apportionment results, both during the initial algorithm training phase and at regular intervals during routine

operation to ensure that instrument sensitivities or source characteristics have not significantly changed. Ideally, such975

comparisons should be conducted across different seasons and atmospheric conditions.

5. Difficulties in obtaining a stable solution for physical source apportionment, such as unpredictable profile variations

depending on the selected input uncertainties (e.g., Sect. S6), may arise due to limited overlap between instruments

for small particles and independent random measurement errors for different instruments. This can lead to unrealisti-

cally small contributions from traffic emissions and residential biomass burning, as observed by Forello et al. (2023), or980

excessive uncertainty ranges in the DISP test. If the user is not concerned with maintaining the independence of chem-

ical and physical apportionment, model parameters or input uncertainties could be adjusted to align the results of both

approaches. Alternative techniques to estimate approximate traffic and biomass burning contributions to PM10 without

relying on chemical analyses, based solely on aethalometer data and empirical coefficients, are documented in the scien-
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tific and technical literature (Aujay-Plouzeau, 2020). These methods may serve as an initial check, although they do not985

provide an accurate validation reference.

6. Finally, users should implement and routinely assess quality metrics for the source apportionment results. These metrics

could include calculating, for each retrieval, the variable Q (Sect. 3.1) by comparing the original and reconstructed size

distribution and spectral absorption coefficient. At a minimum, the difference between the original and reconstructed

PM10 mass concentration should be evaluated. Significant discrepancies, or even negative regression values, could pro-990

vide valuable insights into special conditions where aerosol types not included in the training phase may be present.

6 Conclusions and perspectives

Based on the initial objectives outlined in Sect. 1, we can draw the following conclusions:

1. We have developed a new method, named RASPBERRY, based on measurements of aerosol physical properties and

simple, reproducible steps, to provide source-apportioned PM10 concentrations at high temporal resolution (e.g., 1 h).995

It consists of two phases: (i) training the algorithm on a random subset of the available ‘physical’ data using the well-

known and freely available US EPA PMF5 software; (ii) fitting the measured size distributions and spectral absorption

coefficients with the PMF profiles. This second step, based on simple algebraic operations, can be adapted for real-time

implementation, making RASPBERRY a valuable tool for air quality monitoring networks. As shown in the presented

case studies, the available high time resolution enhances the understanding of the diurnal variability of emissions and1000

sensitivity of PM concentrations to meteorological patterns, also facilitating the application of various normalisation

techniques based on meteorological data (Grange and Carslaw, 2019; Dai et al., 2020). Even when more advanced

instruments for online chemical analyses are available, such as aerosol chemical speciation monitors, the presented

technique serves as a simple yet effective backup tool for cross-validation, or to provide information on particles larger

than 1–2.5 µm, i.e. beyond the size covered by such instruments.1005

2. At the core of the method are physical aerosol properties obtained at high temporal resolution from automated optical

instruments. We have shown that particle size distributions in the accumulation and coarse modes, measured by optical

particle counters, and light absorption properties from aethalometers provide valuable information for identifying both

local and remote PM10 sources. In particular, using cost-effective OPCs, we obtained results comparable to those of

studies employing more advanced instrumentation, such as the aerodynamic particle sizer (Gu et al., 2011). Thus, we1010

consider OPCs, routinely used by environmental and air quality agencies to estimate PM concentrations, to be an im-

portant yet undervalued and underutilised data source. To maximise the information derived from these devices, users

should retain the full size distribution rather than solely the PM concentration estimates.

3. The robustness of the technique was demonstrated through its application to a multi-year, hourly resolved dataset col-

lected at the urban valley station of Aosta, Italy. This long-term (five years) application represents a distinctive trait1015

42

https://doi.org/10.5194/egusphere-2025-5044
Preprint. Discussion started: 21 November 2025
c© Author(s) 2025. CC BY 4.0 License.



of the present work compared to most published studies, which typically focus on shorter-term campaigns. The algo-

rithm successfully identified six source factors: traffic, residential biomass burning, two secondary factors (condensation

and droplet modes), desert dust, and locally resuspended coarse particles. The respective contributions to PM10 were

compared with those obtained from a traditional PMF based on daily averaged chemical data, yielding high correlation

coefficients. Moreover, factorisation based on physical data showed greater stability and lower rotational ambiguity than1020

that based on chemical data.

Among the various applications, the proposed method can complement other techniques to identify natural PM sources

and quantifying their contribution to PM metrics, helping in their exclusion from regulatory exceedance considerations

in accordance with the EU Commission AQ Directive. For example, based on RASPBERRY desert dust estimates and

the limit values defined by the 2024 AAQD, 22 of the 36 PM10 daily exceedances recorded in Aosta–Downtown during1025

the five-year study period could be excluded from the count due to natural contributions. Moreover, although further

adaptations are required for long-term analyses, the method is already applicable for improving source inventories and

air quality models.

Additionally, we highlighted the value of ground-based remote sensing techniques, such as sun photometry and auto-

mated lidar-ceilometers, in air quality applications. The synergy between the new source apportionment method and1030

these remote sensing techniques enabled a more comprehensive interpretation of the observed phenomena, including

medium- to long-range transport events.

Several developments and improvements will be pursued in future studies. First, the method is currently being tested at an-

other station in southern Italy, which features a more complex mix of aerosol sources (Mapelli et al., 2025). At this second site,

ultrafine particle measurements using a scanning mobility particle sizer are also being conducted to facilitate the interpretation1035

of the results and extend the explored size range.

An important aspect to note in this study is that chemical data were used independently of physical data to provide a

reference dataset for validating the new method. A natural progression would be to integrate dimensional, optical absorption,

and chemical information into a unified approach. To preserve the original resolutions of the various techniques and maximise

the available information, a multi-time PMF approach would be required.1040

Finally, a valuable improvement would be the inclusion of aerosol scattering properties, measured using nephelometers,

alongside spectral absorption measurements. This would offer additional insights into the presence of non-light-absorbing

aerosols, such as those formed through secondary processes.

Efficient source apportionment techniques are critical for air quality applications and regulatory efforts in the context of

the new EU Air Quality directive, as they allow policymakers to assess the impact of measures not only on particulate matter1045

as a whole but also on individual sources. Indeed, while abatement policies have been effective for traffic exhaust emissions

and industrial pollution (Rovira et al., 2025), other sources, such as biomass burning and non-exhaust traffic emissions, remain

largely unregulated. In this regard, by using only data from automated instrumentation, RASPBERRY expands spatial coverage

of source information as it can be applied across all stations equipped with suitable instruments. The methodology has potential
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applications in other scientific domains, such as improving the understanding of the health effects of different aerosol types,1050

particularly when integrated with health metrics like oxidative potential, and refining the modelling of radiative effects for each

aerosol species.
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Drinovec, L., Močnik, G., Zotter, P., Prévôt, A. S. H., Ruckstuhl, C., Coz, E., Rupakheti, M., Sciare, J., Müller, T., Wiedensohler, A., and

Hansen, A. D. A.: The “dual-spot” Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation,

Atmos. Meas. Tech., 8, 1965–1979, https://doi.org/10.5194/amt-8-1965-2015, 2015.1250

Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., Tanré, D., and Slutsker, I.: Variability of Absorption and

Optical Properties of Key Aerosol Types Observed in Worldwide Locations, J. Atmos. Sci., 59, 590–608, https://doi.org/10.1175/1520-

0469(2002)059<0590:VOAAOP>2.0.CO;2, 2002.

49

https://doi.org/10.5194/egusphere-2025-5044
Preprint. Discussion started: 21 November 2025
c© Author(s) 2025. CC BY 4.0 License.



Eck, T. F., Holben, B. N., Reid, J. S., Sinyuk, A., Hyer, E. J., O’Neill, N. T., Shaw, G. E., Vande Castle, J. R., Chapin, F. S., Dubovik, O.,

Smirnov, A., Vermote, E., Schafer, J. S., Giles, D., Slutsker, I., Sorokine, M., and Newcomb, W. W.: Optical properties of boreal region1255

biomass burning aerosols in central Alaska and seasonal variation of aerosol optical depth at an Arctic coastal site, J. Geophys. Res., 114,

https://doi.org/10.1029/2008JD010870, 2009.

ECMWF Copernicus Atmosphere Monitoring Service: Smoke from Canadian wildfires reaches Europe, https://atmosphere.copernicus.eu/

smoke-canadian-wildfires-reaches-europe, 2024.

El Haddad, I., Marchand, N., Dron, J., Temime-Roussel, B., Quivet, E., Wortham, H., Jaffrezo, J. L., Baduel, C., Voisin, D., Besombes, J. L.,1260

and Gille, G.: Comprehensive primary particulate organic characterization of vehicular exhaust emissions in France, Atmos. Environ., 43,

6190–6198, https://doi.org/10.1016/j.atmosenv.2009.09.001, 2009.

Emami, F. and Hopke, P. K.: Effect of adding variables on rotational ambiguity in positive matrix factorization solutions, Chemometr. Intell.

Lab., 162, 198–202, https://doi.org/10.1016/j.chemolab.2017.01.012, 2017.

Estellés, V., Campanelli, M., Smyth, T. J., Utrillas, M. P., and Martínez-Lozano, J. A.: Evaluation of the new ESR network software for the1265

retrieval of direct sun products from CIMEL CE318 and PREDE POM01 sun-sky radiometers, Atmos. Chem. Phys., 12, 11 619–11 630,

https://doi.org/10.5194/acp-12-11619-2012, 2012.

EUMETSAT: Canadian wildfire monitoring over the Atlantic and Europe, https://user.eumetsat.int/resources/case-studies/

canadian-wildfire-monitoring-over-the-atlantic-and-europe, 2023.

European Commission: Directive 2008/50/EC of the European Parliament and of the Council on ambient air quality and cleaner air for1270

Europe, in: 2008/50/EC, edited by European Parliament, 2008.

European Commission: Commission staff working paper establishing guidelines for demonstration and subtraction of exceedances at-

tributable to natural sources under the Directive 2008/50/EC on ambient air quality and cleaner air for Europe, http://register.consilium.

europa.eu/doc/srv?l=EN&f=ST%206771%202011%20INIT, 2011.

European Commission: Directive 2024/2881/EC of 23 October 2024 on ambient air quality and cleaner air for Europe, in: 2024/2881/EC,1275

edited by European Parliament, 2024.

European Environment Agency: Europe’s air quality status 2024, https://www.eea.europa.eu/publications/europes-air-quality-status-2024,

2024.

Fasano, G., Diémoz, H., Fountoulakis, I., Cassardo, C., Kudo, R., Siani, A. M., and Ferrero, L.: Vertical profile of the clear-sky aerosol direct

radiative effect in an Alpine valley, by the synergy of ground-based measurements and radiative transfer simulations, Bull. Atmos. Sci.1280

Technol., 2, 11, https://doi.org/10.1007/s42865-021-00041-w, 2021.

Favaro, E., Barbaro, E., Diémoz, H., Bertinetti, S., Malandrino, M., Foretier, A., Ferrarese, S., Bellini, A., Freppaz, M., Balestrini, R.,

Bortolini, M., Munteanu, A., Frassati, S., Marafante, M., Mariani, E., Bonasoni, P., Petracchini, F., Mazari, L., Provenzale, A., Gilardoni,

S., Gambaro, A., and Feltracco, M.: Characterizing aerosol composition, size distribution and optical properties in the Western Italian

Alps: insights into pollution sources and transport processes, in: European Aerosol Conference 2025, 31 August – 5 September 2025,1285

Lecce (Italy), European Aerosol Assembly (EAA), 2025.

Favez, O., El Haddad, I., Piot, C., Boréave, A., Abidi, E., Marchand, N., Jaffrezo, J.-L., Besombes, J.-L., Personnaz, M.-B., Sciare, J.,

Wortham, H., George, C., and D’Anna, B.: Inter-comparison of source apportionment models for the estimation of wood burning aerosols

during wintertime in an Alpine city (Grenoble, France), Atmos. Chem. Phys., 10, 5295–5314, https://doi.org/10.5194/acp-10-5295-2010,

2010.1290

50

https://doi.org/10.5194/egusphere-2025-5044
Preprint. Discussion started: 21 November 2025
c© Author(s) 2025. CC BY 4.0 License.



Ferrero, L., Mocnik, G., Ferrini, B., Perrone, M., Sangiorgi, G., and Bolzacchini, E.: Vertical profiles of aerosol ab-

sorption coefficient from micro-Aethalometer data and Mie calculation over Milan, Sci. Total Environ., 409, 2824–2837,

https://doi.org/10.1016/j.scitotenv.2011.04.022, 2011.
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