Supplementary Materials for

Polarity and direction dependence of energetic cross-frontal eddy transport in the Southern Ocean's Pacific sector

Huimin WANG¹, Lingqiao CHENG^{1,5*}, Erik BEHRENS², Zhuang CHEN^{1,4,5}, Jennifer DEVINE³, Guoping ZHU^{4,5,6,7}

¹College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China

²Earth Sciences New Zealand, Wellington, New Zealand

³Earth Sciences New Zealand, Nelson, New Zealand

⁴College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, China

⁵Center for Polar Research, Shanghai Ocean University, Shanghai, China

⁶Polar Marine Ecosystem Group, The Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai, China

⁷International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China

Contents of this file Figures S1 to S2

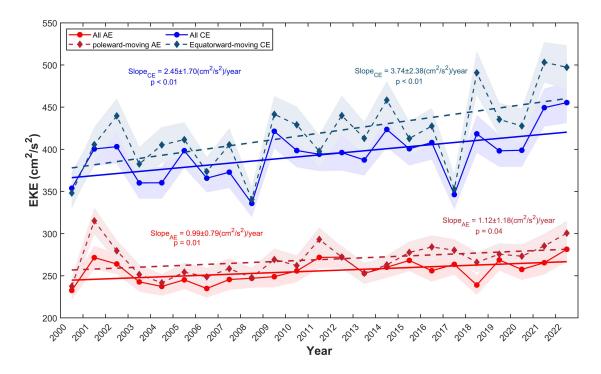


Figure S1. Annual mean EKE (calculated as $EKE = EKE_T/S$, where S is the total area of an eddy) for all AEs and CEs are depicted by light red and light blue solid lines, respectively, with their linear trends indicated by solid lines in the same colors. Superimposed are the extracted subsets of poleward-moving AEs and equatorward-moving CEs, depicted by light red and light blue dashed lines, with their linear trends shown by dashed lines in the same respective colors. Error shadings represent one standard deviation, and slope values are given with $\pm 95\%$ confidence intervals.

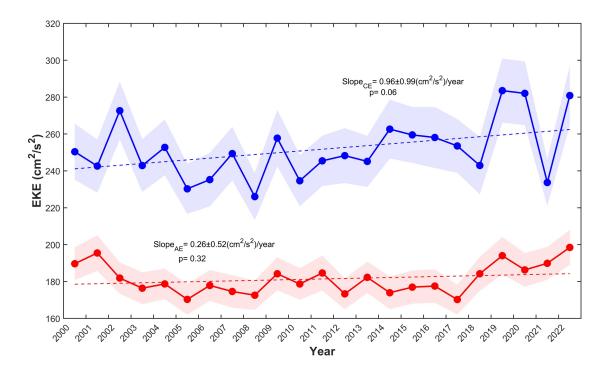


Figure S2. Time series of annual mean EKE for eddies in the interfrontal zones. EKE is shown by blue solid line for CEs and red solid line for AEs, with linear regression indicated by dashed lines, error shadings representing one standard deviation, and slope values given with $\pm 95\%$ confidence intervals.