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23 ABSTRACT

24  Accurately quantifying drought impacts on terrestrial carbon cycling is essential for
25  advancing predictions of climate-carbon feedbacks. However, current biogeochemical
26  models exhibit limited capability in simulating drought-induced transformations of soil
27  organic carbon (SOC), particularly regarding microbial processes. Here, we conducted
28  a systematic comparative evaluation of three prevailing SOC modeling structures,
29  including conventional three-pool partitioning scheme (SM1), mineral and particulate-
30  associated carbon partitioning scheme (SM2) and Michaelis-Menten regulated carbon-
31  stabilization scheme (SM3), to elucidate their capacity in simulating soil carbon
32 dynamics under decadal drought scenarios in a subtropical forest. We found divergent
33 effects of drought in soil C input (SM1, 66%; SM2, 10%; SM3, -4%) and mean
34  residence time (MRT; SM1, -31%; SM2, -14%; SM3, 65%), which lead to the predicted
35 SOC substantial accumulation for both SM1 and SM3 (+39.5% and +56.9%,
36  respectively) and moderate depletion (-6.1%) for SM2. The different C input directly
37  affect the passive SOC (SM1) and mineral-associated organic carbon (SM2 and SM3).
38  In comparison, the drought effects on passive SOC (SM1), microbe biomass (SM2) and
39 MAOC (SM2 and SM3), lead to notable spread in MRT. These findings highlight
40  critical model structural dependencies in simulating drought-affected soil carbon
41  dynamics and emphasize the necessity for models to integrate microbial-
42  physicochemical interactions for improved climate-carbon coupling projections.

43 Keywords: soil carbon stock, extreme drought, microbial enzyme activity, model

44 comparison, data assimilation, traceability analysis.
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45 1 Introduction

46  Terrestrial ecosystems are facing increasing frequent stress from extreme drought
47  which fundamentally alters plant-microbe-mineral interactions, serving as a key driver
48  of carbon sequestration patterns (IPCC, 2013; Han et al., 2022; Choat et al., 2018; Hao
49 et al,, 2015). Initial drought exposure typically enhances soil organic carbon (SOC)
50 stability via physicochemical protection mechanisms, such as reduced microbial
51  decomposition from moisture limitation (Schimel, 2018), increased organo-mineral
52  association due to soil contraction (Blankinship et al., 2016), and disrupted enzyme
53  diffusion (Wu et al., 2025). However, plant-derived carbon inputs decline through
54  productivity suppression which drives by hydraulic failure (Choat et al., 2018) and
55  carbon allocation shifts away from roots (Yin et al., 2021a). Prolonged drought (e.g., >2
56  years) induces microbial adaptation strategies which may accelerate SOC loss (Barnard
57 et al., 2013; Schimel et al., 2018). The shift toward filamentous fungi dominance
58 enhances oxidative enzyme production, while necromass accumulation primes
59  destabilization of mineral-associated carbon (Liang et al., 2020; Wang et al., 2024).
60  However, predicting how terrestrial carbon storage responds to drought over decadal
61 timescales remains a challenge, requiring the integration of long-term manipulative
62  experiments with models capable of capturing drought-induced changes in plant-
63  microbe-mineral interactions.

64 In most terrestrial ecosystem models, SOC is typically represented as discrete
65 compartments defined by their turnover times (Krinner et al., 2005; Lawrence et al.,

66  2019). Early modeling approaches, such as the single-pool model proposed by Jenny et
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67  al. (1941), treated SOC as a homogeneous system. Subsequent refinements led to the
68  development of multi-pool frameworks. For example, Campbell et al. (1978)
69  categorized SOC into labile and stable organic matter. The TECO model further
70  advanced this by partitioning SOC into three pools (fast, slow, and passive SOM) with
71 different turnover rates (Xu et al., 2006; Du et al., 2017; Wan et al., 2025). Later
72 developments incorporated greater complexity, such as separating recalcitrant fractions
73 and accounting for physically protected organic matter, which decomposes more slowly
74 than unprotected forms (Paul et al., 1978; Willard et al.,, 2024). Despite these
75  advancements, SOC pools remain conceptual constructs simulated via first-order
76  kinetics. Importantly, the carbon content of individual pools cannot be empirically
77  measured, model calibration relies solely on total SOC (Guo et al., 2022).

78 Theoretical advancements in soil organic matter formation and decomposition
79  improve the representation of SOC in land-surface and terrestrial ecosystem models
80 (Doelsch et al., 2020; Si et al., 2023; Cotrufo et al., 2022; Sokol et al.,2019). Measured
81  SOC fractions, such as particulate organic carbon (POC), mineral-associated organic
82  carbon (MAOC) and dissolved organic carbon (DOC), have been proposed to link
83  conceptual SOC pools (Lee et al., 2020). POC is typically considered as fragments of
84  plant residues with a particle size > 53 um, and it is more susceptible to external
85  environment changes (Cotrufo et al., 2019; Benbi et al., 2014; Lugato et al., 2022).
86  MAOC generally consists of microbial and plant-derived organo-mineral complexes
87  rich in nutrients, typically < 53 um, while also being associated with minerals and

88  embedded in soil aggregates (Si et al., 2023; Hansen et al., 2024; Villarino et al., 2021).



https://doi.org/10.5194/egusphere-2025-5037
Preprint. Discussion started: 2 December 2025 EG U
© Author(s) 2025. CC BY 4.0 License. Sp here

89  Some studies have revealed that models constrained by measurable SOC pools can

90 provide more accurate estimation of model parameters thereby more accurate

91  projections of SOC dynamics (Guo et al., 2022; Tao et al., 2024; Abramoff et al., 2022).

92  Dissolved organic carbon (DOC), derived from living roots or transformed from

93  recalcitrant macromolecular organic matter, is approximately 2 to 3 times more efficient

94  than litter in forming soil organic matter (Sokol et al., 2019; Cotrufo et al., 2013).

95  Moreover, the adsorption and desorption processes of DOC represent a key link in SOC

96  decomposition (Camino-Serrano et al., 2018; Wu et al.,, 2014). Consequently,

97  incorporating DOC and its interaction with SOC into models represents a crucial

98  advance.

99 Soil organic matter decomposition is a stepwise process in which microbes secrete
100  extracellular enzymes to catalyze the substrate, converting soil organic matter into
101  assimilable subunits (Caldwell et al., 2005; Ma et al., 2024; Szejgis et al., 2024).
102  Extensive manipulative experiments reveal that short-term drought limits microbial
103 activities and substrate decomposition rates by inducing osmotic stress and constraining
104  substrate diffusion (Honeker et al., 2024; Citerne et al., 2021). In contrast, long-term
105  drought alters microbial community structure and carbon utilization patterns (Hueso et
106 al., 2012; Preece et al., 2019; Wang et al., 2024). As catalysts of decomposition,
107  microbial enzyme activities are impacted by drought (Sardans et al., 2010; Stursova et
108  al., 2012; Wu et al., 2025). For example, drought significantly reduces the activities of
109  B-glucosidase, acid phosphatase and polyphenol oxidase, although certain oxidases

110  remain unaffected by soil moisture (Su et al., 2020a; Allison et al., 2023; Ficken et al.,
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111 2019). In recent years, microbial models, which focus on the process of microbial
112 decomposition, have become increasingly incorporated in process-based ecological
113 models (Moorhead et al., 2006; Lawrence et al., 2009; Allison et al., 2010; Huang et al.,
114 2018). However, most microbial models focus only on simulating carbon dynamics
115  under warming and nitrogen deposition scenarios (Luo et al., 2020; Knorr et al., 2005;
116  Eastman et al., 2024), while studies investigating drought effects on SOC dynamics and
117  microbial decomposition remain scarce. Consequently, incorporating microbial
118  enzymes to terrestrial ecosystem model are necessary to elucidate microbial regulation
119  of soil carbon responses to drought.

120 In this study, we evaluate three SOC modeling schemes with increasing complexity,
121 including conventional three-pool partitioning scheme [SM1], mineral and particulate-
122 associated carbon partitioning scheme [SM2] and Michaelis-Menten regulated carbon-
123  stabilization scheme [SM3]. Using observational data from long-term drought
124  experiments, we assess their validity and predictive performance. Our study addresses
125  two key questions: (1) how does decadal drought affect SOC storage in subtropical
126  forests? (2) do different model structures yield consistent drought impacts on SOC
127  projections?

128

129 2 Materials and methods

130 2.1 Site description and data source

131  The Zhejiang Tiantong Forest Ecosystem National Field Scientific Observation and

132 Research Station (28°48'N, 121°47'E, 163 m a.s.l) is located in Ningbo, Zhejiang
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133  Province. The site has a typical mid-subtropical monsoon climate with relatively
134  distinct seasons. Summers are generally mild and rainy, while winters are dry with little
135  precipitation. The annual average temperature in the study area is approximately
136  16.2 °C. The annual average precipitation and evaporation are 1384 mm and 1320 mm,
137  respectively, and the relative air humidity can reach 85%. The predominant soil type in
138  the site is red-yellow soil and soil parent materials are mainly weathered products of
139  some granite and sedimentary rocks. The soil texture consists of sand (6.8%), silt
140 (55.5%), and clay (37.7%), with a pH ranging from about 4.4 to 5.1 (Gao et al., 2014).
141 The vegetation type in the study area is typical subtropical evergreen broad-leaved
142 forest, with secondary forests being the main vegetation type. The forest stocking
143 density is approximately 3400 trees-hm™2. The drought experiment was established in
144 July 2013, which is composed of three experimental plots with similar terrain,
145  vegetation type and stand condition (Su et al., 2020b).

146 The forcing datasets used in this study span from 2014 to 2022, including
147  photosynthetically active radiation (PAR), leaf area index (LAI), air temperature (Ta),
148  relative humidity of air (RH), soil temperature (Ts) and moisture content of soil (SWC).
149  These data were mainly measured by the station meteorological observation device.
150  The above-ground biomass data of plants were mainly estimated by allometric growth
151  equation. The C content of litter was determined by potassium dichromate oxidation
152 method. Soil total organic carbon and its physical and chemical properties were
153  measured by elemental analyzer. Microbial biomass carbon was determined by

154  chloroform fumigation. DOC was determined by hot water extraction and element
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155  analyzer (Zhou et al., 2013). Soil enzyme activities were determined by microplate
156  enzyme assay (Saiya-Cork et al., 2002; Su et al., 2020b) and was expressed by substrate
157  conversion per gram of dry soil per hour. The soil respiration rate was measured using
158  the LI-COR 8100 portable system (LI-COR. Inc., Lincoln, NE, USA) between 9 a.m.
159  and 1 p.m. on 1 - 2 sunny days per month, and accumulated the data on daily scale.
160 2.2 Model description

161 All three soil models are coupled to a common vegetation submodule, which requires
162  identical environmental drivers and provides the same input data (Fig. 1). In SM1, soil
163  organic carbon is divided into three pools, including (1) a microbial pool with fast
164  turnover; (2) a slow (chemically protected) pool, and (3) a passive (physically protected)
165  pool (Xu et al., 2006; Du et al., 2015). In SM2, SOM is divided into four pools (Si et
166 al., 2023), including (1) a dissolved organic carbon pool (DOC), which is converted
167  from organic matter with high molecular weight and difficult to decompose. Microbes
168  can utilize DOC and release COz (Allison et al., 2010; Lawrence et al., 2009); (2) a
169  microbial pool; (3) a particulate organic carbon pool (POC), and (4) a mineral-
170  associated organic carbon (MAOC). SM3 is an extension of SM2 that incorporates three
171 enzyme components (-1, 4-glucosidase (BG), polyphenol oxidase (PPO), and
172 cellobiohydrolase (CBH)), which directly catalyze the decomposition of POC and
173 MAOC. Given that enzymes have a low carbon content and their inclusion a pool could
174  lead to model overparameterization, we therefore assign them a catalysis role instead
175  of considering them as carbon pools. In these three model schemes, SM1 and SM2

176 implicitly represent microbial activities, where the decomposition of SOM governed by
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177 linear, first- order dynamics. Soil C turnover times are defined by biome and pool-
178  specific decay constants, which are modified by environmental scalars such as soil
179  temperature and soil moisture availability (Du et al., 2017; Du et al., 2025). In contrast,
180  the SM3 adopted reverse Michaelis- Menten kinetics to explicitly represent the catalytic
181  progress of microbial extracellular enzymes. The turnovers of DOC, POC and MAOC
182  are depended on the size of both the donor (substrate) and the receiver (microbial

183  biomass) pools. SM1 was expressed by the following equations:

dCy
184 W =1 + C5C7a67 + CPC3a68 - CMC6 (1)
dc
185 d_tS =1+ Cyceaze — Cscy (2)
dCp
186 ar Cucbags + Cscyag; — Cpcg ©)
187 Where Cy, Cs, Cprepresent the C content of microbe, slow SOM and passive SOM.

188  [Irepresents the C input from litters, cs, ¢7, cs represent the exit rate of C from microbes,
189  slow SOM and passive SOM, and as7, ass, azs, azs represent the allocation of slow SOM
190  to microbes, passive SOM to microbes, microbes to slow SOM and passive SOM to

191 slow SOM, respectively.

192 The soil C pools of SM2 were expressed as follows:
dCpoc
193 T I+ CpocCra67 + CraocColes — CpocCe (4)
dc
194 dPtoc =1+ Cycgazg — CpocCy (5)
dCy
195 dr = CpocCeags — CuCs (6)
dCyaoc
196 = CpocCrag7 + CyCglog — CryaoncCo (7)

dt
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197 Where Cpoc, Croc, Cuuoc represent the C content of DOC, POC, MAOC.
198  Parameters cs, ¢7, cs, co denote the exit rate of DOC, POC, microbes and MAOC, and
199  ae7, as9, ars, ass, asz, ass represent the allocation of POC to DOC, MAOC to DOC,
200  microbes to POC, DOC to microbes, POC to MAOC and microbes to MAOC,

201  respectively.

202 SM3 was expressed by the following equations:
dCpoc
Qb I'+ ag;(Vepnp + Vepor + Vee.r)Croc +
203 Vinax.assimCuCooc
a (V . + V . + V . )C _ max.assim (8)
69WWcpnm T Vppom + Vee.m)Cmaoc KMoesim + Cooc
204 dCroc _
dc I+ Cycgazg — (Vegnp + Vepor + Vea.r)Croc (C)]
205 ar CpocCess — CuCs (10)
dCryaoc
206 da a97(Vepnp + Vepo.r + Vee.p)Croc + GogCsCu
~(Vepum + Vepom + Vee.m)Crmaoc 11)
207 Where Vinax.assim and KM ssim denote microbe maximum assimilation rate and half-

208  saturation for assimilation. Vegn.p, Vero.r, Vsa.p represent catalytic rate of CBH, PPO,

209  BGto POC. Vesam, Verom, Vac.mrepresent catalytic rate of CBH, PPO, BG to MAOC.

210 % _ Vmax.enzyfenzy CM (12)
enzy.F KMenzy + CPOC
Vmax enzyfenzy CM
211 Vonzgyy = > (13)
i KMenzy + Cyaoc
212 Where Viavenzy represent the maximum reaction rate. KM, represent half-

213  saturation for reaction, fen represent the C ratio of CBH, PPO, BG to microbes,

214  respectively. The enzyme activities were calculated as following:

10
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215 v _ Vmax.enzyfenzyCM Csub (14)
enay KM, enzy + Csub
216 Where Cqp» denotes the C content of the enzyme-catalyzed substrate contained

217  within a soil block with an area of 1 m? and a depth of 10 c¢m, and it maintains a
218  consistent ratio of enzyme to substrate as required for experimental measurements.

219 We estimated model parameters using the Markov Chain Monte Carlo (MCMC)
220 and evaluated changes in the simulated ecosystem C storage capacity using a
221  traceability analysis framework (Supplement). The effect of drought on C storage is

222  calculated as follows:

(Cdrought - Cctr)

223 Drought Ef fect = X 100% (15)

CC tr

224 Where Carough: represents the C content of drought, Ce, represents the C content of
225  control condition.

226

227 3 Results

228 3.1 Model validation

229  In this study, we used the Markov Chain Monte Carlo (MCMC) algorithm to constrain
230  model parameters (Figs. 2 and S3). All three schemes incorporate 8 vegetation-related
231  parameters (Fig. S3). SM1 included 8 soil carbon-related parameters (Fig. 2), with 5
232 well-constrained under control conditions (c7, ass, as7, ass, ass) and 5 under drought
233 conditions (c7, cs, azs, ass ass). SM2 consisted 14 soil carbon-related parameters, with
234 7 well-constrained in the control scenario (co, cio, a74, ass, ass, ass, azs) and 9 in the
235  drought scenario (co, cio, as4, ars, ass, ass, a9z, ass, aso). SM3 had 11 well-constrained

11
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236  parameters under control conditions (Viuax.assim, Vmax.car, KMcaH, fcsh, f36, frpo, as4, aza,
237  azs, agy, azs) and 12 under drought conditions (cs, Vinax.assim Vmax.car, KMcsn, KMaq,
238 Vmax.rro, KMppo, f36, frro, ass, ass, as7) in all 22 soil carbon-related parameters.

239 All three schemes calibrated by observations from the drought experimental which
240  had overall good agreement (Figs. S1 and S2). The simulation of vegetation C (leaf,
241  fine root, wood) and soil respiration exhibited high accuracy. The simulated MBC by
242  SMI1 was inferior to those simulated by SM2 and SM3, suggesting that incorporating
243  measurable C pools can improve the accuracy of MBC simulation. By comparing the
244 accuracy of POC and MAOC, we found that SM3 generally outperformed SM2,
245  indicating that the incorporation of enzyme activities can enhance the simulation of the
246 SOC fractions, particularly with respect to MAOC.

247 3.2 Carbon simulation and prediction by three model schemes

248  Carbon storage from 2023 to 2100 was predicted using three different model schemes.
249  All models consistently indicated an increasing trend in vegetation C (VegC) and a
250  decreasing trend in soil organic carbon under both control and drought conditions (Figs.
251 3 and S4). Specifically, under control conditions, SM1 simulated growth rates of 260%
252 for VegC, -56.9% for SOC and 188% for total organic carbon (TOC). Under drought
253  conditions, the corresponding rates were 223%, -50.4% and 159%. SM2 projected
254  growth rates of 263% for VegC, -60.8% for SOC and 179% for TOC under control
255  conditions, and 217%, -55% and 151% under drought. For SM3, the simulated growth
256  rates were 230% for VegC, -88% for SOC and 146% for TOC in the control scenario,
257  while under drought the values were 169%, -55% and 106%, respectively.

12
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258 3.3 Drought effects on carbon storage

259  All three modeling schemes consistently indicated that drought reduced C content in
260 MBC (SM1, -36.9%; SM2, -56.9%; SM3, -27.3%), VegC (SM1, -16.8%; SM2, -19.9%;
261  SM3, -25.4%) and TOC (SM1, -15%; SM2, -19.4%; SM3, -24.4%). However, the
262  simulated responses of SOC to drought varied among the schemes (Fig. 4). SM1
263  predicted an increase in SOC under drought conditions (+39.5%) compared to the
264  control, driving by increases in both the slow (+13%) and passive (+57%) C pools.
265  Similarly, SM3 projected a rise in SOC (+56.9%), accompanied by increases in POC
266  (+82.3%), MAOC (+88.1%), and DOC (+6.7%). In contrast, SM2 simulated a decrease
267  in SOC (-6.1%), with reductions in DOC (-35.3%) and MAOC (-3.7%), through POC
268  increased (+43.4%).

269 By comparing the proportion of drought effects on each soil C pool simulated by
270  each scheme, it is apparent that different modeling schemes exhibit distinct sensitivities
271 to drought across specific carbon pools (Fig. 4). Specifically, SM2 demonstrated greater
272 sensitivity to drought effects on microbial biomass (-54%) and DOC (-84%) compared
273 to SM3 (-18% and +16%, respectively). Conversely, SM3 showed higher sensitivity to
274  drought-induced changes on POC (+82%) and MAOC (+74%) relative to SM2 (-26%
275  and +18%, respectively).

276 3.4 Traceability analysis of drought effects

277  The traceability analysis revealed that both SM1 and SM3 simulated higher SOC under
278  drought condition (SMI, 2.5 kg C m?; SM3, 1.2 kg C m™) compared to the control
279 (SM1, 2.1 kg C m?; SM3, 0.8 kg C m?) at the end of forecast period (Fig. 5). In contrast,

13
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280  SM2 simulated lower SOC under drought (2.3 kg C m) compared to the control (2.5
281 kg C m?). The increase of SOC in SM1 during drought was driven by higher soil carbon
282  input (drought, 1.0 kg C m™ year™'; control, 0.6 kg C m? year") (Figs. 5 and 6), while
283  in SM3, it resulted from an extended soil carbon residence time (drought, 4.3 years;
284  control, 2.6 years). However, SM2 simulated a reduction in soil carbon residence time
285  under drought, leading to decreased SOC.

286 We further analyzed the C residence times of individual pools simulated by the three
287  modeling schemes under both control and drought conditions (Fig. 6). In SM1, drought
288 increased the C residence time of passive SOM which resulted from the allocation
289  proportions from slow SOM to passive SOM and from passive SOM to microbes were
290 elevated. For SM2, drought reduced the C residence time of microbes and increased
291  that of MAOC. The allocation proportions from POC to DOC and from DOC to
292  microbes were enhanced, while the allocation from MAOC to DOC declined. In SM3,
293  drought resulted in a longer C residence time for MAOC. The allocation proportions
294  from DOC to microbes, from MAOC to DOC, and from microbes to MAOC all
295 increased, while the allocation from microbes to POC decreased.

296

297 4 Discussion

298 4.1 Response of ecosystem carbon dynamics to long-term drought

299  In this study, all three modeling schemes consistently indicate that drought leads to
300 decrease in vegetable carbon (VegC), microbes carbon (Microbe C) and total organic
301 carbon (TOC), while particulate organic carbon (POC) increases under drought

14
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302  conditions (Figs. 3, 4 and S4). These findings are consistent with multiple fields
303  manipulated experiments (Zhou et al., 2020; Pennisi., 2022; Schwalm et al., 2017).
304  During drought, plants undergo physiologically adjustments and shifts in community
305  structure in accordance with species-specific water use strategies to prevent excessive
306  water loss (Rowland et al., 2023). These responses in turn affect C uptake via
307 photosynthesis and C release via respiration at the ecosystem level, potentially
308  decoupling these two processes (Meir et al., 2008).

309 Drought consistently reduced microbial biomass carbon (MBC) across all three
310 models, and sensitivity analysis indicated this reduction was primarily driven by
311  increased microbial decay rates (Figs. 2 and S5). With prolonged drought duration,
312  microbial C content exhibited a pattern of initial decline followed by a gradual recovery
313  (Fig. 3a). Drought-induced water stress directly impairs microorganisms, leading to
314  decreased metabolic activity (Quiroga et al., 2024). However, microorganisms can
315  adapt to drought through physiological changes, community turnover, and evolutionary
316  mechanisms (Martiny et al., 2015; Allison., 2023). At the community scale, drought-
317  sensitive microbes may be replaced by more resilient taxa that immigrate into the area
318  (Allison et al., 2008; Ricks & Yannarell., 2023). Several studies have showed that fungi
319  exhibit greater drought adaptability compared to bacteria (Preece et al., 2019; Bastida
320 etal.,2018; de Vries et al., 2018). Gram-positive bacteria are also better adapted to low-
321  moisture soils compared to Gram-negative bacteria, due to their thicker and harder cell
322  walls, which render them less affected by drought (Castro et al., 2010; Uhlirova et al.,
323 2005). Through in situ manipulation experiments, Bu et al (2018) and Su et al (2020b)

15
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324  have observed shifts in microbial community structure under drought condition, which
325 may explain the gradual increase in microbial biomass under prolonged drought
326  conditions. Besides, given that microbes directly consume DOC, the incorporation of
327 measured DOC pools in SM2 and SM3 enhances the model's ability to simulate
328  microbial sensitivity to drought.

329 Simulation results from all three modeling schemes consistently showed that drought
330 initially decreased soil respiration, followed by a subsequently recovery (Fig. 3a). This
331  trend mirrors variations in microbial carbon content, indicating that drought regulates
332  soil respiration primarily through its control of microbial biomass (Zhao et al., 2025;
333  Ficken & Warren., 2019). Sensitive analysis further revealed a strong positive
334  correlation between the C content of POC and the allocation proportion of litters to
335  POC (Figs. 2 and S5). These results imply that drought enhance both the carbon content
336 in litter and its transfer to POC, resulting in an overall increase in POC. Furthermore,
337  since POC are directly influenced by enzymatic catalysis, SM3's heightened sensitivity
338  to drought effects on these pools underscores the model's effectiveness in capturing
339  enzyme-mediated processes under drought conditions.

340 4.2 Divergent simulations of drought effect on SOC among three modeling

341  schemes

342  Akey divergence among the three modeling schemes lies in their simulation of drought
343  effects on SOC components, which is the key source of discrepancy in the projected
344  carbon storage response (Figs. 4 and 6). SM1 divides SOC into three pools, including
345  MBC, slow SOM, and passive SOM. However, since only total SOC data are available

16
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346  to constrain the model, the predictions of this scheme are highly sensitive to the quality
347  and the duration of SOC observations (Fig. S5). Given the non-linear response of
348  ecosystems to drought duration (MUller et al., 2022; Anderegg et al., 2020; Schwalm et
349  al,2017), models constrained by short-term observation data may introduce substantial
350 deviation in long-term projections. In contrast, SM2 partitions the SOC into four
351  observable carbon pools (i.e., Microbes, POC, MAOC and DOC), each independently
352  constrained by corresponding measurements. The trajectory of SOC is thus jointly
353  determined by these four fractions, leading to pronounced differences between the
354  predictions of SM1 and SM2. Since both models use the same SOC data, this
355  demonstrates the profound influence of carbon partitioning strategies on model
356  predictions. Furthermore, drought causes the carbon input rates and carbon loss rates of
357  individual carbon pools in SM2 deviate from the overall SOC change rate. These pool-
358  specific discrepancies cause the SOC predictions to diverge increasingly over time
359  between models with different structures.

360 Differences between SM2 and SM3 are mainly reflected in the dynamics of DOC
361 and MAOC. SM2 employs first-order linear kinetics to describe the decomposition of
362 DOC and MAOC, where the decomposition rate is proportional to their C content. In
363  contrast, SM3 utilizes reverse Michaelis-Menten kinetics, indicates that the
364  decomposition of SOC is not only dependent on C content but also on microbial C and
365 enzyme activities (Chandel et al., 2023). Under drought condition, SM2 simulates a
366  decrease in DOC, while SM3 predicts an increase (Fig. 4). Some studies report that
367  drought can reduce DOC concentrations (Tiwari et al., 2022; Wu et al., 2023), whereas
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368  others suggest it may increase DOC due to the influence of factors such as air
369 temperature, soil temperature, humidity, precipitation, pH, and sulfate concentrations
370  (Evansetal., 2005; Sowerby et al., 2010). Sensitivity analysis reveals that DOC in SM2
371 s influenced mainly by the transfer ratio of POC to DOC and the transfer ratio of
372 metabolic litter to DOC (Fig. S5). However, DOC dynamics are primarily controlled
373 by the microbe maximum assimilation rate and half-saturation for assimilation in SM3,
374  indicating that SM3 captures direct microbial regulation of DOC decomposition.
375  Similarly, while SM2 simulates a slight decrease in MAOC under drought, SM3
376  predicts an increase (Fig. 4). This discrepancy stems the fact that SM3 explicitly
377  incorporates the catalytic effects of three enzyme activities - BG, PPO and CBH — on
378  MAOC decomposition. Drought reduces microbial enzyme activities (Figs. S1 and S2)
379  (Bach et al., 2016; Waldrop et al., 2006), thereby weakening MAOC decomposition
380  capacity and accumulating MAOC under drought condition. Moreover, the explicit
381 inclusion of enzyme-mediated processes significantly improves the accuracy of POC
382 and MAOC simulations, suggesting the importance of representing enzyme activities
383  in SOC decomposition models.

384 Our study enhances the understanding how drought affects forest C dynamic across
385  different model schemes. Nevertheless, we acknowledge that several uncertainties
386 involved in our analysis. First, we only considered three enzymes that directly catalyze
387  soil carbon decomposition, while other enzymes (e.g., Acid phosphatase, N-acetyl-
388  glycosaminidase, Peroxidase) may also contribute indirectly to this process (Su et al.,
389  2020b). Second, when calculating enzyme activities, we applied laboratory-derived
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390  proportional relationships between enzyme quantity and substrate quantity to field
391  conditions, which assumes substrate availability far exceeds enzyme availability in
392  field soils. Finally, laboratory enzyme activities measurements typically use specific
393  substrates, whereas field soils contain multiple potential substrates that could be
394  catalyzed, which introduces additional uncertainty in our simulations.

395

396 5 Conclusions

397  Accurately simulating the impacts of drought on soil carbon dynamics is of critical
398 importance for terrestrial carbon sequestration. In this study, we integrated data
399 assimilation and traceability analysis, devising three soil carbon decomposition
400  schemes and exploring how different soil carbon decomposition models simulate soil
401  carbon responses to drought. Our results revealed significant disparities in the drought
402  effects on soil organic carbon as simulated by the three models, with these differences
403  primarily driven by carbon input and carbon residence times of different carbon pools.
404  Explicitly incorporating microbial enzyme activities notably altered the impacts of
405  drought on mineral-associated organic carbon and dissolved organic carbon. These
406  findings underscore the significant role of different carbon pool partitioning schemes,
407  their constrainability, and the consideration of microbial enzyme catalytic processes in
408  simulating the response of soil carbon to drought, enhancing our understanding of the

409  complexity underlying drought effects on soil organic carbon decomposition.

410
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429  Figure 1. Conceptual diagram of the soil biogeochemical models with three schemes.
430  (a) conventional three-pool partitioning scheme (SM1), (b) mineral and particulate-
431  associated carbon partitioning scheme (SM2), and (¢) Michaelis-Menten regulated

432  carbon-stabilization scheme (SM3). All pools (boxes) and fluxes (arrows) represent C

433 process. BG, -1, 4-glucosidase, PPO, polyphenol oxidase, CBH, cellobiohydrolase.

434
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437  Figure 2. Maximum likelihood value (MLEs) (or means for unconstrained parameters)
438  ofthe target parameters in both control and drought treatments among the three schemes.
439  Error bars represent standard deviations (SDs). See Table S1 for parameter
440  abbreviations and units.
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443  Figure 3. Predicted soil respiration (a), microbial C (b), passive SOM (c), POC (d),
444 SOC (e), slow SOM (f), DOC (g), MAOC (h), total organic C (i) from 2014 — 2100
445  under dry and control conditions for three schemes.
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449  Figure 4. Conceptual figure of the effects of drought simulated by three schemes on
450  carbon stocks. The histogram represents the drought effects on carbon pools
451  (percentage change of the carbon pools from 2022 to 2100), and corresponding pie
452  charts represent the proportion of the drought effects simulated by each of the three
453 schemes for the same carbon pool, relative to the sum of the drought effects from all
454  three schemes. TOC, soil total organic carbon. VegC, vegetation carbon.
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473  Figure Al. Comparison of the measured values (black squares) and simulated values
474  (lines) in the control conditions of three schemes from 2014 to 2022, p < 0.05.
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477  Figure A2. Comparison of the measured values (black squares) and simulated values
478  (lines) in the drought conditions of three schemes from 2014 to 2022, p < 0.05.
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485  Figure A4. Predicted foliage (a), wood (b), structural litter (c), fineroot (d), Metabolic

486 litter (e), Vegetation C (f) from 2014 — 2100 under dry and control conditions for three

487  schemes.
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Figure AS. The correlation between carbon pools and model parameters under control
and drought conditions of three schemes. Red represents positive correlation and blue
represents negative correlation. The x1, x2, x3, x4, x5 represent the carbon content of
foliage, fineroot, wood, metabolic litter, structural litter. x6, x7, x8 represent microbes
slow SOM and passive SOM for SM1. x6, x7, x8, x9 represent DOC, POC, microbes
and MAOC for SM2 and SM3.



https://doi.org/10.5194/egusphere-2025-5037
Preprint. Discussion started: 2 December 2025
(© Author(s) 2025. CC BY 4.0 License.

499

EGUsphere\

500 Table Al. Target parameters of this study and their prior ranges.

Parameters Intervals Unit Description

Cl 0.176-9.95 mgCg'd! exit rate of C from foliage

c2 0.176-17.9 mgCg'd! exit rate of C from fineroot

C3 0.00176-0.01 mg Cg'd! exit rate of C from wood

Cc4 0.274-8.22 mg Cg'd! exit rate of C from metabolic litter
C5 0.0548-1.64 mg Cg'd! exit rate of C from structural litter
c6 2.74-13.7 mgCg'd! exit rate of C from microbes

c7 0.027-1.37 mgCg'd! exit rate of C from slow SOM

C8 0.00137-0.00913 mgCg'd! exit rate of C from passive SOM
Cc9 2.74-68.5 mg Cg'd! exit rate of C from DOC

Cl0 0.1-1 mgCg'd! exit rate of C from POC

Cll 0.00137-0.013 mgCg'd! exit rate of C from MAOC

bl 0-0.315 - allocation of GPP to foliage

b2 0-0.3 - allocation of GPP to fineroot

b3 0-0.3 - allocation of GPP to wood

RI10 0-1 gCm?2d! basic respiration rate

Q10 2-5 - temperature sensitivity of respiration
a’6 0-0.5 - allocation of microbes to slow SOM
a86 0-0.5 - allocation of microbes to passive SOM
a67 0-0.5 - allocation of slow SOM to microbes
a87 0-0.5 - allocation of slow SOM to passive SOM
a68 0-1 - allocation of passive SOM to microbes
po4 0-0.3 - allocation of metabolic litter to DOC
p74 0-0.7 - allocation of metabolic litter to POC
pos 0-0.6 - allocation of structural litter to DOC
p75 0-0.4 - allocation of structural litter to POC
86 0-0.7 - allocation of DOC to microbes
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allocation of POC to DOC
allocation of POC to MAOC
allocation of microbes to POC
allocation of microbes to MAOC
allocation of MAOC to DOC
microbe maximum assimilation rate
half-saturation for assimilation
maximum reaction rate of CBH
half-saturation for reaction of CBH
maximum reaction rate of PPO
half-saturation for reaction of PPO
maximum reaction rate of BG
half-saturation for reaction of BG
CBH-to-microbial carbon ratio
PPO-to-microbial carbon ratio

BG-to-microbial carbon ratio
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