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ABSTRACT 23 

Accurately quantifying drought impacts on terrestrial carbon cycling is essential for 24 

advancing predictions of climate-carbon feedbacks. However, current biogeochemical 25 

models exhibit limited capability in simulating drought-induced transformations of soil 26 

organic carbon (SOC), particularly regarding microbial processes. Here, we conducted 27 

a systematic comparative evaluation of three prevailing SOC modeling structures, 28 

including conventional three-pool partitioning scheme (SM1), mineral and particulate- 29 

associated carbon partitioning scheme (SM2) and Michaelis-Menten regulated carbon-30 

stabilization scheme (SM3), to elucidate their capacity in simulating soil carbon 31 

dynamics under decadal drought scenarios in a subtropical forest. We found divergent 32 

effects of drought in soil C input (SM1, 66%; SM2, 10%; SM3, -4%) and mean 33 

residence time (MRT; SM1, -31%; SM2, -14%; SM3, 65%), which lead to the predicted 34 

SOC substantial accumulation for both SM1 and SM3 (+39.5% and +56.9%, 35 

respectively) and moderate depletion (-6.1%) for SM2. The different C input directly 36 

affect the passive SOC (SM1) and mineral-associated organic carbon (SM2 and SM3). 37 

In comparison, the drought effects on passive SOC (SM1), microbe biomass (SM2) and 38 

MAOC (SM2 and SM3), lead to notable spread in MRT. These findings highlight 39 

critical model structural dependencies in simulating drought-affected soil carbon 40 

dynamics and emphasize the necessity for models to integrate microbial-41 

physicochemical interactions for improved climate-carbon coupling projections. 42 

Keywords: soil carbon stock, extreme drought, microbial enzyme activity, model 43 

comparison, data assimilation, traceability analysis.  44 
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1 Introduction 45 

Terrestrial ecosystems are facing increasing frequent stress from extreme drought 46 

which fundamentally alters plant-microbe-mineral interactions, serving as a key driver 47 

of carbon sequestration patterns (IPCC, 2013; Han et al., 2022; Choat et al., 2018; Hao 48 

et al., 2015). Initial drought exposure typically enhances soil organic carbon (SOC) 49 

stability via physicochemical protection mechanisms, such as reduced microbial 50 

decomposition from moisture limitation (Schimel, 2018), increased organo-mineral 51 

association due to soil contraction (Blankinship et al., 2016), and disrupted enzyme 52 

diffusion (Wu et al., 2025). However, plant-derived carbon inputs decline through 53 

productivity suppression which drives by hydraulic failure (Choat et al., 2018) and 54 

carbon allocation shifts away from roots (Yin et al., 2021a). Prolonged drought (e.g., >2 55 

years) induces microbial adaptation strategies which may accelerate SOC loss (Barnard 56 

et al., 2013; Schimel et al., 2018). The shift toward filamentous fungi dominance 57 

enhances oxidative enzyme production, while necromass accumulation primes 58 

destabilization of mineral-associated carbon (Liang et al., 2020; Wang et al., 2024). 59 

However, predicting how terrestrial carbon storage responds to drought over decadal 60 

timescales remains a challenge, requiring the integration of long-term manipulative 61 

experiments with models capable of capturing drought-induced changes in plant-62 

microbe-mineral interactions. 63 

 In most terrestrial ecosystem models, SOC is typically represented as discrete 64 

compartments defined by their turnover times (Krinner et al., 2005; Lawrence et al., 65 

2019). Early modeling approaches, such as the single-pool model proposed by Jenny et 66 
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al. (1941), treated SOC as a homogeneous system. Subsequent refinements led to the 67 

development of multi-pool frameworks. For example, Campbell et al. (1978) 68 

categorized SOC into labile and stable organic matter. The TECO model further 69 

advanced this by partitioning SOC into three pools (fast, slow, and passive SOM) with 70 

different turnover rates (Xu et al., 2006; Du et al., 2017; Wan et al., 2025). Later 71 

developments incorporated greater complexity, such as separating recalcitrant fractions 72 

and accounting for physically protected organic matter, which decomposes more slowly 73 

than unprotected forms (Paul et al., 1978; Willard et al., 2024). Despite these 74 

advancements, SOC pools remain conceptual constructs simulated via first-order 75 

kinetics. Importantly, the carbon content of individual pools cannot be empirically 76 

measured, model calibration relies solely on total SOC (Guo et al., 2022).  77 

Theoretical advancements in soil organic matter formation and decomposition 78 

improve the representation of SOC in land-surface and terrestrial ecosystem models 79 

(Doelsch et al., 2020; Si et al., 2023; Cotrufo et al., 2022; Sokol et al.,2019). Measured 80 

SOC fractions, such as particulate organic carbon (POC), mineral-associated organic 81 

carbon (MAOC) and dissolved organic carbon (DOC), have been proposed to link 82 

conceptual SOC pools (Lee et al., 2020). POC is typically considered as fragments of 83 

plant residues with a particle size > 53 μm, and it is more susceptible to external 84 

environment changes (Cotrufo et al., 2019; Benbi et al., 2014; Lugato et al., 2022). 85 

MAOC generally consists of microbial and plant-derived organo-mineral complexes 86 

rich in nutrients, typically < 53 μm, while also being associated with minerals and 87 

embedded in soil aggregates (Si et al., 2023; Hansen et al., 2024; Villarino et al., 2021). 88 
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Some studies have revealed that models constrained by measurable SOC pools can 89 

provide more accurate estimation of model parameters thereby more accurate 90 

projections of SOC dynamics (Guo et al., 2022; Tao et al., 2024; Abramoff et al., 2022). 91 

Dissolved organic carbon (DOC), derived from living roots or transformed from 92 

recalcitrant macromolecular organic matter, is approximately 2 to 3 times more efficient 93 

than litter in forming soil organic matter (Sokol et al., 2019; Cotrufo et al., 2013). 94 

Moreover, the adsorption and desorption processes of DOC represent a key link in SOC 95 

decomposition (Camino-Serrano et al., 2018; Wu et al., 2014). Consequently, 96 

incorporating DOC and its interaction with SOC into models represents a crucial 97 

advance. 98 

 Soil organic matter decomposition is a stepwise process in which microbes secrete 99 

extracellular enzymes to catalyze the substrate, converting soil organic matter into 100 

assimilable subunits (Caldwell et al., 2005; Ma et al., 2024; Szejgis et al., 2024). 101 

Extensive manipulative experiments reveal that short-term drought limits microbial 102 

activities and substrate decomposition rates by inducing osmotic stress and constraining 103 

substrate diffusion (Honeker et al., 2024; Citerne et al., 2021). In contrast, long-term 104 

drought alters microbial community structure and carbon utilization patterns (Hueso et 105 

al., 2012; Preece et al., 2019; Wang et al., 2024). As catalysts of decomposition, 106 

microbial enzyme activities are impacted by drought (Sardans et al., 2010; Stursová et 107 

al., 2012; Wu et al., 2025). For example, drought significantly reduces the activities of 108 

β-glucosidase, acid phosphatase and polyphenol oxidase, although certain oxidases 109 

remain unaffected by soil moisture (Su et al., 2020a; Allison et al., 2023; Ficken et al., 110 
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2019). In recent years, microbial models, which focus on the process of microbial 111 

decomposition, have become increasingly incorporated in process-based ecological 112 

models (Moorhead et al., 2006; Lawrence et al., 2009; Allison et al., 2010; Huang et al., 113 

2018). However, most microbial models focus only on simulating carbon dynamics 114 

under warming and nitrogen deposition scenarios (Luo et al., 2020; Knorr et al., 2005; 115 

Eastman et al., 2024), while studies investigating drought effects on SOC dynamics and 116 

microbial decomposition remain scarce. Consequently, incorporating microbial 117 

enzymes to terrestrial ecosystem model are necessary to elucidate microbial regulation 118 

of soil carbon responses to drought. 119 

 In this study, we evaluate three SOC modeling schemes with increasing complexity, 120 

including conventional three-pool partitioning scheme [SM1], mineral and particulate- 121 

associated carbon partitioning scheme [SM2] and Michaelis-Menten regulated carbon-122 

stabilization scheme [SM3]. Using observational data from long-term drought 123 

experiments, we assess their validity and predictive performance. Our study addresses 124 

two key questions: (1) how does decadal drought affect SOC storage in subtropical 125 

forests? (2) do different model structures yield consistent drought impacts on SOC 126 

projections? 127 

 128 

2 Materials and methods 129 

2.1 Site description and data source 130 

The Zhejiang Tiantong Forest Ecosystem National Field Scientific Observation and 131 

Research Station (28°48′N, 121°47′E, 163 m a.s.l) is located in Ningbo, Zhejiang 132 
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Province. The site has a typical mid-subtropical monsoon climate with relatively 133 

distinct seasons. Summers are generally mild and rainy, while winters are dry with little 134 

precipitation. The annual average temperature in the study area is approximately 135 

16.2 ℃. The annual average precipitation and evaporation are 1384 mm and 1320 mm, 136 

respectively, and the relative air humidity can reach 85%. The predominant soil type in 137 

the site is red-yellow soil and soil parent materials are mainly weathered products of 138 

some granite and sedimentary rocks. The soil texture consists of sand (6.8%), silt 139 

(55.5%), and clay (37.7%), with a pH ranging from about 4.4 to 5.1 (Gao et al., 2014). 140 

The vegetation type in the study area is typical subtropical evergreen broad-leaved 141 

forest, with secondary forests being the main vegetation type. The forest stocking 142 

density is approximately 3400 trees·hm⁻². The drought experiment was established in 143 

July 2013, which is composed of three experimental plots with similar terrain, 144 

vegetation type and stand condition (Su et al., 2020b).  145 

The forcing datasets used in this study span from 2014 to 2022, including 146 

photosynthetically active radiation (PAR), leaf area index (LAI), air temperature (Ta), 147 

relative humidity of air (RH), soil temperature (Ts) and moisture content of soil (SWC). 148 

These data were mainly measured by the station meteorological observation device. 149 

The above-ground biomass data of plants were mainly estimated by allometric growth 150 

equation. The C content of litter was determined by potassium dichromate oxidation 151 

method. Soil total organic carbon and its physical and chemical properties were 152 

measured by elemental analyzer. Microbial biomass carbon was determined by 153 

chloroform fumigation. DOC was determined by hot water extraction and element 154 
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analyzer (Zhou et al., 2013). Soil enzyme activities were determined by microplate 155 

enzyme assay (Saiya-Cork et al., 2002; Su et al., 2020b) and was expressed by substrate 156 

conversion per gram of dry soil per hour. The soil respiration rate was measured using 157 

the LI-COR 8100 portable system (LI-COR. Inc., Lincoln, NE, USA) between 9 a.m. 158 

and 1 p.m. on 1 - 2 sunny days per month, and accumulated the data on daily scale. 159 

2.2 Model description 160 

All three soil models are coupled to a common vegetation submodule, which requires 161 

identical environmental drivers and provides the same input data (Fig. 1). In SM1, soil 162 

organic carbon is divided into three pools, including (1) a microbial pool with fast 163 

turnover; (2) a slow (chemically protected) pool, and (3) a passive (physically protected) 164 

pool (Xu et al., 2006; Du et al., 2015). In SM2, SOM is divided into four pools (Si et 165 

al., 2023), including (1) a dissolved organic carbon pool (DOC), which is converted 166 

from organic matter with high molecular weight and difficult to decompose. Microbes 167 

can utilize DOC and release CO2 (Allison et al., 2010; Lawrence et al., 2009); (2) a 168 

microbial pool; (3) a particulate organic carbon pool (POC), and (4) a mineral- 169 

associated organic carbon (MAOC). SM3 is an extension of SM2 that incorporates three 170 

enzyme components ( β -1, 4-glucosidase (BG), polyphenol oxidase (PPO), and 171 

cellobiohydrolase (CBH)), which directly catalyze the decomposition of POC and 172 

MAOC. Given that enzymes have a low carbon content and their inclusion a pool could 173 

lead to model overparameterization, we therefore assign them a catalysis role instead 174 

of considering them as carbon pools. In these three model schemes, SM1 and SM2 175 

implicitly represent microbial activities, where the decomposition of SOM governed by 176 
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linear, first- order dynamics. Soil C turnover times are defined by biome and pool- 177 

specific decay constants, which are modified by environmental scalars such as soil 178 

temperature and soil moisture availability (Du et al., 2017; Du et al., 2025). In contrast, 179 

the SM3 adopted reverse Michaelis- Menten kinetics to explicitly represent the catalytic 180 

progress of microbial extracellular enzymes. The turnovers of DOC, POC and MAOC 181 

are depended on the size of both the donor (substrate) and the receiver (microbial 182 

biomass) pools. SM1 was expressed by the following equations: 183 

𝑑𝐶𝑀

𝑑𝑡
= 𝐼 + 𝐶𝑆𝑐7𝑎67 + 𝐶𝑃𝑐8𝑎68 − 𝐶𝑀𝑐6 (1) 184 

𝑑𝐶𝑆

𝑑𝑡
= 𝐼 + 𝐶𝑀𝑐6𝑎76 − 𝐶𝑆𝑐7 (2) 185 

𝑑𝐶𝑃

𝑑𝑡
= 𝐶𝑀𝑐6𝑎86 + 𝐶𝑆𝑐7𝑎87 − 𝐶𝑃𝑐8 (3) 186 

Where CM, CS, CP represent the C content of microbe, slow SOM and passive SOM. 187 

I represents the C input from litters, c6, c7, c8 represent the exit rate of C from microbes, 188 

slow SOM and passive SOM, and a67, a68, a76, a78 represent the allocation of slow SOM 189 

to microbes, passive SOM to microbes, microbes to slow SOM and passive SOM to 190 

slow SOM, respectively.  191 

 The soil C pools of SM2 were expressed as follows: 192 

𝑑𝐶𝐷𝑂𝐶

𝑑𝑡
= 𝐼 + 𝐶𝑃𝑂𝐶𝑐7𝑎67 + 𝐶𝑀𝐴𝑂𝐶𝑐9𝑎69 − 𝐶𝐷𝑂𝐶𝑐6 (4)  193 

𝑑𝐶𝑃𝑂𝐶

𝑑𝑡
= 𝐼 + 𝐶𝑀𝑐8𝑎78 − 𝐶𝑃𝑂𝐶𝑐7 (5) 194 

𝑑𝐶𝑀

𝑑𝑡
= 𝐶𝐷𝑂𝐶𝑐6𝑎86 − 𝐶𝑀𝑐8 (6) 195 

𝑑𝐶𝑀𝐴𝑂𝐶

𝑑𝑡
= 𝐶𝑃𝑂𝐶𝑐7𝑎97 + 𝐶𝑀𝑐8𝑎98 − 𝐶𝑀𝐴𝑂𝐶𝑐9 (7) 196 
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 Where CDOC, CPOC, CMAOC represent the C content of DOC, POC, MAOC. 197 

Parameters c6, c7, c8, c9 denote the exit rate of DOC, POC, microbes and MAOC, and 198 

a67, a69, a78, a86, a97, a98 represent the allocation of POC to DOC, MAOC to DOC, 199 

microbes to POC, DOC to microbes, POC to MAOC and microbes to MAOC, 200 

respectively. 201 

 SM3 was expressed by the following equations: 202 

𝑑𝐶𝐷𝑂𝐶

𝑑𝑡
= 𝐼 + 𝑎67(𝑉𝐶𝐵𝐻.𝑃 + 𝑉𝑃𝑃𝑂.𝑃 + 𝑉𝐵𝐺.𝑃)𝐶𝑃𝑂𝐶 +

𝑎69(𝑉𝐶𝐵𝐻.𝑀 + 𝑉𝑃𝑃𝑂.𝑀 + 𝑉𝐵𝐺.𝑀)𝐶𝑀𝐴𝑂𝐶 −
𝑉𝑚𝑎𝑥.𝑎𝑠𝑠𝑖𝑚𝐶𝑀𝐶𝐷𝑂𝐶

𝐾𝑀𝑎𝑠𝑠𝑖𝑚 + 𝐶𝐷𝑂𝐶

(8)
 203 

𝑑𝐶𝑃𝑂𝐶

𝑑𝑡
= 𝐼 + 𝐶𝑀𝑐8𝑎78 − (𝑉𝐶𝐵𝐻.𝑃 + 𝑉𝑃𝑃𝑂.𝑃 + 𝑉𝐵𝐺.𝑃)𝐶𝑃𝑂𝐶 (9) 204 

𝑑𝐶𝑀

𝑑𝑡
= 𝐶𝐷𝑂𝐶𝑐6𝑎86 − 𝐶𝑀𝑐8 (10) 205 

𝑑𝐶𝑀𝐴𝑂𝐶

𝑑𝑡
= 𝑎97(𝑉𝐶𝐵𝐻.𝑃 + 𝑉𝑃𝑃𝑂.𝑃 + 𝑉𝐵𝐺.𝑃)𝐶𝑃𝑂𝐶 + 𝑎98𝑐8𝐶𝑀

−(𝑉𝐶𝐵𝐻.𝑀 + 𝑉𝑃𝑃𝑂.𝑀 + 𝑉𝐵𝐺.𝑀)𝐶𝑀𝐴𝑂𝐶 (11)
 206 

 Where Vmax.assim and KMassim denote microbe maximum assimilation rate and half-207 

saturation for assimilation. VCBH.P, VPPO.P, VBG.P represent catalytic rate of CBH, PPO, 208 

BG to POC. VCBH.M, VPPO.M, VBG.M represent catalytic rate of CBH, PPO, BG to MAOC. 209 

𝑉𝑒𝑛𝑧𝑦.𝑃 =
𝑉𝑚𝑎𝑥.𝑒𝑛𝑧𝑦𝑓𝑒𝑛𝑧𝑦𝐶𝑀

𝐾𝑀𝑒𝑛𝑧𝑦 + 𝐶𝑃𝑂𝐶

(12) 210 

𝑉𝑒𝑛𝑧𝑦.𝑀 =
𝑉𝑚𝑎𝑥.𝑒𝑛𝑧𝑦𝑓𝑒𝑛𝑧𝑦𝐶𝑀

𝐾𝑀𝑒𝑛𝑧𝑦 + 𝐶𝑀𝐴𝑂𝐶

(13) 211 

 Where Vmax.enzy represent the maximum reaction rate. KMenzy represent half-212 

saturation for reaction, fenzy represent the C ratio of CBH, PPO, BG to microbes, 213 

respectively. The enzyme activities were calculated as following: 214 
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𝑉𝑒𝑛𝑧𝑦 =
𝑉𝑚𝑎𝑥.𝑒𝑛𝑧𝑦𝑓𝑒𝑛𝑧𝑦𝐶𝑀𝐶𝑠𝑢𝑏

𝐾𝑀𝑒𝑛𝑧𝑦 + 𝐶𝑠𝑢𝑏

(14) 215 

 Where Csub denotes the C content of the enzyme-catalyzed substrate contained 216 

within a soil block with an area of 1 m2 and a depth of 10 cm, and it maintains a 217 

consistent ratio of enzyme to substrate as required for experimental measurements. 218 

 We estimated model parameters using the Markov Chain Monte Carlo (MCMC) 219 

and evaluated changes in the simulated ecosystem C storage capacity using a 220 

traceability analysis framework (Supplement). The effect of drought on C storage is 221 

calculated as follows: 222 

𝐷𝑟𝑜𝑢𝑔ℎ𝑡 𝐸𝑓𝑓𝑒𝑐𝑡 =
(𝐶𝑑𝑟𝑜𝑢𝑔ℎ𝑡 − 𝐶𝑐𝑡𝑟)

𝐶𝑐𝑡𝑟
× 100% (15) 223 

 Where Cdrought represents the C content of drought, Cctr represents the C content of 224 

control condition. 225 

 226 

3 Results 227 

3.1 Model validation  228 

In this study, we used the Markov Chain Monte Carlo (MCMC) algorithm to constrain 229 

model parameters (Figs. 2 and S3). All three schemes incorporate 8 vegetation-related 230 

parameters (Fig. S3). SM1 included 8 soil carbon-related parameters (Fig. 2), with 5 231 

well-constrained under control conditions (c7, a86, a67, a87, a68) and 5 under drought 232 

conditions (c7, c8, a76, a86, a68). SM2 consisted 14 soil carbon-related parameters, with 233 

7 well-constrained in the control scenario (c9, c10, a74, a65, a67, a97, a78) and 9 in the 234 

drought scenario (c9, c10, a64, a74, a86, a67, a97, a98, a69). SM3 had 11 well-constrained 235 
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parameters under control conditions (Vmax.assim, Vmax.CBH, KMCBH, fCBH, fBG, fPPO, a64, a74, 236 

a75, a97, a78) and 12 under drought conditions (c6, Vmax.assim, Vmax.CBH, KMCBH, KMBG, 237 

Vmax.PPO, KMPPO, fBG, fPPO, a65, a86, a97) in all 22 soil carbon-related parameters.  238 

All three schemes calibrated by observations from the drought experimental which 239 

had overall good agreement (Figs. S1 and S2). The simulation of vegetation C (leaf, 240 

fine root, wood) and soil respiration exhibited high accuracy. The simulated MBC by 241 

SM1 was inferior to those simulated by SM2 and SM3, suggesting that incorporating 242 

measurable C pools can improve the accuracy of MBC simulation. By comparing the 243 

accuracy of POC and MAOC, we found that SM3 generally outperformed SM2, 244 

indicating that the incorporation of enzyme activities can enhance the simulation of the 245 

SOC fractions, particularly with respect to MAOC. 246 

3.2 Carbon simulation and prediction by three model schemes 247 

Carbon storage from 2023 to 2100 was predicted using three different model schemes. 248 

All models consistently indicated an increasing trend in vegetation C (VegC) and a 249 

decreasing trend in soil organic carbon under both control and drought conditions (Figs. 250 

3 and S4). Specifically, under control conditions, SM1 simulated growth rates of 260% 251 

for VegC, -56.9% for SOC and 188% for total organic carbon (TOC). Under drought 252 

conditions, the corresponding rates were 223%, -50.4% and 159%. SM2 projected 253 

growth rates of 263% for VegC, -60.8% for SOC and 179% for TOC under control 254 

conditions, and 217%, -55% and 151% under drought. For SM3, the simulated growth 255 

rates were 230% for VegC, -88% for SOC and 146% for TOC in the control scenario, 256 

while under drought the values were 169%, -55% and 106%, respectively. 257 
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3.3 Drought effects on carbon storage 258 

All three modeling schemes consistently indicated that drought reduced C content in 259 

MBC (SM1, -36.9%; SM2, -56.9%; SM3, -27.3%), VegC (SM1, -16.8%; SM2, -19.9%; 260 

SM3, -25.4%) and TOC (SM1, -15%; SM2, -19.4%; SM3, -24.4%). However, the 261 

simulated responses of SOC to drought varied among the schemes (Fig. 4). SM1 262 

predicted an increase in SOC under drought conditions (+39.5%) compared to the 263 

control, driving by increases in both the slow (+13%) and passive (+57%) C pools. 264 

Similarly, SM3 projected a rise in SOC (+56.9%), accompanied by increases in POC 265 

(+82.3%), MAOC (+88.1%), and DOC (+6.7%). In contrast, SM2 simulated a decrease 266 

in SOC (-6.1%), with reductions in DOC (-35.3%) and MAOC (-3.7%), through POC 267 

increased (+43.4%). 268 

By comparing the proportion of drought effects on each soil C pool simulated by 269 

each scheme, it is apparent that different modeling schemes exhibit distinct sensitivities 270 

to drought across specific carbon pools (Fig. 4). Specifically, SM2 demonstrated greater 271 

sensitivity to drought effects on microbial biomass (-54%) and DOC (-84%) compared 272 

to SM3 (-18% and +16%, respectively). Conversely, SM3 showed higher sensitivity to 273 

drought-induced changes on POC (+82%) and MAOC (+74%) relative to SM2 (-26% 274 

and +18%, respectively). 275 

3.4 Traceability analysis of drought effects 276 

The traceability analysis revealed that both SM1 and SM3 simulated higher SOC under 277 

drought condition (SM1, 2.5 kg C m-2; SM3, 1.2 kg C m-2) compared to the control 278 

(SM1, 2.1 kg C m-2; SM3, 0.8 kg C m-2) at the end of forecast period (Fig. 5). In contrast, 279 
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SM2 simulated lower SOC under drought (2.3 kg C m-2) compared to the control (2.5 280 

kg C m-2). The increase of SOC in SM1 during drought was driven by higher soil carbon 281 

input (drought, 1.0 kg C m-2 year-1; control, 0.6 kg C m-2 year-1) (Figs. 5 and 6), while 282 

in SM3, it resulted from an extended soil carbon residence time (drought, 4.3 years; 283 

control, 2.6 years). However, SM2 simulated a reduction in soil carbon residence time 284 

under drought, leading to decreased SOC.  285 

We further analyzed the C residence times of individual pools simulated by the three 286 

modeling schemes under both control and drought conditions (Fig. 6). In SM1, drought 287 

increased the C residence time of passive SOM which resulted from the allocation 288 

proportions from slow SOM to passive SOM and from passive SOM to microbes were 289 

elevated. For SM2, drought reduced the C residence time of microbes and increased 290 

that of MAOC. The allocation proportions from POC to DOC and from DOC to 291 

microbes were enhanced, while the allocation from MAOC to DOC declined. In SM3, 292 

drought resulted in a longer C residence time for MAOC. The allocation proportions 293 

from DOC to microbes, from MAOC to DOC, and from microbes to MAOC all 294 

increased, while the allocation from microbes to POC decreased. 295 

 296 

4 Discussion 297 

4.1 Response of ecosystem carbon dynamics to long-term drought 298 

In this study, all three modeling schemes consistently indicate that drought leads to 299 

decrease in vegetable carbon (VegC), microbes carbon (Microbe C) and total organic 300 

carbon (TOC), while particulate organic carbon (POC) increases under drought 301 
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conditions (Figs. 3, 4 and S4). These findings are consistent with multiple fields 302 

manipulated experiments (Zhou et al., 2020; Pennisi., 2022; Schwalm et al., 2017). 303 

During drought, plants undergo physiologically adjustments and shifts in community 304 

structure in accordance with species-specific water use strategies to prevent excessive 305 

water loss (Rowland et al., 2023). These responses in turn affect C uptake via 306 

photosynthesis and C release via respiration at the ecosystem level, potentially 307 

decoupling these two processes (Meir et al., 2008).  308 

Drought consistently reduced microbial biomass carbon (MBC) across all three 309 

models, and sensitivity analysis indicated this reduction was primarily driven by 310 

increased microbial decay rates (Figs. 2 and S5). With prolonged drought duration, 311 

microbial C content exhibited a pattern of initial decline followed by a gradual recovery 312 

(Fig. 3a). Drought-induced water stress directly impairs microorganisms, leading to 313 

decreased metabolic activity (Quiroga et al., 2024). However, microorganisms can 314 

adapt to drought through physiological changes, community turnover, and evolutionary 315 

mechanisms (Martiny et al., 2015; Allison., 2023). At the community scale, drought-316 

sensitive microbes may be replaced by more resilient taxa that immigrate into the area 317 

(Allison et al., 2008; Ricks & Yannarell., 2023). Several studies have showed that fungi 318 

exhibit greater drought adaptability compared to bacteria (Preece et al., 2019; Bastida 319 

et al., 2018; de Vries et al., 2018). Gram-positive bacteria are also better adapted to low-320 

moisture soils compared to Gram-negative bacteria, due to their thicker and harder cell 321 

walls, which render them less affected by drought (Castro et al., 2010; Uhlírová et al., 322 

2005). Through in situ manipulation experiments, Bu et al (2018) and Su et al (2020b) 323 
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have observed shifts in microbial community structure under drought condition, which 324 

may explain the gradual increase in microbial biomass under prolonged drought 325 

conditions. Besides, given that microbes directly consume DOC, the incorporation of 326 

measured DOC pools in SM2 and SM3 enhances the model's ability to simulate 327 

microbial sensitivity to drought. 328 

Simulation results from all three modeling schemes consistently showed that drought 329 

initially decreased soil respiration, followed by a subsequently recovery (Fig. 3a). This 330 

trend mirrors variations in microbial carbon content, indicating that drought regulates 331 

soil respiration primarily through its control of microbial biomass (Zhao et al., 2025; 332 

Ficken & Warren., 2019). Sensitive analysis further revealed a strong positive 333 

correlation between the C content of POC and the allocation proportion of litters to 334 

POC (Figs. 2 and S5). These results imply that drought enhance both the carbon content 335 

in litter and its transfer to POC, resulting in an overall increase in POC. Furthermore, 336 

since POC are directly influenced by enzymatic catalysis, SM3's heightened sensitivity 337 

to drought effects on these pools underscores the model's effectiveness in capturing 338 

enzyme-mediated processes under drought conditions. 339 

4.2 Divergent simulations of drought effect on SOC among three modeling 340 

schemes 341 

A key divergence among the three modeling schemes lies in their simulation of drought 342 

effects on SOC components, which is the key source of discrepancy in the projected 343 

carbon storage response (Figs. 4 and 6). SM1 divides SOC into three pools, including 344 

MBC, slow SOM, and passive SOM. However, since only total SOC data are available 345 
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to constrain the model, the predictions of this scheme are highly sensitive to the quality 346 

and the duration of SOC observations (Fig. S5). Given the non-linear response of 347 

ecosystems to drought duration (Müller et al., 2022; Anderegg et al., 2020; Schwalm et 348 

al., 2017), models constrained by short-term observation data may introduce substantial 349 

deviation in long-term projections. In contrast, SM2 partitions the SOC into four 350 

observable carbon pools (i.e., Microbes, POC, MAOC and DOC), each independently 351 

constrained by corresponding measurements. The trajectory of SOC is thus jointly 352 

determined by these four fractions, leading to pronounced differences between the 353 

predictions of SM1 and SM2. Since both models use the same SOC data, this 354 

demonstrates the profound influence of carbon partitioning strategies on model 355 

predictions. Furthermore, drought causes the carbon input rates and carbon loss rates of 356 

individual carbon pools in SM2 deviate from the overall SOC change rate. These pool-357 

specific discrepancies cause the SOC predictions to diverge increasingly over time 358 

between models with different structures. 359 

Differences between SM2 and SM3 are mainly reflected in the dynamics of DOC 360 

and MAOC. SM2 employs first-order linear kinetics to describe the decomposition of 361 

DOC and MAOC, where the decomposition rate is proportional to their C content. In 362 

contrast, SM3 utilizes reverse Michaelis-Menten kinetics, indicates that the 363 

decomposition of SOC is not only dependent on C content but also on microbial C and 364 

enzyme activities (Chandel et al., 2023). Under drought condition, SM2 simulates a 365 

decrease in DOC, while SM3 predicts an increase (Fig. 4). Some studies report that 366 

drought can reduce DOC concentrations (Tiwari et al., 2022; Wu et al., 2023), whereas 367 
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others suggest it may increase DOC due to the influence of factors such as air 368 

temperature, soil temperature, humidity, precipitation, pH, and sulfate concentrations 369 

(Evans et al., 2005; Sowerby et al., 2010). Sensitivity analysis reveals that DOC in SM2 370 

is influenced mainly by the transfer ratio of POC to DOC and the transfer ratio of 371 

metabolic litter to DOC (Fig. S5). However, DOC dynamics are primarily controlled 372 

by the microbe maximum assimilation rate and half-saturation for assimilation in SM3, 373 

indicating that SM3 captures direct microbial regulation of DOC decomposition. 374 

Similarly, while SM2 simulates a slight decrease in MAOC under drought, SM3 375 

predicts an increase (Fig. 4). This discrepancy stems the fact that SM3 explicitly 376 

incorporates the catalytic effects of three enzyme activities - BG, PPO and CBH – on 377 

MAOC decomposition. Drought reduces microbial enzyme activities (Figs. S1 and S2) 378 

(Bach et al., 2016; Waldrop et al., 2006), thereby weakening MAOC decomposition 379 

capacity and accumulating MAOC under drought condition. Moreover, the explicit 380 

inclusion of enzyme-mediated processes significantly improves the accuracy of POC 381 

and MAOC simulations, suggesting the importance of representing enzyme activities 382 

in SOC decomposition models. 383 

Our study enhances the understanding how drought affects forest C dynamic across 384 

different model schemes. Nevertheless, we acknowledge that several uncertainties 385 

involved in our analysis. First, we only considered three enzymes that directly catalyze 386 

soil carbon decomposition, while other enzymes (e.g., Acid phosphatase, N-acetyl-387 

glycosaminidase, Peroxidase) may also contribute indirectly to this process (Su et al., 388 

2020b). Second, when calculating enzyme activities, we applied laboratory-derived 389 
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proportional relationships between enzyme quantity and substrate quantity to field 390 

conditions, which assumes substrate availability far exceeds enzyme availability in 391 

field soils. Finally, laboratory enzyme activities measurements typically use specific 392 

substrates, whereas field soils contain multiple potential substrates that could be 393 

catalyzed, which introduces additional uncertainty in our simulations.  394 

 395 

5 Conclusions 396 

Accurately simulating the impacts of drought on soil carbon dynamics is of critical 397 

importance for terrestrial carbon sequestration. In this study, we integrated data 398 

assimilation and traceability analysis, devising three soil carbon decomposition 399 

schemes and exploring how different soil carbon decomposition models simulate soil 400 

carbon responses to drought. Our results revealed significant disparities in the drought 401 

effects on soil organic carbon as simulated by the three models, with these differences 402 

primarily driven by carbon input and carbon residence times of different carbon pools. 403 

Explicitly incorporating microbial enzyme activities notably altered the impacts of 404 

drought on mineral-associated organic carbon and dissolved organic carbon. These 405 

findings underscore the significant role of different carbon pool partitioning schemes, 406 

their constrainability, and the consideration of microbial enzyme catalytic processes in 407 

simulating the response of soil carbon to drought, enhancing our understanding of the 408 

complexity underlying drought effects on soil organic carbon decomposition. 409 

  410 
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 427 

 428 

Figure 1. Conceptual diagram of the soil biogeochemical models with three schemes. 429 

(a) conventional three-pool partitioning scheme (SM1), (b) mineral and particulate- 430 

associated carbon partitioning scheme (SM2), and (c) Michaelis-Menten regulated 431 

carbon-stabilization scheme (SM3). All pools (boxes) and fluxes (arrows) represent C 432 

process. BG, β-1, 4-glucosidase, PPO, polyphenol oxidase, CBH, cellobiohydrolase.  433 
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 435 

 436 

Figure 2. Maximum likelihood value (MLEs) (or means for unconstrained parameters) 437 

of the target parameters in both control and drought treatments among the three schemes. 438 

Error bars represent standard deviations (SDs). See Table S1 for parameter 439 

abbreviations and units. 440 
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  442 

Figure 3. Predicted soil respiration (a), microbial C (b), passive SOM (c), POC (d), 443 

SOC (e), slow SOM (f), DOC (g), MAOC (h), total organic C (i) from 2014 – 2100 444 

under dry and control conditions for three schemes. 445 
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 447 

 448 
Figure 4. Conceptual figure of the effects of drought simulated by three schemes on 449 

carbon stocks. The histogram represents the drought effects on carbon pools 450 

(percentage change of the carbon pools from 2022 to 2100), and corresponding pie 451 

charts represent the proportion of the drought effects simulated by each of the three 452 

schemes for the same carbon pool, relative to the sum of the drought effects from all 453 

three schemes. TOC, soil total organic carbon. VegC, vegetation carbon. 454 

 455 
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 457 
Figure 5. Predicted soil C storage capacity in 2100 by C influx (InputC, x axis) and soil 458 

carbon residence time (τs, y axis) between control and drought treatments in three model 459 

schemes. ***, represents p < 0.01. 460 
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 462 

 463 

Figure 6. The carbon residence time of each soil carbon pool in the drought and control 464 

conditions simulated by three schemes and the allocative proportion of carbon turnover 465 

among some pools. The numbers in the box represents the carbon residence time, and 466 

the carbon near the arrow represents the carbon allocation proportion. Purple represents 467 

the control and brown represents the drought. 468 

 469 
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Appendix  471 

 472 

Figure A1. Comparison of the measured values (black squares) and simulated values 473 

(lines) in the control conditions of three schemes from 2014 to 2022, p < 0.05. 474 
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 476 

Figure A2. Comparison of the measured values (black squares) and simulated values 477 

(lines) in the drought conditions of three schemes from 2014 to 2022, p < 0.05.  478 
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 479 
Figure A3. Maximum likelihood value (MLEs) (or means for unconstrained parameters) 480 

of the target parameters of vegetations in various models and treatments. Error bars 481 

represent standard deviations (SDs). See Table S1 for parameter abbreviations and units. 482 
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 484 

Figure A4. Predicted foliage (a), wood (b), structural litter (c), fineroot (d), Metabolic 485 

litter (e), Vegetation C (f) from 2014 – 2100 under dry and control conditions for three 486 

schemes. 487 

 488 

 489 
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 491 

Figure A5. The correlation between carbon pools and model parameters under control 492 

and drought conditions of three schemes. Red represents positive correlation and blue 493 

represents negative correlation. The x1, x2, x3, x4, x5 represent the carbon content of 494 

foliage, fineroot, wood, metabolic litter, structural litter. x6, x7, x8 represent microbes 495 

slow SOM and passive SOM for SM1. x6, x7, x8, x9 represent DOC, POC, microbes 496 

and MAOC for SM2 and SM3. 497 

  498 

https://doi.org/10.5194/egusphere-2025-5037
Preprint. Discussion started: 2 December 2025
c© Author(s) 2025. CC BY 4.0 License.



32 

 

 499 

Table A1. Target parameters of this study and their prior ranges. 500 

Parameters Intervals Unit Description 

C1 0.176-9.95 mg C g-1 d-1 exit rate of C from foliage 

C2 0.176-17.9 mg C g-1 d-1 exit rate of C from fineroot 

C3 0.00176-0.01 mg C g-1 d-1 exit rate of C from wood 

C4 0.274-8.22 mg C g-1 d-1 exit rate of C from metabolic litter 

C5 0.0548-1.64 mg C g-1 d-1 exit rate of C from structural litter 

C6 2.74-13.7 mg C g-1 d-1 exit rate of C from microbes 

C7 0.027-1.37 mg C g-1 d-1 exit rate of C from slow SOM 

C8 0.00137-0.00913 mg C g-1 d-1 exit rate of C from passive SOM  

C9 2.74-68.5 mg C g-1 d-1 exit rate of C from DOC 

C10 0.1-1 mg C g-1 d-1 exit rate of C from POC 

C11 0.00137-0.013 mg C g-1 d-1 exit rate of C from MAOC 

b1 0-0.315 - allocation of GPP to foliage 

b2 0-0.3 - allocation of GPP to fineroot 

b3 0-0.3 - allocation of GPP to wood 

R10 0-1 g C m-2 d-1 basic respiration rate 

Q10 2-5 - temperature sensitivity of respiration 

a76 0-0.5 - allocation of microbes to slow SOM 

a86 0-0.5 - allocation of microbes to passive SOM 

a67 0-0.5 - allocation of slow SOM to microbes 

a87 0-0.5 - allocation of slow SOM to passive SOM 

a68 0-1 - allocation of passive SOM to microbes 

p64 

p74 

p65 

p75 

p86 

0-0.3 

0-0.7 

0-0.6 

0-0.4 

0-0.7 

- 

- 

- 

- 

- 

allocation of metabolic litter to DOC 

allocation of metabolic litter to POC 

allocation of structural litter to DOC 

allocation of structural litter to POC 

allocation of DOC to microbes 
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p67 

p97 

p78 

p98 

p69 

Vmax.assim 

Km.assim 

Vmax.CBH 

Km.CBH 

Vmax.PPO 

Km.PPO 

Vmax.BG 

Km.BG 

fCBH 

fPPO 

fBG 

0-0.8 

0-0.2 

0-0.7 

0-0.3 

0-0.8 

0.001-0.4 

300-3000 

0.0001-0.01 

300-3000 

0.0001-0.2 

300-6000 

0.0001-0.2 

300-3000 

0-0.01 

0-0.2 

0-0.1 

- 

- 

- 

- 

- 

mg C mg-1 MBC d-1 

g C m-3 

mg C mg-1 CBH d-1 

g C m-3 

mg C mg-1 PPO d-1 

g C m-3 

mg C mg-1 BG d-1 

g C m-3 

- 

- 

- 

allocation of POC to DOC 

allocation of POC to MAOC 

allocation of microbes to POC 

allocation of microbes to MAOC 

allocation of MAOC to DOC 

microbe maximum assimilation rate 

half-saturation for assimilation 

maximum reaction rate of CBH 

half-saturation for reaction of CBH 

maximum reaction rate of PPO 

half-saturation for reaction of PPO 

maximum reaction rate of BG 

half-saturation for reaction of BG 

CBH-to-microbial carbon ratio 

PPO-to-microbial carbon ratio 

BG-to-microbial carbon ratio 

 501 
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