

A cross-site comparison of ecosystem- and plot-scale methane fluxes from wetlands and uplands

Tiia Määttä¹, Ankur Desai², Masahito Ueyama³, Rodrigo Vargas⁴, Eric J. Ward^{5,6}, Zhen Zhang⁷, Gil Bohrer⁸, Kyle Delwiche⁹, Etienne Fluet-Chouinard¹⁰, Järvi Järveoja¹¹, Sara Knox¹², Lulie Melling¹³, Mats B. Nilsson¹¹, Matthias Peichl¹¹, Angela Che Ing Tang¹⁴, Eeva-Stiina Tuittila¹⁵, Jinsong Wang¹⁶, Sheel Bansal¹⁷, Sarah Feron¹⁸, Manuel Helbig¹⁹, Aino Korrensalo^{20,21}, Ken W. Krauss²², Gavin McNicol²³, Shuli Niu¹⁶, Zutao Ouyang²⁴, Kathleen Savage²⁵, Oliver Sonnentag²⁶, Robert Jackson^{27,28}, and Avni Malhotra^{1,29}

- 10 1 Department of Geography, Faculty of Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
 - ² Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
 - ³ Osaka Metropolitan University, Osaka, Japan
 - ⁴ School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
 - ⁵ University of Maryland, Earth System Science Interdisciplinary Center, College Park MD, USA
- 15 ⁶ NASA Goddard Space Flight Center, Biospheric Sciences Laboratory, Greenbelt MD, USA
 - ⁷ National Tibetan Plateau Data Center (TPDC), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resource (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
 - ⁸ Department of Civil, Environmental & Geodetic Engineering, The Ohio State University, Columbus, OH, 43210, USA
 - ⁹ Department of Environmental Science, Policy & Management, UC Berkeley, Berkeley, California, USA
- 20 ¹⁰ Earth System Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
 - ¹¹ Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
 - ¹² Department of Geography, McGill University, Montreal, Canada
 - ¹³ UN Sustainable Development Solutions Network, Asia Headquarters, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia
- 25 ¹⁴ Department of Environmental Sciences, University of Toledo, Toledo, Ohio, USA
 - ¹⁵ School of Forest Sciences, Joensuu campus, University of Eastern Finland, Joensuu, Finland
 - ¹⁶ Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
 - ¹⁷ U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND USA
- 30 ¹⁸ University of Groningen, Leeuwarden, the Netherlands
 - ¹⁹ GFZ Helmholtz Centre for Geosciences, Potsdam, Germany
 - ²⁰ Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
 - ²¹ Natural Resources Institute Finland, Joensuu, Finland
 - ²² Louisiana Universities Marine Consortium (LUMCON), Chauvin, LA 70344, USA
- 35 ²³ Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, USA
 - ²⁴ College of Forestry, Wildlife and Environment, Auburn University, Auburn, AL, USA
 - ²⁵ Woodwell Climate Research Center, Falmouth, USA
 - ²⁶ Université de Montréal, Département de géographie, Montréal, QC, Canada
 - ²⁷ Department of Earth System Science, Stanford University, Stanford, 94305, USA
- Woods Institute for the Environment and Precourt Institute for Energy, Stanford University, Stanford, 94305, USA
 - ²⁹ Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, USA

Correspondence to: Tiia Määttä (tiia.maatta@geo.uzh.ch)

Abstract. Wetland and upland ecosystems play significant but opposing roles in the global methane (CH₄) budget, acting as natural sources and sinks, respectively. Two of the most common approaches for measuring CH₄ fluxes (FCH₄) are chambers, which capture temporally intermittent, fine-scale spatial heterogeneity (ca. 1 m²), and eddy covariance (EC) towers, which cover a larger area (ca. 100-10000 m²) at a longer term. Although chamber and EC observations have been combined in various syntheses and databases to estimate CH₄ budgets, a unified cross-site evaluation of FCH₄ estimates at plot and ecosystem scales is lacking. As a first step toward a systematic spatiotemporal scaling of EC tower and chamber footprints, we quantified the differences between site-level aggregate FCH₄ (EC vs chamber; Δ FCH₄) from ten wetland and upland sites at half-hourly, hourly, daily, weekly, monthly, and annual timescales. We found that ecosystem-scale median FCH4 was consistently higher than plot-scale FCH₄ at all temporal scales, with the smallest difference at daily timescale (multi-site median ΔFCH₄: 1.36 nmol m⁻² s⁻¹; ~104% higher ecosystem-scale than plot-scale FCH₄) and largest at annual scales (2.58 nmol m⁻² s⁻¹; ~87% higher ecosystem-scale than plot-scale FCH₄). In general, the agreement between ecosystem- and plot-scale FCH₄ decreased with finer temporal resolution (from Spearman ρ =0.95 at annual scale to ρ =0.65 at half-hourly scale), while Δ FCH₄ variation was greatest at daily-to-annual scales. Key environmental predictors of ΔFCH₄ included plot-scale spatial heterogeneity, dominant vegetation type, vapor pressure deficit, atmospheric pressure, and friction velocity at the daily and monthly scales. Wind direction was a significant predictor only at the monthly scale, suggesting EC footprint effects. These findings suggest accounting for variation in EC footprint extent, chamber measurement placement and artifacts is key to reconciling multi-scale FCH₄ observations in diverse ecosystems and refining CH₄ budgets.

1 Introduction

Methane (CH₄), a potent greenhouse gas, is produced in wetlands and consumed in upland soils- respectively the largest natural CH₄ sources and sinks globally. However, the magnitude of these fluxes remains highly uncertain (IPCC, 2023; Saunois et al., 2024). Field measurements of CH₄ fluxes (FCH₄) are often conducted using enclosed chamber systems or eddy covariance (EC) towers (Bansal et al., 2023b). Chambers are typically deployed at point scale (<1 m²) to capture plot-scale spatial heterogeneity in CH₄ source-sink dynamics within the study area (Livingston and Hutchinson, 1995; Morin et al., 2017; Virkkala et al., 2018). Chamber measurements can be manual or automated, the former is more labor-intensive and thus, results in a temporally sporadic sampling pattern (typically few per month), while the latter offers more consistent and long term temporal sampling (typically half hourly over seasons) but can be more spatially limited due to high instrumentation cost. Thus, chambers generally represent a lower fraction of the ecosystem (Barba et al., 2018; McGuire et al., 2012; Morin et al., 2014, 2017).

In contrast, EC towers continuously measure FCH₄ with high temporal resolution, typically half hourly, over seasons and years (Morin, 2019; Morin et al., 2017). The EC technique is based on the principle that the measured FCH₄ that originates from the tower footprint area (100-10000 m²) is carried upwards and outward toward the sensor by turbulent diffusion (Aubinet et al., 2012; Morin et al., 2014). Therefore, a single half-hourly EC measurement represents a mixed observation at the ecosystem

85

100

105

scale located over a somewhat uncertain footprint area, which changes from one observation to the other, and may include a mixture of distinctly different ecosystem and hydrological subtypes (defined as different "plots") (Chu et al., 2021; Xu et al., 2018). A chamber measurement represents a prescribed point with a well-known location and plot type but a small area. Averaging multiple chamber observations in the same plot (defined as "spatial replicates") increases the area representation of the chamber observation, but it is still several orders of magnitude smaller than EC measurements. While both approaches provide complementary perspectives on ecosystem FCH₄, the data provided by each method pose different challenges for model parameterization or evaluation of relevant ecosystem FCH₄ processes across spatial and temporal scales.

Many global and regional FCH₄ models are parameterized using EC FCH₄ data because of its consistent temporal sampling and because the EC reporting standard include environmental covariates (e.g., McNicol et al., 2023; Oikawa et al., 2024; Peltola et al., 2019; Ueyama et al., 2023b). Community-contributed datasets, such as FLUXNET-CH₄ (Delwiche et al., 2021; Knox et al., 2019), offer unprecedented opportunity to access EC FCH₄ data from around the globe. However, even large collaborations such as FLUXNET-CH₄ only cover a relatively small number of locations, from a global perspective, and is missing important coverage in key ecosystems (e.g., tropics; Delwiche et al., 2021; Zhu et al., 2024). Chamber FCH₄ data are cheaper and simpler to deploy and are therefore implemented in a larger number of sites globally. Thus, chambers provide a greater spatial site-level representation than EC sites and are needed to fill the missing data gaps. As a result, data from EC and chamber methods are sometimes compiled to augment syntheses and budget estimations (Hill and Vargas, 2022b; Kuhn et al., 2021; Yuan et al., 2024). Integration of plot-scale chamber FCH₄ data into ecosystem-scale EC datasets poses several challenges due to methodological differences (Hill and Vargas, 2022b). These challenges also apply to carbon dioxide (CO₂) measurements, with studies noting significant discrepancy between the two, partly due to manual chambers (and sometimes EC) often lacking nighttime measurements, biasing flux estimates (Barba et al., 2018; Phillips et al., 2017). To our knowledge, a systematic comparison of FCH₄ from these different scales across multiple sites, has not been conducted (but see Davidson et al. 2017).

Plot and ecosystem-scale FCH₄ are expected to differ due to the different FCH₄ source areas, measurement artifacts and uncertainties of the chamber and EC methods, and differences in their response to environmental FCH₄ drivers. In many comparison studies conducted in wetland and upland ecosystems, chamber FCH₄ is higher than EC FCH₄ (Chaichana et al., 2018; Clement et al., 1995; Davidson et al., 2017; Krauss et al., 2016; Marushchak et al., 2016; Meijide et al., 2011; Morin et al., 2017; Riutta et al., 2007), although some studies report the opposite (Budishchev et al., 2014; Forbrich et al., 2011; Hill and Vargas, 2022b; Schrier-Uijl et al., 2010; Wang et al., 2013) and others find that the direction of the difference varies between years (Korrensalo et al., 2018). The EC method integrates FCH₄ over the constantly moving and often spatially heterogeneous footprint, and the surface cover types within the footprint differ substantially in FCH₄ and, in wetlands, may include non-flooded areas where FCH₄ is expected to be near zero (Kutzbach et al., 2004; Riutta et al., 2007; Sha et al., 2011), which can introduce significant bias (Morin et al., 2017).

110

115

120

125

130

Since the attribution of surface cover type and location is better defined in chamber measurements, chamber FCH₄ sampling can offer more representative estimates of FCH₄ variability within a site (Bansal et al., 2023a). However, chambers only capture a small portion of the landscape, are often placed in high-emitting hotspots, do not sample over tall vegetation patches, and may incorporate sampling location biases (Bansal et al., 2023b), often leading to higher observed fluxes at the individual sampled plots, than the true, mean ecosystem-scale FCH₄ (but see Voigt et al., 2023). Environmental variables that influence FCH₄ variability, such as soil temperature, water table level (or water elevation in flooded sites), and net ecosystem CO₂ exchange, could also predict cross-scale FCH₄ differences given the different processes influencing FCH₄ at different spatial and temporal scales (Knox et al., 2021; Morin et al., 2014; Turetsky et al., 2014). EC observations are sensitive to environmental variables, such as wind speed and direction, that affect the extent and location of the observation footprint, while chamber measurements should be unaffected by these (Wang et al., 2013). While some studies have evaluated EC-chamber FCH₄ differences with spatially explicit FCH₄ upscaling or downscaling with the help of EC footprint modeling, many of these studies have been conducted in individual sites (e.g., Budishchev et al., 2014; Marushchak et al., 2016; Morin et al., 2017; Schrier-Uijl et al., 2010). Thus, an exploration of bulk-scale FCH₄ differences between ecosystem and plot-scale FCH₄ (based on spatiotemporal aggregations) and their controls across multiple sites can help in directing future research efforts utilizing EC footprint modeling to reconcile cross-scale FCH₄ differences.

To explore the differences between ecosystem and plot-scale FCH₄ (ΔFCH₄) measured by EC and chamber systems, respectively, and to identify the time scales and environmental conditions at which the two data types agree best, we 1) compared co-located and contemporaneous EC and chamber FCH₄ rates across multiple sites and examined how the differences ranged across temporal scales (half-hourly to annual), and 2) investigated the potential predictors of ΔFCH₄. We hypothesized that plot-scale FCH₄ would be higher than ecosystem-scale FCH₄ as chambers often selectively target FCH₄ hotspots and manual chamber measurements are often conducted at warmer daytime conditions. We expected that ΔFCH₄ is highest during daytime when most chamber measurements are conducted and plant activity is high, the latter of which is fully captured by towers but not always by manual chambers (Knox et al., 2021; Yu et al., 2013). This comparison of bulk FCH₄ rates is a key first step toward standardized harmonization of EC tower and chamber footprints to account for spatiotemporal heterogeneity across multiple sites.

We hypothesized that larger variance (suggesting higher spatio-temporal heterogeneity) observed in chambers and EC measurements would increase ΔFCH₄, and that the different temporal resolutions of manual and automated chambers would further contribute to ΔFCH₄. Finally, we expected that the temporal scale of data aggregation could influence the magnitude

of ΔFCH_4 , and we hypothesized that ΔFCH_4 would be lower at coarser (seasonal to annual) than at finer (hourly to daily) temporal aggregations.

2 Methods

140 **2.1 Study sites**

145

150

We compiled ecosystem-scale (EC) and plot-scale (chamber) FCH₄ data from ten sites, representing different climatic conditions and ecosystem types (two uplands and eight wetlands; Fig. 1, Table 1). Each site differed in the number of days with both chamber and EC measurements (n=5-759), the number of chambers used (n=3-18), the year of observations (range across sites: 2012-2020), and whether the chambers were automated or manual (Table C1 and Fig. B1). The site selection was based on the availability of coincident EC and chamber FCH₄ data. EC data were obtained from the FLUXNET-CH₄ database (Delwiche et al., 2021; Knox et al., 2019) and chamber data were provided by site principal investigators in response to a call for data via the FLUXNET-CH₄ network. The sites are located in China, Finland, Sweden and the USA. Most sites have a humid continental (n=3) or subarctic climate (n=3), with others located in humid subtropical (n=3) and cold subtropical highland (n=1) regions (Table 1).

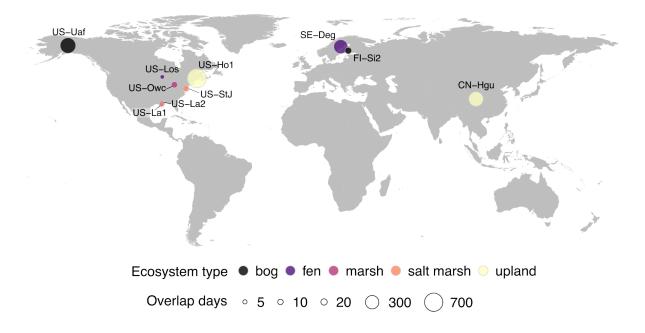


Figure 1. Map of study sites. Point colors indicate ecosystem type and point size reflects the number of overlap days between eddy covariance and chamber measurements (details in Table C1). Ecosystem type follows the site classification in the

160

FLUXNET-CH₄ database (Delwiche et al., 2021; Knox et al., 2019). Base map: Natural Earth (1:50 m Cultural Vectors; naturalearthdata.com), created with R package *maps* (Becker et al., 2023).

Table 1. Environmental characteristics of the study sites during the FCH₄ observation periods. Site classification, dominant vegetation, air temperature, precipitation, and water table level data were obtained from half-hourly FLUXNET-CH₄ and chamber datasets (Delwiche et al., 2021; Knox et al., 2019). Mean air temperature, total precipitation, and mean water table level were calculated over the EC-chamber overlap periods used in the analyses. Negative water table level indicates that water table level was below the soil surface. Köppen climate abbreviations: Cwc = cold subtropical highland, Dfc = subarctic, Dfb = warm-summer humid continental, Cfa = humid subtropical, Dwc = monsoon-influenced subarctic climate. Column abbreviations: TA = air temperature, P = total precipitation, WTL = water table level, Vegetation = site dominant vegetation type, Overlap days = number of days with both EC and chamber FCH₄ observations. In Overlap days, values marked with and without asterisk (*) represent automated and manual chambers, respectively.

FLUXNET- CH4 ID	Site name	Climate (Köppe n)	Site classificatio n	TA (°C)	P (mm)	WTL (min, max; cm)	Vegeta tion	Overlap days	Chamber FCH4 data ref.	EC FCH4 data ref.
CN-Hgu	Hongyua n	Cwc	upland (alpine meadow)	2.6	386	-	Aerenc hymato us	363*	Wang et al. (2021)	Niu and Chen (2020)
FI-Si2	Siikanev a-2 Bog	Dfc	bog	14.6	14	-11.6 (-39, 15.2)	Sphagn um moss	26	Korrensalo et al. (2018)	Alekseyc hik et al. (2021); Vesala et al. (2020)
SE-Deg	Degerö	Dfc	fen	4.7	394	-1.35 (-10.2, 0.8)	Sphagn um moss	338*	Bond- Lamberty et al. (2020); Järveoja et al. (2018)	Nilsson and Peichl (2020)

US-Ho1	Howland Forest	Dfb	upland (needleleaf forest)	6.9	838	-53.6 (-112, 8.19)	Tree	759*	Richardson et al. (2019)	Richards on and Hollinge r (2020)
US-La1	Pointe- aux- Chenes Brackish Marsh	Cfa	salt marsh	24.7	9	-0.99 (-13.3, 3.13)	Aerenc hymato us	5	Krauss et al. (2016)	Holm et al. (2020a)
US-La2	Salvador WMA Freshwat er Marsh	Cfa	marsh	26	15	1.33 (-8.79, 24.1)	Aerenc hymato us	10	Krauss et al. (2016)	Holm et al. (2020b)
US-Los	Lost Creek	Dfb	fen	18.4	92	-11.2 (-16.1, - 4.89)	Ericace ous shrub	5	Desai (2025b)	Desai (2025a); Desai and Thom (2020)
US-Owc	Old Woman Creek	Dfb	marsh	15.2	468	73.9 (35, 120)	Aerenc hymato us	18	Bohrer et al. (2019)	Bohrer et al. (2020)
US-StJ	St Jones Reserve	Cfa	salt marsh	20	520	30.1 (-39, 102)	Aerenc hymato us	16	Hill and Vargas (2022a)	Hill and Vargas (2022b); Vázquez -Lule and Vargas (2021)

	Universit									
US-Uaf	y of Alaska, Fairbank	Dwc	bog	-0.2	262	-12.5 (-37.8, 12.9)	Sphagn um moss	458*	Ueyama et al. (2022)	Iwata et al. (2020)
	S									

165

175

180

2.2 Datasets and data compilation

2.2.1 Chamber and EC CH₄ flux data

The plot-scale chamber FCH₄ data for each site were obtained from the site principal investigators. Each dataset included FCH₄ (varying units) and additional environmental variables, such as soil temperature and water table level. Chamber datasets comprised measurements from both manual (n=6 sites; taken 1-3 times per month) and automated chamber methods (n=4 sites; taken at half-hourly or hourly intervals, see Table C1; Subke et al., 2021). Chamber fluxes for all sites were calculated by the data providers using linear regression of change in CH₄ concentration over time (details in Text A1). None of the chamber FCH₄ data were gap-filled, and in most cases, ebullition events had been filtered out by the data providers (Text A1). We designated CH₄ emission with positive, and CH₄ uptake with negative signs.

The ecosystem-scale EC datasets for each site (except US-StJ, see below) were obtained from the FLUXNET-CH₄ database (Delwiche et al., 2021; Knox et al., 2019), and include both gap-filled and non-gap-filled FCH₄ values (nmol m⁻² s⁻¹) at a half-hourly resolution along with various meteorological and environmental variables. We used gap-filled EC FCH₄ in the analyses, but excluded data during long data gaps (>2 months) when the gap-filled values may be a significant source of uncertainty (Delwiche et al., 2021). Gap-filling was performed using artificial neural networks (ANN; Knox et al. 2019) which have shown good performance for FCH₄ data gap-filling (Irvin et al., 2021; Knox et al., 2016, 2019).

CN-Hgu EC FCH₄ data showed anomalous extreme CH₄ uptake and isolated extreme positive FCH₄ spikes. Therefore, we filtered out EC FCH₄ values where 1) CH₄ uptake exceeded -100 nmol m⁻² s⁻¹ (empirically determined threshold; Chen et al., 2019, 2020), 2) nighttime (incoming shortwave radiation < 10 W m⁻²; Morin et al., 2014) friction velocity < 0.1 m s⁻¹ (Chen et al., 2019, 2020), and 3) single extreme positive FCH₄ spikes occurred beyond the monthly 99.5th FCH₄ percentile where nighttime air temperature was within 1 °C of its dew point (calculated with Magnus formula and Alduchov & Eskridge constants; Alduchov and Eskridge, 1996; Lawrence, 2005) and the open-path gas analyzer may have had condensation

195

200

190 (Heusinkveld et al., 2008). Additional extreme FCH₄ (FCH₄ = 862 nmol m⁻² s⁻¹) associated with friction velocity = 0.93 m s⁻¹ and wind speed = 0.05 m s⁻¹ was removed as an outlier. After filtering, the CN-Hgu dataset was 70% of the original.

For US-StJ, we obtained EC FCH₄ data from the data providers (Hill and Vargas, 2022b; Vázquez-Lule and Vargas, 2021). As ANN-gap-filled EC FCH₄ values were not available at US-StJ, we used only non-gap-filled EC FCH₄. EC FCH₄ were processed by the data providers following AmeriFlux protocols (Chu et al., 2023; Hill and Vargas, 2022b; Vázquez-Lule and Vargas, 2021).

2.2.2 Environmental data

For all sites (except US-StJ), environmental data were obtained from the FLUXNET-CH₄ EC data product, including ANN-gap-filled net ecosystem CO₂ exchange (NEE), friction velocity (u*), wind direction (WD), gap-filled wind speed, gap-filled vapor pressure deficit (VPD), and gap-filled air pressure (PA) (Delwiche et al. 2021; Knox et al. 2019). Soil temperature (TS; topmost 2-10 cm depth) data was obtained from FLUXNET-CH₄ and site-specific chamber datasets when available. If a site had TS observations from both chamber and FLUXNET-CH₄ datasets, a mean of both was taken to obtain a site-level TS. Similarly, site-level water table level (WTL) was obtained by utilizing either FLUXNET-CH₄ or chamber-associated WTL measurements, or by taking their mean.

Environmental data for US-StJ were obtained from the data providers (Hill and Vargas, 2022b; Vázquez-Lule and Vargas, 2021). PA, VPD, wind speed, WD, and u* were not gap-filled, while TS and WTL were gap-filled based on their linear relationships with water temperature and water table level, respectively (Hill and Vargas, 2022b). NEE was gap-filled using marginal distribution sampling moving look-up tables (Hill and Vargas, 2022b).

See a summary of environmental data in Table C2.

2.3 Data processing and harmonization

The chamber datasets were harmonized to a similar structure, and FCH₄ units were standardized to nmol m⁻² s⁻¹, matching the units used in the FLUXNET-CH₄ EC FCH₄ data. Then, EC and chamber datasets were combined using common timestamps (Fig. 2). To evaluate differences across temporal aggregations, we aggregated data at six temporal scales: 1. half-hourly (automated chamber data only; CN-Hgu, SE-Deg, US-Ho1, US-Uaf; n=4 sites), 2. hourly (CN-Hgu, SE-Deg, US-Ho1, US-Uaf; n=4 sites), 3. daily (all sites, n=10 sites), 4. weekly (n=10 sites), 5. monthly (n=10 sites), and 6. annual (n=10 sites) (Fig. 2). Note that most sites did not include snow-covered periods, and the datasets primarily represent the snow-free season.

The data were aggregated from the timestamp-aligned data by taking the median of FCH₄ measurements (non-normally distributed), mean of NEE (normally distributed) and wind u and v components (see 2.4.2), and median of the rest of the environment and meteorological variables (non-normally distributed). Half-hourly aggregation was created by taking the median of chamber measurements for each EC timestamp. To check for robustness of our results from the median-based

temporal aggregations, we also created temporal aggregations based on FCH₄ means. In addition, we calculated cumulative sums (mg CH₄ m⁻²) of chamber and EC FCH₄ at daily, weekly, monthly, and annual scales to see how EC-chamber differences scale up to ecosystem CH₄ budgets. As the chamber FCH₄ data from FI-Si2, US-La1, and US-La2 lacked hourly timestamps, we estimated daily cumulative FCH₄ for these sites by using the daily median or mean chamber FCH₄ and multiplied it by 48 while EC cumulative FCH₄ was calculated based on half-hourly EC FCH₄ from FLUXNET-CH₄. As this is not an accurate estimate of daily cumulative chamber FCH₄ for EC-chamber FCH₄ comparisons, we included these sites only in site-specific analyses and excluded them from cross-site analyses.

The difference between ecosystem and plot-scale FCH₄ was calculated as the row-wise difference between instantaneous EC FCH₄ and chamber FCH₄ (Δ FCH₄) in each aggregated dataset by subtracting chamber FCH₄ from the corresponding EC FCH₄ on the same timestamp. For supplementary analyses, we calculated the difference between cumulative EC FCH₄ and chamber FCH₄ at daily, weekly, monthly, and annual scales.

2.4 Statistical analyses

230

250

2.4.1 Differences between ecosystem and plot-scale FCH₄ observations

We used non-parametric statistics to analyze the FCH₄ data (EC, chamber and ΔFCH₄), because the data were skewed and non-normal. To test the statistical significance (α = 0.05) of ΔFCH₄ and to assess ΔFCH₄ differences between chamber types at different temporal scales, we used Wilcoxon-Mann-Whitney tests (*wilcox.test* from *stats*; R Core Team 2024). Since the mean-based temporal aggregations were used as a sensitivity check, only descriptive statistics and Wilcoxon-Mann-Whitney tests were conducted for the mean-based aggregations (results in Table C3). Similarly, cumulative FCH₄ were analyzed with descriptive statistics and Wilcoxon-Mann-Whitney tests (results in Table C4). The rest of the methods described here were conducted on the median-based temporal aggregations of instantaneous FCH₄.

To estimate the slopes of the EC FCH₄ - chamber FCH₄ relationship, we also built simple linear mixed effects models with site as the random effect using function *lme* from package *nlme* (Pinheiro et al., 2000, 2023). For better interpretability of model slopes (in contrast to Yeo-Johnson-transformed values, see 2.4.2) and to meet the residual normality assumptions of linear mixed modeling, we transformed EC FCH₄ with inverse hyperbolic sine (Table C5). Due to non-convergence and residual non-normality, half-hourly and hourly scales were not assessed for EC-chamber FCH₄ slopes. We also used Spearman correlations to assess the direction and strength of the relationship between EC FCH₄ and chamber FCH₄, manual and automated chamber FCH₄, as well as FCH₄ magnitude (row-wise mean of EC and chamber FCH₄) and absolute ΔFCH₄.

We used Kruskal-Wallis tests (*kruskal.test* from *stats*; R Core Team 2024) to test for differences in ΔFCH₄ across hours and months (treated as categorical variables) within each temporal aggregation (half-hourly, hourly, daily, weekly, monthly, and annual). Then, we identified the significantly differing groups using the Conover-Iman post hoc test (function *conover.test* from package *conover.test*; Dinno, 2024).

255

260

265

270

275

280

2.4.2 Predictors of FCH₄ differences between ecosystem and plot scales

We built linear mixed models to estimate the predictors of Δ FCH₄. To meet the assumptions of linear mixed modeling and to improve residual diagnostics (normality and homoscedasticity of residuals) for model inference, we applied Yeo-Johnson power transformation (Yeo and Johnson, 2000) to absolute Δ FCH₄ values using the function *yeojohnson* from *bestNormalize* (Peterson, 2021). This transformation can be applied to zero values, and it improved our residual diagnostics, which were important for model inference. All models were built with the function *lme* from *nlme* (Pinheiro et al., 2000, 2023).

To evaluate potential predictors of Δ FCH₄, we included environmental and temporal variables available in the FLUXNET-CH₄ and chamber datasets in the models. The predictor selection was based on literature. They included: TS (°C), WTL (cm), PA (kPa), u* (m s⁻¹), WD (degrees), VPD (hPa), NEE (μ mol CO₂ m⁻² s⁻¹), month (categorical), site dominant vegetation (VEG; categorical; "tree", "ericaceous shrub", "aerenchymatous", "brown moss", and "*Sphagnum* moss"; taken from Delwiche et al., 2021), and hour (categorical; only with half-hourly and hourly datasets). We included EC-specific variables, such as u* and WD, as proxies for EC footprint to assess how variables contributing to the EC footprint may affect Δ FCH₄. While two of the VEG classes (tree and ericaceous shrub) were only represented in one site, preliminary linear regression model comparisons showed that VEG explained a large proportion of the Δ FCH₄ variance (R² = 0.4-0.7), and its inclusion in linear mixed models substantially improved model fit. Therefore, we included VEG as a fixed effect, while acknowledging that for tree and ericaceous shrub classes, the estimated effect may be related to the site rather than vegetation.

In all models, the reference level in VEG was *Sphagnum* moss, 0 in Hour, and May in Month. As WD is a circular variable $(0^{\circ}=360^{\circ})$, we represented WD as a continuous function of wind direction and speed by separating WD into orthogonal u and v wind components (uWD and vWD, respectively), which were averaged from the half-hourly EC datasets in hourly, daily, weekly, monthly, and annual aggregations (Text A2). As a result, uWD represents the strength of west-east wind while vWD represents the strength of north-south wind. This representation avoided discontinuity at $360^{\circ}/0^{\circ}$ and potential multicollinearity between model predictors.

For improved model convergence and β -coefficient calculations, Yeo-Johnson-transformed absolute Δ FCH₄ and all predictors were centered and scaled, except hour, month and VEG, which were categorical variables and were included without centering and scaling. To account for multicollinearity, we chose predictors based on Pearson correlation matrices (threshold |r|<0.7) and checked variance inflation factors (VIF; threshold \leq 3) using the function vif from car (Fox and Weisberg, 2018). Due to multicollinearity (VIF>3), we built two separate half-hourly models containing either month or TS, two weekly models without NEE or VPD, and a monthly model without VPD and TS. WTL data was not available for CN-Hgu, and thus, this site was excluded from the models.

After accounting for temporal autocorrelation and residual variance (Text A3), we used backward variable selection based on likelihood ratio tests (AIC and p-values) together with type I ANOVA tests to determine significant predictors of Yeo-Johnson-transformed absolute Δ FCH₄. During variable selection, the models were fitted with maximum likelihood, and the final models

were refitted with restricted maximum likelihood for statistical inference. Model marginal and conditional R² were calculated with the function *r.squaredGLMM* from package *MuMIn* (Bartoń, 2024).

We built linear mixed effects models to investigate the effect of spatio-temporal FCH₄ variation on ΔFCH₄. To represent the FCH₄ variation between individual chambers within each site, we calculated the interquartile range (IQR) of chamber FCH₄ from an unaggregated dataset per each site and temporal scale unit (i.e., per day, week, month, or year). To see whether temporal variation within each temporal scale unit in EC FCH₄ may affect absolute ΔFCH₄, we also calculated EC FCH₄ IQR per each site and temporal scale unit. In the models, log-transformed absolute ΔFCH₄ was the response variable, and either log (+0.01)-transformed chamber IQR or log (+0.01)-transformed EC IQR was the explanatory variable, or both were included as explanatory variables to assess their relative effects on absolute ΔFCH₄.

All data processing and statistical analyses were carried out using R v4.3.3 (R Core Team, 2024).

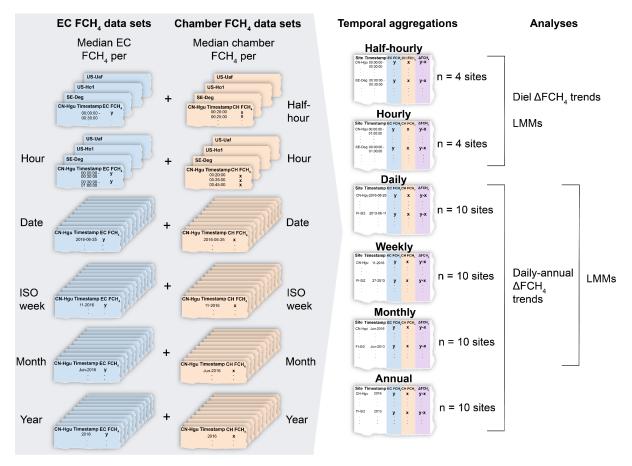


Figure 2. Overview of the main data aggregation workflow. Site-specific EC FCH₄ (blue) and chamber FCH₄ (orange) datasets were combined by taking the median FCH₄ per timestamp (half-hour to annual scale). ISO week is the week number according to the ISO-8601 standard. Then, site-level datasets were combined into multi-site datasets at six temporal scales: half-hourly, hourly, daily, weekly, monthly, and annual. Half-hourly EC FCH₄ data was not aggregated as it was already in half-hourly scale. ΔFCH₄ (purple) was calculated by subtracting median chamber instantaneous FCH₄ from median EC instantaneous FCH₄ per timestamp per site, and this measure was used in all analyses and linear mixed effects models (LMMs). Note that we also created temporal aggregations by taking the mean of EC and chamber FCH₄, and these data sets were used as a sensitivity check with descriptive statistics and pairwise comparisons.

305 3 Results

310

315

320

325

330

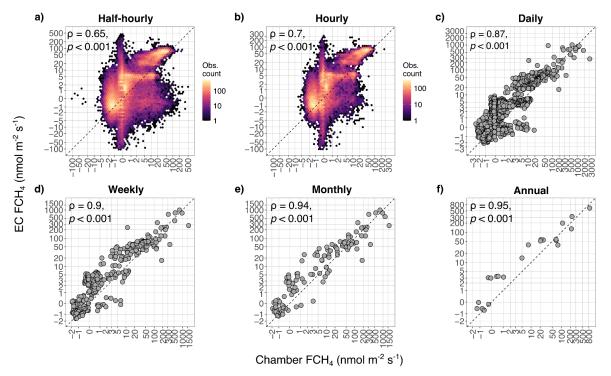
335

3.1 Ecosystem and plot-scale FCH₄ differ most at finer temporal aggregations

Ecosystem- (EC) and plot-scale (chamber) FCH₄ differed significantly at all the temporal aggregations shorter than monthly scale (Table 2). Median ecosystem FCH₄ was higher than plot-scale FCH₄ at all temporal aggregations (half-hourly to annual: 102%, 109%, 104%, 90%, 58%, and 87% higher, respectively). However, the coefficient of variation (CV, %) for Δ FCH₄ was large particularly in daily and weekly aggregations. Across temporal aggregations and site-years, CH₄ emissions (FCH₄ >0) above the 90th percentile contributed a larger share of total plot-scale FCH₄ than ecosystem-scale FCH₄ (Table 2, Fig. B2), possibly indicating more CH₄ emission hot spots and hot moments at the plot scale. Our observed trend persisted when we aggregated chamber and EC FCH₄ data with means instead of medians (Table C3), where median Δ FCH₄ ranged between 0.28 (annual) and 1.23 (half-hourly) but mean Δ FCH₄ turned increasingly negative from daily (-1.16 nmol m² s⁻¹) to annual (-70.94 nmol m² s⁻¹) scales, highlighting plot-scale CH₄ emission hotspots and hot moments as possible Δ FCH₄ drivers which may have been more attenuated in the median-based aggregations. Ecosystem and plot-scale FCH₄ were positively correlated across temporal aggregations, with annual aggregation having the best agreement, while the worst agreements were in half-hourly and hourly aggregations (Fig. 3). In linear mixed models, a 1 nmol m⁻² s⁻¹ increase in plot-scale FCH₄ was associated with an ecosystem FCH₄ increase of 0.007 nmol m⁻² s⁻¹ (p=0.03) at daily plot-scale FCH₄ median (0.06 nmol m⁻² s⁻¹), 0.01 nmol m⁻² s⁻¹ (p=0.066) at weekly plot-scale FCH₄ median (0.51 nmol m⁻² s⁻¹), 0.009 nmol m⁻² s⁻¹; see Table C4 for details).

14

Table 2. Ecosystem (EC) and plot-scale (chamber) FCH₄ difference (Δ FCH₄) at different temporal aggregations. A positive Δ FCH₄ indicates higher ecosystem than plot-scale FCH₄ and vice versa. The EC and chamber data sample sizes in Wilcoxon-Mann-Whitney tests are reported as n_{EC} and n_{CH}, respectively. The 90th percentiles (p90, without parentheses) and proportion (%, in parentheses) of chamber and EC CH₄ emission observations (where FCH₄>p90 and FCH₄>0) of the total chamber or EC FCH₄ sum show the contribution of high CH₄ emissions to total CH₄ emissions. Abbreviations: IQR = interquartile range, SD = standard deviation, CV = coefficient of variation.


				Chamber FCH ₄	EC FCH4	
	ΔFCH ₄	ΔFCH_4		p90, nmol m ² s ⁻¹	p90, $nmol m^2 s^{-1}$	
Aggregation	median (IQR),	mean (SD),	ΔFCH_4	(% of total	(% of total	Wilcoxon-Mann-
Aggregation	$nmol\ m^{-2}\ s^{-1}$	$nmol\ m^{-2}\ s^{-1}$	CV (%)	FCH ₄)	FCH ₄)	Whitney test
	1.4	5.61		33.44	64.31	<i>p</i> <0.001
Half-hourly	(5.67)	(17.71)	196	(46)	(44)	$(n_{EC}=74482,$
	,	(17.71)		(40)	(44)	n _{CH} =74482)
	1.41	6.08		45.76	63.92	<i>p</i> <0.001
Hourly	(5.28)	(15.34)	191	(47)	(44)	$(n_{EC}=40072,$
		(13.34)		,		n _{CH} =40072)
	1.36	4.01		43.18	68.5	<i>p</i> <0.001
Daily	(4.27)	(81.49)	674		(60)	$(n_{EC}=1879,$
		(81.49)		(75)	(60)	$n_{CH}=1879$)
	1.44					<i>p</i> <0.001
Weekly		-0.62	467	112.64	78.08	$(n_{EC}=349,$
	(5.29)	(105.8)		(76)	(63)	n _{CH} =349)
	1.46	-8.14				p=0.082
Monthly			350	247.77	219.98	$(n_{EC}=121,$
	(14.82)	(151.18)		(69)	(64)	n _{CH} =121)
	2.50					p=0.507
Annual	2.58	-1.37	194	220.35	250.78	(nec=22,
	(24.59)	(63.6)	177	(64)	(57)	n _{CH} =22)

355

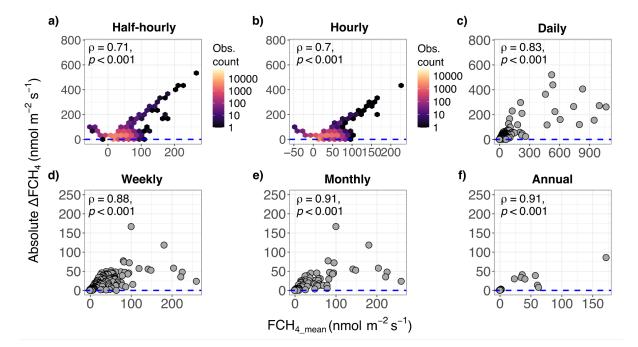
360

Figure 3. Agreement between ecosystem (EC) and plot-scale (chamber) FCH₄ improves from finer to coarser temporal aggregations (a-f), as indicated by Spearman correlation coefficients (ρ ; calculated with untransformed data). For visualization, the plot axes (a-f) were transformed with inverse hyperbolic sine to spread out points in the low FCH₄ range and retain negative values (see untransformed plots in B3). In a) and b) the points for half-hourly (n=74482) and hourly (n=40072) aggregations are shown in hexagonal density clouds with log10-transformed color range to highlight trends in high point density areas (colors represent number of observations per hexagon). The high observation densities in a) and b) reveal site-specific trends in the discrepancy between ecosystem and plot scales (e.g., at x=0 and y=5). For daily (c), weekly (d), monthly (e), and annual (f) aggregations, sample sizes were n = 1879, 349, 121, and 22, respectively. The dashed line represents 1:1 line.

Ecosystem and plot-scale FCH₄ differed between hours, months, and sites. In support of our hypotheses, the highest Δ FCH₄ occurred between 5 AM and 3 PM (p<0.001; B4-B7), with maximum median Δ FCH₄ at 9 AM (2.01 nmol m⁻² s⁻¹, IQR: 6.16; half-hourly scale) and minimum at 8 PM (0.9 nmol m⁻² s⁻¹, IQR: 4.16; half-hourly scale). However, the diel Δ FCH₄ trends varied between sites and months (p<0.001; Fig. B8-B12). The highest absolute Δ FCH₄ (with observations from all sites) was in August, September, and October (half-hourly to daily p<0.001; Fig. B13). In addition, Δ FCH₄ varied in both magnitude and

direction within and between sites (Kruskal-Wallis p<0.001; half-hourly to monthly scale), with most medians being positive (Tables C6-C11 and B14-B15). The difference between cumulative sums of ecosystem and plot-scale FCH₄ increased from daily to annual scales but the seasonal and inter-annual trends varied between sites (Table B4, Fig. B16). The largest absolute Δ FCH₄ medians and CVs were consistently found in US-Owc (median: -108.22 nmol m⁻² s⁻¹, CV: 169%; daily scale), while the lowest absolute Δ FCH₄ and FCH₄ were consistently found in US-Ho1 (median Δ FCH₄ <1 nmol m⁻² s⁻¹; Tables C6-C11).

Flux magnitude, measured as the mean between EC and chamber FCH₄ (FCH_{4_mean}), was generally positively related to ΔFCH₄ but negative relationships existed when FCH_{4_mean}<0 (i.e., net uptake). The positive FCH₄ magnitude and absolute ΔFCH₄ relationship became stronger at coarser temporal resolutions (Spearman *p*<0.001; Fig. 4). In all aggregations, the higher ΔFCH₄ came from higher ecosystem than plot-scale FCH₄ (≥70% of all observations when FCH_{4_mean}>0; result not shown). In half-hourly and hourly aggregations, ΔFCH₄ and FCH_{4_mean} were negatively or positively related when FCH_{4_mean} suggested net uptake or emission, respectively (Fig. 4a and b). When FCH_{4_mean}<0, ecosystem-scale FCH₄ was generally higher than plot-scale FCH₄ (57% and 58% of all observations when FCH_{4_mean}<0 in half-hourly and hourly aggregations, respectively; result not shown). However, most of the highest observations originate from CN-Hgu. Sites also differed in whether the trends in negative FCH₄ came from higher plot or ecosystem-scale FCH₄: for example, at US-Uaf, 100% of ΔFCH₄ observations at FCH_{4_mean}<0 consisted of higher plot-scale FCH₄ while ca. 66% of hourly and half-hourly observations (FCH_{4_mean}<0) in US-Ho1 came from higher ecosystem-scale FCH₄.


380

390

395

Figure 4. The absolute difference between ecosystem-scale (EC) and plot-scale (chamber) FCH₄ (Δ FCH₄) increases with FCH₄ magnitude (FCH_{4_mean}). FCH_{4_mean} is the row-wise mean of EC FCH₄ and chamber FCH₄. In a) and b) half-hourly and hourly points are shown in hexagonal density clouds with a log-transformed color range to highlight trends in high point density areas (colors represent number of observations per hexagon). Plots c-f show daily, weekly, monthly and annual aggregations, respectively. The blue dashed line represents Δ FCH₄=0 meaning complete agreement between ecosystem and plot-scale FCH₄. Higher Spearman correlation coefficient (ρ , α =0.05) represents stronger deviation from Δ FCH₄=0. For visualization, outliers were removed from daily (n=3), weekly (n=10), monthly (n=8) and annual (n=1) plots but the Spearman correlations are based on original data. See plots with outliers in Fig. B17.

3.2 Predictors of ecosystem and plot-scale FCH₄ differences

3.2.1 Atmospheric pressure, friction velocity and wind direction drive daily-to-monthly FCH₄ differences between ecosystem and plot scales

The significance and effect size of Δ FCH₄ predictors varied across temporal aggregations, with site-dominant vegetation type having the highest effect sizes at the daily-to-monthly scale (Table 3). Dominance of aerenchymatous vegetation had relatively high effect sizes ($|\beta$ -coefficient|>0.68). However, only one site was classified as tree-dominated (US-Ho1) and ericaceous shrub-dominated (US-Los), while three were aerenchymatous and two were *Sphagnum*-moss dominated. Thus, we were unable to separate true vegetation-related effects from site effects.

PA and u* were significant Δ FCH₄ predictors at the daily and monthly scales (but weekly PA p=0.057), while VPD was significant only at the daily scale. However, the effect sizes were relatively low (β -coefficient \leq 0.25; Table 3). Wind direction

400 (uWD) was a significant ΔFCH₄ predictor only in the monthly scale. Month was a significant predictor only in the final half-hourly-daily models, where August and July had the highest effect sizes (β-coefficient>0.41), while morning hours, particularly 5 AM, were most important in the half-hourly-hourly models (5 AM β-coefficient>0.08). However, the fixed effects in the final half-hourly and hourly models explained a very small proportion of the total variation (marginal R²<0.05, Tables S12-S13).

405

Table 3. Linear mixed effects model results identifying environmental predictors of ecosystem and plot-scale FCH₄ difference (ΔFCH₄) at different temporal scales. Fixed effects are listed in decreasing order based on their β-coefficients. Significant predictors are highlighted in bold. Half-hourly and hourly models had very low marginal R² (<0.05) and were excluded from this table. See half-hourly and hourly models in Table C13 and full models in Table C14. Abbreviations: SE = standard error, Df = degrees of freedom, VEG = site dominant vegetation, PA = air pressure (kPa), u* = friction velocity (m s⁻¹), WTL = water table level (cm), TS = soil temperature (°C), NEE = net ecosystem CO₂ exchange (μmol CO₂ m⁻² s⁻¹), VPD = vapor pressure deficit (hPa), vWD = v wind component (m s⁻¹), uWD = u wind component (m s⁻¹).

Dataset	Predictors	β- coefficient	SE	p-value (t-test)	Marginal R ²	Conditional R ²	Df	Random effect variation explained, %
Daily	Intercept	0.4867	0.361	0.1779	0.5346	0.9265	1363	
(n=9 sites)	Fixed effects							
	VEG							
	- Tree	-1.4718	0.6767	0.0816			5	
	- Aerenchymatous	1.0111	0.4723	0.0852			5	
	Month							
	- Jul	0.4939	0.1685	0.0043			87	
	- Aug	0.4577	0.1696	0.0084			87	
	VEG							

	-Ericaceous shrub	0.4333	0.7104	0.5686			5	
	Month							
	- Sep	0.2851	0.1656	0.0886			87	
	- Apr	0.234	0.3683	0.5269			87	
	- Dec	0.2281	0.5059	0.6533			87	
	- Oct	0.1884	0.1689	0.2677			87	
	- Jun	0.1595	0.1658	0.3389			87	
	- Nov	0.1118	0.2356	0.6363			87	
	- Mar	-0.0735	0.5003	0.8835			87	
	TS	-0.0525	0.0269	0.051			1371	
	VPD	-0.0457	0.0109	0			1371	
	u*	0.0342	0.0076	0			1371	
	PA	-0.0259	0.0072	0			1371	
	uWD	0.0052	0.0066	0.4305			1371	
	vWD	0.0043	0.007	0.5423			1371	
	NEE	0.0017	0.0104	0.8679			1371	
	WTL	0.0012	0.0376	0.9745			1371	
	Random effects							
	Site							59.59
	Year-month							24.62
Weekly								
(n=9	Intercept	0.5066	0.3402	0.1381	0.5554	0.8351	178	
sites)	Fixed effects							

	VEG							
	- Tree	-1.3455	0.6772	0.1036			3	
	- Aerenchymatous	0.8552	0.4642	0.1248			3	
	-Ericaceous shrub	0.5256	0.6837	0.4767			3	
	PA	-0.0716	0.0374	0.0572			178	
	Random effects							
	Site							62.91
	Year-month							1.05e ⁻⁰⁵
Monthly	Intercept	-0.2243	0.3145	0.4778	0.6599	0.8788	80	
(n=9 sites)	<u>Fixed effects</u>							
sites)	Month							
	- Mar	1.4967	1.4236	0.2962			80	
	VEG							
	- Aerenchymatous	1.2901	0.4307	0.0303			5	
	-Ericaceous shrub	0.7673	0.6684	0.3029			5	
	Month							
	- Apr	0.6774	0.2947	0.0241			80	
	VEG							
	- Tree	-0.5482	0.5955	0.3995			5	
	PA	-0.2535	0.1046	0.0177			80	
	uWD	0.2322	0.0666	0.0008			80	
	u*	-0.1875	0.0774	0.0176			80	

Month					
- Oct	-0.1805	0.1432	0.2111	80	
WTL	0.1375	0.0809	0.0931	80	
Month					
- Dec	0.1258	0.3948	0.7509	80	
NEE	0.1069	0.0664	0.1114	80	
Month					
- Sep	0.0963	0.1475	0.5158	80	
vWD	0.0686	0.0501	0.1747	80	
Month					
- Jul	0.0608	0.1465	0.6789	80	
- Jun	0.0461	0.1408	0.7442	80	
- Nov	-0.0404	0.2062	0.8453	80	
- Aug	0.021	0.1456	0.8857	80	
Random effects					
Site					64.35

415

420

3.2.2 Spatial FCH₄ variation increases ecosystem and plot-scale FCH₄ difference

Spatial variation between FCH₄ measurements by individual chambers increased absolute Δ FCH₄ (Fig. 5). The increasing trend between chamber IQR (log +0.01) and absolute Δ FCH₄ (log) became clearer in coarser temporal scales, where a unit (*e*-fold; ca. 2.7x) increase in monthly and annual chamber FCH₄ variation (IQR +0.01) was associated with ca. 51% and 63% increase in absolute Δ FCH₄, respectively (marginal R² \geq 0.31, $p\leq$ 0.01). Temporal EC FCH₄ variation (e.g., within date in daily scale) did not lead to strong increases in absolute Δ FCH₄ at daily-to-monthly aggregations (marginal R²<0.01), but the annual mixed effects model showed a ca. 198% increase in absolute Δ FCH₄ with a unit increase in EC FCH₄ IQR (+0.01; marginal

430

435

 R^2 =0.82). Models with both chamber and EC IQR (log +0.01) as explanatory variables showed significant chamber IQR at daily-to-monthly aggregations (p<0.001, marginal R^2 =0.06-0.31) and significant EC IQR at daily scale (p=0.005). In contrast, the annual model had a nonsignificant chamber IQR and significant EC IQR (p=0.001, marginal R^2 =0.81). The sites also differed in the strength and direction of the relationship between chamber and EC FCH₄ variation and ΔFCH₄ (Fig. 5).

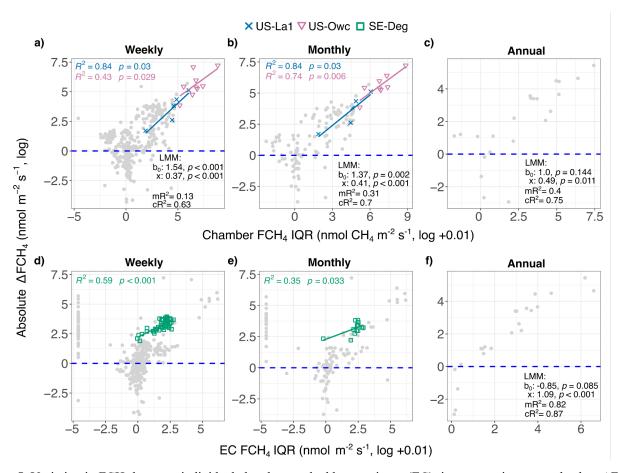


Figure 5. Variation in FCH₄ between individual chambers and eddy covariance (EC) timestamps increases absolute Δ FCH₄. a-c) Relationship between chamber FCH₄ variation (variation between individual chambers per aggregation timestamp, represented by interquartile range; IQR) and absolute Δ FCH₄ at weekly (a), monthly (b) and annual (c) scales. d-f) Relationship between EC timestamp FCH₄ variation (represented by IQR) and absolute Δ FCH₄ at weekly (d), monthly (e) and annual (f) scales. Linear mixed effects model (LMM) results: b₀ = model intercept, x = predictor (chamber or EC FCH₄ log IQR +0.01) of log absolute Δ FCH₄, p = predictor significance (preceded by model coefficient estimates), mR² and cR² = marginal and conditional R², respectively. In d) and e) LMM results are not shown due to low marginal R² (mR²≤0.06). Daily scale is not shown due to the low number (n=1) of sites with significant relationships and low marginal R² (mR²≤0.06). Linear regressions,

 R^2 s and p-values are only shown for sites with significant IQR predictor and R^2 >0.2 and are shown in different colors and shapes (gray points: nonsignificant and R^2 ≤0.2 sites). The dashed blue line indicates Δ FCH₄=0. See version with untransformed data in Fig. B18.

440

445

465

3.2.3 Ecosystem and plot-scale FCH₄ difference does not significantly vary among chamber types

We did not find significant differences in Δ FCH₄ between automated and manual chambers at all aggregations (Wilcoxon-Mann-Whitney; daily p=0.948, weekly p=0.361, monthly p=0.565, annual p=0.722). However, Δ FCH₄ in manual chambers had higher variation than automated chambers in daily (CV_{manual}=284%, CV_{automated}=181%), weekly (CV_{manual}=262%, CV_{automated}=181%), and monthly (CV_{manual}=240%, CV_{automated}=182%) aggregations. The correlations between chamber FCH₄ and EC FCH₄ for both automated and manual chambers were strong at daily-to-annual aggregations (ρ >0.7, Fig. B19).

4 Discussion

4.1 Ecosystem-scale FCH₄ is higher than plot-scale FCH₄ at all temporal scales

450 Contrary to our hypothesis, across all temporal aggregations, ecosystem-scale (EC) FCH₄ was higher than at the plot scale (chamber). Higher EC FCH4 than chamber FCH4 have been observed in an arctic peatland with area-weighted chamber FCH4 (Budishchev et al., 2014), a managed peat meadow with upscaled chamber FCH₄ (Schrier-Uijl et al., 2010), a peatland with down-scaled EC FCH₄ (Forbrich et al., 2011), a temperate forest with spatial chamber FCH₄ averages (Wang et al., 2013), and a temperate salt marsh with spatio-temporal chamber and EC FCH4 averages (Hill and Vargas, 2022b), while other studies at 455 individual sites have observed higher chamber FCH4 (upscaled to ecosystem-level with different methods) than EC FCH4 (Chaichana et al., 2018; Clement et al., 1995; Davidson et al., 2017; Krauss et al., 2016; Marushchak et al., 2016; Meijide et al., 2011; Morin et al., 2017; Riutta et al., 2007). Nonetheless, the median difference was relatively low across sites and temporal aggregations (min 1.36 daily, max 2.58 nmol m⁻² s⁻¹ annual), with CV ranging from a minimum of 191% (hourly) to a maximum of 674% (daily; Table 2), indicating relatively good agreement between ecosystem and plot-scale FCH₄ across sites but with large variation around perfect agreement. While our higher ecosystem than plot-scale FCH4 trend was robust 460 across temporal scales, due to the limited data availability (n=10 sites), our results might reflect site differences and generalizations should be tested when more data becomes available.

We found the best general agreement between instantaneous ecosystem and plot-scale FCH₄ in the monthly and annual aggregations, with the agreement improving from fine to coarse temporal resolutions, as expected. The improved agreement is likely a result of the data aggregation, which reduces the influence of inter-daily FCH₄ variability. In addition, mean Δ FCH₄ in weekly, monthly and annual aggregations was negative, indicating higher plot-scale than ecosystem-scale FCH₄, and the

470

CV for the weekly aggregation in particular was large (467%). Our results suggest that high CH₄ emissions and FCH₄ variability in plot-scale measurements are associated with higher ΔFCH₄, particularly at time scales longer than daily (Table 2 and Fig. B2); suggesting that combining plot- and ecosystem-scale FCH₄ data at heterogeneous sites is particularly problematic at coarse temporal scales. This may highlight the importance of selective chamber placement on high-emitting locations and time periods within the study sites. However, our results based on cumulative FCH₄ (Table C4) also show that ecosystem-scale cumulative FCH₄ are generally higher than at plot scale. Therefore, site-level CH₄ budgets calculated with ecosystem-scale FCH₄ data can exceed plot-scale estimates despite localized plot-scale CH₄ emission peaks (with site-specific variation; Fig. B16).

In general, the spatio-temporal variation of EC footprint and chamber measurement artifacts may have contributed to the higher ecosystem-scale FCH4. Chamber measurements are challenged by tall vegetation, and in most cases chambers that observe ebullition events are discarded, and therefore, the EC footprints may have covered high-CH₄-emitting areas (i.e., CH₄ emission hot spots), such as Typha sp.-dominated vegetation patches, and ebullition events (i.e., CH₄ emission hot moments) more often than chambers, leading to higher ecosystem-scale FCH₄. This has been demonstrated in spatially heterogeneous areas, where 480 CH₄ emission hot spots within EC footprints may be important ΔFCH₄ drivers (Desai et al., 2015; Rey-Sanchez et al., 2025; Xu et al., 2018), and at least in some sites, the majority of FCH₄ is contributed through ebullition (Villa et al., 2021). In addition, FCH₄ hot spots and hot moments can vary in both space and time, and manual chamber FCH₄ measurements (n=6 sites) are often conducted sporadically, during daytime and in weekly or monthly campaigns, resulting in large uncertainties related to spatio-temporal FCH₄, and possibly ΔFCH₄, variation across temporal scales (Anthony and Silver, 2021, 2023; 485 Vargas and Le, 2023). The EC footprint effects could be further highlighted by the increasing ΔFCH₄ with increasing FCH₄ (Fig. 4), and similar trends were observed in a rice paddy (Meijide et al., 2011). However, ΔFCH₄ in low FCH₄ is likely not detected well due to EC and chamber detection limits, the reported ranges of which cover the minimum absolute ΔFCH₄ of 0-0.05 nmol m⁻² s⁻¹ (Desai et al., 2015; Erkkilä et al., 2018; Kroon et al., 2007, 2010; Richardson et al., 2019; Smeets et al., 2009). Altogether, the mismatch in EC footprint and chamber measurement coverage could be an important Δ FCH₄ driver, as 490 FCH₄ between surface cover types and within them can vary strongly even within the same growing season (Voigt et al., 2023), highlighting the need to account for EC footprint representativeness as well as chamber measurement location and frequency when combining plot and ecosystem-scale FCH₄ data.

4.2 Atmospheric pressure, friction velocity and vapor pressure deficit predict daily and weekly FCH₄ difference between ecosystem and plot scales

PA, u* and VPD were important daily and weekly-scale ΔFCH₄ predictors. PA can be a strong predictor of daily and multiday FCH₄ (Knox et al., 2021), and ΔFCH₄ decreased with higher PA (weekly PA *p*=0.057). As drops in PA have been associated with ebullitive FCH₄ in wetlands (Knox et al., 2021; Nadeau et al., 2013; Sachs et al., 2008; Tokida et al., 2007) and as unvented closed chambers can alter chamber air pressure (Jentzsch et al., 2025) and most ebullition events were filtered out from chamber FCH₄ data (Text A1), EC may have captured FCH₄ pulses during falling PA that chamber data did not include.

515

520

525

530

500 Friction velocity may have increased ΔFCH₄ mainly via effects on CH₄ ebullition in open water (Wille et al., 2008), which EC detected but chambers excluded. However, EC FCH₄ can be underestimated in low u* which could also have led to subsequent decreases in ΔFCH₄ (Aubinet, 2008; Baldocchi, 2003). The strong effect size of site dominant vegetation and the negative VPD effect may reflect species- and site-specific stomatal conductance and CH₄ transport (Cernusak et al., 2018; Grossiord et al., 2020). The importance of plant activity may be further supported by the marginally-significant TS (*p*=0.051) which may have acted as a proxy for increased plant activity particularly in July and August (*p*<0.01), the peak growing season months in the northern hemisphere. Chamber artifacts may have also contributed to the u* and VPD effects: short chamber deployments in high u* and low WTL may have underestimated chamber FCH₄ (Lai et al., 2012), while longer measurements (e.g. FI-Si2, US-La1 and US-La2: >30 min) in high WTL may have kept stomata open and increased CH₄ transport and chamber FCH₄ (Knapp and Yavitt, 1992; Langensiepen et al., 2012). However, given the limited sample size in the models (n=9 sites), these results may be strongly influenced by site selection.

As expected, greater variation in FCH₄ between chambers led to higher Δ FCH₄ especially at the weekly to annual scales. Indeed, chamber FCH₄ can vary strongly between individual chambers (Davidson et al., 2002) but FCH₄ variation can be even stronger between chamber patches (due to differences in vegetation and microtopography) than within them (Stewart et al., 2024), a factor which was not included in our analyses. Similar to CH₄, spatial variation in chamber-based soil CO₂ respiration measurements has been estimated as an important driver of the discrepancies between ecosystem and soil CO2 respiration observations and their varying directions, indicating that chambers may capture soil respiration hot spots and moments that EC does not (Phillips et al., 2017). Chambers capturing these CH₄ emission hot spots and hot moments may have led to the large ΔFCH₄ CVs and negative mean ΔFCH₄ particularly in the daily and weekly aggregations in both median and mean-based temporal aggregations (Table 2 and Table C3). The spatial variation between chambers could have also contributed to chamber FCH₄ random errors and ΔFCH₄ patterns in Fig. 4 (Levy et al., 2011). Nevertheless, despite the possible importance of chamber CH₄ emission hot spots and moments in driving Δ FCH₄, cumulative plot-scale FCH₄ seem to be increasingly overcome by higher ecosystem-scale FCH₄ at coarser temporal scales, but with site-specific trends (Table C4, Fig. B16). Between-chamber variation explained ΔFCH₄ best at US-La1 (but n=5) and US-Owc, and spatial FCH₄ heterogeneity is high particularly at US-Owc (Rey-Sanchez et al., 2018; Villa et al., 2021), which may explain these trends. In contrast, SE-Deg has a relatively homogeneous vegetation composition (Järveoja et al., 2018), which is probably the reason why EC FCH₄ variation had a better fit than between-chamber FCH₄ variation (Fig. 5). The increasing absolute ΔFCH₄ with between-chamber FCH₄ variation may result from the EC footprint capturing patches that only a portion of the chamber measurements may represent. This may be highlighted in sites with manual chamber measurements which were conducted 1-3 times a month and during daytime when FCH₄ are often higher than at nighttime (Koebsch et al., 2015; Long et al., 2010; Parmentier et al., 2011) (e.g., US-La1; Fig. 5). Therefore, using representative chamber patches and measurement times to upscale chamber FCH₄ to the EC footprint could potentially decrease ΔFCH₄ (Schrier-Uijl et al., 2010; Vargas and Le, 2023).

535

540

555

560

4.3 Wind direction, atmospheric pressure and friction velocity drive monthly ecosystem and plot-scale FCH4 differences

At the monthly scale Δ FCH₄ was best explained by wind direction (uWD), PA and u*. Wind direction has been an important EC FCH₄ predictor in wetlands similar to the sites of this study in multiday (2.7-21.3 days) and seasonal (42.7-341 days) scales (Knox et al., 2021). In general, the significant uWD may indicate monthly-scale variation in EC footprint and the possibly systematically different land cover coverage than that of chambers within the study sites, but footprint-aware analyses with a larger sample size are required to confirm these hypotheses. PA and u* are considered to be more influential FCH₄ drivers in the diel to multiday scales, so, together with uWD, they may instead represent seasonality in Δ FCH₄, driven by continental-scale air pressure systems or regional land-sea winds (Griebel et al., 2016; Montaldo and Oren, 2016; Rebmann et al., 2005). The high effect size and significance of aerenchymatous vegetation may further suggest a role of seasonal plant activity with higher CH₄-emitting or -consuming aerenchymatous plant biomass in growing season months (Knox et al., 2021; Niu et al., 2011), but this could also be related to site-specificity in monthly Δ FCH₄ patterns (conditional R²=0.88). Site-specificity may also be highlighted by the significant April in the monthly model, as only three out of nine sites had observations in April (Fig. B1).

Monthly and annual ΔFCH4 trends may have also reflected seasonal snow and ice thaw dynamics, as well as changes in the chamber measurement system. The higher ecosystem-scale FCH4 at CN-Hgu and US-Ho1 in cooler months (Fig. B14) may have resulted from spring snowmelt releasing stored CH4 below the ice and snow cover (Hargreaves et al., 2001; Morin et al., 2017; Rinne et al., 2007; Zhang et al., 2012) which might have been captured by EC but not by chambers. However, only four sites had data from November, December and March (Fig. B1). Therefore, sites with full year co-occurring chamber and EC FCH4 coverage are needed to investigate the seasonal ΔFCH4 dynamics further. Changes in the chamber measurement system also likely contributed to monthly and interannual ΔFCH4. In US-Ho1 and US-Uaf, the number of chambers per chamber surface cover class varied between years and months: due to instrument malfunction or chamber replacements, in some timestamps spatial chamber medians did not include CH4-emitting or -consuming patches while EC did, leading to a large monthly- and annual-scale ΔFCH4 variation (Richardson et al., 2019; Ueyama et al., 2023a).

4.4 FCH₄ difference between ecosystem and plot scales is highest in the morning and at noon

As we expected, our diel analyses revealed higher ΔFCH₄ and ecosystem-scale FCH₄ from morning to noon (max ΔFCH₄ at 9 AM) and lower in the evening and at night (min ΔFCH₄ at 8 PM), but the trends varied strongly between sites and months. Higher daytime FCH₄ has been observed particularly during growing seasons (Koebsch et al., 2015; Long et al., 2010; Parmentier et al., 2011), and higher diurnal EC FCH₄ than chamber FCH₄ also by Yu et al. (2013). Ecosystem FCH₄ seemed to be driving the monthly diel ΔFCH₄ fluctuations particularly in July with noon and August with morning FCH₄ peaks, while plot scale showed less diel fluctuation (Fig. B8-B12), possibly as a result of the spatial aggregation of chamber measurements. Our findings of increasing absolute ΔFCH₄ with FCH₄ (Fig. 4) may reflect these differences, as EC and chamber FCH₄ random error can increase with flux magnitude (Hollinger and Richardson, 2005; Knox et al., 2019; Richardson et al., 2006, 2008),

565

and may also be associated with diel variation in turbulence, EC footprint, and spatial FCH₄ heterogeneity (Hollinger and Richardson, 2005; Knox et al., 2021; Levy et al., 2011), and vary between sites (Delwiche et al., 2021; Richardson et al., 2006). However, the diel-scale mixed models had very low explanatory power and high site-specificity (conditional R^2 >0.79), making it difficult to identify drivers for the observed Δ FCH₄ trends. Thus, more sites with hourly chamber FCH₄ measurements are needed to disentangle the diel Δ FCH₄ predictors.

The high daytime ΔFCH₄ (CN-Hgu, SE-Deg, US-Ho1) could have resulted from diel variation in u* and VPD. High daytime 570 u* can enhance ebullition, CH₄ volatilization and release of stored CH₄ from nocturnal boundary layer (Baldocchi, 2003; Long et al., 2010; Morin et al., 2014; Sachs et al., 2008; Wille et al., 2008). Related to VPD, pressurized plant-mediated CH₄ transport typically peaks in the late morning to afternoon, as temperature and humidity gradients between cooler belowground tissues and warmer, drier aboveground air enhance internal-external pressure differences that drive gas flow through aerenchyma. However, very high VPD can induce stomatal closure, thereby reducing CH₄ transport (van den Berg et al., 2020; Knox et al., 2021; Morin et al., 2014; Vroom et al., 2022; Whiting and Chanton, 1996). Enhanced stomatal conductance under high solar 575 radiation may have also increased diffusive plant-mediated CH₄ transport (van der Nat et al., 1998), leading to higher daytime ecosystem-scale FCH₄ than plot-scale FCH₄ as dark chambers possibly closed the stomata. However, longer chamber deployment can decrease VPD within the chamber, and re-open the stomata (Knapp and Yavitt, 1992; Langensiepen et al., 2012). The high nighttime ΔFCH₄ (US-Uaf) could have been driven by u*: the nighttime EC footprint may have covered high-CH₄-emitting areas when u* was low and EC footprint larger (Baldocchi et al., 2012; Chu et al., 2021; Vesala et al., 2008). 580 Aerenchymatous vegetation may have also decreased daytime ecosystem-scale FCH₄ by increasing rhizospheric oxidation and CH₄ consumption under high solar radiation, VPD, and soil temperature (Cho et al., 2012; Zhao et al., 2021). However, further footprint-aware research on diel ΔFCH₄ patterns is needed to explore these hypotheses.

4.5 Plot-scale FCH₄ may have been underestimated due to chamber artifacts

EC and chamber techniques fundamentally differ in how ecosystem FCH₄ is measured, which could influence ΔFCH₄. Gas analyzers used for EC can be divided into open- and closed-path analyzers, the former of which is more sensitive to weather conditions, while the latter is influenced by the choice of the air pump and time lags between sonic anemometer and the gas analyzer (Baldocchi, 2003; Detto et al., 2011). However, the random and systematic errors associated with open- and closed-path EC gas analyzers do not contribute significantly to the total EC FCH₄ random error, which may be more affected by the movement of EC footprint and turbulence (Deventer et al., 2019; Knox et al., 2019; Peltola et al., 2014). Thus, the two analyzers should agree relatively well in practice and they can be combined in multi-site syntheses (Detto et al., 2011; Deventer et al., 2019; Peltola et al., 2014). However, detecting upland CH₄ uptake rates accurately with open-path analyzers is challenging due to uptake rates often falling within the instrument's detection limits (Chamberlain et al., 2017; Iwata et al., 2014). Of the two upland sites included in this study, these artifacts may have affected the results from CN-Hgu where EC FCH₄ were measured with an open-path gas analyzer.

600

605

610

615

620

625

As manual and automated chambers differ in temporal representation, the nonsignificant differences between automated and manual chambers in ΔFCH₄ were surprising. The nonsignificant differences are also reflected in the strong correlations between automated and manual chamber FCH₄ and EC FCH₄ (Fig. B19), and similar nonsignificant differences between automated and manual chambers were found in a Tibetan wetland (Yu et al., 2013). The spatial medians of manual chamber FCH₄ may have reduced the spatial FCH₄ variation common for manual chambers, and roughly correspond to the smaller spatial FCH₄ variation of automated chambers. However, the higher ΔFCH₄ variation of manual chambers could have resulted from chamber measurements being conducted 1-3 times a month leading to data gaps (Morin et al., 2014, 2017). Thus, care should be taken when combining manual chamber FCH₄ data with EC FCH₄ data in multi-site syntheses.

Chamber FCH₄ measurement and calculation methodology may have contributed to the generally lower plot-scale FCH₄. All chamber FCH₄ data was calculated using linear regression which may underestimate FCH₄ (Forbrich et al., 2010; Korkiakoski et al., 2017; Levy et al., 2011; Nakano, 2004; Pihlatie et al., 2013). High-precision CH₄ analyzers, such as cavity ring-down spectrometers and near-infrared laser gas analyzers, could capture nonlinear CH₄ concentration gradients which linear regression fails to do (Forbrich et al., 2010). With gas chromatography, the underestimation and related uncertainties may become even greater due to smaller sample sizes and difficulty in detecting low-quality FCH₄ measurements during chamber measurements (Christiansen et al., 2015; Levy et al., 2011). In sites which used gas chromatography, the number of samples was 4-7 per chamber deployment (e.g., FI-Si2, US-Owc), while sites that used high-precision CH₄ analyzers (CN-Hgu, SE-Deg, US-Ho1, US-Uaf) had ca. 1 Hz sampling interval, resulting in vastly different sample sizes per chamber deployment between sites, and thus higher uncertainties in chamber FCH₄. However, linear regression can be statistically more robust for comparing chamber FCH₄ from different sites with varying soil properties (Venterea et al., 2009). Furthermore, depending on chamber design, chambers can alter soil conditions (e.g., soil moisture) which may also contribute to ΔFCH₄ (Bansal et al., 2023b; Subke et al., 2021). It may be valuable to compare chamber and EC FCH₄ using both linear and exponential fits for chamber FCH₄ to better understand ΔFCH₄ trends across sites.

4.6 Limitations and uncertainties

The main uncertainties and limitations in our study arose from the sample size, chamber FCH₄ data and EC footprint. As we were able to include only ten sites in the analyses, our results are limited by the site-specific climate, vegetation, and methodology. Thus, in order to produce results that would be better generalizable to other sites and regions (e.g., tropics), future studies could include more sites from a variety of climates and dominant vegetation types. Since we used spatial medians of chamber FCH₄ measurements instead of upscaled chamber FCH₄ in the analyses to investigate cross-scale FCH₄ differences, the results should not be taken as indication of systematic methodological differences between EC and chamber FCH₄. Thus, the next steps could include comparing EC and chamber methods by upscaling chamber FCH₄ to the EC footprint level, or downscaling EC FCH₄ to chamber level, using footprint models and indices of footprint spatial heterogeneity based on fine-scale land cover classification (Hartley et al., 2015; Metzger, 2018; Räsänen et al., 2021; Tuovinen et al., 2019; Xu et al.,

630

635

645

650

655

2018). Future studies could apply high-resolution (e.g., 1-2 m) remotely-sensed data together with field surveys to determine chamber patch classes which could be used in upscaling chamber FCH₄ to the EC footprint level (Davidson et al., 2017; Forbrich et al., 2011; Morin et al., 2017; Rey-Sanchez et al., 2018; Schrier-Uijl et al., 2010; Stewart et al., 2024; Tuovinen et al., 2019), or downscaling EC FCH₄ to land cover classes (Forbrich et al., 2011; Rößger et al., 2019). By comparing footprint-and patch-weighted chamber FCH₄ to EC FCH₄, we would expect ΔFCH₄ to decrease or chamber FCH₄ exceed EC FCH₄ due to the incorporation of footprint FCH₄ heterogeneity (Budishchev et al., 2014; Schrier-Uijl et al., 2010). As our results may indicate FCH₄ hot spots and moments within the study sites as a possible ΔFCH₄ driver, identifying FCH₄ hot spots within the EC footprint with the aid of footprint-weighted FCH₄ maps (Rey-Sanchez et al., 2022) could also assist in finding representative chamber FCH₄ locations to reconcile the ecosystem and plot-scale FCH₄ differences. In addition, our cross-scale FCH₄ comparisons may contain large uncertainties due to differences in chamber FCH₄ outlier removal (Text A1) (Jentzsch et al., 2025; Levy et al., 2011). To minimize these uncertainties in future comparison studies, it is therefore recommended to use chamber FCH₄ data that has been processed in as standardized a way as possible.

640 5 Conclusions

We explored the differences between ecosystem-scale (eddy covariance, EC) and plot-scale (chamber, spatially-aggregated median) instantaneous CH₄ flux (FCH₄) across ten wetland and upland sites and in different temporal aggregations. Contrary to our expectations, we observed significantly higher median ecosystem FCH₄ than plot-scale FCH₄ across all temporal scales. However, the median FCH₄ difference between ecosystem and plot-scales (ΔFCH₄) remained relatively low. Ecosystem and plot-scale FCH₄ correlated strongly from daily to annual scales, which indicates that ecosystem and plot-scale FCH₄ observations could be combined in multi-site analyses at coarse temporal scales. However, care must be taken when combining cross-scale FCH₄ data, as variation in (based on instantaneous FCH₄) and magnitude of ΔFCH₄ (based on cumulative FCH₄) was large at daily to annual scales, and the agreement was worst at the half-hourly to hourly scales. In addition, ΔFCH₄ increased with FCH₄ magnitude at all temporal scales, suggesting that combining ecosystem- and plot-scale FCH₄ in high CH₄-emission ecosystems, such as wetlands, could lead to large FCH₄ uncertainties.

We attribute the higher ecosystem-scale FCH₄ than plot-scale FCH₄ mainly to the combination of selective chamber placement and the spatio-temporal dynamics of the EC footprint which may have captured CH₄ emission events that were not detected by chambers. Our results highlight the importance of monthly and seasonal variation in variables related to plant activity, atmospheric pressure, wind direction, and friction velocity as drivers of Δ FCH₄ across sites. Between-chamber FCH₄ variation also led to higher Δ FCH₄, which highlights the mismatch of chamber and EC footprint coverage of the study sites as a Δ FCH₄ driver. Nevertheless, Δ FCH₄ seems to vary between sites, warranting further research on Δ FCH₄ controls within and across ecosystem types. Based on our findings, we recommend the following:

660

665

- Cross-site efforts to upscale chamber FCH₄ to EC footprint level, or conversely, to downscale EC FCH₄ to chamber scale, using chamber measurements stratified by surface cover classes which take into account for vegetation and soil characteristics
- Further investigation of diel ΔFCH₄ dynamics from a higher number of sites with automated chamber measurements, particularly related to the spatial representativeness of the chamber measurements in relation to the EC footprint and chamber artifacts on the observed FCH₄
- More widely adopted, standardized methods for examining heterogeneity of FCH₄ in EC footprints, which can inform representative chamber and EC tower placement within the study sites (e.g., EC footprint modeling and targeted manual chamber sampling; Rey-Sanchez et al., 2022, Barba et al., 2018)
- Systematic bias and uncertainty of chamber and EC FCH₄ observations should be incorporated into model evaluation and parameterization studies

As syntheses and databases are increasingly utilizing both plot- and ecosystem-scale FCH₄ measurements, it is important to understand their differences across multiple sites. Taking these differences into account in future studies will improve ecosystem CH₄ budget estimates.

Appendices

Appendix A: Supplementary texts (Text A1-A3)

Text A1.

Quality control summary for chamber FCH₄ data sets. Data quality control and possible outlier removal was done by data providers prior to sharing chamber FCH₄ data, and a summary of the methods are listed here. For more details, please see the site-specific references.

CN-Hgu

FCH₄ was measured using dark chambers without a pressure vent or fan. FCH₄ was corrected for air temperature but not for air pressure. After each measurement, the computer system immediately calculated FCH₄ rate by using a linear regression model, and recorded the regression coefficients, R², and *p*-values (Wang et al. 2022). Low-quality data were excluded when R²<0.9. Ebullition is not a significant CH₄ source at the studied site and thus ebullition events were not removed.

685 FI-Si2

Nonlinearities in the FCH₄ data resulting from ebullition events and chamber leakages were removed during quality control. As a result, 10.4 % of the flux values were excluded as outliers (Korrensalo et al. 2018). The chambers had a fan and the air temperature used for FCH₄ calculations was measured inside the chamber during the measurements. The chambers were dark.

690 SE-Deg

695

705

715

The chamber FCH₄ data was corrected for air density (including air temperature) but not for air pressure. Low-quality data were removed based on R² and RMSE values (flux values with both R²<0.95 and RMSE>0.02) of the fitted linear regression. Ebullition events were removed (but CH₄ ebullition is not considered a significant CH₄ source at the site). Air temperature was measured inside the chamber. The chambers did not have a pressure vent or a fan but the sample air is circulated back from the analyzer to the chamber and the air flow back into the chamber provides some mixing of the headspace air. FCH₄ was not separately corrected for H₂O dilution, but the dry mixing ratio from LGR was used for FCH₄ calculation. FCH₄ was measured using both dark (n=4) and transparent (n=4) chambers. See further details of the chamber measurement system in Järveoja et al. (2018).

700 US-Ho1

During data quality checks, all data points that had R²<0.9 in the fitted linear regression were removed. All data known to have been affected by disturbances, such as instrument failures, calibrations and testing, were also removed from the data set. Chamber FCH₄ was corrected for air temperature and pressure (Richardson et al. 2019). Ebullition events were not removed. Chambers had a pressure vent but no fan. Air temperature and pressure were measured beside the chamber. The chamber FCH₄ was calculated based on the H₂O dilution-corrected FCH₄ provided by IRGA. The chambers were dark.

US-La1 and US-La2

No ebullition was detected in chamber FCH₄ measurements, and thus no ebullition events were removed. Air temperature was measured inside and outside of the chamber and used for the FCH₄ calculations. Chambers had no pressure vent nor a fan, but air was mixed manually by sucking and injecting air with the sampling syringe (Krauss et al. 2016). The chambers were dark.

US-Los

No specific outlier removal was performed but most mean R²>0.9 for CH₄ flux across replicates. About 15% of observations had R²<0.66. Ebullition events were not removed. The chambers had a small battery-powered fan and a small vent. Air temperature and pressure from outside the chamber were used to calculate the FCH₄. H₂O dilution corrections were obtained from LGR and used for the FCH₄ calculations. The chambers were dark.

US-Owc

Outliers were removed based on R² values from linear regression (R²≤0.85). The whole chamber measurement was discarded if more than three points were removed based on the R² values. Ebullition events were not included in the data following this quality control processing. Chambers had a pressure vent to prevent air pressure fluctuations within the chamber (Rey-Sanchez et al. 2018). Air temperature was measured inside the chamber. FCH₄ was corrected for pressure and air temperature. The chambers were dark.

725 US-StJ

Outliers were removed based on R² values from linear regression (R²<0.9) for simultaneously measured CO₂ fluxes, and data that passed these quality control steps were assumed to apply to CH₄ flux as well (Hill and Vargas 2022). Ebullition events were removed. The chambers were dark and included a small fan for air mixing.

730 US-Uaf

FCH₄ was calculated by taking into account air temperature and pressure which were measured outside of the chamber. The CH₄ concentration was corrected for H₂O dilution. Chambers had a pressure vent but no fan. The chambers were dark. Ebullition events were estimated negligible at this site and thus no ebullition removal was conducted.

735 Text A2.

Wind *u* and *v* component calculation.

Wind direction was separated into u (calculated with sine; equation 1) and v (calculated with cosine; equation 2) component vectors which combine both wind speed and direction for each half-hour measurement period.

740

$$u = -WS * sin[\frac{2\pi * WD}{360}]$$
 (1)

$$v = -WS * cos[\frac{2\pi * WD}{360}], \tag{2}$$

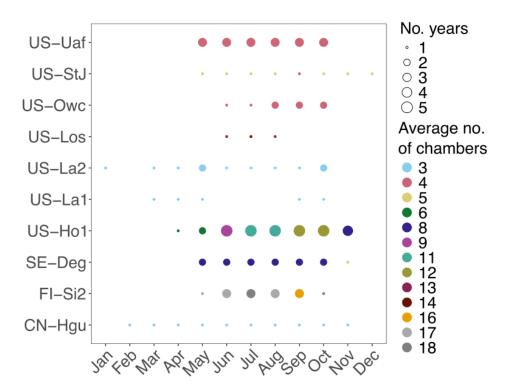
745 where WS is wind speed (m s⁻¹) and WD is wind direction in decimal degrees.

The u and v component averages were then calculated by taking the mean over the temporal unit in each aggregation (e.g. hour or day), resulting in temporally-aggregated u and v components in m s⁻¹.

750 Text A3.

Details of linear mixed effects models.

Temporal autocorrelation and residual variance structures were examined and chosen based on Akaike Information Criteria (AIC) and residual diagnostics, with more emphasis on the latter. Temporal autocorrelation was modeled using an autoregressive structure of order 1 (AR1) in the daily, weekly, and monthly models. To meet the requirements of the corAR1 argument in R, random effects in these models were nested to account for site-specific sampling times (e.g., daily model:



 $random = \sim 1 \mid Site/YearMonth$, $correlation = corAR1(form = \sim Day \mid Site/YearMonth)$). The nesting allowed for the inclusion of temporal autocorrelation within each temporal scale, for example "YearMonth", at the site level, reducing residual temporal autocorrelation compared to models with un-nested random effects. However, incorporating AR1 in the half-hourly model did not improve model fit or reduce residual variance and was therefore excluded. In addition, despite improvements in AIC in the hourly model, inclusion of AR1 led to model non-convergence and it had to be excluded from the model, leading to higher AIC but temporal autocorrelation and residual normality and variance heterogeneity were still acceptable when the random effect was nested (Site/Date).

Heterogeneous residual variance caused by some of the predictors was modeled in some of the models using an exponential variance structure (*varExp*; half-hourly and hourly: VPD, u*, PA; daily: PA and TS; weekly: PA; monthly: uWD, u*), as well as variance per stratum (*varIdent*; weekly: Year). We also tested other variance structures but, according to AIC and residual diagnostics, exponential variance structure led to best model fit and some of the other structures led to model non-convergence. Despite our efforts to account for the residual variance heterogeneity, some heterogeneity remained in the models while AIC and general model residual heterogeneity improved.

Appendix B: Supplementary figures (Figures B1-B19)

775 **Figure B1.** Number of individual chambers and years per month per site. The size of the point describes the number of years and color the average number of individual chambers used within each month across years.

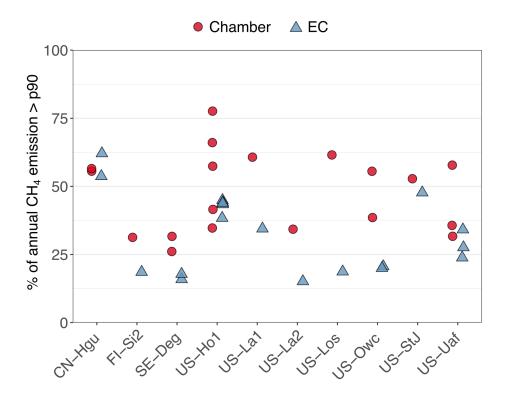


Figure B2. Contribution of high CH₄ emissions to annual CH₄ emissions per site in the unaggregated data set. For each site and year, high CH₄ emissions were estimated as FCH₄ above the 90th percentile (p90) and their proportion (%) of the total annual CH₄ emission was calculated separately for chamber (red circle) and EC (blue triangle). In the unaggregated data set, all EC FCH₄ data is in the half-hourly scale, but the chamber data measurement frequency varies across sites (see Table S1).

785

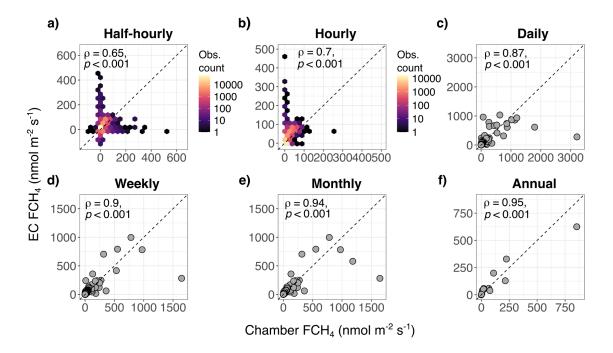
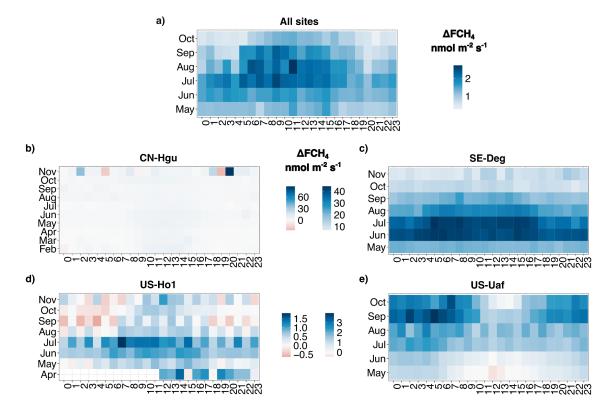



Figure B3. Relationship between EC FCH₄ and chamber FCH₄ with untransformed plot axes. Higher Spearman correlation coefficients (ρ) indicate stronger agreement between EC FCH₄ and chamber FCH₄. In a) and b) the points for half-hourly (n=74482) and hourly (n=40072) aggregations are shown in hexagonal density clouds with a log-transformed color range to highlight trends in high point density areas (colors represent number of observations per hexagon). For daily (c), weekly (d), monthly (e), and annual (f) aggregations, sample sizes were n = 1879, 349, 121, and 22, respectively. The dashed line represents 1:1 line.



Figure B4. Heatmaps of hourly median ΔFCH₄ across months in the half-hourly aggregation. Positive ΔFCH₄ (blue) represents higher EC FCH₄ than chamber FCH₄, and negative (red) higher chamber FCH₄ than EC FCH₄. X axis represents hours of day (24 h) and y axis months. a) Data set containing all sites (n=4 sites). Only months which were included in all sites are shown (May-October). b) CN-Hgu (all months), c) SE-Deg (all months), d) US-Ho1 (all months), e) US-Uaf (all months).

Figure B5. Heatmaps of hourly median ΔFCH₄ across months in the hourly aggregation. Positive ΔFCH₄ (blue) represents higher EC FCH₄ than chamber FCH₄, and negative (red) higher chamber FCH₄ than EC FCH₄. X axis represents hours of day (24 h) and y axis months. a) Data set containing all sites (n=4 sites). Only months which were included in all sites are shown (May-October). b) CN-Hgu (all months), c) SE-Deg (all months), d) US-Ho1 (all months), e) US-Uaf (all months).

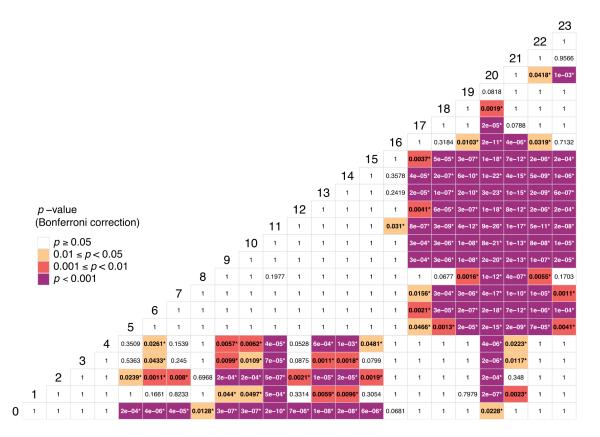


Figure B6. Significance levels (Bonferroni-adjusted p-values) of Conover-Iman multiple pairwise comparisons in Δ FCH₄ in the half-hourly aggregation containing sites with automated chamber measurements (n=4 sites). Numbers on the diagonal line are labels for the hourly bins, starting from 0-1 and ending in 23-24. Different colors represent the Bonferroni-adjusted p-values, with reference to an overall significance threshold of α = 0.05. Numbers inside the tiles are Bonferroni-adjusted p-values of the pairwise comparisons at four decimal places. Values in bold and asterisk (*) represent p-values that remain significant after Bonferroni correction.

Figure B7. Significance levels (Bonferroni-adjusted p-values) of Conover-Iman multiple pairwise comparisons in Δ FCH₄ in the hourly aggregation containing sites with automated chamber measurements (n=4 sites). Numbers on the diagonal line are labels for the hourly bins, starting from 0-1 and ending in 23-24. Different colors represent the Bonferroni-adjusted p-values, with reference to an overall significance threshold of $\alpha = 0.05$. Numbers inside the tiles are Bonferroni-adjusted p-values of the pairwise comparisons at four decimal places. Values in bold and asterisk (*) represent p-values that remain significant after Bonferroni correction.

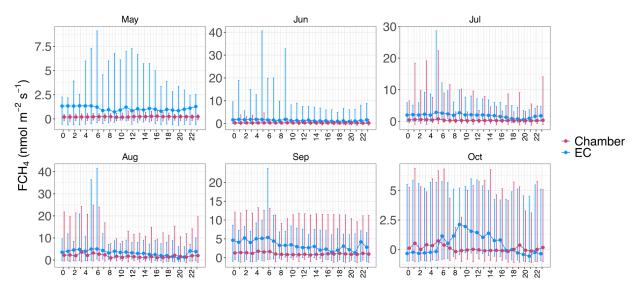


Figure B8. Hourly median chamber (red) and EC FCH₄ (blue) per month in the half-hourly data set. Variation around the median is represented by the interquartile range (between 25% and 75%). Only months containing all sites (n=4) with automated chamber measurements are shown.

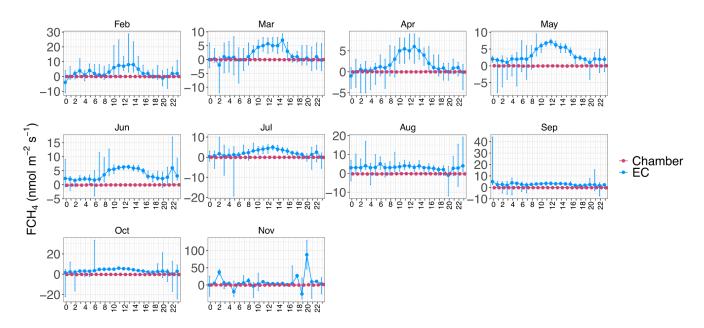
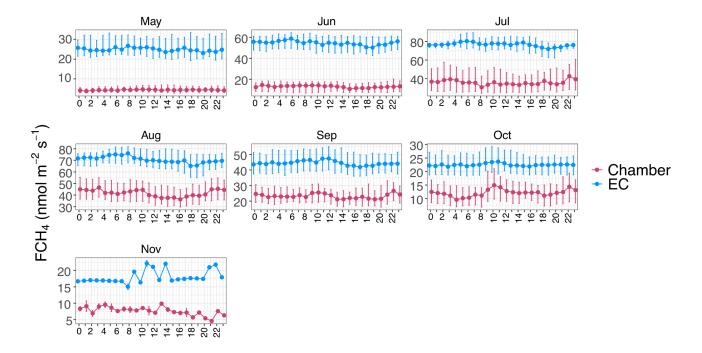



Figure B9. Hourly median chamber (red) and EC FCH₄ (blue) per month at CN-Hgu in the half-hourly dataset. Variation around the median is represented by the interquartile range (between 25% and 75%).

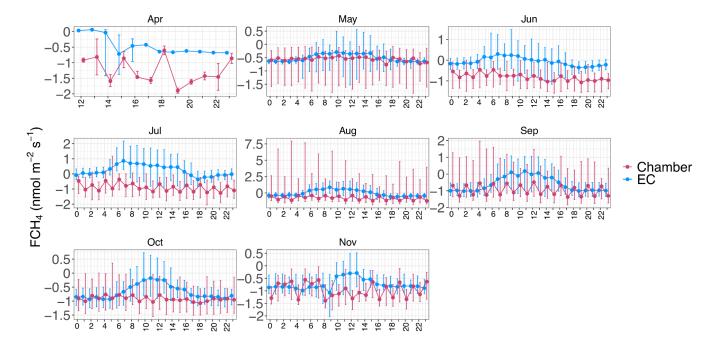


Figure B10. Hourly median chamber (red) and EC FCH₄ (blue) per month at SE-Deg in the half-hourly dataset. Variation around the median is represented by the interquartile range (between 25% and 75%).

Figure B11. Hourly median chamber (red) and EC FCH₄ (blue) per month at US-Ho1 in the half-hourly dataset. Variation around the median is represented by the interquartile range (between 25% and 75%).

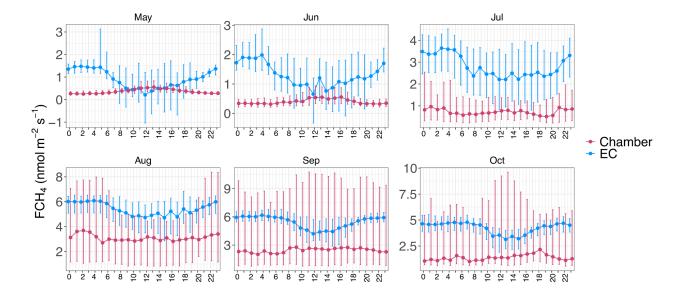


Figure B12. Hourly median chamber (red) and EC FCH₄ (blue) per month at US-Uaf in the half-hourly dataset. Variation around the median is represented by the interquartile range (between 25% and 75%).

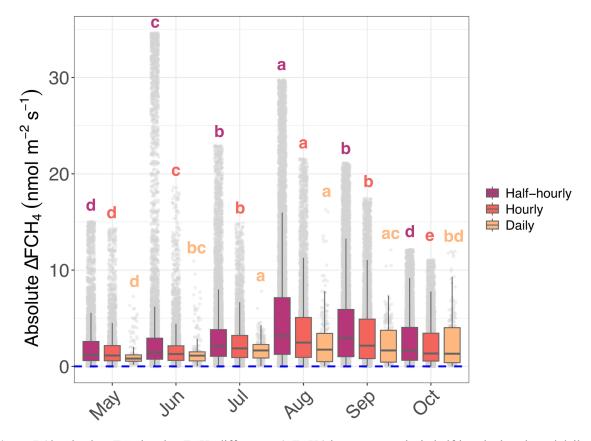
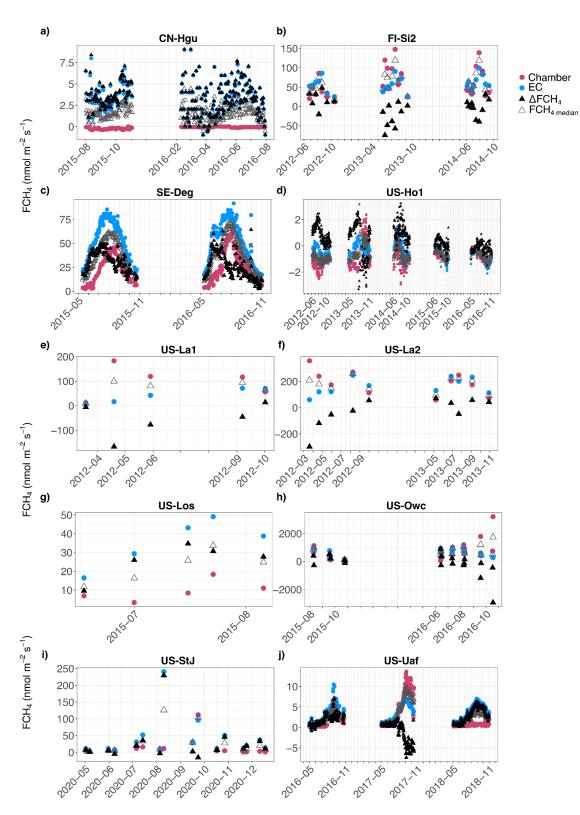



Figure B13. Absolute EC-chamber FCH4 differences (ΔFCH4) between months in half-hourly, hourly and daily aggregations. Different colors represent different temporal aggregations and gray points show the underlying data. For visualization, we filtered out data points 1.5 x IQR below the first quartile and 1.5 x IQR above the third quartile but statistics were based on the original data. The letters indicate whether ΔFCH4 differs significantly between months: months that share at least one shared letter are not significantly different (*p*>0.05) while months with different letters differ significantly (*p*≤0.05). Pairwise comparisons were conducted with the Conover-Iman post hoc test. While there was data in other months, the May-October period was chosen for this figure due to these months including either all (n=4; half-hourly and hourly aggregations) or almost all sites (n=7 or 8 sites; daily aggregation). Weekly and monthly aggregations did not have significant ΔFCH4 differences between months (Kruskal-Wallis *p*>0.05) and are not shown in this figure.

Figure B14. Site-specific trends in daily EC and chamber FCH₄, EC-chamber median FCH₄ (Δ FCH₄ median), and EC-chamber difference (Δ FCH₄) (a to j). Red circles represent chamber and blue EC FCH₄ measurements. Black triangle is Δ FCH₄ and the hollow light gray triangle is Δ FCH₄ median. In d) 46 outlier points from 2013 were removed to improve visualization (see US-Ho1 with outliers in Fig. S10). Negative Δ FCH₄ indicates higher chamber FCH₄ than EC FCH₄, and positive higher EC FCH₄ than chamber FCH₄.

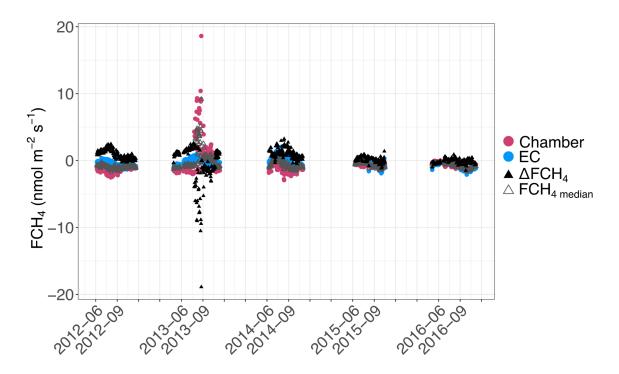
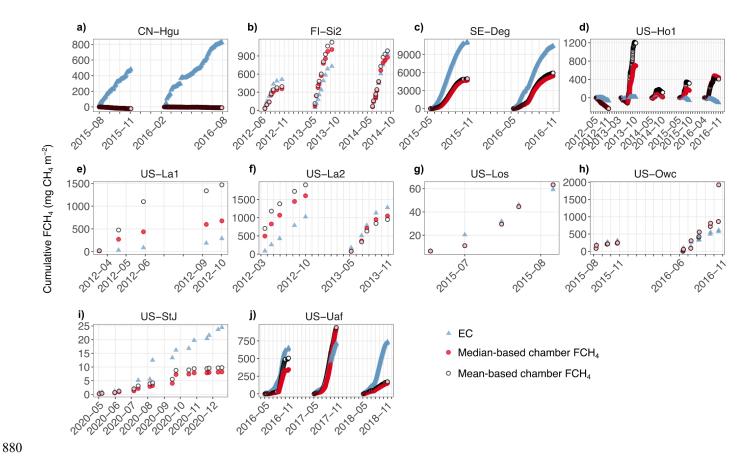



Figure B15. US-Ho1: trends in daily EC and chamber FCH₄, EC-chamber median FCH₄ (Δ FCH₄ median), and EC-chamber difference (Δ FCH₄), with 46 outliers in 2013. Red circles represent chamber and blue EC FCH₄ measurements. Black triangle is Δ FCH₄ and the hollow light gray triangle is Δ FCH₄ median. Negative Δ FCH₄ indicates higher chamber FCH₄ than EC FCH₄, and positive higher EC FCH₄ than chamber FCH₄.

875

Figure B16. Cumulative sums of ecosystem-scale (EC) and plot-scale (chamber) FCH₄ at the daily scale across sites (a-j). Blue triangles represent EC, red points chamber FCH₄ calculated from the median-based aggregation, and white points chamber FCH₄ calculated from the mean-based aggregation. Note that since the chamber FCH₄ data at FI-Si2, US-La1, and US-La2 lacked hourly timestamps, we roughly estimated daily cumulative FCH₄ by using the daily chamber FCH₄ median or mean for all 24 hours of the measurement date (EC cumulative FCH₄ was calculated based on daily half-hourly FCH₄ from FLUXNET-CH₄), and these estimates should thus be interpreted with caution.

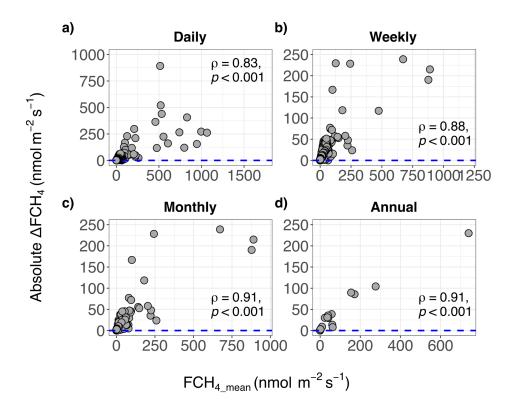
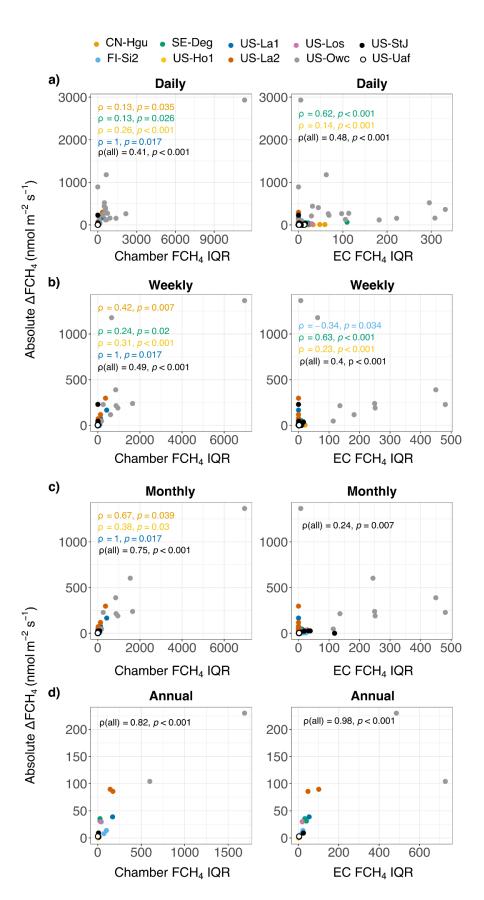


Figure B17. The relationship between FCH₄ magnitude and absolute ΔFCH₄ with outliers in daily (a), weekly (b), monthly (c) and annual (d) scales. FCH₄_{mean} is the row-wise mean of EC FCH₄ and chamber FCH₄, and EC-chamber FCH₄ difference (ΔFCH₄) was calculated by subtracting chamber FCH₄ from EC FCH₄. Positive ΔFCH₄ indicates higher EC FCH₄ than chamber FCH₄ and negative values higher chamber FCH₄ than EC FCH₄. The blue dashed line represents the line of equality where EC FCH₄ and chamber FCH₄ are equal. ρ represents Spearman correlation coefficient, followed by its statistical significance (α = 0.05). Higher ρ represents stronger deviation from the line of equality, i.e. ΔFCH₄=0 while perfect agreement between chamber and EC FCH₄ would result in ρ=0.



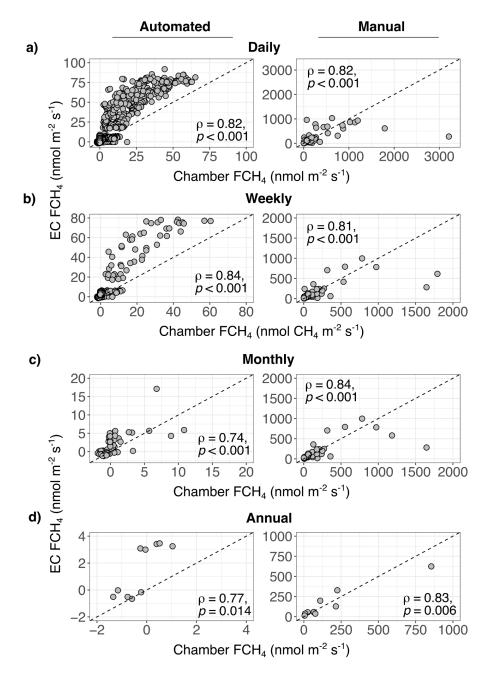


Figure B18. Untransformed absolute ΔFCH₄, chamber and EC FCH₄ IQR in daily (a), weekly (b), monthly (c), and annual (d) aggregations. Different colors represent individual sites. Plots in the left panel show the relationship between daily variation in FCH₄ between individual chambers within each site and site-level absolute ΔFCH₄. The right side panel shows the same but with daily variation in EC FCH₄. The strength and general direction of the relationship was measured with Spearman correlation coefficient (ρ). "ρ(all)" refers to the Spearman correlation for the whole dataset.

Figure B19. Automated (left panel) and manual (right panel) chamber FCH₄ had strong positive relationships with EC FCH₄ across sites and temporal scales (a to d). The dashed line represents the 1:1 line, and ρ Spearman correlation coefficient of the relationship. Automated chambers were included in four sites (CN-Hgu, SE-Deg, US-Ho1, and US-Uaf) and manual chambers in six sites (FI-Si2, US-La1, US-La2, US-Los, US-Owc, and US-StJ). Half-hourly and hourly plots are in Fig. 3. Note different x and y axis scales.

Appendix C: Supplementary tables (Tables C1-C14)

Table C1. Methodological and data details of the site chamber (CH) and eddy covariance (EC) measurement systems. "CH method" refers to whether the chambers are manual or automated, and whether chambers were dark or transparent to sunlight. CH meas. frequency = chamber measurement frequency. CH-EC overlap is the total duration of overlap between chamber and EC measurements in days (note: the measurements are spread out over different seasons and years; see S3). Gap-filled EC is the percentage of ANN-gap-filled EC FCH4 values of all EC FCH4 values per site (in the unaggregated data set). Further details of the CH and EC measurement systems can be found in the corresponding references. Abbreviations in "CH analyzer": LI-COR = LI-COR Biosciences, Nebraska, USA; Picarro = Picarro Inc., Santa Clara, CA, USA; Los Gatos = Los Gatos Research Inc., San Jose, CA, USA; Aerodyne = TILDAS CS, Aerodyne Research Inc., Billerica, MA, USA; Varian = Varian, Inc., Palo Alto, CA, USA; Shimadzu = Shimadzu Scientific Instruments, Kyoto, Japan.

FLUXN ET-CH ₄ ID	Location (lat, lon)	CH method	CH analyzer	EC analyzer	EC tower height (m)	No. of CH	CH meas. frequency	EC-CH start, end year	EC-CH overlap days	Gap-filled EC (%)	CH data ref.	EC data ref.
CN-Hgu	32.845278 , 102.59	automated, dark	near infrared laser gas analyzer (model 915-0011, Los Gatos)	open- path infrared gas analyzer (LI-7700; LI-COR)	3	3	56 min	2015, 2016	363	44	Wang et al. (2021)	Niu and Chen (2020)
FI-Si2	61.8372, 24.1967	manual, dark	gas chromatog raph (Agilent Technolog ies 7890A) and liquid handler (Gilson GX-271)	open- path gas analyzer (LI-7700, LI-COR)	2.4	18	1-3 x month	2012, 2014	26	5	Korrens alo et al. (2018)	Alekseychi k et al. (2021), Vesala et al. (2020)
SE-Deg	,	automated, dark and transparent	cavity ring-down spectromet er (model GGA- 24EP, Los Gatos)	Closed- path gas analyzer (Model 911- 0011- 0004, Los Gatos)	3	4	1 hour	2015, 2016	338	31	Bond- Lambert y et al. (2020), Järveoja et al. (2018)	Nilsson and Peichl (2020)
US-Ho1	45.2041, - 68.7402	automated, dark	cavity ring-down spectromet er (model G2121-i; Picarro) & Aerodyne Quantum Cascade Laser (Aerodyne)	Closed- path gas analyzer (model G2311-f, Picarro cavity ring- down spectrom eter)	31	20	ca. 1 hour (varied between years and chambers)	2012, 2016	759	52	Richards on et al. (2019)	Richardson and Hollinger (2020)
US-La1	29.5013, - 90.4449	manual, dark	gas chromatog raph (model CP-3800, Varian)	open- path gas analyzer (LI-7700, LI-COR)	3.4	3	1 x month	2012, 2012	5	0	Krauss et al. (2016)	Holm et al. (2020a)

US-La2	29.8587, - manual, 90.2869 dark	gas chromatog raph (model CP-3800, Varian)	open - path gas analyzer (LI-7700, LI-COR)	3.6	3	1 x month	2012, 2013	10	10	Krauss et al. (2016)	Holm et al. (2020b)
US-Los	46.0827, - manual, 89.9792 dark	near- infrared laser gas analyzer (Los Gatos UGGA)	open- path gas analyzer (LI-7700, LI-COR)	10.2	14	1-3 x month	2015, 2015	5	31	Desai (2025b)	Desai (2025a), Desai and Thom (2020)
US-Owc	41.379516 67, - manual, 82.512466 dark 7	gas chromatog raph (GC- 2014, Shimadzu)	analyzer (LI-7700,	2.7	4	1 x month	2015, 2016	18	50	Bohrer et al. (2019)	Bohrer et al. (2020)
US-StJ	39.088211 06, - manual, 75.437225 dark 34	near- infrared laser gas analyzer (Los Gatos)	open- path gas analyzer (LI-7700, LI-COR)	3.5	5	1-2 x month	2020	16	0	Hill and Vargas (2022)	Vargas (2018)
US-Uaf	64.86627, automated, 147.85553 dark	near- infrared laser gas analyzer (Los Gatos)	closed- path gas analyzer (RMT20 0 Fast Methane Analyzer or Greenhou se Gas Analyzer, Los Gatos)	6	5	30 min	2016, 2018	458	59	Ueyama et al. (2022)	Iwata et al. (2020)

Table C2. Details of the used environmental data. FLUXNET-CH₄ soil temperature data was from the topmost soil depths (2-10 cm below soil surface). Abbreviations: NEE = net ecosystem exchange, u* = friction velocity, WD = wind direction, WS = wind speed, VPD = vapor pressure deficit, PA = air pressure, WTL = water table level, TS = soil temperature, ANN = artificial neural network, MDS = marginal distribution sampling.

Site	Environmental variable	Data	Data reference		
	NEE	Half-hourly FLUXNET-CH4: ANN-gap-filled			
	u*	Half-hourly FLUXNET-CH ₄ : ANN-gap-filled			
	WD	Half-hourly FLUXNET-CH ₄ : ANN-gap-filled	Delwiche et al. (2021); Knox et al.		
CN-Hgu	WS	Half-hourly FLUXNET-CH ₄ : gap- filled	(2019)		
	VPD	Half-hourly FLUXNET-CH ₄ : gap- filled			
	PA	Half-hourly FLUXNET-CH ₄ : gap- filled			
	WTL	-	-		
	TS	Half-hourly FLUXNET-CH4	Delwiche et al. (2021); Knox et al. (2019)		
	NEE	Half-hourly FLUXNET-CH ₄ : ANN-gap-filled			
	u*	Half-hourly FLUXNET-CH ₄ : ANN-gap-filled	D.1.1.4.1.(2021)		
FI-Si2	WD	Half-hourly FLUXNET-CH ₄ : ANN-gap-filled	Delwiche et al. (2021); Knox et al. (2019)		
	WS	Half-hourly FLUXNET-CH ₄ : gap- filled			
	VPD	Half-hourly FLUXNET-CH4: gap- filled			

	PA	Half-hourly FLUXNET-CH ₄ : gap-			
		filled			
		Mean of daily gap-filled	Delwiche et al. (2021);		
	WTL	FLUXNET-CH4 WTL and chamber-	Knox et al. (2019),		
		associated WTL	Korrensalo et al. (2018)		
	TS	Chamber-associated TS	Korrensalo et al. (2018)		
	NEE	Half-hourly FLUXNET-CH ₄ : ANN-			
	NEE	gap-filled			
	ų.	Half-hourly FLUXNET-CH4: ANN-			
SE-Deg	u*	gap-filled			
		Half-hourly FLUXNET-CH ₄ : ANN-	D 1 1 1 1 (2021)		
	WD	gap-filled	Delwiche et al. (2021);		
		Half-hourly FLUXNET-CH4: gap-	Knox et al. (2019)		
	WS	filled			
		Half-hourly FLUXNET-CH4: gap-			
	VPD	filled			
		Half-hourly FLUXNET-CH4: gap-			
	PA	filled			
		Mean of half-hourly gap-filled	Delwiche et al. (2021);		
	WTL	FLUXNET-CH ₄ WTL and chamber-	Knox et al. (2019);		
		associated WTL	Järveoja et al. (2018); Bond-		
		Mean of half-hourly FLUXNET-	Lamberty et al. (2020)		
	TS	CH ₄ TS and chamber-associated TS			
		Half-hourly FLUXNET-CH ₄ : ANN-			
	NEE	gap-filled			
		Half-hourly FLUXNET-CH ₄ : ANN-			
	u*	gap-filled	Delwiche et al. (2021);		
S-Ho1		Half-hourly FLUXNET-CH ₄ : ANN-	Knox et al. (2019)		
	WD	gap-filled			
		Half-hourly FLUXNET-CH ₄ : gap-			
	WS	filled			
	VPD	Half-hourly FLUXNET-CH4: gap-			
		, 8 - P			

		filled	
	T. 4	Half-hourly FLUXNET-CH4: gap-	
	PA	filled	
	33.7T)	Half-hourly FLUXNET-CH4: gap-	
	WTL	filled	
	TS	Chamber-associated TS	Richardson et al. (2019)
-	NEE	Half-hourly FLUXNET-CH4: ANN-	
	NLL	gap-filled	
	u*	Half-hourly FLUXNET-CH ₄ : ANN-	
	u	gap-filled	
	WD	Half-hourly FLUXNET-CH ₄ : ANN-	
	WD	gap-filled	Delwiche et al. (2021);
	WS	Half-hourly FLUXNET-CH ₄ : gap-	Knox et al. (2019)
	**5	filled	
US-La1 & US-La2	VPD	Half-hourly FLUXNET-CH4: gap-	
	VID	filled	
	PA	Half-hourly FLUXNET-CH4: gap-	
	171	filled	
	WTL	Mean of daily FLUXNET-CH4	Delwishe et al. (2021):
		WTL and chamber-associated WTL	Delwiche et al. (2021); Knox et al. (2019); Krauss et al.
		Mean of daily gap-filled	(2016)
	TS	FLUXNET-CH ₄ TS and chamber-	(2010)
		associated TS	
	NEE	Half-hourly FLUXNET-CH4: ANN-	
	NEE	gap-filled	
	u*	Half-hourly FLUXNET-CH4: ANN-	
	u	gap-filled	
US-Los	WD	Half-hourly FLUXNET-CH4: ANN-	Delwiche et al. (2021);
	WD	gap-filled	Knox et al. (2019)
	WS	Half-hourly FLUXNET-CH ₄ : gap-	
	77.5	filled	
	VPD	Half-hourly FLUXNET-CH4: gap-	

	_	filled			
	PA	Half-hourly FLUXNET-CH ₄ : gap- filled			
	WTL	Mean of half-hourly gap-filled FLUXNET-CH4 WTL and chamber-associated WTL	Delwiche et al. (2021); Knox et al. (2019); Pugh et al.		
	TS	Mean of half-hourly FLUXNET- CH ₄ TS and chamber-associated TS	(2018)		
	NEE	Half-hourly FLUXNET-CH4: ANN-gap-filled			
	u*	Half-hourly FLUXNET-CH4: ANN- gap-filled			
	WD	Half-hourly FLUXNET-CH ₄ : ANN-gap-filled	Delwiche et al. (2021);		
	WS	Half-hourly FLUXNET-CH ₄ : gap- filled	Knox et al. (2019)		
US-Owc	VPD	Half-hourly FLUXNET-CH ₄ : gap- filled			
	PA	Half-hourly FLUXNET-CH4: gap- filled			
	WTL	Mean of half-hourly gap-filled FLUXNET-CH4 WTL and chamber-associated WTL	Delwiche et al. (2021); Knox et al. (2019); Bohrer et al. (2019)		
	TS	Half-hourly FLUXNET-CH4 TS	Delwiche et al. (2021); Knox et al. (2019)		
	NEE	Half-hourly: MDS-gap-filled			
US-StJ	u*	Half-hourly: not gap-filled	Hill and Vargas (2022); Vargas (2018)		
	WD	Half-hourly: not gap-filled	- ` '		

	WS	Half-hourly: not gap-filled	
	VPD	Half-hourly: not gap-filled	
	PA	Half-hourly: not gap-filled	
	WTL	Half-hourly: gap-filled with a linear relationship with NOAA water table level	
	TS	Half-hourly: gap-filled with a linear relationship with water temperature	
	NEE	Half-hourly FLUXNET-CH4: ANN-gap-filled	
	u*	Half-hourly FLUXNET-CH4: ANN-gap-filled	
	WD	Half-hourly FLUXNET-CH4: ANN-gap-filled	Delwiche et al. (2021);
	WS	Half-hourly FLUXNET-CH4: gap- filled	Knox et al. (2019)
US-Uaf	VPD	Half-hourly FLUXNET-CH4: gap- filled	
	PA	Half-hourly FLUXNET-CH4: gap- filled	
	WTL	Mean of half-hourly gap-filled FLUXNET-CH ₄ WTL and chamber- associated WTL	Delwiche et al. (2021); Knox et al. (2019); Ueyama et al.
	TS	Mean of half-hourly FLUXNET- CH ₄ TS and chamber-associated TS	(2023)

Table C3. Descriptive statistics and Wilcoxon-Mann-Whitney test results based on temporal aggregations from chamber and EC FCH₄ means instead of medians. Proportions of annual chamber and EC CH₄ emission (i.e., FCH₄≤0 excluded) above the 90th percentile (p90) are reported to highlight the contribution of high CH₄ emission values to FCH₄. Abbreviations: IQR = interquartile range, SD = standard deviation, CV = coefficient of variation (%), EC = eddy covariance.

Data set	ΔFCH ₄ median (IQR), nmol m ⁻² s ⁻¹	ΔFCH ₄ mean (SD), nmol m ⁻² s ⁻¹	ΔFCH ₄ CV (%)	Wilcoxon- Mann- Whitney test	Chamber FCH ₄ p90 (% of total FCH ₄)	EC FCH ₄ p90 (% of total FCH ₄)
Half-hourly	1.23 (5.74)	4.84 (18.56)	206	p<0.001 (n _{EC} =74482, n _{CH} =74482)	36.42 (46)	64.31 (44)
Hourly	1.19 (5.42)	4.76 (16.28)	198	p<0.001 (n _{EC} =40072, n _{CH} =40072)	36.62 (46)	75.81 (24)
Daily	1.11 (4.77)	-1.16 (170.67)	1106	p<0.001 (n _{EC} =1879, n _{CH} =1879)	43.47 (78)	66.67 (60)
Weekly	1.03 (6.73)	-19.55 (284.31)	770	p=0.015 (n _{EC} =349, n _{CH} =349)	98.12 (82)	77.82 (64)
Monthly	1.05 (13.15)	-58.55 (472.15)	566	p=0.511 (n _{EC} =121, n _{CH} =121)	315.38 (78)	218.47 (63)
Annual	0.28 (16.93)	-70.94 (311.86)	333	p=0.972 (n _{EC} =22, n _{CH} =22)	307.19 (72)	251.67 (60)

Table C4. Descriptive statistics and Wilcoxon-Mann-Whitney test results for ΔFCH₄ based on cumulative EC and chamber FCH₄ (mg CH₄ mr⁻²) at daily to annual aggregations (note: cumulative FCH₄ were calculated only for exact EC-chamber FCH₄ timestamps and do not represent cumulative sums for ecosystem CH₄ budget calculations). Due to a lack of hourly timestamps in the chamber FCH₄ data at FI-Si2, US-La1 and US-La2, these three sites were excluded from this table, resulting in n=7 sites. Results are given separately for data sets based on median (left) and mean (right) aggregations of chamber and EC FCH₄ at each temporal scale. The EC and chamber data sample sizes in Wilcoxon-Mann-Whitney tests are reported as n_{EC} and n_{CH}, respectively. Abbreviations: IQR = interquartile range, SD = standard deviation, CV = coefficient of variation (%).

	N	Iedian-based	aggregatio	n	Mean-based aggregation			
Data set	ΔFCH ₄ median (IQR), mg CH ₄ m ⁻²	ΔFCH ₄ mean (SD), mg CH ₄ m ⁻ 2	ΔFCH ₄ CV (%)	Wilcoxon- Mann- Whitney test	ΔFCH ₄ median (IQR), mg CH ₄ m ⁻²	ΔFCH ₄ mean (SD), mg CH ₄ m ⁻²	ΔFCH ₄ CV (%)	Wilcoxon-Mann- Whitney test
Daily	1.29 (5.5)	5.88 (29.22)	303	p<0.001 (n _{EC} =1838, n _{CH} =1838)	1.15 (5.47)	4.99 (29.1)	305	p<0.001 (n _{EC} =1838, n _{CH} =1838)
Weekly	6.39 (32.68)	34.65 (117.8)	212	p=0.006 (n _{EC} =312, n _{CH} =312)	5.53 (32.52)	29.37 (116.05)	211	p=0.028 (n _{EC} =312, n _{CH} =312)
Monthly	13.4 (93.83)	117.5 (385.22)	213	p=0.314 (n _{EC} =92, n _{CH} =92)	8.85 (88.37)	99.62 (385.22)	209	p=0.485 (n _{EC} =92, n _{CH} =92)
Annual	37.1 (742.78)	675.63 (2024.37)	193	p=0.897 (nec=16, nch=16)	35.23 (781.38)	572.81 (1945.22)	188	p=0.897 (nec=16, nch=16)

Table C5. Linear mixed effects model results for assessing the slopes between EC FCH₄ and chamber FCH₄. To meet residual normality assumptions of linear mixed models, EC FCH₄ was transformed with inverse hyperbolic sine (IHS) and the fixed effect estimates, *p*-values and standard errors (SE) are in transformed scale. Average marginal effects (AME) and their 95% confidence intervals (CI) are reported in the back-transformed units (nmol m⁻² s⁻¹) and represent the average change in EC FCH₄ with a 1 nmol m⁻² s⁻¹ increase in chamber FCH₄ across all chamber FCH₄ observations. AME CIs were obtained with parametric simulation from the fixed effect estimate and covariance. Half-hourly and hourly models are not included due to non-convergence and residual non-normality.

Model	Fixed effect	Estimate β (IHS scale)	<i>p</i> -value	SE	AME (95% CI)
Daily	Intercept	3.647	<0.001	0.657	0.007 (0.0006-
	Chamber FCH ₄	0.0004	0.031	0.0002	0.032)
Weekly	Intercept	3.612	<0.001	0.645	0.011 (-0.0007-
	Chamber FCH ₄	0.0006	0.066	0.0003	0.049)
Monthly	Intercept	3.591	<0.001	0.646	0.009 (-0.005-
	Chamber FCH ₄	0.0005	0.183	0.0004	0.049)
Annual	Intercept	3.653	< 0.001	0.636	0.02 (0.002-0.088)
	Chamber FCH ₄	0.001	0.044	0.0004	

970

Table C6. Wilcoxon-Mann-Whitney test results for half-hourly aggregation. The EC and chamber data sample sizes in Wilcoxon Mann-Whitney tests are reported as n_{EC} and n_{CH} , respectively. Proportions of annual chamber and EC CH₄ emission (i.e., FCH₄ \leq 0 excluded) above the 90th percentile (p90) are reported as the mean of year-specific 90th percentiles (not in parentheses) and percentages (in parentheses). This data set contains chamber measurements only from automated chambers (n=4 sites). Abbreviations: IQR = interquartile range, CV = coefficient of variation (%).

Site	Mean EC FCH ₄ (SD), nmol m ⁻² s ⁻¹	Mean chamber FCH ₄ (SD), nmol m ⁻² s ⁻¹	Median EC FCH ₄ (IQR, CV), nmol m ⁻² s ⁻¹	Median chamber FCH ₄ (IQR, CV), nmol m ⁻² s ⁻¹	Median ΔFCH ₄ (IQR, CV), nmol m ⁻² s ⁻¹	Chamber FCH4 p90 (% of total FCH4)	EC FCH4 p90 (% of total FCH4)	Wilcoxon-Mann- Whitney test
CN-Hgu	4.73 (25.36)	-0.12 (0.35)	3.0 (6.0, 241)	-0.1 (0.24, 165)	3.12 (6.04, 239)	0.63 (55)	20 (58)	p<0.001 (n _{EC} = 9571, n _{CH} = 9571)
SE-Deg	53.18 (22.31)	25.19 (18.24)	54.1 (36.28, 42)	21.61 (24.24, 72)	26.94 (23.98, 62)	50.5 (25)	79.85 (17)	p<0.001 (n _{EC} = 13987, n _{CH} = 13987)
US-Ho1	-0.21 (1.84)	1.21 (10.47)	-0.4 (1.32, 158)	-0.89 (1.44, 334)	0.38 (2.36, 311)	18.06 (49)	3.24 (43)	p<0.001 (n _{EC} = 30716, n _{CH} = 30716)
US-Uaf	3.61 (4.35)	2.45 (3.58)	3.39 (4.17, 107)	0.78 (2.32, 146)	1.22 (3.76, 146)	5.73 (36)	6.99 (29)	p < 0.001 (n _{EC} = 20208, n _{CH} = 20208)

Table C7. Wilcoxon-Mann-Whitney test results for hourly aggregation. The EC and chamber data sample sizes in Wilcoxon Mann-Whitney tests are reported as n_{EC} and n_{CH}, respectively. Proportions of annual chamber and EC CH₄ emission (i.e., FCH₄≤0 excluded) above the 90th percentile (p90) are reported as the mean of year-specific 90th percentiles (not in parentheses) and percentages (in parentheses). This data set contains chamber measurements only from automated chambers (n=4 sites). Abbreviations: IQR = interquartile range, CV = coefficient of variation (%).

Site	Mean EC FCH ₄ (SD), nmol CH ₄ m ⁻	Mean chamber FCH ₄ (SD), nmol CH ₄ m ⁻² s ⁻¹	Median EC FCH4 (IQR, CV), nmol CH4 m ⁻² S ⁻¹	Median chamber FCH4 (IQR, CV), nmol CH4 m ⁻ ² s ⁻¹	Median ΔFCH ₄ (IQR, CV), nmol CH ₄ m ⁻² s ⁻¹	Chamber FCH4 p90 (% of total FCH4)	EC FCH4 p90 (% of total FCH4)	Wilcoxon-Mann- Whitney test
CN-Hgu	4.56 (22.87)	-0.11 (0.26)	3.0 (6.11, 229)	-0.09 (0.2, 145)	3.08 (5.99, 227)	0.6 (54)	19.75 (56)	p<0.001 (n _{EC} = 5305, n _{CH} = 5305)
SE-Deg	53.17 (22.05)	25.11 (17.42)	54.41 (36.28, 41)	21.6 (25.34, 69)	26.9 (23.04, 51)	49.59 (23)	79.67 (17)	p<0.001 (n _{EC} = 7243, n _{CH} = 7243)
US-Ho1	-0.21 (1.53)	-0.37 (3.05)	-0.36 (1.23, 149)	-0.95 (1.27, 192)	0.47 (1.95, 188)	7.43 (53)	2.82 (41)	p<0.001 (n _{EC} = 17215, n _{CH} = 17215)
US-Uaf	3.61 (3.71)	2.37 (3.53)	3.32 (4.04, 96)	0.73 (2.17, 149)	1.28 (3.55, 137)	5.47 (35)	7.02 (27)	p<0.001 (n _{EC} = 10309, n _{CH} = 10309)

Table C8. Wilcoxon-Mann-Whitney test results for daily aggregation. The EC and chamber data sample sizes in Wilcoxon1000 Mann-Whitney tests are reported as n_{EC} and n_{CH}, respectively. Proportions of annual chamber and EC CH₄ emission (i.e., FCH₄≤0 excluded) above the 90th percentile (p90) are reported as the mean of year-specific 90th percentiles (not in parentheses) and percentages (in parentheses). This dataset contains all sites (n=10). Note: due to small sample sizes (n=5) in US-La1 and US-Los, the Wilcoxon-Mann-Whitney test results should be interpreted with caution. Abbreviations: IQR = interquartile range, CV = coefficient of variation (%).

Site	Mean EC FCH ₄ (SD), nmol CH ₄ m ⁻² s ⁻¹	Mean chamber FCH ₄ (SD), nmol CH ₄ m ⁻² s ⁻¹	Median EC FCH ₄ (IQR, CV), nmol CH ₄ m ⁻ ² s ⁻¹	Median chamber FCH ₄ (IQR, CV), nmol CH ₄ m ⁻ ² s ⁻¹	Median ΔFCH ₄ (IQR, CV), nmol CH ₄ m ⁻² s ⁻¹	Chamber FCH4 p90 (% of total FCH4)	EC FCH ₄ p90 (% of total FCH ₄)	Wilcoxon-Mann- Whitney test
CN-Hgu	3.22 (1.79)	-0.12 (0.11)	3.0 (2.14, 55)	-0.07 (0.12, 93)	3.2 (2.21, 54)	0.04 (17)	5.69 (20)	p < 0.001 (n _{EC} = 265, n _{CH} = 265)
FI-Si2	57.13 (18.74)	62.14 (37.85)	54.37 (21.48, 33)	49.46 (57.04, 61)	0.81 (30.53, 132)	98.37 (25)	77.5 (19)	p=0.737 (n _{EC} = 26, n _{CH} = 26)
SE-Deg	52.44 (20.75)	24.24 (15.76)	55.88 (39.7, 40)	21.39 (24.96, 65)	0.81 (30.53, 132)	48.56 (21)	78.16 (15)	p < 0.001 (n _{EC} = 317, n _{CH} = 317)
US-Ho1	-0.43 (0.54)	-0.68 (1.67)	-0.45 (0.73, 96)	-1.01 (0.9, 130)	0.39 (1.22, 165)	2.04 (52)	0.4 (39)	p < 0.001 (n _{EC} = 759, n _{CH} = 759)
US-La1	41.49 (29.79)	97.72 (65.37)	42.12 (53.85, 72)	116.91 (62.59, 67)	-45.43 (71.64, 115)	157.64 (37)	71.03 (34)	p=0.222 (n _{EC} = 5, n _{CH} = 5)
US-La2	163.74 (63.81)	191.35 (93.46)	150.22 (103.39, 39)	189.16 (117.65, 49)	5.75 (103.92, 141)	276.98 (32)	226.3 (30)	p=0.436 (n _{EC} = 10, n _{CH} = 10)
US-Los	35.37 (12.78)	9.61 (5.62)	38.75 (13.82, 36)	8.43 (4.09, 58)	27.75 (4.74, 37)	15.42 (38)	46.72 (28)	p=0.016 (n _{EC} = 5, n _{CH} = 5)

US-Owc	607.26 (289.11)	770.24 (766.66)	652.8 (490.18, 48)	579.95 (721.2, 100)	-108.22 (485.14, 169)	1306.07 (46)	936.62 (28)	p=0.988 ($n_{EC} = 18$, $n_{CH} = 18$)
US-StJ	39.2 (58.96)	13.98 (27.01)	16.4 (29.69, 150)	5.26 (8.31, 193)	9.15 (20.85, 202)	22.15 (63)	73.94 (54)	p=0.007 ($n_{EC} = 16$, $n_{CH} = 16$)
US-Uaf	3.5 (2.09)	2.15 (3.12)	3.49 (3.96, 60)	0.66 (2.0, 145)	1.27 (2.29, 111)	4.97 (25)	6.09 (20)	p<0.001 (n _{EC} = 458, n _{CH} = 458)

Table C9. Wilcoxon-Mann-Whitney test results for weekly aggregation. The EC and chamber data sample sizes in Wilcoxon-Mann-Whitney tests are reported as n_{EC} and n_{CH}, respectively. Proportions of annual chamber and EC CH₄ emission (i.e., FCH₄≤0 excluded) above the 90th percentile (p90) are reported as the mean of year-specific 90th percentiles (not in parentheses) and percentages (in parentheses). This dataset contains all sites (n=10). Note: due to small sample sizes (n=5) in US-La1 and US-Los, the Wilcoxon-Mann-Whitney test results should be interpreted with caution. Abbreviations: IQR = interquartile range, CV = coefficient of variation (%).

Site	Mean EC FCH4 (SD), nmol CH4 m ⁻	Mean chamber FCH ₄ (SD), nmol CH ₄ m ⁻² s ⁻¹	Median EC FCH4 (IQR, CV), nmol CH4 m ⁻ ² s ⁻¹	Median chamber FCH4 (IQR, CV), nmol CH4 m ⁻² s ⁻¹	Median ΔFCH4 (IQR, CV), nmol CH4 m ⁻² s ⁻¹	Chamber FCH4 p90 (% of total FCH4)	EC FCH4 p90 (% of total FCH4)	Wilcoxon-Mann- Whitney test
CN-Hgu	3.02 (1.18)	-0.12 (0.11)	3.0 (1.98, 39)	-0.07 (0.13, 90)	3.08 (1.98, 39)	0.02 (59)	4.26 (20)	p<0.001 (n _{EC} = 40, n _{CH} = 40)
FI-Si2	55.43 (17.61)	59.55 (35.23)	53.36 (18.93, 32)	49.46 (48.82, 59)	1.45 (24.92, 139)	88.39 (27)	73.87 (22)	p=0.789 (n _{EC} = 22, n _{CH} = 22)
SE-Deg	50.17 (21.18)	22.73 (15.64)	50.94 (38.12, 42)	18.74 (22.04, 69)	24.83 (19.9, 43)	46.5 (27)	76.31 (19)	p<0.001 (n _{EC} = 50,

								n _{CH} = 50)
US-Ho1	-0.42 (0.48)	-0.69 (1.34)	-0.42 (0.72, 90)	-0.99 (0.91, 112)	0.32 (1.28, 146)	6.02 (43)	0.41 (27)	p<0.001 ($n_{EC} = 119$, $n_{CH} = 119$)
US-La1	41.49 (29.79)	97.72 (65.37)	42.12 (53.85, 72)	116.91 (62.59, 67)	-45.43 (71.64, 115)	157.64 (37)	71.03 (34)	p=0.222 (nec = 5, nch = 5)
US-La2	163.74 (63.81)	191.35 (93.46)	150.22 (103.39, 39)	189.16 (117.65, 49)	5.75 (103.92, 141)	276.98 (32)	226.3 (30)	p=0.436 (n _{EC} = 10, n _{CH} = 10)
US-Los	35.37 (12.78)	9.61 (5.62)	38.75 (13.82, 36)	8.43 (4.09, 58)	27.75 (4.74, 37)	15.42 (38)	46.72 (28)	p=0.016 (n _{EC} = 5, n _{CH} = 5)
US-Owc	561.44 (287.63)	753.88 (619.97)	642.45 (446.31, 51)	552.85 (657.0, 82)	47.22 (728.26, 145)	1185.44 (56)	828.1 (45)	p=0.796 (n _{EC} = 9, n _{CH} = 9)
US-StJ	39.2 (58.96)	13.98 (27.01)	16.4 (29.69, 150)	5.26 (8.31, 193)	9.15 (20.85, 202)	22.12 (63)	73.94 (54)	p=0.007 (n _{EC} = 16, n _{CH} = 16)
US-Uaf	3.4 (1.97)	2.01 (3.04)	3.46 (3.82, 58)	0.64 (1.87, 151)	1.18 (2.13, 107)	4.76 (29)	5.85 (23)	p<0.001 (n _{EC} = 73, n _{CH} = 73)

Table C10. Wilcoxon-Mann-Whitney test results for monthly aggregation. The EC and chamber data sample sizes in Wilcoxon-Mann-Whitney tests are reported as n_{EC} and n_{CH}, respectively. Proportions of annual chamber and EC CH₄ emission (i.e., FCH₄≤0 excluded) above the 90th percentile (p90) are reported as the mean of year-specific 90th percentiles (not in parentheses) and percentages (in parentheses). This dataset contains all sites (n=10). Note: due to small sample sizes (n=5) in US-La1 and US-Los, the Wilcoxon-Mann-Whitney test results should be interpreted with caution. Abbreviations: IQR = interquartile range, CV = coefficient of variation (%). * CN-Hgu had only negative chamber FCH₄ values and chamber p90 was not calculated for this site.

Site	Mean EC FCH ₄ (SD), nmol CH ₄ m ⁻ ² s ⁻¹	Mean chamber FCH ₄ (SD), nmol CH ₄ m ⁻² s ⁻¹	Median EC FCH ₄ (IQR, CV), nmol CH ₄ m ⁻ ² s ⁻¹	Median chamber FCH4 (IQR, CV), nmol CH4 m ⁻² s ⁻¹	Median ΔFCH ₄ (IQR, CV), nmol CH ₄ m ⁻² s ⁻¹	Chamber FCH4 p90 (% of total FCH4)	EC FCH4 p90 (% of total FCH4)	Wilcoxon-Mann- Whitney test
CN-Hgu	3.1 (1.06)	-0.12 (0.1)	3.0 (1.08, 34)	-0.07 (0.14, 84)	3.05 (1.2, 34)	_*	4.14 (30)	p<0.001 (n _{EC} = 10, n _{CH} = 10)
FI-Si2	52.49 (16.25)	51.0 (26.4)	53.36 (23.22, 31)	47.79 (44.33, 52)	2.68 (26.17, 120)	73.18 (32)	68.51 (29)	p=0.635 (n _{EC} = 14, n _{CH} = 14)
SE-Deg	46.58 (22.45)	20.66 (15.23)	46.85 (44.64, 48)	15.7 (22.22, 74)	25.1 (11.52, 46)	40.22 (33)	73.06 (25)	p=0.002 ($n_{EC} = 13$, $n_{CH} = 13$)
US-Ho1	-0.44 (0.45)	-0.8 (0.97)	-0.46 (0.6, 86)	-1.05 (0.8, 88)	0.35 (1.12, 124)	2.86 (67)	0.28 (41)	p<0.001 (n _{EC} = 32, n _{CH} = 32)
US-La1	41.49 (29.79)	97.72 (65.37)	42.12 (53.85, 72)	116.91 (62.59, 67)	-45.43 (71.64, 115)	157.64 (37)	71.03 (34)	p=0.222 (n _{EC} = 5, n _{CH} = 5)
US-La2	163.74 (63.81)	191.35 (93.46)	150.22 (103.39, 39)	189.16 (117.65, 49)	5.75 (103.92, 141)	276.98 (32)	226.3 (30)	p=0.436 (n _{EC} = 10, n _{CH} = 10)
US-Los	32.8 (14.3)	7.78 (2.88)	38.75 (13.34, 44)	6.91 (2.78, 37)	27.75 (14.07, 57)	10.18 (47)	42.28 (44)	p=0.1 (n _{EC} = 3,

								$n_{CH}=3$)
US-Owc	575.34 (301.58)	705.33 (549.45)	642.45 (446.31, 52)	667.58 (756.29, 78)	131.03 (524.49, 144)	1056.3 (58)	828.57 (47)	p=0.798 ($n_{EC} = 8$, $n_{CH} = 8$)
US-StJ	24.14	9.92	21.19	6.0	18.45	20.73	44.15	p=0.105
	(19.65)	(11.72)	(22.71, 81)	(7.45, 118)	(22.01, 82)	(47)	(33)	($n_{EC} = 8$, $n_{CH} = 8$)
US-Uaf	3.39	2.17	3.42	0.65	1.24	4.5	5.52	p=0.006
	(1.87)	(3.15)	(3.87, 55)	(1.97, 145)	(1.84, 114)	(34)	(28)	($n_{EC} = 18$, $n_{CH} = 18$)

1030

1035

Table C11. Wilcoxon-Mann-Whitney test results for annual aggregation. The EC and chamber data sample sizes in Wilcoxon-Mann-Whitney tests are reported as n_{EC} and n_{CH}, respectively. Annual chamber and EC FCH₄ 90th percentiles were not calculated for this aggregation. This dataset contains all sites (n=10). Note: due to small sample sizes (n=5) in US-La1 and US-Los, the Wilcoxon-Mann-Whitney test results should be interpreted with caution. Abbreviations: IQR = interquartile range, CV = coefficient of variation (%).

Site	Mean EC FCH4 (SD), nmol CH4 m ⁻² s ⁻¹	Mean chamber FCH ₄ (SD), nmol CH ₄ m ⁻² s ⁻¹	Median EC FCH4 (IQR, CV), nmol CH4 m ⁻ ² s ⁻¹	Median chamber FCH4 (IQR, CV), nmol CH4 m ⁻ ² s ⁻¹	Median ΔFCH ₄ (IQR, CV), nmol CH ₄ m ⁻² s ⁻¹	Wilcoxon-Mann- Whitney test
CN-Hgu	3.04	-0.15	3.04	-0.15	3.2	
CIV-IIgu	(0.06)	(0.14)	(0.04, 2)	(0.1, 94)	(0.14, 6)	-
FI-Si2	55.7 (2.45)	53.01 (23.84)	55.19 (2.41, 4)	66.22 (20.91, 45)	-7.85 (21.73, 138)	p=0.7 (n _{EC} = 3, n _{CH} = 3)
SE-Deg	54.08 (3.69)	20.78 (0.59)	54.08 (2.61, 7)	20.78 (0.42, 3)	33.3 (2.19, 9)	-
US-Ho1	-0.38 (0.27)	-0.82 (0.45)	-0.51 (0.34, 70)	-0.77 (0.57, 55)	0.25 (0.78, 111)	p=0.095 ($n_{EC} = 5$, $n_{CH} = 5$)
US-La1	37.77	76.56 (-)	37.77 (-,-)	76.56 (-,-)	-38.79 (-,-)	-
US-La2	163.81 (49.76)	161.89 (74.25)	163.81 (35.19, 30)	161.89 (52.5, 46)	1.93 (87.69, 141)	-
US-Los	38.18	8.12	38.18 (-,-)	8.12 (-,-)	30.05	-
US-Owc	476.61 (209.52)	539.49 (445.72)	476.61 (148.15, 44)	539.49 (315.17, 83)	-62.88 (167.02, 141)	-
US-StJ	14.06	4.97	14.06	4.97 (-,-)	9.09 (-,-)	-

$(0.11) \qquad (0.34) \qquad (0.11, 3) \qquad (0.32, 32) \qquad (0.41, 10) \qquad n_{CH} = 3)$	US-Uaf	3.38 (0.11)	0.65 (0.34)	3.42 (0.11, 3)	0.52 (0.32, 52)	2.95 (0.41, 16)	p=0.1 (n _{EC} = 3, n _{CH} = 3)
--	--------	----------------	----------------	-------------------	--------------------	--------------------	--

Table C12. Final linear mixed effects model results of significant predictors of Δ FCH₄ for the half-hourly model (site n=3) with soil temperature (TS) instead of Month as one of the predictors. Absolute Δ FCH₄ was Yeo-Johnson-transformed, centered and scaled, while all continuous predictors were only centered and scaled. The predictors are listed in decreasing order based on β-coefficients. The reference level in Hour was 0 and May in Month. Abbreviations: SE = standard error, Df = degrees of freedom of denominator, PA = air pressure (kPa), u* = friction velocity (m s⁻¹), WTL = water table level (cm), TS = soil temperature (°C), NEE = net ecosystem exchange (μmol CO₂ m⁻² s⁻¹), VPD = vapor pressure deficit (hPa), vWD = v wind component (m s⁻¹), uWD = u wind component (m s⁻¹).

Predictors	$oldsymbol{eta}$ -coefficient	SE	p-value (t- test)	Marginal R ²	Conditional R ²	Df	Random effect variation explained, %
Intercept	0.0581	0.5465	0.9153	0.0109	0.805	43522	
Fixed effects							
Hour							
- 5 AM	0.0838	0.0166	0			43522	
u*	0.0836	0.004	0			43522	
Hour	-0.0565	0.01	0			43522	
- 6 AM	0.0727	0.0163	0			43522	
PA	-0.0684	0.0105	0			43522	
Hour							
- 4 AM	0.0567	0.0163	0.0005			43522	
- 7 AM	0.0489	0.0165	0.003			43522	
- 10 AM	-0.0406	0.0169	0.0161			43522	
- 8 AM	0.0392	0.0166	0.0181			43522	
- 3 AM	0.0375	0.0166	0.0238			43522	
- 10 PM	-0.0311	0.0163	0.0559			43522	
- 5 PM	-0.0294	0.0166	0.0776			43522	
NEE	-0.0289	0.004	0			43522	
TS	-0.027	0.0068	0.0001			43522	
VPD	-0.0268	0.0054	0			43522	
Hour							

- 3 PM	-0.0248	0.0172	0.1498	43522
- 9 PM	-0.0246	0.0168	0.1412	43522
- 6 PM	-0.0221	0.0163	0.1741	43522
- 8 PM	-0.0201	0.0165	0.2224	43522
- 7 PM	-0.018	0.0165	0.2745	43522
vWD	-0.018	0.0036	0	43522
Hour				
- 2 AM	0.0175	0.0163	0.2827	43522
- 1 PM	-0.0148	0.0173	0.394	43522
- 12 PM	-0.0094	0.0172	0.5833	43522
- 1 AM	0.0072	0.0166	0.6597	43522
- 11 PM	-0.0054	0.0165	0.7413	43522
- 2 PM	-0.0042	0.0171	0.8068	43522
- 11 AM	-0.0028	0.0172	0.8698	43522
- 9 AM	-0.0024	0.0171	0.8847	43522
- 4 PM	-0.0013	0.0167	0.9376	43522
Random				
<u>effects</u>				
Site				72.29
Date				8

1055

Table C13. Half-hourly and hourly linear mixed effects model results after backward variable selection. In the models, absolute ΔFCH₄ was Yeo-Johnson-transformed, centered and scaled, while all continuous predictors were only centered and scaled. Note that in both models temporal variables were included in nested random effects (see Text S3). In both models, the reference level in dominant vegetation type was *Sphagnum* moss, 0 in Hour and May in Month. Note that we excluded TS from the half-hourly model due to high multicollinearity with Month (VIF>3; see models with TS instead of Month in S17). The predictors are listed in a decreasing order according to their β-coefficients. SE = standard error, Df = degrees of freedom of denominator, PA = air pressure (kPa), u* = friction velocity (m s⁻¹), WTL = water table level (cm), TS = soil temperature (°C), NEE = net ecosystem exchange (μmol CO₂ m⁻² s⁻¹), VPD = vapor pressure deficit (hPa), vWD = v wind component (m s⁻¹), uWD = u wind component (m s⁻¹).

		β-						Random effect
		coefficie		<i>p</i> -value (<i>t</i> -	Marginal	Conditional		variation
Data set	Predictors	nt	SE	test)	\mathbb{R}^2	\mathbb{R}^2	Df	explained, %
Half-								
hourly	Intercept	-0.236	0.5259	0.6537	0.0329	0.7933	43522	

(n=3 sites)	Fixed effects			
	Month			
		0.4626 0.029	91 0	1408
	- Aug	0.4020 0.025		1408
	- Jul			1408
	- Sep	0.3972 0.029		
	- Jun	0.2157 0.029		1408
	- Apr	0.1615 0.010		1408
	- Oct	0.1105 0.03	16 0.0005	1408
		0.00=1		
	u*	0.0876 0.003	39 0	43522
	Hour			
	- 5 AM	0.0873 0.010		43522
	- 6 AM	0.0742 0.010	63 0	43522
	WTL	0.0617 0.012	21 0	43522
	Hour			
	- 4 AM	0.0593 0.01	63 0.0003	43522
	PA	-0.056 0.009	97 0	43522
	Hour			
	- 7 AM	0.0486 0.0165	0.0032	43522
	- 10 AM	-0.0449 0.0168	0.0075	43522
	- 3 AM	0.0409 0.01	66 0.0137	43522
	VPD	-0.0394 0.004	1 9 0	43522
	Hour			
	- 8 AM	0.0376 0.01	66 0.0235	43522
	Month			
	- Nov	0.0372 0.0535	0.4865	1408

	Hour							
	- 10 PM	-0.0323	0.0163	0.0476			43522	
	- 5 PM	-0.0323	0.0166	0.0515			43522	
	- 3 PM	-0.0297	0.0171	0.0825			43522	
	NEE	-0.0295	0.0039	0			43522	
	Hour							
	- 9 PM	-0.0259	0.0168	0.1221			43522	
	- 6 PM	-0.0245	0.0163	0.1319			43522	
	- 8 PM	-0.0207	0.0164	0.2072			43522	
	- 1 PM	-0.0206	0.0172	0.2309			43522	
	- 7 PM	-0.0198	0.0165	0.2293			43522	
	- 2 AM	0.0194	0.0163	0.2336			43522	
	vWD	-0.0179	0.0035	0			43522	
	Hour							
	- 12 PM	-0.0155	0.0171	0.363			43522	
	- 2 PM	-0.0095	0.017	0.5736			43522	
	- 1 AM	0.0089	0.0166	0.5925			43522	
	- 11 AM	-0.008	0.0171	0.6385			43522	
	- 11 PM	-0.0052	0.0165	0.7522			43522	
	- 4 PM	-0.0049	0.0166	0.7696			43522	
	- 9 AM	-0.0045	0.0171	0.7928			43522	
	Random							
	effects							
	Site							72.39
Hourly	Date							6.23
(n=3 sites)	Intercent	-0.2978	0.5368	0.5791	0.0439	0.816	25231	
,	Fixed	0.25 , 6	0.000	0.0 /) 1	0.0.25	0.010	20201	
	effects							
	Month							
	- Aug	0.6418	0.0359	0			1405	

- - Jul	0.5815	0.0365	0	1405
- Sep	0.5118	0.035	0	1405
- Apr	-0.3979	0.4686	0.3959	1405
- Jun	0.27	0.0354	0	1405
- Oct	0.1829	0.0373	0	1405
Hour				
- 5 AM	0.1371	0.0208	0	25231
WTL	0.0936	0.0142	0	25231
Hour				
- 7 AM	0.0926	0.0207	0	25231
- 3 AM	0.0841	0.0206	0	25231
TS	-0.0838	0.0092	0	25231
Hour				
- 6 AM	0.0831	0.0204	0	25231
u*	0.0687	0.0051	0	25231
Hour				
- 9 AM	0.0657	0.0216	0.0024	25231
- 8 AM	0.0656	0.0207	0.0016	25231
- 1 AM	0.0594	0.0206	0.0039	25231
- 11 PM	0.0578	0.0204	0.0046	25231
- 1 PM	0.0488	0.0222	0.028	25231
- 7 PM	0.0479	0.0206	0.0197	25231
- 11 AM	0.0476	0.022	0.0302	25231
PA	-0.0458	0.0117	0.0001	25231
Hour				
- 4 AM	0.0417	0.0201	0.0383	25231
- 3 PM	0.0417	0.0218	0.056	25231
- 2 AM	0.0377	0.0201	0.0612	25231
- 12 PM	0.0336	0.0219	0.1259	25231
- 2 PM	0.0272	0.0218	0.2113	25231
- 5 PM	0.0267	0.021	0.2039	25231
NEE	-0.0243	0.0052	0	25231
Hour				
- 10 AM	-0.0183	0.0215	0.3942	25231
VPD	-0.0181	0.0066	0.0063	25231

Month			
- Nov	0.0176 0.0628	0.7792	1405
Hour			
- 6 PM	-0.0167 0.0204	0.4144	25231
- 9 PM	0.0149 0.0207	0.4738	25231
- 4 PM	0.0148 0.0212	0.4851	25231
- 8 PM	-0.0129 0.0202	0.523	25231
- 10 PM	-0.0121 0.0202	0.5514	25231
vWD	-0.0081 0.0045	0.0705	25231
Random			
<u>effects</u>			
Site			72.46
Date			8.29

1065

1070

Table C14. Full linear mixed effects model results. In the models, absolute Δ FCH₄ was Yeo-Johnson-transformed, centered and scaled, while all continuous predictors were only centered and scaled. This table presents the full models with both nonsignificant and significant predictors before backward variable selection. The final daily and monthly models were the full models which are shown in Table 3 of the main text. Note that in all models temporal variables were included in nested random effects (see methods and Text S3). In all models, the reference level in site dominant vegetation (VEG) was *Sphagnum* moss, 0 in Hour and May in Month. Annual models were not included due to an inadequate number of observations. Due to lack of complete case observations, US-Owc was not included in the weekly and monthly models (n=7 sites). We excluded TS from the half-hourly model due to high multicollinearity with Month (VIF>3). Due to multicollinearity in the weekly model, we built one model without NEE and one without VPD. Fixed effects are listed in decreasing order based on their β-coefficients. SE = standard error, Df = degrees of freedom of denominator, PA = air pressure (kPa), u* = friction velocity (m s⁻¹), WTL = water table level (cm), TS = soil temperature (°C), NEE = net ecosystem exchange (μmol CO₂ m⁻² s⁻¹), VPD = vapor pressure deficit (hPa), vWD = v wind component (m s⁻¹), uWD = u wind component (m s⁻¹).

Data set	Predictors	$oldsymbol{eta}$ -coefficient	SE	p-value (t- test)	Marginal R ²	Conditional R ²	Df	Random effect variation explained, %
Half- hourly	Intercept	0.0962	0.7069	0.8917	0.2041	0.8518	43521	
(n=3 sites)	Fixed effects							
	VEG							

- Tree	-0.9969	1.2237	0.5648	1
Month				
- Aug	0.4629	0.029	0	1408
- Jul	0.4172	0.029	0	1408
- Sep	0.3974	0.0294	0	1408
- Jun	0.2161	0.0294	0	1408
- Apr	0.1613	0.3852	0.6753	1408
- Oct	0.1109	0.0316	0.0005	1408
u*	0.088	0.004	0	43521
Hour				
- 5 AM	0.0873	0.0166	0	43521
- 6 AM	0.0741	0.0163	0	43521
WTL	0.0615	0.0121	0	43521
Hour				
- 4 AM	0.0592	0.0163	0.0003	43521
PA	-0.056	0.0097	0	43521
Hour				
- 7 AM	0.0484	0.0165	0.0033	43521
- 10 AM	-0.0451	0.0168	0.0073	43521
- 3 AM	0.0409	0.0166	0.0138	43521
VPD	-0.0393	0.0049	0	43521
Month				
- Nov	0.0376	0.0535	0.4822	1408
Hour				
- 8 AM	0.0373	0.0166	0.0244	43521
- 5 PM	-0.0325	0.0166	0.0502	43521
- 10 PM	-0.0323	0.0163	0.0476	43521

	- 3 PM	-0.0299	0.0171	0.0808			43521	
	NEE	-0.0294	0.0039	0			43521	
	Hour							
	- 9 PM	-0.0259	0.0168	0.1219			43521	
	- 6 PM	-0.0247	0.0163	0.1296			43521	
	- 8 PM	-0.0208	0.0164	0.2056			43521	
	- 1 PM	-0.0207	0.0172	0.2282			43521	
	- 7 PM	-0.0199	0.0165	0.2267			43521	
	- 2 AM	0.0194	0.0163	0.234			43521	
	vWD	-0.0182	0.0036	0			43521	
	Hour							
	- 12 PM	-0.0156	0.0171	0.3593			43521	
	- 2 PM	-0.0097	0.017	0.5678			43521	
	- 1 AM	0.0089	0.0166	0.5925			43521	
	- 11 AM	-0.0082	0.0171	0.6317			43521	
	- 11 PM	-0.0052	0.0165	0.7538			43521	
	- 4 PM	-0.0051	0.0166	0.7589			43521	
	- 9 AM	-0.0047	0.0171	0.7818			43521	
	uWD	-0.0015	0.0035	0.6716			43521	
	Random effects							
	Site							75.96
	Date							5.43
Hourly (n=3	Intercept	0.0199	0.7487	0.9788	0.2116	0.8752	25230	
sites)	Fixed effects							
	VEG							
	- Tree	-0.9517	1.2957	0.5967			1	
	Month							

- Aug	0.6413	0.036	0	1405
- Jul	0.5811	0.0366	0	1405
- Sep	0.5114	0.035	0	1405
- Apr	-0.3974	0.4686	0.3966	1405
- Jun	0.2697	0.0355	0	1405
- Oct	0.1826	0.0373	0	1405
Hour				
- 5 AM	0.1371	0.0208	0	25230
WTL	0.0933	0.0142	0	25230
Hour				
- 7 AM	0.0927	0.0207	0	25230
- 3 AM	0.0841	0.0206	0	25230
TS	-0.0837	0.0093	0	25230
Hour				
- 6 AM	0.0831	0.0204	0	25230
u*	0.0685	0.0052	0	25230
Hour				
- 9 AM	0.0658	0.0217	0.0024	25230
- 8 AM	0.0656	0.0207	0.0015	25230
- 1 AM	0.0594	0.0206	0.0039	25230
- 11 PM	0.0578	0.0204	0.0046	25230
- 1 PM	0.0488	0.0222	0.028	25230
- 7 PM	0.048	0.0206	0.0196	25230
- 11 AM	0.0476	0.022	0.0302	25230
PA	-0.0455	0.0117	0.0001	25230
Hour				
- 3 PM	0.0417	0.0218	0.0558	25230
- 4 AM	0.0417	0.0201	0.0384	25230

	- 2 AM	0.0377	0.0201	0.0611			25230	
	- 12 PM	0.0336	0.0219	0.126			25230	
	- 2 PM	0.0272	0.0218	0.2111			25230	
	- 5 PM	0.0268	0.021	0.2028		2	25230	
	NEE	-0.0244	0.0052	0			25230	
	Hour							
	- 10 AM	-0.0183	0.0215	0.3958			25230	
	VPD	-0.0182	0.0066	0.0061			25230	
	Month							
	- Nov	0.0177	0.0628	0.7786			1405	
	Hour							
	- 6 PM	-0.0166	0.0204	0.4159			25230	
	- 4 PM	0.0149	0.0212	0.4826			25230	
	- 9 PM	0.0149	0.0207	0.4738			25230	
	- 8 PM	-0.0129	0.0202	0.5236			25230	
	- 10 PM	-0.0121	0.0202	0.5505			25230	
	vWD	-0.0079	0.0045	0.0833			25230	
	uWD	0.0009	0.0044	0.8346			25230	
	Random effects							
	Site							77.36
	Date							6.82
Weekly								
(no NEE,	Intercept	0.3046	0.3665	0.407	0.5468	0.8357	180	
sites)	Fixed effects							
	VEG							
	- Tree	-1.4712	0.702	0.0903			5	
	- Aerenchymatous	0.9949	0.5112	0.1092			5	
	- Ericaceous shrub	0.5253	0.7163	0.4962			5	

	Month							
	- Apr	0.3907	0.416	0.3502			86	
	- Nov	0.3193	0.2602	0.2232			86	
	- Dec	0.316	0.6993	0.6524			86	
	- Jul	0.3104	0.142	0.0315			86	
	- Aug	0.3012	0.1442	0.0396			86	
	- Sep	0.2964	0.14	0.0371			86	
	- Jun	0.2082	0.1388	0.1373			86	
	- Oct	0.169	0.1457	0.2492			86	
	WTL	-0.0727	0.0551	0.1887			180	
	PA	-0.0604	0.0407	0.14			180	
	VPD	-0.0352	0.0318	0.2701			180	
	u*	0.0317	0.0272	0.244			180	
	Month							
	- Mar	-0.0234	0.5319	0.9649			86	
	vWD	-0.0167	0.0175	0.3418			180	
	TS	-0.0104	0.06	0.862			180	
	uWD	-0.0081	0.0198	0.6819			180	
	Random effects							
	Site							63.74
	Year-month							6.38e ⁻⁰⁷
Weekly (no VPD,								
n=9 sites)	Intercept	0.3008	0.3724	0.4202	0.5423	0.8365	180	
	Fixed effects							
	VEG							
	- Tree	-1.4642	0.713	0.0952			5	

- Aerenchymatous	0.9763	0.5228	0.1208	5	
- Ericaceous shrub	0.4435	0.7268	0.5684	5	
Month					
- Apr	0.3611	0.4145	0.386	86	
- Dec	0.3525	0.7059	0.6188	86	
- Nov	0.3375	0.263	0.2029	86	
- Aug	0.317	0.1484	0.0355	86	
- Jul	0.3144	0.1438	0.0315	86	
- Sep	0.3086	0.1408	0.0311	86	
- Jun	0.2001	0.141	0.1596	86	
- Oct	0.1847	0.1473	0.2134	86	
- Mar	-0.0786	0.5287	0.8822	86	
PA	-0.0737	0.039	0.0603	180	
WTL	-0.07	0.0546	0.2046	180	
u*	0.032	0.0276	0.2464	180	
TS	-0.019	0.0637	0.7663	180	
vWD	-0.0184	0.0175	0.2962	180	
uWD	-0.0137	0.0201	0.4953	180	
NEE	0.01	0.0266	0.7117	180	
Random effects					
Site					64.2
Year-month					5.04e

Data availability

The timestamp-aligned data sets containing ecosystem and plot-scale CH₄ flux and environmental data at half-hourly, hourly, daily, weekly, monthly, and annual scales can be accessed via Zenodo (Määttä et al., 2025; doi: 10.5281/zenodo.17312404).

1085

1095

1100

1105

Author contribution

TM, AM, SB, KD, AD, SF, EFC, RJ, SK, GM, LM, ZO, OS, MU, RV, EW, ZZ, AT, and MH conceptualized the study. Data was provided by AD, GB, JJ, AK, KK, LM, MN, SN, MP, KS, ET, MU, RV, JW, EW, and ZZ, and data curation was conducted by TM, AM, AD, GB, KD, EFC, JJ, SK, AK, KK, GM, MN, SN, MP, KS, ET, MU, RV, JW, EW, and ZZ. Formal analysis (data processing and statistical analyses) and visualization were done by TM. Investigation was conducted by TM and AM. AM supervised the study. Project administration was done by TM, AM and RJ. Funding acquisition for the study was done by AM and RJ. TM and AM prepared the original manuscript draft and TM, AM, AD, GB, SB, KD, SF, EFC, RJ, JJ, SK, LM, MN, ZO, MP, OS, ET, MU, RV, JW, EW, ZZ, AT, and MH contributed to the review and editing.

1090 Competing interests

The authors declare that they have no conflict of interest.

Acknowledgements

We acknowledge funding from the University of Zurich Stiftung für Wissenschaftliche Forschung (STWF-22-028) and the Swiss National Science Foundation (SNSF) (project 200021 215214) awarded to AM. This work was also supported by COMPASS-FME, a multi-institutional project supported by the U.S. Department of Energy, Office of Science, Biological and Environmental Research as part of the Environmental System Science Program. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. RBJ acknowledges support from the Gordon and Betty Moore Foundation through Grants GBMF5439 'Advancing Understanding of the Global Methane Cycle' and GBMF11519 'Advancing the understanding of methane emissions from tropical wetlands' to Stanford University and from the USGS Powell Synthesis Center (Scaling tropical wetland methane fluxes regionally and globally). SB was funded by the USGS Ecosystems Land Change Science Program and U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research (Grant DE-SC0023084). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. MU was supported by the Arctic Challenge for Sustainability II and III (JPMXD1420318865; JPMXD1720251001). ZO was supported by the US Department of the Treasury (grant no. DISL-MESC-ALCOE-06). ARD acknowledges support for the US Dept of Energy Ameriflux Management Project support to ChEAS core site cluster. OS acknowledges financial support through the Canada Research Chair program (CRC-2018-00259) and the NSERC Discovery Grants program (DGPIN-2018-05743). EJW acknowledges support from the US Greenhouse Gas Center and the NASA Terrestrial Ecology Program. We thank Yang Qi for assistance in preliminary PlanetScope data processing.

1110 References

Alduchov, O. A. and Eskridge, R.: Improved Magnus form approximation of saturation vapor pressure, Journal of Applied

- Meteorology, 35, 601–609, https://doi.org/10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2, 1996.
- Alekseychik, P., Korrensalo, A., Mammarella, I., Launiainen, S., Tuittila, E.-S., Korpela, I., and Vesala, T.: Carbon balance of a Finnish bog: temporal variability and limiting factors based on 6 years of eddy-covariance data, Biogeosciences, 18, 4681–4704, https://doi.org/10.5194/bg-18-4681-2021, 2021.
 - Anthony, T. L. and Silver, W. L.: Hot moments drive extreme nitrous oxide and methane emissions from agricultural peatlands, Glob. Chang. Biol., 27, 5141–5153, https://doi.org/10.1111/gcb.15802, 2021.
 - Anthony, T. L. and Silver, W. L.: Hot spots and hot moments of greenhouse gas emissions in agricultural peatlands, Biogeochemistry, 167, 461–477, https://doi.org/10.1007/s10533-023-01095-y, 2023.
- Aubinet, M.: Eddy covariance CO2 flux measurements in nocturnal conditions: an analysis of the problem, Ecol. Appl., 18, 1368–1378, https://doi.org/10.1890/06-1336.1, 2008.
 - Aubinet, M., Vesala, T., and Papale, D.: Eddy Covariance: A Practical Guide to Measurement and Data Analysis, Springer Science & Business Media, 438 pp., https://doi.org/10.1007/978-94-007-2351-1, 2012.
- Baldocchi, D.: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future: carbon balance and eddy covariance, Glob. Chang. Biol., 9, 479–492, https://doi.org/10.1046/j.1365-2486.2003.00629.x, 2003.
 - Baldocchi, D., Detto, M., Sonnentag, O., Verfaillie, J., Teh, Y. A., Silver, W., and Kelly, N. M.: The challenges of measuring methane fluxes and concentrations over a peatland pasture, Agric. For. Meteorol., 153, 177–187, https://doi.org/10.1016/j.agrformet.2011.04.013, 2012.
- Bansal, S., Post van der Burg, M., Fern, R. R., Jones, J. W., Lo, R., McKenna, O. P., Tangen, B. A., Zhang, Z., and Gleason, R. A.: Large increases in methane emissions expected from North America's largest wetland complex, Sci. Adv., 9, eade1112, https://doi.org/10.1126/sciadv.ade1112, 2023a.
- Bansal, S., Creed, I. F., Tangen, B. A., Bridgham, S. D., Desai, A. R., Krauss, K. W., Neubauer, S. C., Noe, G. B., Rosenberry, D. O., Trettin, C., Wickland, K. P., Allen, S. T., Arias-Ortiz, A., Armitage, A. R., Baldocchi, D., Banerjee, K., Bastviken, D., Berg, P., Bogard, M. J., Chow, A. T., Conner, W. H., Craft, C., Creamer, C., DelSontro, T., Duberstein, J. A., Eagle, M., Fennessy, M. S., Finkelstein, S. A., Göckede, M., Grunwald, S., Halabisky, M., Herbert, E., Jahangir, M. M. R., Johnson, O. F., Jones, M. C., Kelleway, J. J., Knox, S., Kroeger, K. D., Kuehn, K. A., Lobb, D., Loder, A. L., Ma, S., Maher, D. T., McNicol, G., Meier, J., Middleton, B. A., Mills, C., Mistry, P., Mitra, A., Mobilian, C., Nahlik, A. M., Newman, S., O'Connell, J. L., Oikawa, P., van der Burg, M. P., Schutte, C. A., Song, C., Stagg, C. L., Turner, J., Vargas, R., Waldrop, M. P., Wallin, M. B., Wang, Z. A., Ward, E. J., Willard, D. A., Yarwood, S., and Zhu, X.: Practical guide to measuring wetland carbon pools and fluxes, Wetlands (Wilmington), 43, 105, https://doi.org/10.1007/s13157-023-01722-2, 2023b.
- Barba, J., Cueva, A., Bahn, M., Barron-Gafford, G. A., Bond-Lamberty, B., Hanson, P. J., Jaimes, A., Kulmala, L., Pumpanen, J., Scott, R. L., Wohlfahrt, G., and Vargas, R.: Comparing ecosystem and soil respiration: Review and key challenges of tower-based and soil measurements, Agric. For. Meteorol., 249, 434–443, https://doi.org/10.1016/j.agrformet.2017.10.028, 2018.
 - Bartoń, K.: MuMIn: Multi-Model Inference, https://doi.org/10.32614/CRAN.package.MuMIn, 2024
 - Becker, R. A., Allan R. Wilks, A. R., Brownrigg Ray Minka Thomas, and Deckmyn, A.: maps: Draw Geographical Maps, 2023.

- van den Berg, M., van den Elzen, E., Ingwersen, J., Kosten, S., Lamers, L. P. M., and Streck, T.: Contribution of plant-induced pressurized flow to CH4 emission from a Phragmites fen, Sci. Rep., 10, 12304, https://doi.org/10.1038/s41598-020-69034-7, 2020.
 - Bohrer, G., Ju, Y., Arend, K., Morin, T., Rey-Sanchez, C., Wrighton, K., and Villa, J.: Methane and CO2 chamber fluxes and porewater concentrations US-OWC Ameriflux wetland site, 2015-2018, https://doi.org/10.15485/1568865, 2019.
- Bohrer, G., Kerns, J., Morin, T., Rey-Sanchez, A., Villa, J., and Ju, Y.: FLUXNET-CH4 US-OWC Old Woman Creek, https://doi.org/10.18140/FLX/1669690, 2020.
- Bond-Lamberty, B., Christianson, D. S., Malhotra, A., Pennington, S. C., Sihi, D., AghaKouchak, A., Anjileli, H., Altaf Arain, M., Armesto, J. J., Ashraf, S., Ataka, M., Baldocchi, D., Andrew Black, T., Buchmann, N., Carbone, M. S., Chang, S.-C., Crill, P., Curtis, P. S., Davidson, E. A., Desai, A. R., Drake, J. E., El-Madany, T. S., Gavazzi, M., Görres, C.-M., Gough, C. M., Goulden, M., Gregg, J., Gutiérrez Del Arroyo, O., He, J.-S., Hirano, T., Hopple, A., Hughes, H., Järveoja, J., Jassal, R., Jian, J., Kan, H., Kaye, J., Kominami, Y., Liang, N., Lipson, D., Macdonald, C. A., Maseyk, K., Mathes, K., Mauritz, M., Mayes, M. A., McNulty, S., Miao, G., Migliavacca, M., Miller, S., Miniat, C. F., Nietz, J. G., Nilsson, M. B., Noormets, A., Norouzi, H., O'Connell, C. S., Osborne, B., Oyonarte, C., Pang, Z., Peichl, M., Pendall, E., Perez-Quezada, J. F., Phillips, C. L., Phillips, R. P., Raich, J. W., Renchon, A. A., Ruehr, N. K., Sánchez-Cañete, E. P., Saunders, M., Savage, K. E., Schrumpf, M., Scott, R. L., Seibt, U., Silver, W. L., Sun, W., Szutu, D., Takagi, K., Takagi, M., Teramoto, M., Tjoelker, M. G., Trumbore, S., Ueyama, M., Vargas, R., Varner, R. K., Verfaillie, J., Vogel, C., Wang, J., Winston, G., Wood, T. E., Wu, J., Wutzler, T., Zeng, J., Zha, T., Zhang, Q., and Zou, J.: COSORE: A community database for continuous soil respiration and other soil-atmosphere greenhouse gas flux data, Glob. Chang. Biol., 26, 7268–7283, https://doi.org/10.1111/gcb.15353, 2020.
- Budishchev, A., Mi, Y., van Huissteden, J., Belelli-Marchesini, L., Schaepman-Strub, G., Parmentier, F. J. W., Fratini, G., Gallagher, A., Maximov, T. C., and Dolman, A. J.: Evaluation of a plot-scale methane emission model using eddy covariance observations and footprint modelling, Biogeosciences, 11, 4651–4664, https://doi.org/10.5194/bg-11-4651-2014, 2014.
- Cernusak, L. A., Ubierna, N., Jenkins, M. W., Garrity, S. R., Rahn, T., Powers, H. H., Hanson, D. T., Sevanto, S., Wong, S. C., McDowell, N. G., and Farquhar, G. D.: Unsaturation of vapour pressure inside leaves of two conifer species, Sci. Rep., 8, 7667, https://doi.org/10.1038/s41598-018-25838-2, 2018.
 - Chaichana, N., Bellingrath-Kimura, S. D., Komiya, S., Fujii, Y., Noborio, K., Dietrich, O., and Pakoktom, T.: Comparison of Closed Chamber and Eddy Covariance Methods to Improve the Understanding of Methane Fluxes from Rice Paddy Fields in Japan, Atmosphere, 9, 356, https://doi.org/10.3390/atmos9090356, 2018.
- 1180 Chamberlain, S. D., Verfaillie, J., Eichelmann, E., Hemes, K. S., and Baldocchi, D. D.: Evaluation of density corrections to methane fluxes measured by open-path eddy covariance over contrasting landscapes, Boundary Layer Meteorol., 165, 197–210, https://doi.org/10.1007/s10546-017-0275-9, 2017.
- Chen, W., Zhang, F., Wang, B., Wang, J., Tian, D., Han, G., Wen, X., Yu, G., and Niu, S.: Diel and seasonal dynamics of ecosystem-scale methane flux and their determinants in an alpine meadow, J. Geophys. Res. Biogeosci., 124, 1731–1745, https://doi.org/10.1029/2019jg005011, 2019.
 - Chen, W., Wang, B., Zhang, F., Li, Z., Wang, J., Yu, G., Wen, X., and Niu, S.: Hysteretic relationship between plant productivity and methane uptake in an alpine meadow, Agric. For. Meteorol., 288-289, 107982, https://doi.org/10.1016/j.agrformet.2020.107982, 2020.
 - Cho, R., Schroth, M. H., and Zeyer, J.: Circadian methane oxidation in the root zone of rice plants, Biogeochemistry, 111,

- 1190 317–330, https://doi.org/10.1007/s10533-011-9651-6, 2012.
 - Christiansen, J. R., Outhwaite, J., and Smukler, S. M.: Comparison of CO2, CH4 and N2O soil-atmosphere exchange measured in static chambers with cavity ring-down spectroscopy and gas chromatography, Agric. For. Meteorol., 211-212, 48–57, https://doi.org/10.1016/j.agrformet.2015.06.004, 2015.
- Chu, H., Luo, X., Ouyang, Z., Chan, W. S., Dengel, S., Biraud, S. C., Torn, M. S., Metzger, S., Kumar, J., Arain, M. A., Arkebauer, T. J., Baldocchi, D., Bernacchi, C., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G., Bracho, R., Brown, S., Brunsell, N. A., Chen, J., Chen, X., Clark, K., Desai, A. R., Duman, T., Durden, D., Fares, S., Forbrich, I., Gamon, J. A., Gough, C. M., Griffis, T., Helbig, M., Hollinger, D., Humphreys, E., Ikawa, H., Iwata, H., Ju, Y., Knowles, J. F., Knox, S. H., Kobayashi, H., Kolb, T., Law, B., Lee, X., Litvak, M., Liu, H., Munger, J. W., Noormets, A., Novick, K., Oberbauer, S. F., Oechel, W., Oikawa, P., Papuga, S. A., Pendall, E., Prajapati, P., Prueger, J., Quinton, W. L., Richardson, A. D., Russell, E. S., Scott, R. L., Starr, G., Staebler, R., Stoy, P. C., Stuart-Haëntjens, E., Sonnentag, O., Sullivan, R. C., Suyker, A., Ueyama, M., Vargas, R., Wood, J. D., and Zona, D.: Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites, Agric. For. Meteorol., 301-302, 108350, https://doi.org/10.1016/j.agrformet.2021.108350, 2021.
- Chu, H., Christianson, D. S., Cheah, Y.-W., Pastorello, G., O'Brien, F., Geden, J., Ngo, S.-T., Hollowgrass, R., Leibowitz, K.,
 Beekwilder, N. F., Sandesh, M., Dengel, S., Chan, S. W., Santos, A., Delwiche, K., Yi, K., Buechner, C., Baldocchi,
 D., Papale, D., Keenan, T. F., Biraud, S. C., Agarwal, D. A., and Torn, M. S.: AmeriFlux BASE data pipeline to support network growth and data sharing, Sci. Data, 10, 614, https://doi.org/10.1038/s41597-023-02531-2, 2023.
 - Clement, R. J., Verma, S. B., and Verry, E. S.: Relating chamber measurements to eddy correlation measurements of methane flux, J. Geophys. Res. D: Atmos., 100, 21047–21056, https://doi.org/10.1029/95JD02196, 1995.
- Davidson, E. A., Savage, K., Verchot, L. V., and Navarro, R.: Minimizing artifacts and biases in chamber-based measurements of soil respiration, Agric. For. Meteorol., 113, 21–37, https://doi.org/10.1016/s0168-1923(02)00100-4, 2002.
 - Davidson, S. J., Santos, M. J., Sloan, V. L., Reuss-Schmidt, K., Phoenix, G. K., Oechel, W. C., and Zona, D.: Upscaling CH4 Fluxes Using High-Resolution Imagery in Arctic Tundra Ecosystems, Remote Sensing, 9, 1227, https://doi.org/10.3390/rs9121227, 2017.
- Delwiche, K. B., Knox, S. H., Malhotra, A., Fluet-Chouinard, E., McNicol, G., Feron, S., Ouyang, Z., Papale, D., Trotta, C., Canfora, E., and Others: FLUXNET-CH4: A global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands, Earth System Science Data Discussions, 2021, 1–111, 2021.
 - Desai, A. R.: AmeriFlux BASE US-Los Lost Creek, Ver. 33-5, AmeriFlux AMP, https://doi.org/10.17190/AMF/1246071, 2025a.
- Desai, A. R.: In Situ Carbon Dioxide and Methane Flux Measurements Using Opaque Chambers in a Sedge Fen Wetland (US-Los Lost Creek AmeriFlux Site, Wisconsin, Summer 2015) ver 1. Environmental Data Initiative (1), https://doi.org/10.6073/pasta/fc48a416ab7c580f2fd0d5450668a23a, 2025b.
 - Desai, A. R. and Thom, J.: FLUXNET-CH4 US-Los Lost Creek, https://doi.org/10.18140/FLX/1669682, 2020.
- Desai, A. R., Xu, K., Tian, H., Weishampel, P., Thom, J., Baumann, D., Andrews, A. E., Cook, B. D., King, J. Y., and Kolka, R.: Landscape-level terrestrial methane flux observed from a very tall tower, Agric. For. Meteorol., 201, 61–75, https://doi.org/10.1016/j.agrformet.2014.10.017, 2015.
 - Detto, M., Verfaillie, J., Anderson, F., Xu, L., and Baldocchi, D.: Comparing laser-based open- and closed-path gas analyzers

- to measure methane fluxes using the eddy covariance method, Agric. For. Meteorol., 151, 1312–1324, https://doi.org/10.1016/j.agrformet.2011.05.014, 2011.
- Deventer, M. J., Griffis, T. J., Roman, D. T., Kolka, R. K., Wood, J. D., Erickson, M., Baker, J. M., and Millet, D. B.: Error characterization of methane fluxes and budgets derived from a long-term comparison of open- and closed-path eddy covariance systems, Agric. For. Meteorol., 278, 107638, https://doi.org/10.1016/j.agrformet.2019.107638, 2019.
 - Dinno, A.: conover.test: Conover-Iman Test of Multiple Comparisons Using Rank Sums, https://doi.org/10.32614/CRAN.package.conover.test, 2024.
- Erkkilä, K.-M., Ojala, A., Bastviken, D., Biermann, T., Heiskanen, J. J., Lindroth, A., Peltola, O., Rantakari, M., Vesala, T., and Mammarella, I.: Methane and carbon dioxide fluxes over a lake: comparison between eddy covariance, floating chambers and boundary layer method, Biogeosciences, 15, 429–445, https://doi.org/10.5194/bg-15-429-2018, 2018.
- Forbrich, I., Kutzbach, L., Hormann, A., and Wilmking, M.: A comparison of linear and exponential regression for estimating diffusive CH4 fluxes by closed-chambers in peatlands, Soil Biol. Biochem., 42, 507–515, https://doi.org/10.1016/j.soilbio.2009.12.004, 2010.
 - Forbrich, I., Kutzbach, L., Wille, C., Becker, T., Wu, J., and Wilmking, M.: Cross-evaluation of measurements of peatland methane emissions on microform and ecosystem scales using high-resolution landcover classification and source weight modelling, Agric. For. Meteorol., 151, 864–874, https://doi.org/10.1016/j.agrformet.2011.02.006, 2011.
- Fox, J. and Weisberg, S.: An R companion to applied regression, 3rd ed., SAGE Publications, Thousand Oaks, CA, 608 pp., https://www.john-fox.ca/Companion/, 2018.
 - Griebel, A., Bennett, L. T., Metzen, D., Cleverly, J., Burba, G., and Arndt, S. K.: Effects of inhomogeneities within the flux footprint on the interpretation of seasonal, annual, and interannual ecosystem carbon exchange, Agric. For. Meteorol., 221, 50–60, https://doi.org/10.1016/j.agrformet.2016.02.002, 2016.
- Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T. W., Sperry, J. S., and McDowell,
 N. G.: Plant responses to rising vapor pressure deficit, New Phytol., 226, 1550–1566, https://doi.org/10.1111/nph.16485, 2020.
 - Hargreaves, K. J., Fowler, D., Pitcairn, C. E. R., and Aurela, M.: Annual methane emission from Finnish mires estimated from eddy covariance campaign measurements, Theor. Appl. Climatol., 70, 203–213, https://doi.org/10.1007/s007040170015, 2001.
- Hartley, I. P., Hill, T. C., Wade, T. J., Clement, R. J., Moncrieff, J. B., Prieto-Blanco, A., Disney, M. I., Huntley, B., Williams, M., Howden, N. J. K., Wookey, P. A., and Baxter, R.: Quantifying landscape-level methane fluxes in subarctic Finland using a multiscale approach, Glob. Chang. Biol., 21, 3712–3725, https://doi.org/10.1111/gcb.12975, 2015.
- Heusinkveld, B. G., Jacobs, A. F. G., and Holtslag, A. A. M.: Effect of open-path gas analyzer wetness on eddy covariance flux measurements: A proposed solution, Agric. For. Meteorol., 148, 1563–1573, https://doi.org/10.1016/j.agrformet.2008.05.010, 2008.
 - Hill, A. C. and Vargas, R.: Carbon dioxide and methane chamber flux data from temperate S. alterniflora salt-marsh, https://doi.org/10.6084/M9.FIGSHARE.20099321.V1, 2022a.
 - Hill, A. C. and Vargas, R.: Methane and carbon dioxide fluxes in a temperate tidal salt marsh: Comparisons between plot and ecosystem measurements, J. Geophys. Res. Biogeosci., 127, https://doi.org/10.1029/2022jg006943, 2022b.

- Hollinger, D. Y. and Richardson, A. D.: Uncertainty in eddy covariance measurements and its application to physiological models, Tree Physiol., 25, 873–885, https://doi.org/10.1093/treephys/25.7.873, 2005.
 - Holm, G., Perez, B., McWhorter, D., Krauss, K., Raynie, R., and Killebrew, C.: FLUXNET-CH4 US-LA1 Pointe-aux-Chenes Brackish Marsh, https://doi.org/10.18140/FLX/1669680, 2020a.
- Holm, G., Perez, B., McWhorter, D., Krauss, K., Raynie, R., and Killebrew, C.: FLUXNET-CH4 US-LA2 Salvador WMA Freshwater Marsh, https://doi.org/10.18140/FLX/1669681, 2020b.
 - Intergovernmental Panel on Climate Change (IPCC): Climate Change 2021 the physical science basis, Cambridge University Press, https://doi.org/10.1017/9781009157896, 2023.
- Irvin, J., Zhou, S., McNicol, G., Lu, F., Liu, V., Fluet-Chouinard, E., Ouyang, Z., Knox, S. H., Lucas-Moffat, A., Trotta, C., Papale, D., Vitale, D., Mammarella, I., Alekseychik, P., Aurela, M., Avati, A., Baldocchi, D., Bansal, S., Bohrer, G., 1275 Campbell, D. I., Chen, J., Chu, H., Dalmagro, H. J., Delwiche, K. B., Desai, A. R., Euskirchen, E., Feron, S., Goeckede, M., Heimann, M., Helbig, M., Helfter, C., Hemes, K. S., Hirano, T., Iwata, H., Jurasinski, G., Kalhori, A., Kondrich, A., Lai, D. Y. F., Lohila, A., Malhotra, A., Merbold, L., Mitra, B., Ng, A., Nilsson, M. B., Noormets, A., Peichl, M., Rey-Sanchez, A. C., Richardson, A. D., Runkle, B. R. K., Schäfer, K. V. R., Sonnentag, O., Stuart-Haëntjens, E., Sturtevant, C., Ueyama, M., Valach, A. C., Vargas, R., Vourlitis, G. L., Ward, E. J., Wong, G. X., 1280 Zona, D., Alberto, M. C. R., Billesbach, D. P., Celis, G., Dolman, H., Friborg, T., Fuchs, K., Gogo, S., Gondwe, M. J., Goodrich, J. P., Gottschalk, P., Hörtnagl, L., Jacotot, A., Koebsch, F., Kasak, K., Maier, R., Morin, T. H., Nemitz, E., Oechel, W. C., Oikawa, P. Y., Ono, K., Sachs, T., Sakabe, A., Schuur, E. A., Shortt, R., Sullivan, R. C., Szutu, D. J., Tuittila, E.-S., Varlagin, A., Verfaillie, J. G., Wille, C., Windham-Myers, L., Poulter, B., and Jackson, R. B.: Gapfilling eddy covariance methane fluxes: Comparison of machine learning model predictions and uncertainties at 1285 FLUXNET-CH4 wetlands, Agric. For. Meteorol., 308-309, 108528, https://doi.org/10.1016/j.agrformet.2021.108528, 2021.
 - Iwata, H., Kosugi, Y., Ono, K., Mano, M., Sakabe, A., Miyata, A., and Takahashi, K.: Cross-validation of open-path and closed-path eddy-covariance techniques for observing methane fluxes, Boundary Layer Meteorol., 151, 95–118, https://doi.org/10.1007/s10546-013-9890-2, 2014.
- 1290 Iwata, H., Ueyama, M., and Harazono, Y.: FLUXNET-CH4 US-Uaf University of Alaska, Fairbanks, https://doi.org/10.18140/FLX/1669701, 2020.
 - Järveoja, J., Nilsson, M. B., Gažovič, M., Crill, P. M., and Peichl, M.: Partitioning of the net CO2 exchange using an automated chamber system reveals plant phenology as key control of production and respiration fluxes in a boreal peatland, Glob. Chang. Biol., 24, 3436–3451, https://doi.org/10.1111/gcb.14292, 2018.
- Jentzsch, K., van Delden, L., Fuchs, M., and Treat, C. C.: An expert survey on chamber measurement techniques and data handling procedures for methane fluxes, Earth System Science Data, 17, 2331–2372, https://doi.org/10.5194/essd-17-2331-2025, 2025.
 - Knapp, A. K. and Yavitt, J. B.: Evaluation of a closed-chamber method for estimating methane emissions from aquatic plants, Tellus B Chem. Phys. Meteorol., 44, 63–71, https://doi.org/10.1034/j.1600-0889.1992.00006.x, 1992.
- 1300 Knox, S. H., Matthes, J. H., Sturtevant, C., Oikawa, P. Y., Verfaillie, J., and Baldocchi, D.: Biophysical controls on interannual variability in ecosystem-scale CO 2 and CH 4 exchange in a California rice paddy: Interannual variability rice CH4 fluxes, J. Geophys. Res. Biogeosci., 121, 978–1001, https://doi.org/10.1002/2015jg003247, 2016.
 - Knox, S. H., Jackson, R. B., Poulter, B., McNicol, G., Fluet-Chouinard, E., Zhang, Z., Hugelius, G., Bousquet, P., Canadell,

- J. G., Saunois, M., Papale, D., Chu, H., Keenan, T. F., Baldocchi, D., Torn, M. S., Mammarella, I., Trotta, C., Aurela, M., Bohrer, G., Campbell, D. I., Cescatti, A., Chamberlain, S., Chen, J., Chen, W., Dengel, S., Desai, A. R., Euskirchen, E., Friborg, T., Gasbarra, D., Goded, I., Goeckede, M., Heimann, M., Helbig, M., Hirano, T., Hollinger, D. Y., Iwata, H., Kang, M., Klatt, J., Krauss, K. W., Kutzbach, L., Lohila, A., Mitra, B., Morin, T. H., Nilsson, M. B., Niu, S., Noormets, A., Oechel, W. C., Peichl, M., Peltola, O., Reba, M. L., Richardson, A. D., Runkle, B. R. K., Ryu, Y., Sachs, T., Schäfer, K. V. R., Schmid, H. P., Shurpali, N., Sonnentag, O., Tang, A. C. I., Ueyama, M., Vargas, R., Vesala, T., Ward, E. J., Windham-Myers, L., Wohlfahrt, G., and Zona, D.: FLUXNET-CH4 Synthesis Activity: Objectives, Observations, and Future Directions, Bull. Am. Meteorol. Soc., 100, 2607–2632, https://doi.org/10.1175/BAMS-D-18-0268.1, 2019.
- Knox, S. H., Bansal, S., McNicol, G., Schafer, K., Sturtevant, C., Ueyama, M., Valach, A. C., Baldocchi, D., Delwiche, K., Desai, A. R., Euskirchen, E., Liu, J., Lohila, A., Malhotra, A., Melling, L., Riley, W., Runkle, B. R. K., Turner, J., Vargas, R., Zhu, Q., Alto, T., Fluet-Chouinard, E., Goeckede, M., Melton, J. R., Sonnentag, O., Vesala, T., Ward, E., Zhang, Z., Feron, S., Ouyang, Z., Alekseychik, P., Aurela, M., Bohrer, G., Campbell, D. I., Chen, J., Chu, H., Dalmagro, H. J., Goodrich, J. P., Gottschalk, P., Hirano, T., Iwata, H., Jurasinski, G., Kang, M., Koebsch, F., Mammarella, I., Nilsson, M. B., Ono, K., Peichl, M., Peltola, O., Ryu, Y., Sachs, T., Sakabe, A., Sparks, J. P., Tuittila, E.-S., Vourlitis, G. L., Wong, G. X., Windham-Myers, L., Poulter, B., and Jackson, R. B.: Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales, Glob. Chang. Biol., 27, 3582–3604, https://doi.org/10.1111/gcb.15661, 2021.
 - Koebsch, F., Jurasinski, G., Koch, M., Hofmann, J., and Glatzel, S.: Controls for multi-scale temporal variation in ecosystem methane exchange during the growing season of a permanently inundated fen, Agric. For. Meteorol., 204, 94–105, https://doi.org/10.1016/j.agrformet.2015.02.002, 2015.
- Korkiakoski, M., Tuovinen, J.-P., Aurela, M., Koskinen, M., Minkkinen, K., Ojanen, P., Penttilä, T., Rainne, J., Laurila, T., and Lohila, A.: Methane exchange at the peatland forest floor automatic chamber system exposes the dynamics of small fluxes, Biogeosciences, 14, 1947–1967, https://doi.org/10.5194/bg-14-1947-2017, 2017.
- Korrensalo, A., Männistö, E., Alekseychik, P., Mammarella, I., Rinne, J., Vesala, T., and Tuittila, E.-S.: Small spatial variability in methane emission measured from a wet patterned boreal bog, Biogeosciences, 15, 1749–1761, https://doi.org/10.5194/bg-15-1749-2018, 2018.
 - Krauss, K. W., Holm, G. O., Perez, B. C., McWhorter, D. E., Cormier, N., Moss, R. F., Johnson, D. J., Neubauer, S. C., and Raynie, R. C.: Component greenhouse gas fluxes and radiative balance from two deltaic marshes in Louisiana: Pairing chamber techniques and eddy covariance, Journal of Geophysical Research: Biogeosciences, 121, 1503–1521, https://doi.org/10.1002/2015JG003224, 2016.
- 1335 Kroon, P. S., Hensen, A., Jonker, H. J. J., Zahniser, M. S., van 't Veen, W. H., and Vermeulen, A. T.: Suitability of quantum cascade laser spectroscopy for CH₄ and N₂O eddy covariance flux measurements, Biogeosciences, 4, 715–728, https://doi.org/10.5194/bg-4-715-2007, 2007.
- Kroon, P. S., Hensen, A., Jonker, H. J. J., Ouwersloot, H. G., Vermeulen, A. T., and Bosveld, F. C.: Uncertainties in eddy covariance flux measurements assessed from CH4 and N2O observations, Agric. For. Meteorol., 150, 806–816, https://doi.org/10.1016/j.agrformet.2009.08.008, 2010.
 - Kuhn, M. A., Varner, R. K., Bastviken, D., Crill, P., MacIntyre, S., Turetsky, M., Walter Anthony, K., McGuire, A. D., and Olefeldt, D.: BAWLD-CH₄: a comprehensive dataset of methane fluxes from boreal and arctic ecosystems, Earth System Science Data, 13, 5151–5189, https://doi.org/10.5194/essd-13-5151-2021, 2021.
 - Kutzbach, L., Wagner, D., and Pfeiffer, E.-M.: Effect of microrelief and vegetation on methane emission from wet polygonal

- tundra, Lena Delta, Northern Siberia, Biogeochemistry, 69, 341–362, https://doi.org/10.1023/B:BIOG.0000031053.81520.db, 2004.
 - Lai, D. Y. F., Roulet, N. T., Humphreys, E. R., Moore, T. R., and Dalva, M.: The effect of atmospheric turbulence and chamber deployment period on autochamber CO₂ and CH₄ flux measurements in an ombrotrophic peatland, Biogeosciences, 9, 3305–3322, https://doi.org/10.5194/bg-9-3305-2012, 2012.
- Langensiepen, M., Kupisch, M., van Wijk, M. T., and Ewert, F.: Analyzing transient closed chamber effects on canopy gas exchange for optimizing flux calculation timing, Agric. For. Meteorol., 164, 61–70, https://doi.org/10.1016/j.agrformet.2012.05.006, 2012.
 - Lawrence, M. G.: The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications, Bull. Am. Meteorol. Soc., 86, 225–234, https://doi.org/10.1175/bams-86-2-225, 2005.
- Levy, P. E., Gray, A., Leeson, S. R., Gaiawyn, J., Kelly, M. P. C., Cooper, M. D. A., Dinsmore, K. J., Jones, S. K., and Sheppard, L. J.: Quantification of uncertainty in trace gas fluxes measured by the static chamber method, Eur. J. Soil Sci., 62, 811–821, https://doi.org/10.1111/j.1365-2389.2011.01403.x, 2011.
- Livingston, G. P. and Hutchinson, G. L.: Enclosure-based measurement of trace gas exchange: applications and sources of error, in: Methods in ecology: biogenic trace gas emissions from soil and water, Blackwell Scientific Publications Inc., 14–51, 1995.
 - Long, K. D., Flanagan, L. B., and Cai, T.: Diurnal and seasonal variation in methane emissions in a northern Canadian peatland measured by eddy covariance, Glob. Chang. Biol., 16, 2420–2435, https://doi.org/10.1111/j.1365-2486.2009.02083.x, 2010.
- Marushchak, M. E., Friborg, T., Biasi, C., Herbst, M., Johansson, T., Kiepe, I., Liimatainen, M., Lind, S. E., Martikainen, P. J., Virtanen, T., Soegaard, H., and Shurpali, N. J.: Methane dynamics in the subarctic tundra: combining stable isotope analyses, plot- and ecosystem-scale flux measurements, Biogeosciences, 13, 597–608, https://doi.org/10.5194/bg-13-597-2016, 2016.
- McGuire, A. D., Christensen, T. R., Hayes, D., Heroult, A., Euskirchen, E., Kimball, J. S., Koven, C., Lafleur, P., Miller, P. A., Oechel, W., Peylin, P., Williams, M., and Yi, Y.: An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions, Biogeosciences, 9, 3185–3204, https://doi.org/10.5194/bg-9-3185-2012, 2012.
- McNicol, G., Fluet-Chouinard, E., Ouyang, Z., Knox, S., Zhang, Z., Aalto, T., Bansal, S., Chang, K.-Y., Chen, M., Delwiche, K., Feron, S., Goeckede, M., Liu, J., Malhotra, A., Melton, J. R., Riley, W., Vargas, R., Yuan, K., Ying, Q., Zhu, Q., Alekseychik, P., Aurela, M., Billesbach, D. P., Campbell, D. I., Chen, J., Chu, H., Desai, A. R., Euskirchen, E., Goodrich, J., Griffis, T., Helbig, M., Hirano, T., Iwata, H., Jurasinski, G., King, J., Koebsch, F., Kolka, R., Krauss, K., Lohila, A., Mammarella, I., Nilson, M., Noormets, A., Oechel, W., Peichl, M., Sachs, T., Sakabe, A., Schulze, C., Sonnentag, O., Sullivan, R. C., Tuittila, E.-S., Ueyama, M., Vesala, T., Ward, E., Wille, C., Wong, G. X., Zona, D., Windham-Myers, L., Poulter, B., and Jackson, R. B.: Upscaling wetland methane emissions from the FLUXNET-CH4 eddy covariance network (UpCH4 v1.0): Model development, network assessment, and budget comparison, AGU Adv., 4, https://doi.org/10.1029/2023av000956, 2023.
 - Meijide, A., Manca, G., Goded, I., Magliulo, V., di Tommasi, P., Seufert, G., and Cescatti, A.: Seasonal trends and environmental controls of methane emissions in a rice paddy field in Northern Italy, Biogeosci. Discuss., 8, 8999–9032, https://doi.org/10.5194/bgd-8-8999-2011, 2011.

- Metzger, S.: Surface-atmosphere exchange in a box: Making the control volume a suitable representation for in-situ observations, Agric. For. Meteorol., 255, 68–80, https://doi.org/10.1016/j.agrformet.2017.08.037, 2018.
 - Montaldo, N. and Oren, R.: The way the wind blows matters to ecosystem water use efficiency, Agric. For. Meteorol., 217, 1–9, https://doi.org/10.1016/j.agrformet.2015.11.002, 2016.
 - Morin, T. H.: Advances in the eddy covariance approach to CH₄ monitoring over two and a half decades, J. Geophys. Res. Biogeosci., 124, 453–460, https://doi.org/10.1029/2018jg004796, 2019.
- Morin, T. H., Bohrer, G., Frasson, R. P. d., Naor-Azreli, L., Mesi, S., Stefanik, K. C., and Schäfer, K. V. R.: Environmental drivers of methane fluxes from an urban temperate wetland park, Journal of Geophysical Research: Biogeosciences, 119, 2188–2208, https://doi.org/10.1002/2014JG002750, 2014.
- Morin, T. H., Bohrer, G., Stefanik, K. C., Rey-Sanchez, A. C., Matheny, A. M., and Mitsch, W. J.: Combining eddy-covariance and chamber measurements to determine the methane budget from a small, heterogeneous urban floodplain wetland park, Agric. For. Meteorol., 237-238, 160–170, https://doi.org/10.1016/j.agrformet.2017.01.022, 2017.
 - Määttä, T., Desai, A., Ueyama, M., Vargas, R., Ward, E. J., Zhang, Z., Bohrer, G., Delwiche, K., Fluet-Chouinard, E., Järveoja, J., Knox, S., Melling, L., Nilsson, M. B., Peichl, M., Tang, A. C. I., Tuittila, E.-S., Wang, J., Bansal, S., Feron, S., Helbig, M., Korrensalo, A., Krauss, K. W., McNicol, G., Niu, S., Ouyang, Z., Savage, K., Sonnentag, O., Jackson, R., and Malhotra, A.: Cross-site comparison of ecosystem- and plot-scale methane fluxes from wetlands and uplands (Version v1), Zenodo [data set], https://doi.org/10.5281/zenodo.17312404, 2025.
 - Nadeau, D. F., Rousseau, A. N., Coursolle, C., Margolis, H. A., and Parlange, M. B.: Summer methane fluxes from a boreal bog in northern Quebec, Canada, using eddy covariance measurements, Atmos. Environ. (1994), 81, 464–474, https://doi.org/10.1016/j.atmosenv.2013.09.044, 2013.
- Nakano, T.: A comparison of regression methods for estimating soil–atmosphere diffusion gas fluxes by a closed-chamber technique, Soil Biol. Biochem., 36, 107–113, https://doi.org/10.1016/j.soilbio.2003.07.005, 2004.
 - van der Nat, F.-F. W. A., Middelburg*, J. J., Van Meteren, D., and Wielemakers, A.: Diel methane emission patterns from Scirpus lacustris and Phragmites australis, Biogeochemistry, 41, 1–22, https://doi.org/10.1023/a:1005933100905, 1998.
 - Nilsson, M. and Peichl, M.: FLUXNET-CH4 SE-Deg Degero, https://doi.org/10.18140/FLX/1669659, 2020.
- 1410 Niu, S. and Chen, W.: FLUXNET-CH4 CN-Hgu Hongyuan, https://doi.org/10.18140/FLX/1669632, 2020.
 - Niu, S., Luo, Y., Fei, S., Montagnani, L., Bohrer, G., Janssens, I. A., Gielen, B., Rambal, S., Moors, E., and Matteucci, G.: Seasonal hysteresis of net ecosystem exchange in response to temperature change: patterns and causes: SEASONAL HYSTERESIS OF NET ECOSYSTEM EXCHANGE, Glob. Chang. Biol., 17, 3102–3114, https://doi.org/10.1111/j.1365-2486.2011.02459.x, 2011.
- Oikawa, P. Y., Sihi, D., Forbrich, I., Fluet-Chouinard, E., Najarro, M., Thomas, O., Shahan, J., Arias-Ortiz, A., Russell, S., Knox, S. H., McNicol, G., Wolfe, J., Windham-Myers, L., Stuart-Haentjens, E., Bridgham, S. D., Needelman, B., Vargas, R., Schäfer, K., Ward, E. J., Megonigal, P., and Holmquist, J.: A new coupled biogeochemical modeling approach provides accurate predictions of methane and carbon dioxide fluxes across diverse tidal wetlands, J. Geophys. Res. Biogeosci., 129, https://doi.org/10.1029/2023jg007943, 2024.
- 1420 Parmentier, F. J. W., van Huissteden, J., van der Molen, M. K., Schaepman-Strub, G., Karsanaev, S. A., Maximov, T. C., and

- Dolman, A. J.: Spatial and temporal dynamics in eddy covariance observations of methane fluxes at a tundra site in northeastern Siberia, J. Geophys. Res., 116, https://doi.org/10.1029/2010jg001637, 2011.
- Peltola, O., Hensen, A., Helfter, C., Belelli Marchesini, L., Bosveld, F. C., van den Bulk, W. C. M., Elbers, J. A., Haapanala, S., Holst, J., Laurila, T., Lindroth, A., Nemitz, E., Röckmann, T., Vermeulen, A. T., and Mammarella, I.: Evaluating the performance of commonly used gas analysers for methane eddy covariance flux measurements: the InGOS intercomparison field experiment, Biogeosciences, 11, 3163–3186, https://doi.org/10.5194/bg-11-3163-2014, 2014.
- Peltola, O., Vesala, T., Gao, Y., Räty, O., Alekseychik, P., Aurela, M., Chojnicki, B., Desai, A. R., Dolman, A. J., Euskirchen, E. S., Friborg, T., Göckede, M., Helbig, M., Humphreys, E., Jackson, R. B., Jocher, G., Joos, F., Klatt, J., Knox, S. H., Kowalska, N., Kutzbach, L., Lienert, S., Lohila, A., Mammarella, I., Nadeau, D. F., Nilsson, M. B., Oechel, W. C., Peichl, M., Pypker, T., Quinton, W., Rinne, J., Sachs, T., Samson, M., Schmid, H. P., Sonnentag, O., Wille, C., Zona, D., and Aalto, T.: Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations, Earth Syst. Sci. Data, 11, 1263–1289, https://doi.org/10.5194/essd-11-1263-2019, 2019.
- Peterson, R.: Finding optimal normalizing transformations via bestNormalize, R J., 13, 310, https://doi.org/10.32614/rj-2021-1435 041, 2021.
 - Phillips, C. L., Bond-Lamberty, B., Desai, A. R., Lavoie, M., Risk, D., Tang, J., Todd-Brown, K., and Vargas, R.: The value of soil respiration measurements for interpreting and modeling terrestrial carbon cycling, Plant Soil, 413, 1–25, https://doi.org/10.1007/s11104-016-3084-x, 2017.
- Pihlatie, M. K., Christiansen, J. R., Aaltonen, H., Korhonen, J. F. J., Nordbo, A., Rasilo, T., Benanti, G., Giebels, M., Helmy,
 M., Sheehy, J., Jones, S., Juszczak, R., Klefoth, R., Lobo-do-Vale, R., Rosa, A. P., Schreiber, P., Serça, D., Vicca, S.,
 Wolf, B., and Pumpanen, J.: Comparison of static chambers to measure CH4 emissions from soils, Agric. For.
 Meteorol., 171-172, 124–136, https://doi.org/10.1016/j.agrformet.2012.11.008, 2013.
 - Pinheiro J, Bates D, R Core Team: nlme: Linear and Nonlinear Mixed Effects Models, https://doi.org/10.32614/CRAN.package.nlme, 2023.
- 1445 Pinheiro, J. C. and Bates, D. M.: Mixed-Effects Models in S and S-PLUS, Springer, New York, https://doi.org/10.1007/b98882, 2000.
 - Räsänen, A., Manninen, T., Korkiakoski, M., Lohila, A., and Virtanen, T.: Predicting catchment-scale methane fluxes with multi-source remote sensing, Landsc. Ecol., 36, 1177–1195, https://doi.org/10.1007/s10980-021-01194-x, 2021.
- R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org, 2024.
- Rebmann, C., Göckede, M., Foken, T., Aubinet, M., Aurela, M., Berbigier, P., Bernhofer, C., Buchmann, N., Carrara, A., Cescatti, A., Ceulemans, R., Clement, R., Elbers, J. A., Granier, A., Grünwald, T., Guyon, D., Havránková, K., Heinesch, B., Knohl, A., Laurila, T., Longdoz, B., Marcolla, B., Markkanen, T., Miglietta, F., Moncrieff, J., Montagnani, L., Moors, E., Nardino, M., Ourcival, J.-M., Rambal, S., Rannik, Ü., Rotenberg, E., Sedlak, P., Unterhuber, G., Vesala, T., and Yakir, D.: Quality analysis applied on eddy covariance measurements at complex forest sites using footprint modelling, Theor. Appl. Climatol., 80, 121–141, https://doi.org/10.1007/s00704-004-0095-y, 2005.
 - Rey-Sanchez, C., Morin, T. H., Stefanik, K. C., Wrighton, K., and Bohrer, G.: Determining total emissions and environmental drivers of methane flux in a Lake Erie estuarine marsh, Ecol. Eng., 114, 7–15,

- 1460 https://doi.org/10.1016/j.ecoleng.2017.06.042, 2018.
 - Rey-Sanchez, C., Arias-Ortiz, A., Kasak, K., Chu, H., Szutu, D., Verfaillie, J., and Baldocchi, D.: Detecting hot spots of methane flux using footprint-weighted flux maps, J. Geophys. Res. Biogeosci., 127, e2022JG006977, https://doi.org/10.1029/2022JG006977, 2022.
- Rey-Sanchez, C., Arias-Ortiz, A., Kasak, K., Shortt, R., Szutu, D., Verfaillie, J., Lorenson, T., Liira, M., Somelar, P., Espenberg, M., and Baldocchi, D.: Explaining hot spots of methane flux in a restored wetland: the role of water level, soil disturbance, and methanotrophy, Environ. Res. Lett., 20, 074064, https://doi.org/10.1088/1748-9326/ade45b, 2025.
 - Richardson, A. D. and Hollinger, D.: FLUXNET-CH4 US-Ho1 Howland Forest (main tower), https://doi.org/10.18140/FLX/1669675, 2020.
- 1470 Richardson, A. D., Hollinger, D. Y., Burba, G. G., Davis, K. J., Flanagan, L. B., Katul, G. G., William Munger, J., Ricciuto, D. M., Stoy, P. C., Suyker, A. E., Verma, S. B., and Wofsy, S. C.: A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes, Agric. For. Meteorol., 136, 1–18, https://doi.org/10.1016/j.agrformet.2006.01.007, 2006.
- Richardson, A. D., Mahecha, M. D., Falge, E., Kattge, J., Moffat, A. M., Papale, D., Reichstein, M., Stauch, V. J., Braswell, B. H., Churkina, G., Kruijt, B., and Hollinger, D. Y.: Statistical properties of random CO2 flux measurement uncertainty inferred from model residuals, Agric. For. Meteorol., 148, 38–50, https://doi.org/10.1016/j.agrformet.2007.09.001, 2008.
- Richardson, A. D., Hollinger, D. Y., Shoemaker, J. K., Hughes, H., Savage, K., and Davidson, E. A.: Six years of ecosystem-atmosphere greenhouse gas fluxes measured in a sub-boreal forest, Sci. Data, 6, 117, https://doi.org/10.1038/s41597-019-0119-1, 2019.
 - Rinne, J., Riutta, T., Pihlatie, M., Aurela, M., Haapanala, S., Tuovinen, J.-P., Tuittila, E.-S., and Vesala, T.: Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique, Tellus B Chem. Phys. Meteorol., 59, https://doi.org/10.3402/tellusb.v59i3.17009, 2007.
- Riutta, T., Laine, J., Aurela, M., Rinne, J., Vesala, T., Laurila, T., Haapanala, S., Pihlatie, M., and Tuittila, E.-S.: Spatial variation in plant community functions regulates carbon gas dynamics in a boreal fen ecosystem, Tellus B Chem. Phys. Meteorol., 59, 838, https://doi.org/10.1111/j.1600-0889.2007.00302.x, 2007.
 - Rößger, N., Wille, C., Holl, D., Göckede, M., and Kutzbach, L.: Scaling and balancing carbon dioxide fluxes in a heterogeneous tundra ecosystem of the Lena River Delta, Biogeosciences, 16, 2591–2615, https://doi.org/10.5194/bg-16-2591-2019, 2019.
- Sachs, T., Wille, C., Boike, J., and Kutzbach, L.: Environmental controls on ecosystem-scale CH4emission from polygonal tundra in the Lena River Delta, Siberia, J. Geophys. Res., 113, https://doi.org/10.1029/2007jg000505, 2008.
- Saunois, M., Martinez, A., Poulter, B., Zhang, Z., Raymond, P., Regnier, P., Canadell, J. G., Jackson, R. B., Patra, P. K., Bousquet, P., Ciais, P., Dlugokencky, E. J., Lan, X., Allen, G. H., Bastviken, D., Beerling, D. J., Belikov, D. A., Blake, D. R., Castaldi, S., Crippa, M., Deemer, B. R., Dennison, F., Etiope, G., Gedney, N., Höglund-Isaksson, L., Holgerson, M. A., Hopcroft, P. O., Hugelius, G., Ito, A., Jain, A. K., Janardanan, R., Johnson, M. S., Kleinen, T., Krummel, P., Lauerwald, R., Li, T., Liu, X., McDonald, K. C., Melton, J. R., Mühle, J., Müller, J., Murguia-Flores, F., Niwa, Y., Noce, S., Pan, S., Parker, R. J., Peng, C., Ramonet, M., Riley, W. J., Rocher-Ros, G., Rosentreter, J. A., Sasakawa, M., Segers, A., Smith, S. J., Stanley, E. H., Thanwerdas, J., Tian, H., Tsuruta, A., Tubiello, F. N., Weber,

- T. S., van der Werf, G., Worthy, D. E., Xi, Y., Yoshida, Y., Zhang, W., Zheng, B., Zhu, Q., Zhu, Q., and Zhuang, Q.: Global Methane Budget 2000–2020, Earth System Science Data Discussions, https://doi.org/10.5194/essd-2024-115, 2024.
 - Schrier-Uijl, A. P., Kroon, P. S., Hensen, A., Leffelaar, P. A., Berendse, F., and Veenendaal, E. M.: Comparison of chamber and eddy covariance-based CO2 and CH4 emission estimates in a heterogeneous grass ecosystem on peat, Agric. For. Meteorol., 150, 825–831, https://doi.org/10.1016/j.agrformet.2009.11.007, 2010.
- 1505 Sha, C., Mitsch, W. J., Mander, Ü., Lu, J., Batson, J., Zhang, L., and He, W.: Methane emissions from freshwater riverine wetlands, Ecol. Eng., 37, 16–24, https://doi.org/10.1016/j.ecoleng.2010.07.022, 2011.
 - Smeets, C. J. P. P., Holzinger, R., Vigano, I., Goldstein, A. H., and Röckmann, T.: Eddy covariance methane measurements at a Ponderosa pine plantation in California, Atmos. Chem. Phys., 9, 8365–8375, https://doi.org/10.5194/acp-9-8365-2009, 2009.
- Stewart, G. A., Sharp, S. J., Taylor, A. K., Williams, M. R., and Palmer, M. A.: High spatial variability in wetland methane fluxes is tied to vegetation patch types, Biogeochemistry, https://doi.org/10.1007/s10533-024-01188-2, 2024.
 - Subke, J.-A., Kutzbach, L., and Risk, D.: Soil chamber measurements, in: Springer Handbook of Atmospheric Measurements, Springer International Publishing, Cham, 1603–1624, https://doi.org/10.1007/978-3-030-52171-4 60, 2021.
- Tokida, T., Miyazaki, T., Mizoguchi, M., Nagata, O., Takakai, F., Kagemoto, A., and Hatano, R.: Falling atmospheric pressure as a trigger for methane ebullition from peatland, Global Biogeochem. Cycles, 21, https://doi.org/10.1029/2006GB002790, 2007.
 - Tuovinen, J.-P., Aurela, M., Hatakka, J., Räsänen, A., Virtanen, T., Mikola, J., Ivakhov, V., Kondratyev, V., and Laurila, T.: Interpreting eddy covariance data from heterogeneous Siberian tundra: land-cover-specific methane fluxes and spatial representativeness, Biogeosciences, 16, 255–274, https://doi.org/10.5194/bg-16-255-2019, 2019.
- Turetsky, M. R., Kotowska, A., Bubier, J., Dise, N. B., Crill, P., Hornibrook, E. R. C., Minkkinen, K., Moore, T. R., Myers-Smith, I. H., Nykänen, H., Olefeldt, D., Rinne, J., Saarnio, S., Shurpali, N., Tuittila, E.-S., Waddington, J. M., White, J. R., Wickland, K. P., and Wilmking, M.: A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands, Glob. Chang. Biol., 20, 2183–2197, https://doi.org/10.1111/gcb.12580, 2014.
- Ueyama, M., Iwata, H., and Harazono, Y.: CO2 and CH4 fluxes data based on an automated-closed chamber system for a black spruce forest on permafrost in Fairbanks, Alaska, https://doi.org/10.17592/001.2021093001, 2022.
 - Ueyama, M., Iwata, H., Endo, R., and Harazono, Y.: Methane and carbon dioxide emissions from the forest floor of a black spruce forest on permafrost in interior Alaska, Polar Sci., 35, 100921, https://doi.org/10.1016/j.polar.2022.100921, 2023a.
- Ueyama, M., Knox, S. H., Delwiche, K. B., Bansal, S., Riley, W. J., Baldocchi, D., Hirano, T., McNicol, G., Schafer, K., Windham-Myers, L., Poulter, B., Jackson, R. B., Chang, K.-Y., Chen, J., Chu, H., Desai, A. R., Gogo, S., Iwata, H., Kang, M., Mammarella, I., Peichl, M., Sonnentag, O., Tuittila, E.-S., Ryu, Y., Euskirchen, E. S., Göckede, M., Jacotot, A., Nilsson, M. B., and Sachs, T.: Modeled production, oxidation, and transport processes of wetland methane emissions in temperate, boreal, and Arctic regions, Glob. Chang. Biol., 29, 2313–2334, https://doi.org/10.1111/gcb.16594, 2023b.
- Vargas, R. and Le, V. H.: The paradox of assessing greenhouse gases from soils for nature-based solutions, Biogeosciences, 20, 15–26, https://doi.org/10.5194/bg-20-15-2023, 2023.

- Vázquez-Lule, A. and Vargas, R.: Biophysical drivers of net ecosystem and methane exchange across phenological phases in a tidal salt marsh, Agric. For. Meteorol., 300, 108309, https://doi.org/10.1016/j.agrformet.2020.108309, 2021.
- Venterea, R. T., Spokas, K. A., and Baker, J. M.: Accuracy and precision analysis of chamber-based nitrous oxide gas flux estimates, Soil Sci. Soc. Am. J., 73, 1087–1093, https://doi.org/10.2136/sssaj2008.0307, 2009.
 - Vesala, T., Kljun, N., Rannik, U., Rinne, J., Sogachev, A., Markkanen, T., Sabelfeld, K., Foken, T., and Leclerc, M. Y.: Flux and concentration footprint modelling: state of the art, Environ. Pollut., 152, 653–666, https://doi.org/10.1016/j.envpol.2007.06.070, 2008.
- Vesala, T., Tuittila, E.-S., Mammarella, I., and Alekseychik, P.: FLUXNET-CH4 FI-Si2 Siikaneva-2 Bog, https://doi.org/10.18140/FLX/1669639, 2020.
 - Villa, J. A., Ju, Y., Yazbeck, T., Waldo, S., Wrighton, K. C., and Bohrer, G.: Ebullition dominates methane fluxes from the water surface across different ecohydrological patches in a temperate freshwater marsh at the end of the growing season, Sci. Total Environ., 767, 144498, https://doi.org/10.1016/j.scitotenv.2020.144498, 2021.
- Virkkala, A.-M., Virtanen, T., Lehtonen, A., Rinne, J., and Luoto, M.: The current state of CO2 flux chamber studies in the
 Arctic tundra: A review, Progress in Physical Geography: Earth and Environment, 42, 162–184, https://doi.org/10.1177/0309133317745784, 2018.
 - Voigt, C., Virkkala, A.-M., Hould Gosselin, G., Bennett, K. A., Black, T. A., Detto, M., Chevrier-Dion, C., Guggenberger, G., Hashmi, W., Kohl, L., Kou, D., Marquis, C., Marsh, P., Marushchak, M. E., Nesic, Z., Nykänen, H., Saarela, T., Sauheitl, L., Walker, B., Weiss, N., Wilcox, E. J., and Sonnentag, O.: Arctic soil methane sink increases with drier conditions and higher ecosystem respiration, Nat. Clim. Chang., 13, 1095–1104, https://doi.org/10.1038/s41558-023-01785-3, 2023.
 - Vroom, R. J. E., van den Berg, M., Pangala, S. R., van der Scheer, O. E., and Sorrell, B. K.: Physiological processes affecting methane transport by wetland vegetation A review, Aquat. Bot., 182, 103547, https://doi.org/10.1016/j.aquabot.2022.103547, 2022.
- Wang, J., Luo, Y., Quan, Q., Ma, F., Tian, D., Chen, W., Wang, S., Yang, L., Meng, C., and Niu, S.: Effects of warming and clipping on CH4 and N2O fluxes in an alpine meadow, Agric. For. Meteorol., 297, 108278, https://doi.org/10.1016/j.agrformet.2020.108278, 2021.
- Wang, J. M., Murphy, J. G., Geddes, J. A., Winsborough, C. L., Basiliko, N., and Thomas, S. C.: Methane fluxes measured by eddy covariance and static chamber techniques at a temperate forest in central Ontario, Canada, Biogeosciences, 10, 4371–4382, https://doi.org/10.5194/bg-10-4371-2013, 2013.
 - Wang, P., Wang, J., Elberling, B., Yang, L., Chen, W., Song, L., Yan, Y., Wang, S., Pan, J., He, Y., and Niu, S.: Increased annual methane uptake driven by warmer winters in an alpine meadow, Glob. Chang. Biol., 28, 3246–3259, https://doi.org/10.1111/gcb.16120, 2022.
- Whiting, G. J. and Chanton, J. P.: Control of the diurnal pattern of methane emission from emergent aquatic macrophytes by gas transport mechanisms, Aquat. Bot., 54, 237–253, https://doi.org/10.1016/0304-3770(96)01048-0, 1996.
 - Wille, C., Kutzbach, L., Sachs, T., Wagner, D., and Pfeiffer, E.-M.: Methane emission from Siberian arctic polygonal tundra: eddy covariance measurements and modeling: methane emission from Siberian arctic tundra. Glob. Chang. Biol., 14, 1395–1408, https://doi.org/10.1111/j.1365-2486.2008.01586.x, 2008.

- Xu, K., Metzger, S., and Desai, A. R.: Surface-atmosphere exchange in a box: Space-time resolved storage and net vertical fluxes from tower-based eddy covariance, Agric. For. Meteorol., 255, 81–91, https://doi.org/10.1016/j.agrformet.2017.10.011, 2018.
 - Yeo, I. and Johnson, R. A.: A new family of power transformations to improve normality or symmetry, Biometrika, 87, 954–959, https://doi.org/10.1093/BIOMET/87.4.954, 2000.
- Yuan, K., Li, F., McNicol, G., Chen, M., Hoyt, A., Knox, S., Riley, W. J., Jackson, R., and Zhu, Q.: Boreal-Arctic wetland methane emissions modulated by warming and vegetation activity, Nat. Clim. Chang., 14, 282–288, https://doi.org/10.1038/s41558-024-01933-3, 2024.
 - Yu, L., Wang, H., Wang, G., Song, W., Huang, Y., Li, S.-G., Liang, N., Tang, Y., and He, J.-S.: A comparison of methane emission measurements using Eddy Covariance and manual and automated chamber-based techniques in Tibetan Plateau alpine wetland, Environ. Pollut., 181, 81–90, https://doi.org/10.1016/j.envpol.2013.06.018, 2013.
- Zhang, Y., Sachs, T., Li, C., and Boike, J.: Upscaling methane fluxes from closed chambers to eddy covariance based on a permafrost biogeochemistry integrated model, Glob. Chang. Biol., 18, 1428–1440, https://doi.org/10.1111/j.1365-2486.2011.02587.x, 2012.
 - Zhao, K., Ma, B., Xu, Y., Stirling, E., and Xu, J.: Light exposure mediates circadian rhythms of rhizosphere microbial communities, ISME J., 15, 2655–2664, https://doi.org/10.1038/s41396-021-00957-3, 2021.
- Zhu, Q., Yuan, K., Li, F., Riley, W. J., Hoyt, A., Jackson, R., McNicol, G., Chen, M., Knox, S. H., Briner, O., Beerling, D., Gedney, N., Hopcroft, P. O., Ito, A., Jain, A. K., Jensen, K., Kleinen, T., Li, T., Liu, X., McDonald, K. C., Melton, J. R., Miller, P. A., Müller, J., Peng, C., Poulter, B., Qin, Z., Peng, S., Tian, H., Xu, X., Yao, Y., Xi, Y., Zhang, Z., Zhang, W., Zhu, Q., and Zhuang, Q.: Critical needs to close monitoring gaps in pan-tropical wetland CH₄ emissions, Environ. Res. Lett., 19, 114046, https://doi.org/10.1088/1748-9326/ad8019, 2024.