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Abstract

We present a context-aware transformer model for estimating Doppler velocity from incoherent
scatter radar (ISR) spectra. The model is based on the standard transformer encoder with
adaptations from the Vision Transformer. Trained entirely on theoretical spectra, the Al model

10  generalizes well for Arecibo ISR data and outperforms the traditional fitting methods
significantly. Simulations show that the velocity error of the conventional least-squares fitting
(LSF) is 1.5 to 3.5 times that of the Al model using 5 input heights. An inference from the Al
model is approximately 100 times faster than the LSF method and requires minimal hardware,
making it practical for large-scale or real-time processing. The Al approach applies to all

15 situations where the spectrum can be parameterized.
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1. Introduction

20 Measuring the Doppler velocity of a medium using the power spectrum is a common problem in
many applications. Incoherent scatter radars (ISR) provide one of the most direct and reliable
means of measuring ionospheric parameters, including Doppler velocity, particularly during
disturbed conditions. This study focuses on accurately determining the ionosphere velocity from
the power spectra of ISR. Accurate Doppler velocity measurements are important for

25 understanding ionosphere dynamics, monitoring geomagnetic activity, and improving space
weather forecasts.

Doppler velocity from the power spectrum is traditionally derived using three main approaches:
the moment, autocorrelation function (ACF), and the least-squares fitting (LSF) method
(Woodman, R. F., 1983; Woodman & Hagfors, 1969; Li & Zhou, 2024). The moment method

30 calculates the first moment of the Doppler power spectrum, yielding a weighted average
velocity. The ACF method computes the ratio of the ACF’s imaginary to the real part at different
lags. The ACF and moment methods require only the power spectrum to be symmetric, but do
not need any other knowledge of the power spectrum. Their easy implementations and
computational efficiency make them a popular first choice. Nevertheless, the ACF and moment

35 methods can be sensitive to noise and may not always have the desired accuracy. The least-
squares fitting (LSF) method compares the measured power spectrum to theoretical spectra and
estimates the Doppler shift and spectral width by typically minimizing the least-squares error.
This approach is more accurate but computationally more demanding.

Recent advances in machine learning have seen the method used in diverse fields. Unlike

40  traditional methods, our results show that machine learning models learn directly from data and
surpass traditional approaches, especially under noisy or complex settings. Transformer
architectures, in particular, have shown strong results in a range of tasks due to their ability to
extract relevant patterns from sequences using self-attention (Vaswani et al. 2017). Although
originally developed for natural language processing, they have been adapted to structured

45 inputs. We demonstrate here that transformers can process ISR spectral data and estimate
Doppler velocity using context across the full input profile.

In the following two sections, we first describe the ISR data and then the Al model used for this
work. In Section 4, we compare the Al results with the traditional LSF method using data taken
by the Arecibo ISR data to demonstrate the former's advantages.

50 2. Experimental and training data

All training and evaluation data are synthetically generated using the standard theoretical
incoherent scatter spectrum model (Swartz & Farley, 1979; Kudeki & Milla, 2011). Each sample
consists of 5 consecutive altitude bins, spaced 300 meters apart, with one incoherent scatter
spectrum per altitude bin. The spectrum at each altitude is sampled at 101 points between

55 +12.2 kHz, with a resolution of 244.3 Hz and normalized to have a maximum value of 1. The
bandwidth and frequency resolution are selected based on the maximum compatibility with the
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existing Arecibo Observatory ISR data processing workflow described in Li & Zhou (2024). These
hyperparameters can be easily modified to support different coding configurations or facilities.

In a typical Arecibo Coded Long Pulse (CLP) configuration with a 2 ps gate width, the full

60 bandwidth is 500 kHz, corresponding to a Doppler aliasing limit of +87.2 km/s. Typical line-of-
sight ion velocities are below 100 m/s, corresponding to a Doppler shift of about 287 Hz. The
raw spectrum is computed from CLP data with a native resolution of 2.27 kHz and is interpolated
to 244.3 Hz using FFT zero padding. The interpolation was originally introduced for compatibility
with the traditional curve fitting method and is retained in this work without modification.

65  Although further interpolating the spectrum to a finer frequency grid may appear to be
beneficial, we observe no performance gain once the network is sufficiently trained. The input
head consists of a multi-layer perceptron (MLP) (Hornik et al. 1989) that processes the spectrum
before it enters the transformer blocks. This learned projection serves as a data-driven
alternative to fixed interpolation and is likely able to extract sub-bin Doppler information by

70 learning smooth spectral structures directly from the input. Because the MLP operates across all
frequency bins simultaneously, it can learn to resolve fine-grained shifts and spectral shapes
without relying on increased frequency resolution.

In the synthesized training data, the Doppler velocity is randomly assigned for each sample,
drawn uniformly from -100 to 100 m/s. The signal-to-noise ratio (SNR) is also randomly

75  assigned, following a logarithmic distribution between 5 and 50 dB, representing the range from
low-quality to near noise-free ISR measurements. All other plasma parameters, including
electron density (Ne), electron temperature (Te), ion temperature (Ti), and the ion fractions of H*,
He*, 0%, and O,*, are randomly sampled from real ISR measurements obtained through
traditional LSF methods as discussed in Li and Zhou (2024, 2025a).

80  To generate a full vertical profile for each parameter, including SNR, a smooth nonlinear curve is
constructed using the expression

a
, L

Y@ =Xo+ X = X)(5)  1=12,.,N (1)

where N is the number of consecutive altitude bins, X, and X; are the lower and upper
bounds of the parameter value, centered around a given input value with a random range of

85  variation up to 10%. For this study, we choose N=5 for our context-aware model and N=1 is
context-unaware. The exponent a is randomly selected from either the concave down range [1,
1.1], which produces a gently decreasing slope, or the concave up range [0.9, 1.0], which
produces a curve that rises more steeply at lower altitudes and flattens at the top. Each curve is
flipped in order with 50% probability to allow both increasing and decreasing trends.

90  Anoffset is used across the N heights to ensure the value at index integer(N /2)+1 equals the
originally sampled target value. A total of 2 million training samples are generated using this
process. An independent test set of 100,000 samples is constructed using the same procedure.
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This approach aligns with broader definitions of physics-informed machine learning, where
domain knowledge shapes the training data rather than being hard-coded into the model itself.

95  The measurements used for validation and comparison are data taken at the Arecibo
Observatory at September 14, 2014, using the CLP data. The characteristics of the CLP program
and the Arecibo instruments can be found in Sulzer (1986), Isham et al. (2000), and Li and Zhou
(2024).

3. Methods
100 3.1. Al architecture

We follow the standard transformer encoder architecture introduced by Vaswani et al. (2017),
with adaptations based on the Vision Transformer (ViT) framework of Dosovitskiy et al. (2020).
For brevity, we refer readers to these original works for detailed descriptions of the core
architecture and attention mechanisms. Building on this foundation, we developed a context-

105 aware deep learning workflow to estimate Doppler velocity directly from ISR-derived altitude
profiles.

The input consists of spectral measurements across multiple altitudes, originally structured as a
grid of 101 frequency points by 5 heights. The 5x101 input (heights x frequency) is first flattened
into a 505x1 vector and passed through a Conv1D layer with stride 101 and output dimension

110 512, producing a 5x512 tensor. This step serves a dual purpose, as it restructures the data into 5
tokens with 512-dimensional embeddings compatible with the later self-attention layers, and it
allows the convolutional filters to capture potential spectral correlations across adjacent height
levels

Transformers do not have any built-in notion of token order or spatial structure, so positional

115 encodings are required to provide this information. We use trainable positional encodings
learned from data, which allow the model to capture patterns in structured inputs more
effectively than fixed alternatives. This positional information is important for learning spatial
dependencies relevant to Doppler velocity estimation.

Each transformer block consists of a multi-head self-attention mechanism followed by a feed-

120 forward network, with residual connections and layer normalization applied at each sublayer. We
adopt a pre-normalization configuration, where layer normalization is applied before both the
attention and feed-forward modules to improve training stability in deeper networks.

A dedicated trainable classification token, commonly referred to as [CLS] token in Al literature, is
prepended to the input sequence and serves as a summary representation. In transformer

125 architectures such as BERT or ViT (Devlin et al. 2019; Dosovitskiy et al. 2020). The [CLS] token
interacts with all tokens via self-attention and is used as the final input to the regression head.
We also evaluate an alternative strategy using global average pooling across all token outputs, as
discussed in Section 3.2. An overview of the model architecture is shown in Figure 1.
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130 Figure 1. Model overview. The architecture consists of 31 transformer encoder blocks, 321 layers
in total, and approximately 100 million parameters.

3.2 training

The model is trained using 2 million synthetic samples and validated on 10,000 synthetic
validation samples. The batch size is 512. Training is run for 30 epochs using the Adam optimizer

135  and mean squared error (MSE) as the loss function. A cosine learning rate schedule is used with
linear warmup for the first 1000 iterations. The learning rate starts at 107 and linearly increases
to 10 after 1000 iterations. Then, the LR decays following a cosine curve, reaching 107 of the
initial learning rate by the final epoch.

Layer-wise Learning Rate Decay (LLRD) is a fine-tuning strategy commonly used in natural

140 language processing, particularly for models like Bidirectional Encoder Representations from
Transformers (BERT). We found that LLRD is necessary for stable training in our applications,
particularly in deeper models. Without LLRD, deeper models fail to benefit from scaling. In many
cases, increasing the number of transformer blocks leads to worse performance than smaller
models. While our model can operate with as few as 1 transformer block, we observed

145 consistent performance gain up to 31 blocks based on simulation results. Therefore, we adopt a
31-block architecture and apply LLRD with a decay rate of 0.9, which stabilizes training and
enables effective scaling.

3.3 Simulations and comparisons

150  We evaluate two key design choices in the model architecture: whether to use the full altitude-
resolved ISR input or an averaged spectrum, and whether to aggregate token representations
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using a [CLS] token or global average pooling. The context-aware version (5ht-aware) treats each
of the 5 altitude levels as a separate input token, preserving vertical structure and allowing the
transformer to model inter-altitude dependencies through self-attention. The context-unaware

155  version (context-unaware) averages the 5 spectra into a single profile, removing altitude
information.

For aggregation, we compare global average pooling to a trainable [CLS] token. In the pooling
variant, token outputs from the final transformer layer are averaged before being passed to the
regression head. In the [CLS] configuration, a trainable token is prepended to the sequence and

160  extracted after the final layer, allowing the model to learn a global representation directly from
the full token set.

We first compare the two aggregation methods using the context-aware input. Once the better
aggregation strategy is determined, we fix it and evaluate the impact of vertical context by
comparing the context-aware and context-unaware variants. Finally, the traditional curve fitting

165 method is included as a reference for comparison against the best-performing deep learning
model.

3.3.1 CLS vs global pooling

The two aggregation strategies differ in how the final representation is derived and fed to the

170  output MLP. In the [CLS] configuration, a trainable [CLS] token is prepended to the input
sequence before positional encoding. After passing through the transformer layers, only the final
state of the [CLS] token is used as input to the output MLP, which produces the Doppler velocity
prediction. In the global average pooling variant, no [CLS] token is used. Instead, the outputs of
all tokens from the final transformer layer are averaged along the sequence dimension, and this

175 pooled vector is passed to the output MLP. Both configurations use the same output head
architecture, but differ in how information from the sequence is aggregated.

Our experiments show that the [CLS] aggregation strategy consistently outperforms global
average pooling in terms of RMSE and scalability. With a shallow 2-block model, [CLS] achieves
about 2 percent lower RMSE than global pooling. As the model scales to 31 blocks, the gap

180  widens to roughly 5 percent. In contrast, global pooling does not benefit from increased depth,
as deeper models show no performance gain and often exhibit unstable training behavior.
Although global pooling may occasionally match the [CLS] model on specific validation runs, its
overall performance is less stable. These findings indicate that global pooling is less effective in
our setting and that the [CLS] token provides more robust and scalable performance.

185
3.3.2 context awareness

In traditional ISR spectral fitting, range integration or vertical smoothing is often applied before
parameter estimation. This reduces noise by averaging incoherent scatter spectra across
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altitude, but removes vertical structure. The context-unaware model adopts the same approach

190 by averaging the 5 x 101 input across altitude into a single 101-point spectrum, treated as one
altitude. Since self-attention requires multiple tokens, the 101-point spectrum is reshaped into
101 tokens with one feature each so that attention operates along the spectral dimension.

The context-aware model retains the full vertical structure by treating each altitude as a separate

token. It takes all 5 incoherent scatter spectra directly, with each token representing one altitude
195 and containing a 101-point spectrum. The transformer receives all 5 tokens and returns a single

Doppler velocity prediction. The middle altitude bin (3™ height) is used as the prediction target.

Both models use the same 31-block [CLS]-based architecture but are trained and tested with
different input formats. The context-aware model is trained on the full 5 x 101 input. The
context-unaware model is trained on standalone 101-point spectra with artificial noise and no

200  vertical variation. In other words, it receives the average of the 5 x 101 input, reshaped to 101 x
1.

To benchmark model performance, we compare the Al models against two LSF baselines using
simulated data. The first scenario, LSF-ideal, assumes access to the true (noise-free) spectrum
with known amplitude, which is not achievable in real measurements. The second, LSF-realistic,
205  follows the approach discussed in Li & Zhou (2024, 2025), where plasma parameters, including
Doppler velocity, are estimated from noisy spectra through parameterized fitting. Both LSF
methods use the averaged spectrum from five heights to match the resolution of the Al models.

Figure 2(a) shows the root mean squared error (RMSE) as a function of the noise standard
deviation (1) and equivalent spectral bandwidth for the 5ht-aware model. Figure 2(b-d) show

210  the RMSE ratios of the 5ht-aware model to the other three methods. The equivalent bandwidth
characterizes the effective spectral width of the incoherent scatter spectrum and reflects the
combined influence of ion temperature, mass, and composition (Zhou, 2002). Its range in Figure
2 spans the 430 MHz incoherent scatter spectral bandwidth from the E-region to the topside. In
the simulations, the ground truth Doppler velocities follow a uniform distribution in the range

215  between -85 to 85 m/s. The velocity RMSE from the 5ht-aware model in Figure 2(a) increases
with 7 as expected. When 7 is above 30 (~10'%), it is largely independent of the equivalent
bandwidth.

The context-aware model consistently achieves lower RMSE than the LSF-realistic and context-
unaware models across the full practical range of 1 values and equivalent bandwidths. While
220  arithmetic averaging is most effective in reducing uncorrelated stationary Gaussian noise, the
context-aware model implicitly functions as a denoising network. It has prior knowledge of the
typical spectral shapes at different heights and learns to extract consistent features across the
noisy inputs. As a result, it may suppress noise more effectively than simple arithmetic averaging
and hence outperforms the context-unaware model. The LSF-ideal method outperforms the 5ht-
225 aware model in the low noise regime, where the input spectrum is nearly noise-free and the
fitting problem is well-conditioned. In this case, the spectrum is effectively a clean copy of the
known target, and the algorithm can retrieve the Doppler largely without error. The RMSE of the

7
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Figure 2. (a) RMSE in logio(m/s) as a function of noise standard deviation and equivalent
bandwidth for Sht-aware model. RMSE ratio of context-unaware (b), LSF-ideal (c) and LSF-
realistic (d) to 5ht-aware model.

In Figure 3, we compare the performances of the Sht-aware, LSF-realistic and the frequently
used moment method as a function of altitude for a representative condition at Arecibo. Here
we consider not only the noise standard deviation as in Figure 2, but also the bias as well. The
velocity bias and standard deviation (o) are obtained from 24,795 runs with the same input
velocity and noise standard deviation, 1. The velocity is made to change with altitude as v(z) =
A(2) cos(&_zﬁ (z—90)), where A(z) =50(1 — e_%) and z is the altitude in km.

v(2)/30 is depicted in Figure 3(a) as a dotted magenta line. The other three lines in Figure 3(a)
are the biases, defined as the input velocity minus the results from the three methods. The
ionosphere parameters and 7 are taken from representative daytime measurements on Apr. 12,
2013 at Arecibo. The 5ht-aware model has a comparable bias to the LSF method. The bias of LSF-
realistic is approximately 3% of the true velocity for the noise standard deviation used. The LSF
and moment methods underestimate the true velocity for the same reason that the mean
velocity tends to zero in the absence of noise. It is of interest to note that the largest biases of
the Sht-aware model occur at the middle of the velocity range, likely due to the model’s effort to
compensate for the larger bias typically associated with higher velocities. LSF’s standard
deviation (0;5r) does not only depend on 1 but also on the velocity amplitude. opoment 1S
linearly proportional to n for all the altitudes. oy; is the smallest among the three methods. To
guantitatively show the improvement of the Al over the other two methods, we plot the ratio of
velocity standard deviations in Figure 3(c). Averaging over 87 to 193 km, ady; is about 64% and

38% of o 5r and Ouyoment, respectively.
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Figure 3. (a) Simulated biases and (b) standard deviations of the Al 5ht-aware model,
LSF-realistic, and moment methods as a function of altitude. The magenta curve in the
middle panel represents 10007. (c) Ratios of standard deviation of Al to LSF and
moment methods.

4. Application to Arecibo ISR data processing

We apply the analysis technique to the data taken at Arecibo on July 16, 2015. During the

period, the Arecibo linefeed rotated back and forth in the azimuth direction at a slew rate of
24°/min with a constant zenith angle of 15°. The raw data were processed to mitigate the
interferences as discussed in Zhou et al. (2024) before computing the spectra. Figure 4(a) and
4(b) show the line-of-sight velocities from the context-aware model and the LSF method
discussed above. The integration time for the power spectrum is 30 sec. The setup is the same as
in the above section, i.e., the power spectra are integrated over 5 heights to have a range
resolution of 1.5 km, and the number of aware heights in the Al context-aware model is 5. As
seen in the above section, the context-unaware and moment methods are inferior to the 5ht-
aware and LSF-realistic method, respectively, and will not be discussed in this section.

EGUsphere\
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Figure 4. (a) Line-of-sight velocity derived from the Sht-aware model (upper panel), (b) from the
LSF-realistic method (lower panel). Positive velocity is away from the radar.

The line-of-sight velocity, V, is a superposition of the horizontal and vertical velocities. The
vertical stripes in the velocity plots are due to the constant rotation of the antenna. As we do not

275 expect V, to change randomly, its height coherence reflects the data quality. As seen from Figure
4, the Al plot shows better coherence than the LSF plot in the bottom. This is more clearly seen
between 90 to 100 km and between 120 and 125 km. The amplitude in the LSF plot is smaller, as
discussed above.

For a slowly varying quantity, the standard deviation of the second-order difference of

280 independent samplesis V6 times of the random error, as measured by the standard deviation.
Figure 5(a) shows statistical errors (divided by 40) of the S5ht-aware model (blue dots) and the
LSF method (red dots) when the 2" order partial difference is taken in the altitude direction. The
error profiles are similar to that shown Figure 3(c), and the lowest error occurs at an altitude of
100 km. Both Al and LSF errors increase almost linearly from 100 km to about 180 km due to the

285 increase in spectral width, and hardly vary below the F-region peak from 180 to 300 km. The
average electron density profile for this period is plotted as a black line for background
information. The average F-region peak altitude during this period is at 330 km. The error ratio
of the 5ht-aware model to LSF-realistic method, v, is plotted as a green line. In Figure 5(a),
where the error is based on the 2" order difference in altitude, y is largely a constant above

290 120 km at 0.55. Below 100 km, y is about 0.4. The about 50% error reduction in the Al model in
Figure 5(a) is largely consistent with the results shown in Figure 3(c) and Figure 2(d).

10
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We can also estimate the error by taking the 2" order partial difference with respect to time.

The results are shown in Figure 5(b). The Al error is much larger than that in Figure 5(a) even

though the error trends remain the same while the LSF error is not much affected. A possible

explanation for the difference in the error behaviors in Figure 5(a) and 5(b) is that the noise
baseline, which needs to be subtracted from the spectrum before Doppler processing, is a

function of frequency as well as time. How the noise baseline is estimated affects the results. It

impacts the LSF method less because the fitting error is already large due to statistical
fluctuation. In any event, the Al error is still 30% smaller than the LSF method around 110 km,

which is the focus of the current study. Above 120 km, a larger number of heights can be used in

the context-aware model to reduce the error.
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Figure 5. (a) Average velocity errors (divided by 20) estimated from the 2" order difference in
altitude using the Al 5ht-aware model and the LSF-realistic method over the period of 06:30-
15:25 LT on July 16, 2015. The green line is the ratio of Al to LSF error. The black line is the
average electron density. (b) Same as (a) except that the 2" order difference is taken in the time
direction.

5. Conclusion

In this study, the Al context-aware model uses 5 heights to allow a good height resolution (1.5
km) for the E-region. At altitude ranges where coarser height resolution is acceptable, the
number of heights in the context-aware model can be increased. This further elevates the
advantage of the Al method. For example, the error ratio of the LSF-realistic to the Al context-
aware model using 9 input heights is larger than 2 in practically all scenarios. Beyond accuracy, Al
transformer models offer a computational advantage as well over the least-squares fitting
method. Velocity inference is roughly 100 times faster than the fitting method and requires
significantly fewer computational resources. Once trained, the model runs efficiently on modest
hardware, making it suitable for real-time applications and large-scale data processing.

11
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To conclude, we have developed a context-aware transformer model to determine the Doppler
velocity from incoherent scatter spectra. Simulations and applications to the Arecibo incoherent

320  scatter radar data show that the Al model consistently outperforms the traditional least-squares
fitting method across a wide range of conditions, demonstrating strong generalization despite
being trained entirely on synthetic data. Because the training data is based on physics-based
simulations, the model is not limited to any specific radar and can be applied more broadly to
any situation where the spectra can be parameterized.
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The Arecibo raw data can be downloaded from the Texas Advanced Computing Center

330 (https://tacc.utexas.edu/research/tacc-research/arecibo-observatory/). The analyzed
data discussed in this article are available in Li & Zhou (2025b).
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