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Abstract 

We present a context-aware transformer model for estimating Doppler velocity from incoherent 

scatter radar (ISR) spectra. The model is based on the standard transformer encoder with 

adaptations from the Vision Transformer. Trained entirely on theoretical spectra, the AI model 

generalizes well for Arecibo ISR data and outperforms the traditional fitting methods 10 

significantly. Simulations show that the velocity error of the conventional least-squares fitting 

(LSF) is 1.5 to 3.5 times that of the AI model using 5 input heights. An inference from the AI 

model is approximately 100 times faster than the LSF method and requires minimal hardware, 

making it practical for large-scale or real-time processing. The AI approach applies to all 

situations where the spectrum can be parameterized. 15 

Keywords: Context-aware transformer; incoherent scatter radar; Doppler velocity estimation; AI 

optimization 
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1. Introduction 

Measuring the Doppler velocity of a medium using the power spectrum is a common problem in 20 

many applications. Incoherent scatter radars (ISR) provide one of the most direct and reliable 

means of measuring ionospheric parameters, including Doppler velocity, particularly during 

disturbed conditions. This study focuses on accurately determining the ionosphere velocity from 

the power spectra of ISR. Accurate Doppler velocity measurements are important for 

understanding ionosphere dynamics, monitoring geomagnetic activity, and improving space 25 

weather forecasts.  

Doppler velocity from the power spectrum is traditionally derived using three main approaches: 

the moment, autocorrelation function (ACF), and the least-squares fitting (LSF) method 

(Woodman, R. F., 1983; Woodman & Hagfors, 1969; Li & Zhou, 2024). The moment method 

calculates the first moment of the Doppler power spectrum, yielding a weighted average 30 

velocity. The ACF method computes the ratio of the ACF’s imaginary to the real part at different 

lags. The ACF and moment methods require only the power spectrum to be symmetric, but do 

not need any other knowledge of the power spectrum. Their easy implementations and 

computational efficiency make them a popular first choice. Nevertheless, the ACF and moment 

methods can be sensitive to noise and may not always have the desired accuracy. The least-35 

squares fitting (LSF) method compares the measured power spectrum to theoretical spectra and 

estimates the Doppler shift and spectral width by typically minimizing the least-squares error. 

This approach is more accurate but computationally more demanding.  

Recent advances in machine learning have seen the method used in diverse fields. Unlike 

traditional methods, our results show that machine learning models learn directly from data and 40 

surpass traditional approaches, especially under noisy or complex settings. Transformer 

architectures, in particular, have shown strong results in a range of tasks due to their ability to 

extract relevant patterns from sequences using self-attention (Vaswani et al. 2017). Although 

originally developed for natural language processing, they have been adapted to structured 

inputs. We demonstrate here that transformers can process ISR spectral data and estimate 45 

Doppler velocity using context across the full input profile.  

In the following two sections, we first describe the ISR data and then the AI model used for this 

work. In Section 4, we compare the AI results with the traditional LSF method using data taken 

by the Arecibo ISR data to demonstrate the former's advantages. 

2. Experimental and training data 50 

All training and evaluation data are synthetically generated using the standard theoretical 

incoherent scatter spectrum model (Swartz & Farley, 1979; Kudeki & Milla, 2011). Each sample 

consists of 5 consecutive altitude bins, spaced 300 meters apart, with one incoherent scatter 

spectrum per altitude bin. The spectrum at each altitude is sampled at 101 points between 

±12.2 kHz, with a resolution of 244.3 Hz and normalized to have a maximum value of 1. The 55 

bandwidth and frequency resolution are selected based on the maximum compatibility with the 
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existing Arecibo Observatory ISR data processing workflow described in Li & Zhou (2024). These 

hyperparameters can be easily modified to support different coding configurations or facilities. 

In a typical Arecibo Coded Long Pulse (CLP) configuration with a 2 µs gate width, the full 

bandwidth is 500 kHz, corresponding to a Doppler aliasing limit of ±87.2 km/s. Typical line-of-60 

sight ion velocities are below ±100 m/s, corresponding to a Doppler shift of about 287 Hz. The 

raw spectrum is computed from CLP data with a native resolution of 2.27 kHz and is interpolated 

to 244.3 Hz using FFT zero padding. The interpolation was originally introduced for compatibility 

with the traditional curve fitting method and is retained in this work without modification. 

Although further interpolating the spectrum to a finer frequency grid may appear to be 65 

beneficial, we observe no performance gain once the network is sufficiently trained. The input 

head consists of a multi-layer perceptron (MLP) (Hornik et al. 1989) that processes the spectrum 

before it enters the transformer blocks. This learned projection serves as a data-driven 

alternative to fixed interpolation and is likely able to extract sub-bin Doppler information by 

learning smooth spectral structures directly from the input. Because the MLP operates across all 70 

frequency bins simultaneously, it can learn to resolve fine-grained shifts and spectral shapes 

without relying on increased frequency resolution. 

In the synthesized training data, the Doppler velocity is randomly assigned for each sample, 

drawn uniformly from −100 to 100 m/s. The signal-to-noise ratio (SNR) is also randomly 

assigned, following a logarithmic distribution between 5 and 50 dB, representing the range from 75 

low-quality to near noise-free ISR measurements. All other plasma parameters, including 

electron density (Ne), electron temperature (Te), ion temperature (Ti), and the ion fractions of H⁺, 

He⁺, O⁺, and O₂⁺, are randomly sampled from real ISR measurements obtained through 

traditional LSF methods as discussed in Li and Zhou (2024, 2025a).  

To generate a full vertical profile for each parameter, including SNR, a smooth nonlinear curve is 80 

constructed using the expression 

𝑦(𝑖) = 𝑋0 + (𝑋1 − 𝑋0) (
𝑖

𝑁
)

𝛼
,   𝑖 = 1,2, … , 𝑁    (1) 

where 𝑁 is the number of consecutive altitude bins, 𝑋0 and 𝑋1 are the lower and upper 

bounds of the parameter value, centered around a given input value with a random range of 

variation up to 10%. For this study, we choose N=5 for our context-aware model and N=1 is 85 

context-unaware. The exponent 𝛼 is randomly selected from either the concave down range [1, 

1.1], which produces a gently decreasing slope, or the concave up range [0.9, 1.0], which 

produces a curve that rises more steeply at lower altitudes and flattens at the top. Each curve is 

flipped in order with 50% probability to allow both increasing and decreasing trends. 

An offset is used across the 𝑁 heights to ensure the value at index integer(𝑁/2)+1 equals the 90 

originally sampled target value. A total of 2 million training samples are generated using this 

process. An independent test set of 100,000 samples is constructed using the same procedure. 
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This approach aligns with broader definitions of physics-informed machine learning, where 

domain knowledge shapes the training data rather than being hard-coded into the model itself. 

The measurements used for validation and comparison are data taken at the Arecibo 95 

Observatory at September 14, 2014, using the CLP data. The characteristics of the CLP program 

and the Arecibo instruments can be found in Sulzer (1986), Isham et al. (2000), and Li and Zhou 

(2024).  

3. Methods 

3.1. AI architecture 100 

We follow the standard transformer encoder architecture introduced by Vaswani et al. (2017), 

with adaptations based on the Vision Transformer (ViT) framework of Dosovitskiy et al. (2020). 

For brevity, we refer readers to these original works for detailed descriptions of the core 

architecture and attention mechanisms. Building on this foundation, we developed a context-

aware deep learning workflow to estimate Doppler velocity directly from ISR-derived altitude 105 

profiles.  

The input consists of spectral measurements across multiple altitudes, originally structured as a 

grid of 101 frequency points by 5 heights. The 5×101 input (heights × frequency) is first flattened 

into a 505×1 vector and passed through a Conv1D layer with stride 101 and output dimension 

512, producing a 5×512 tensor. This step serves a dual purpose, as it restructures the data into 5 110 

tokens with 512-dimensional embeddings compatible with the later self-attention layers, and it 

allows the convolutional filters to capture potential spectral correlations across adjacent height 

levels 

Transformers do not have any built-in notion of token order or spatial structure, so positional 

encodings are required to provide this information. We use trainable positional encodings 115 

learned from data, which allow the model to capture patterns in structured inputs more 

effectively than fixed alternatives. This positional information is important for learning spatial 

dependencies relevant to Doppler velocity estimation. 

Each transformer block consists of a multi-head self-attention mechanism followed by a feed-

forward network, with residual connections and layer normalization applied at each sublayer. We 120 

adopt a pre-normalization configuration, where layer normalization is applied before both the 

attention and feed-forward modules to improve training stability in deeper networks. 

A dedicated trainable classification token, commonly referred to as [CLS] token in AI literature, is 

prepended to the input sequence and serves as a summary representation. In transformer 

architectures such as BERT or ViT (Devlin et al. 2019; Dosovitskiy et al. 2020). The [CLS] token 125 

interacts with all tokens via self-attention and is used as the final input to the regression head. 

We also evaluate an alternative strategy using global average pooling across all token outputs, as 

discussed in Section 3.2. An overview of the model architecture is shown in Figure 1. 
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Figure 1. Model overview. The architecture consists of 31 transformer encoder blocks, 321 layers 130 

in total, and approximately 100 million parameters. 

3.2 training 

The model is trained using 2 million synthetic samples and validated on 10,000 synthetic 

validation samples. The batch size is 512. Training is run for 30 epochs using the Adam optimizer 

and mean squared error (MSE) as the loss function. A cosine learning rate schedule is used with 135 

linear warmup for the first 1000 iterations. The learning rate starts at 10-7 and linearly increases 

to 10-4 after 1000 iterations. Then, the LR decays following a cosine curve, reaching 10-7 of the 

initial learning rate by the final epoch.  

Layer-wise Learning Rate Decay (LLRD) is a fine-tuning strategy commonly used in natural 

language processing, particularly for models like Bidirectional Encoder Representations from 140 

Transformers (BERT). We found that LLRD is necessary for stable training in our applications, 

particularly in deeper models. Without LLRD, deeper models fail to benefit from scaling. In many 

cases, increasing the number of transformer blocks leads to worse performance than smaller 

models. While our model can operate with as few as 1 transformer block, we observed 

consistent performance gain up to 31 blocks based on simulation results. Therefore, we adopt a 145 

31-block architecture and apply LLRD with a decay rate of 0.9, which stabilizes training and 

enables effective scaling. 

 

3.3 Simulations and comparisons 

We evaluate two key design choices in the model architecture: whether to use the full altitude-150 

resolved ISR input or an averaged spectrum, and whether to aggregate token representations 
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using a [CLS] token or global average pooling. The context-aware version (5ht-aware) treats each 

of the 5 altitude levels as a separate input token, preserving vertical structure and allowing the 

transformer to model inter-altitude dependencies through self-attention. The context-unaware 

version (context-unaware) averages the 5 spectra into a single profile, removing altitude 155 

information. 

For aggregation, we compare global average pooling to a trainable [CLS] token. In the pooling 

variant, token outputs from the final transformer layer are averaged before being passed to the 

regression head. In the [CLS] configuration, a trainable token is prepended to the sequence and 

extracted after the final layer, allowing the model to learn a global representation directly from 160 

the full token set. 

We first compare the two aggregation methods using the context-aware input. Once the better 

aggregation strategy is determined, we fix it and evaluate the impact of vertical context by 

comparing the context-aware and context-unaware variants. Finally, the traditional curve fitting 

method is included as a reference for comparison against the best-performing deep learning 165 

model. 

 

3.3.1 CLS vs global pooling 

The two aggregation strategies differ in how the final representation is derived and fed to the 

output MLP. In the [CLS] configuration, a trainable [CLS] token is prepended to the input 170 

sequence before positional encoding. After passing through the transformer layers, only the final 

state of the [CLS] token is used as input to the output MLP, which produces the Doppler velocity 

prediction. In the global average pooling variant, no [CLS] token is used. Instead, the outputs of 

all tokens from the final transformer layer are averaged along the sequence dimension, and this 

pooled vector is passed to the output MLP. Both configurations use the same output head 175 

architecture, but differ in how information from the sequence is aggregated. 

Our experiments show that the [CLS] aggregation strategy consistently outperforms global 

average pooling in terms of RMSE and scalability. With a shallow 2-block model, [CLS] achieves 

about 2 percent lower RMSE than global pooling. As the model scales to 31 blocks, the gap 

widens to roughly 5 percent. In contrast, global pooling does not benefit from increased depth, 180 

as deeper models show no performance gain and often exhibit unstable training behavior. 

Although global pooling may occasionally match the [CLS] model on specific validation runs, its 

overall performance is less stable. These findings indicate that global pooling is less effective in 

our setting and that the [CLS] token provides more robust and scalable performance.  

 185 

3.3.2 context awareness 

In traditional ISR spectral fitting, range integration or vertical smoothing is often applied before 

parameter estimation. This reduces noise by averaging incoherent scatter spectra across 
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altitude, but removes vertical structure. The context-unaware model adopts the same approach 

by averaging the 5 × 101 input across altitude into a single 101-point spectrum, treated as one 190 

altitude. Since self-attention requires multiple tokens, the 101-point spectrum is reshaped into 

101 tokens with one feature each so that attention operates along the spectral dimension. 

The context-aware model retains the full vertical structure by treating each altitude as a separate 

token. It takes all 5 incoherent scatter spectra directly, with each token representing one altitude 

and containing a 101-point spectrum. The transformer receives all 5 tokens and returns a single 195 

Doppler velocity prediction. The middle altitude bin (3rd height) is used as the prediction target. 

Both models use the same 31-block [CLS]-based architecture but are trained and tested with 

different input formats. The context-aware model is trained on the full 5 × 101 input. The 

context-unaware model is trained on standalone 101-point spectra with artificial noise and no 

vertical variation. In other words, it receives the average of the 5 × 101 input, reshaped to 101 × 200 

1. 

To benchmark model performance, we compare the AI models against two LSF baselines using 

simulated data. The first scenario, LSF-ideal, assumes access to the true (noise-free) spectrum 

with known amplitude, which is not achievable in real measurements. The second, LSF-realistic, 

follows the approach discussed in Li & Zhou (2024, 2025), where plasma parameters, including 205 

Doppler velocity, are estimated from noisy spectra through parameterized fitting. Both LSF 

methods use the averaged spectrum from five heights to match the resolution of the AI models. 

Figure 2(a) shows the root mean squared error (RMSE) as a function of the noise standard 

deviation (𝜂) and equivalent spectral bandwidth for the 5ht-aware model. Figure 2(b-d) show 

the RMSE ratios of the 5ht-aware model to the other three methods. The equivalent bandwidth 210 

characterizes the effective spectral width of the incoherent scatter spectrum and reflects the 

combined influence of ion temperature, mass, and composition (Zhou, 2002). Its range in Figure 

2 spans the 430 MHz incoherent scatter spectral bandwidth from the E-region to the topside. In 

the simulations, the ground truth Doppler velocities follow a uniform distribution in the range 

between -85 to 85 m/s. The velocity RMSE from the 5ht-aware model in Figure 2(a) increases 215 

with 𝜂 as expected. When 𝜂 is above 30 (~101.5), it is largely independent of the equivalent 

bandwidth.  

The context-aware model consistently achieves lower RMSE than the LSF-realistic and context-

unaware models across the full practical range of 𝜂 values and equivalent bandwidths. While 

arithmetic averaging is most effective in reducing uncorrelated stationary Gaussian noise, the 220 

context-aware model implicitly functions as a denoising network. It has prior knowledge of the 

typical spectral shapes at different heights and learns to extract consistent features across the 

noisy inputs. As a result, it may suppress noise more effectively than simple arithmetic averaging 

and hence outperforms the context-unaware model. The LSF-ideal method outperforms the 5ht-

aware model in the low noise regime, where the input spectrum is nearly noise-free and the 225 

fitting problem is well-conditioned. In this case, the spectrum is effectively a clean copy of the 

known target, and the algorithm can retrieve the Doppler largely without error. The RMSE of the 
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LSF-realistic method is about 1.5 and 3.5 times that of the 5ht-aware model for 𝜂 at 0.1 and 

0.01, respectively.  

 230 

Figure 2. (a) RMSE in log₁₀(m/s) as a function of noise standard deviation and equivalent 

bandwidth for 5ht-aware model. RMSE ratio of context-unaware (b), LSF-ideal (c) and LSF-

realistic (d) to 5ht-aware model. 

In Figure 3, we compare the performances of the 5ht-aware, LSF-realistic and the frequently 

used moment method as a function of altitude for a representative condition at Arecibo. Here 235 

we consider not only the noise standard deviation as in Figure 2, but also the bias as well. The 

velocity bias and standard deviation (σ) are obtained from 24,795 runs with the same input 

velocity and noise standard deviation, 𝜂. The velocity is made to change with altitude as 𝑣(𝑧) =

𝐴(𝑧) cos(
2𝜋

(𝑧−60)0.8 (𝑧 − 90)), where 𝐴(𝑧) = 50(1 − 𝑒−
𝑧−90

10 ) and z is the altitude in km. 

𝑣(𝑧)/30 is depicted in Figure 3(a) as a dotted magenta line. The other three lines in Figure 3(a) 240 

are the biases, defined as the input velocity minus the results from the three methods. The 

ionosphere parameters and 𝜂 are taken from representative daytime measurements on Apr. 12, 

2013 at Arecibo. The 5ht-aware model has a comparable bias to the LSF method. The bias of LSF-

realistic is approximately 3% of the true velocity for the noise standard deviation used. The LSF 

and moment methods underestimate the true velocity for the same reason that the mean 245 

velocity tends to zero in the absence of noise. It is of interest to note that the largest biases of 

the 5ht-aware model occur at the middle of the velocity range, likely due to the model’s effort to 

compensate for the larger bias typically associated with higher velocities. LSF’s standard 

deviation (𝜎𝐿𝑆𝐹) does not only depend on 𝜂 but also on the velocity amplitude. 𝜎𝑀𝑜𝑚𝑒𝑛𝑡 is 

linearly proportional to 𝜂 for all the altitudes. 𝜎𝐴𝐼 is the smallest among the three methods. To 250 

quantitatively show the improvement of the AI over the other two methods, we plot the ratio of 

velocity standard deviations in Figure 3(c). Averaging over 87 to 193 km, 𝜎𝐴𝐼 is about 64% and 

38% of 𝜎𝐿𝑆𝐹 and 𝜎𝑀𝑜𝑚𝑒𝑛𝑡, respectively.  
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Figure 3. (a) Simulated biases and (b) standard deviations of the AI 5ht-aware model, 255 

LSF-realistic, and moment methods as a function of altitude. The magenta curve in the 

middle panel represents 1000𝜂. (c) Ratios of standard deviation of AI to LSF and 

moment methods.  

4. Application to Arecibo ISR data processing  

We apply the analysis technique to the data taken at Arecibo on July 16, 2015. During the 260 

period, the Arecibo linefeed rotated back and forth in the azimuth direction at a slew rate of 

24o/min with a constant zenith angle of 15o. The raw data were processed to mitigate the 

interferences as discussed in Zhou et al. (2024) before computing the spectra. Figure 4(a) and 

4(b) show the line-of-sight velocities from the context-aware model and the LSF method 

discussed above. The integration time for the power spectrum is 30 sec. The setup is the same as 265 

in the above section, i.e., the power spectra are integrated over 5 heights to have a range 

resolution of 1.5 km, and the number of aware heights in the AI context-aware model is 5. As 

seen in the above section, the context-unaware and moment methods are inferior to the 5ht-

aware and LSF-realistic method, respectively, and will not be discussed in this section. 
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 270 

Figure 4. (a) Line-of-sight velocity derived from the 5ht-aware model (upper panel), (b) from the 

LSF-realistic method (lower panel). Positive velocity is away from the radar. 

The line-of-sight velocity, Vr, is a superposition of the horizontal and vertical velocities. The 

vertical stripes in the velocity plots are due to the constant rotation of the antenna. As we do not 

expect Vr to change randomly, its height coherence reflects the data quality. As seen from Figure 275 

4, the AI plot shows better coherence than the LSF plot in the bottom. This is more clearly seen 

between 90 to 100 km and between 120 and 125 km. The amplitude in the LSF plot is smaller, as 

discussed above.  

For a slowly varying quantity, the standard deviation of the second-order difference of 

independent samples is √6 times of the random error, as measured by the standard deviation. 280 

Figure 5(a) shows statistical errors (divided by 40) of the 5ht-aware model (blue dots) and the 

LSF method (red dots) when the 2nd order partial difference is taken in the altitude direction. The 

error profiles are similar to that shown Figure 3(c), and the lowest error occurs at an altitude of 

100 km. Both AI and LSF errors increase almost linearly from 100 km to about 180 km due to the 

increase in spectral width, and hardly vary below the F-region peak from 180 to 300 km. The 285 

average electron density profile for this period is plotted as a black line for background 

information. The average F-region peak altitude during this period is at 330 km. The error ratio 

of the 5ht-aware model to LSF-realistic method, 𝛾, is plotted as a green line. In Figure 5(a), 

where the error is based on the 2nd order difference in altitude, 𝛾 is largely a constant above 

120 km at 0.55. Below 100 km, 𝛾 is about 0.4. The about 50% error reduction in the AI model in 290 

Figure 5(a) is largely consistent with the results shown in Figure 3(c) and Figure 2(d).  
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We can also estimate the error by taking the 2nd order partial difference with respect to time. 

The results are shown in Figure 5(b). The AI error is much larger than that in Figure 5(a) even 

though the error trends remain the same while the LSF error is not much affected. A possible 

explanation for the difference in the error behaviors in Figure 5(a) and 5(b) is that the noise 295 

baseline, which needs to be subtracted from the spectrum before Doppler processing, is a 

function of frequency as well as time. How the noise baseline is estimated affects the results. It 

impacts the LSF method less because the fitting error is already large due to statistical 

fluctuation. In any event, the AI error is still 30% smaller than the LSF method around 110 km, 

which is the focus of the current study. Above 120 km, a larger number of heights can be used in 300 

the context-aware model to reduce the error.   

 

Figure 5. (a) Average velocity errors (divided by 20) estimated from the 2nd order difference in 

altitude using the AI 5ht-aware model and the LSF-realistic method over the period of 06:30-

15:25 LT on July 16, 2015. The green line is the ratio of AI to LSF error. The black line is the 305 

average electron density. (b) Same as (a) except that the 2nd order difference is taken in the time 

direction. 

5. Conclusion 

In this study, the AI context-aware model uses 5 heights to allow a good height resolution (1.5 

km) for the E-region. At altitude ranges where coarser height resolution is acceptable, the 310 

number of heights in the context-aware model can be increased. This further elevates the 

advantage of the AI method. For example, the error ratio of the LSF-realistic to the AI context-

aware model using 9 input heights is larger than 2 in practically all scenarios. Beyond accuracy, AI 

transformer models offer a computational advantage as well over the least-squares fitting 

method. Velocity inference is roughly 100 times faster than the fitting method and requires 315 

significantly fewer computational resources. Once trained, the model runs efficiently on modest 

hardware, making it suitable for real-time applications and large-scale data processing. 
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To conclude, we have developed a context-aware transformer model to determine the Doppler 

velocity from incoherent scatter spectra. Simulations and applications to the Arecibo incoherent 

scatter radar data show that the AI model consistently outperforms the traditional least-squares 320 

fitting method across a wide range of conditions, demonstrating strong generalization despite 

being trained entirely on synthetic data. Because the training data is based on physics-based 

simulations, the model is not limited to any specific radar and can be applied more broadly to 

any situation where the spectra can be parameterized. 
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