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Abstract. Climate change-induced weather extremes are increasing the intensity and frequency of disturbance events, posing
a major threat to forests globally. In Central Europe, hotter and drier summers, such as those during the 2018-2020 drought
period, have led to widespread forest damage. To adapt forests to a hotter and drier future it is important to identify sites
more vulnerable to canopy mortality during drought, but high-resolution tree mortality data across a continuous landscape is
still sparse.

This study aimed at filling this research gap by utilising a high-resolution (single-tree-level), spatially continuous
dataset covering the entire Central European country of Luxembourg. We used generalized additive models (GAMs) to
explore the contribution of biotic and abiotic site characteristics to the observed canopy mortality of conifer and broadleaf
forests during the 2018-2020 summer droughts.

Our model explained 44.6% of canopy mortality variation in conifers and 25.3% in broadleaf forests. Clustered
mortality patches spreading from one year to the other, typical for bark beetle infestation, were the strongest predictor of
canopy mortality in conifer trees. Forest height also emerged as a strong predictor of mortality in both forest types.
Surprisingly, we found limited influence of topography on canopy mortality. Our study highlights the potential of using
high-resolution canopy mortality data across a national-scale study area to unravel the influence of site characteristics

driving spatial variation in forest mortality during drought events.

1 Introduction

The increasing frequency and intensity of disturbances due to climate change-induced weather extremes are affecting forests
globally (Altman et al., 2024; Anderegg et al., 2020; Petritan and Schwenke, 2023). Particularly prolonged drought periods
alongside high temperatures have emerged as one of the primary disturbance agents of forests in recent decades and drought-
related tree mortality has been observed in all forested biomes (Allen et al., 2010; Hammond et al., 2022; Hartmann et al.,

2022). For instance, recent summer droughts alongside high temperatures have triggered widespread tree mortality during
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2018-2020 in Central European forests (Schiefer et al., 2024; Schwarz et al., 2024). While some trees die directly during
droughts, others only die months to years later often due to pest and pathogen outbreaks. This can lead to a highly
heterogeneous occurrence of tree death, making it challenging to quantify and attribute mortality causes (Hartmann et al.,
2018). In addition, many abiotic and biotic factors can moderate individual tree responses during drought, challenging
accurate projections of future forest dynamics.

Tree mortality due to drought has been explored on a variety of sites around the world (Hammond et al., 2022).
Many studies have focused on the ecophysiological processes underlying tree mortality and the question why some tree
species are more resilient to drought than others (Choat et al., 2012; Hajek et al., 2022; Trugman et al., 2018). Meanwhile,
other research has taken a broader perspective, examining drought related tree mortality at the scale of forest plots and even
across entire landscapes (Senf and Seidl, 2021; Sturm et al., 2022). Hereby the focus was less on tree species and more on
the effect of environmental characteristics, such as topography and stand structure, along with the interactions between
various disturbance agents (Breshears et al., 2005). Individual trees within a forest do not uniformly respond to water
shortage, causing a heterogeneous response depending on a variety of abiotic and biotic factors (Hartmann et al., 2018;
Trugman et al., 2021; Zhai et al., 2022). Part of the variability in trees’ responses to water shortage are assumed to relate to
site level-differences in water supply, which are partially determined by soil type, topography and competition.

Topographical variables are important drivers of tree mortality during drought, yet their large-scale effects and
interactions remain under-explored. Tree mortality typically increases at lower elevations, but how elevation patterns interact
with other factors is not completely understood (Cailleret et al., 2014; Paz-Kagan et al., 2017; Rita et al., 2020; Sturm et al.,
2022). Slope steepness, while often linked to higher drought vulnerability due to runoff (Bennett et al., 2015; Meddens et al.,
2015) could, as some studies suggest, improve resilience through adaptive traits (Paz-Kagan et al., 2017). The impact of
slope orientation on drought-related tree mortality remains not fully understood. While most studies report higher mortality
on south- and west-facing slopes (Cailleret et al., 2014; Dorman et al., 2015; Paz-Kagan et al., 2017; Socha et al., 2023;
Sturm et al., 2022), stakeholders in Luxembourg reported higher mortality on east-facing slopes. Low Topographic Wetness
Index (TWI) values correlate with increased drought mortality (Allen and Breshears, 1998; Breshears et al., 2018), but the
influence of confounding factors like stand structure and microclimate heterogeneity remains insufficiently studied.

Stand structure and age are additional key factors influencing forest mortality during drought (Bennett et al., 2015;
McDowell and Allen, 2015). Taller or older forest stands are often more prone to die during droughts (Dorman et al., 2015;
Floyd et al., 2009; Guarin and Taylor, 2005; Paz-Kagan et al., 2017; Socha et al., 2023), likely due to higher vulnerability to
hydraulic failure (McDowell and Allen, 2015). There is however evidence that younger forests are more prone to die during
climatic extremes, especially hot and dry conditions (Konig et al., 2025; Luo and Chen, 2013). Higher canopy mortality has
also been observed at forest edges (Mann et al., 2023; Sturm et al., 2022), likely caused by a higher evaporative demand
resulting in a faster depletion of water reserves (Brun et al., 2020; Buras et al., 2018). Additionally, forest roads create edges

inside the forests that can alter the microclimate, providing pathways for wind and pests such as the European spruce bark
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beetle (Ips typographus), and influencing vegetation type and age (Lugo and Gucinski, 2000). The influence of forest roads
on tree mortality during drought remains an open question that is greatly underexplored in Europe (Feleha et al., 2025).

Drought-induced stress can also increase the vulnerability of trees to subsequent disturbance agents (Kérvemo et al.,
2023). The hot and dry conditions during droughts weaken the tree’s defence mechanisms as well as facilitate the
proliferation of bark beetles, which was documented at numerous sites across Central Europe (Gilles et al., 2023; Knutzen et
al., 2025; Pirtskhalava-Karpova et al., 2024) and other parts of the world (Cervantes-Martinez et al., 2019; Robbins et al.,
2022). A key question remains whether the effects of bark beetle infestations can be disentangled from the influence of other
site-specific characteristics, as this distinction is crucial for accurately assessing ecosystem responses and management
strategies.

These gaps highlight the need for a more integrated understanding of how environmental factors shape drought-
induced tree mortality. Addressing mortality drivers requires high-resolution canopy mortality and environmental data with
broad spatial coverage. Low-resolution products, such as Landsat’s 30X30 m pixels, represent a number of different trees
and various micro-topographic situations that cannot be disentangled. As such they will not be able to address smaller-scale,
site-specific responses, let alone depict tree mortality with high certainty (Hansen et al., 2013; Senf and Seidl, 2021). While
research on smaller forest plots provides valuable insights into the conditions of individual trees (Hiilsmann et al., 2016), it
may fail to capture broader, landscape-scale patterns of mortality (Dorman et al., 2015; McDowell et al., 2013). High-
resolution datasets of canopy mortality can help identify sites more vulnerable to drought, thereby facilitating targeted
monitoring or forest management strategies (Anderegg et al., 2013; Brouwers et al., 2013; Clifford and Booth, 2015;
Principe et al., 2022). This is supported for example by the new initiative deadtrees.org, which underlines the importance of
high-resolution canopy deadwood information in order to capture mortality trends (Kattenborn et al., 2025; Mosig et al.,
2024). Recent advances in big data science, including increased computational power and the rise of artificial intelligence,
now make it possible to address these data gaps by facilitating the acquisition of high-resolution mortality data at the canopy
level across entire countries (Schwarz et al., 2024). This detailed canopy mortality data provides means to a better
understanding of mortality drivers at the landscape scale.

In this study, we leveraged a previously published high-resolution dataset capturing canopy mortality spanning the
entire country of Luxembourg in Central Europe (Schwarz et al., 2024) to explore fine-scale spatial patterns of canopy
mortality and identify contributing factors driving the mortality dynamics. The data covers the summers 2017-2020, three of
which were characterised by severe drought (Rakovec et al., 2022). The high spatial resolution of the mortality dataset (20
cm/px) and of the environmental variables (50 cm/px) used here allows to study patterns of drought-induced canopy
mortality and contributing factors over the whole country of Luxembourg.

We hypothesised that using high-resolution data over a continuous landscape we would find that (1) canopy
mortality is greatly modulated by topography, with higher mortality on steeper, south-facing slopes, (2) canopy mortality is

linked to forest structure, such as forest height and the distance to the forest edge, with higher mortality in taller stands as
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well as closer to the forest edge, and (3) canopy mortality patterns in conifers, but not in broadleaf trees show trends

consistent with the spread of bark beetle.

100 2 Methods

2.1 Study site
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Figure 1: Map of the country of Luxembourg showing forested area. Forest area of a) coniferous and b) broadleaf forests in a 100
ha grid (pixel size). Coniferous forests are more prevalent in the north and center of Luxembourg, while broadleaf forests make up
the majority of most forests throughout the rest of the country.
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This study covers all forests of Luxembourg with predominantly temperate coniferous and broadleaf stands, the extent of
which are defined by the LIS-L land cover data set (Korzeniowska, 2020). Luxembourg is located in Central Europe
(between 49° and 51° latitude and 5° and 7° longitude). It has a forest area of around 900 km? comprising approximately
71% broadleaf, 23% coniferous and 5% mixed forests. Even though the country is one of the smallest in Europe, it is
characterised by a diverse landscape, ranging from relatively flat, urban environments in the south (~250 m a.s.l), which are
dominated by broadleaf forests to a more hilly, forested, conifer-dominated landscape in the north, reaching elevations of

560 m a.s.l. (Fig. 1).

2.2 Canopy mortality data

Here we used a high-resolution dataset of conifer and broadleaf canopy mortality for the whole of Luxembourg, which was
first presented in Schwarz et al., 2024. The dataset covers the drought period between 2018 and 2020 as well as the pre-
drought year 2017 and has a ground resolution of 20 cm. It is based on annually collected RGB and Infrared (IR)
orthophotos provided by the open data platform of Luxembourg (data.public.lu). Canopy mortality was mapped for conifers
and broadleaf trees by employing a Convolutional Neural Network, a deep learning algorithm for image segmentation and
classification. Since we used a semantic segmentation model instead of an instance segmentation model to derive the
mortality data, the resulting canopy mortality polygons include both free standing dead trees and groups of dead trees.

To identify the drivers of canopy mortality per forest type for the year 2020 (i.e., conifer, broadleaf) we used a
Generalized Additive Model (GAM; for explanation see below) (Hastie and Tibshirani, 1986). We focused our analysis on
predominantly pure forests with >75% conifer or >75% broadleaf trees as defined by the Lis-L land cover data set
(Korzeniowska, 2020). The forest types of both dead and alive canopies were determined by the land cover data. The dataset
for 2020 provides 211,461 polygons of dead conifer and 84,698 polygons of dead broadleaf canopies. We created a binary
data set of dead and alive canopy data points as follows: we first determined the centroid of each dead canopy polygon and
then subtracted the dead canopy polygons from the land cover polygons, which resulted in areas with only alive forest. We
then randomly added the same amount of data points throughout the alive forests of each forest type and merged both alive

and dead canopy points (Fig. 2a).
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Figure 2: Stepwise data preparation procedures to derive a balanced binary dataset of dead versus alive data points. (a) Step 1-2:
Dead canopy points (red) were derived from a data set of dead canopy area in 2020 (Schwarz et al., 2024). Step 3-4: Alive canopy
data points (green) were obtained by excluding the dead canopies from a land cover dataset (Lis-L) and randomly distributing
data points throughout. Step 5: Dead and alive data points were merged and (b) corresponding values of the environmental
variables were extracted to be used in the Generalized Additive Model (GAM).

2.3 Environmental variables

To assess the influence of different environmental drivers in the observed canopy mortality in pure conifer and broadleaf
forests during drought we considered 14 variables that were available at a high spatial resolution. All data used for the GAM

calculations have a resolution of 50 cm/px, which is highly detailed for such a large spatial data set.

2.3.1 Mortality occurrence and spread

Distance to previously dead canopies was chosen as an indicator to assess a potential influence of bark beetle (Ips
typographus) spread on tree mortality. We derived the distance of previously dead canopies by calculating the minimum
distance of the closest dead canopy of 2019 (dist,s) to the data points in 2020 using the “Join attributes by location” tool in
QGIS. We did the same for the year 2017 (dist;;) to see if the location of dead canopies before the drought summers had any
influence on mortality during the droughts.

Distance to closest (other) dead canopy in 2020 (dist;)) was calculated using the NN _join tool in QGIS. It
represents the distance of the data points to the closest dead canopy in 2020. We selected this variable as a proxy for dead

canopy clustering, as bark beetle infestations typically spread from tree to tree in close proximity (Raffa et al., 2008).
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Change in dead canopy area (darea) was assessed by measuring the extent of dead canopy within a 50 m radius
around each data point in 2019 and 2020, and then subtracting the 2019 values from those of 2020. Positive values indicate
an increase in canopy mortality due to spreading dieback, negative values reflect a decrease caused by extraction or
recovery, and zero values denote no change, either because dead trees remained standing or because no dead canopy was

present in the area.

2.3.2 Forest structure

Forest height - A Canopy Height Model was calculated by subtracting the digital terrain model (DTM) from a digital surface
model (DSM), which was obtained via a LIDAR sensor and is also provided on the open data platform of Luxembourg. The
DSM model includes above ground structures, while the DTM represents the ground.

Distance to forest edges were calculated as the minimum distance to the next forest edge as defined by the Lis-L
forest data as a continuous heat map using the gdal proximity tool in QGIS (GDAL/OGR contributors, 2020). We tested two
variables (1) dist. which does not take fragmentation of forests by roads into consideration and only calculates the distance to
the outer edges of the forests and (2) dist, which does include forest edges created by fragmentation due to roads. While
forest fragmentation in the rainforests of South America have been extensively researched, studies in Europe remain rare
(Feleha et al., 2025). Therefore we chose this approach to test whether the different facets of fragmentation of forest
ecosystems have a significant influence on the microclimate of forests during the drought and therefore on the mortality

patterns as has been proposed (Dutta and Dutta, 2016).

2.3.3 Topography

Elevation data was derived from the Digital Terrain Model (DTM), provided through the open data platform of Luxembourg.
The DTM describes the height above sea level in meters [m] at a resolution of 20 cm per pixel and ranges from 129 to 559 m
a.s.l. We resampled the resolution to 50 cm to make the data comparable to the Digital Surface Model (DSM) data we used
for the Canopy Height Model. Elevation may influence canopy mortality through changes in temperature and precipitation as
well as through exposure to solar radiation and wind.

Slope was calculated from the DTM using the gdal slope function in QGIS (GDAL/OGR contributors, 2020). The
data describes the incline of the terrain as difference in elevation between cells of a DTM in degrees. The incline of a slope
can influence water run-off, ground depth and radiation exposure.

Northness and eastness were calculated from the slope. They represent the components of the aspect variable and
describe the direction of a slope on a north-south and west-east axis. Values range from -1 to 1 with negative numbers
pointing to south or west facing slopes and positive numbers to north or east facing slopes respectively. The slope direction
affects exposition to solar radiation and microclimate. South-facing slopes usually experience more solar radiation, which
can lead to higher drought stress, but tree species growing on north-facing slopes may be less adapted to dry conditions and

hence more drought prone (Stovall et al., 2019). We chose to also include eastness, because discussion with local
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stakeholders indicated that eastern facing slopes were more affected by canopy mortality between 2018 and 2020 than slopes
facing other directions.

Topographic Wetness Index (TWI) was calculated from slope using the “calculate TWI” tool in SAGA GIS (Conrad
et al., 2015). TWI uses the slope and contributing upslope area to assess the topographical aspect of water availability
(Beven and Kirkby, 1979; Serensen et al., 2000).

Soil type (soil) - We used a soil type map provided by the Luxembourg open data platform. The data consist of 27
different soil types, categorised by characteristics such as the underlying rock type, describing the soil, for example as
“Loamy-stony soils with schist-sandstone material, non-gleyed, with a structural B horizon.” (ASTA, 2020; Table S1). An
additional code list provides data on drainage and dryness characteristics. Soil type can have a large influence on vegetation

and tree mortality as the grain size determines water retention and availability as well as soil nutrient availability.

2.4 Statistical analysis

We used Generalized Additive Models (GAMs) to assess the contribution of the aforementioned environmental covariates to
broadleaf and conifer canopy mortality in 2020 as a result of three consecutive drought summers. GAMs are non-parametric
linear models used to model non-linear relationships as a sum of linear basis functions (Hastie and Tibshirani, 1986; James et
al., 2013). As such they are able to represent more complex relationships between drivers and responses that exist in natural
environments. Generally, a GAM consists of a response variable and a number of covariates, expressed as smoothed (non-
linear) terms and linear functions.

In this study, we fitted the models using the function bam() provided by the mgev package (Wood, 2011) in R
(V4.2.1, R Core Team, 2022) which is more suitable for very large datasets.

We fitted one model per forest type, i.e. coniferous and broadleaf forest. Due to the binary form of the response
variable, referring to dead or alive canopies, we used a binomial distribution and a “logit” link function. A combined smooth
of longitude and latitude was added to model spatially structured variation in the data that cannot be attributed to any of the
environmental variables. All continuous covariates were added as smooths and soil type was added as a categorical term. We
used the REML (Restricted Maximum Likelihood) method to automatically adjust the smoothing parameter A, which
controls the wigglyness of the smooth and therefore the flexibility of the model. We kept the parameter k = 10, which
determines the number of basis functions for the smooth and is reasonably small to achieve interpretable relationships

expected for environmental variables.

2.5 Model evaluation

Prior to modelling, variable independence was checked by calculating Pearson’s Correlation Coefficient for linear
correlations and Spearman’s Correlation Coefficient for monotonic relationships, including non-linear trends for each
covariate pair (Fig. S1). The degree of correlation between the covariates was low to moderate for almost all variables. The

highest correlation was found between the two forest edge variables (~0.8). Due to the large size of the dataset, we consider
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the statistical power to be large enough to keep both variables in the model and distinguish between different effects of forest
fragmentation on canopy mortality. Model assumptions were checked with simulated residuals using the package DHARMa
(Hartig, 2022) and revealed no major violations. We report the explained deviance of the model.

To determine the contribution of each variable to the deviance explained per GAM model we calculated partial McFadden’s
Pseudo-R?, along the lines of the implementation in the R-package rsq (McFadden, 1974; Zhang, 2022). Additionally, we
quantified the contribution of groups of variables by calculating partial McFadden’s Pseudo-R? for topography (elevation,
slope, TWI, northness, eastness), forest structure (forest height, dist., dist,), and indicators of spreading mortality (dist;,
dist s, dist;y and Aarea). For each group, a reduced model was fitted excluding all variables in that group, and the resulting
McFadden’s Pseudo-R? was compared to the full model using Eq. (1).

T-R 12: . Nn—pPg

Partial R*=1———=
1-Rz N—P¢

(1

where R i and Ri, represent McFadden’s Pseudo-R? for the full and reduced model, respectively, and n the number of

total observations. pr and pr denote the number of parameters in the reduced and full models, respectively. The formula

adjusts for the difference in degrees of freedom between the two models.
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3 Results

3.1 Canopy mortality distribution in Luxembourg

(a) Coniferous stands (b) Broadleaf stands
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Figure 3: Map of canopy mortality in Luxembourg in 2020. Percent canopy mortality for (a) coniferous and (b) broadleaf forest
stands is given. Canopy mortality was derived from convolutional neural network analyses (Schwarz et al., 2024). The distribution
of conifer and broadleaf forest stands was attributed based on landcover data (Lis-L) and percentage canopy mortality has been
derived in relation to the forested area per pixel (100 ha).

Canopy mortality in Luxembourg increased from a total of 64 ha in 2017 to 590 ha in 2020. In 2020, about 420 ha of dead
canopies were coniferous and 170 ha were broadleaf. As broadleaf forests dominate in Luxembourg, the disproportionate
conifer loss resulted in a higher conifer mortality rate. Hotspots of conifer mortality were observed in the northeast but

appeared more scattered across the south (Fig. 3a). In some locations canopy mortality reached almost 90%, although most

10
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235 areas experienced mortality rates between 0% and 10%. In broadleaf forests, the mortality rate was generally much lower,
particularly in the north of Luxembourg. Isolated areas of higher mortality occurred in the south and southeast but did not

exceed 5% (Fig. 3b).

3.2 Relative contribution of environmental variables to canopy mortality

As no distinct large-scale spatial pattern in the distribution of canopy mortality became evident (Fig. 3), we conducted a
240 more detailed analysis of site characteristics contributing to canopy mortality at a much finer spatial scale (50 cm resolution).
The relative contributions of the 14 environmental variables to the fit of the broadleaf- and conifer-specific GAM models are

summarised in Fig. 4.
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Figure 4: GAM model results presented as partial R> values for all environmental variables for the 2020 canopy mortality in
Luxembourg. Partial R> was calculated along the lines of (Zhang, 2022) for broadleaf (blue) and coniferous (orange) forests

245  separately. The values indicate the contribution of each variable in the model's explanation of the observed canopy mortality
patterns. The “dist” variables refer to the distance of the closest dead canopy from the previous years 2017 or 2019 and the
distance to other dead canopies within the same year 2020. dist. and dist. represent the distance to forest edges with and without
roads. darea describes the change in dead canopy area between 2019 and 2020 within a 50 m radius around each data point.
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Fig. 5 shows the effects of thematic groups of variables on the model’s explanatory value. Combined, the variables explained
a substantial proportion of the fine-scale spatial distribution of canopy mortality in 2020. For coniferous forests, the GAM
accounted for 44.7% of observed mortality, while for broadleaf forests it explained 25.3%. Variables related to the spread of
mortality were most important in both forest types (Fig. 4). Taken together they had a partial R? value of 29.43 % in conifers
and 14.29 % in broadleaf forests (Fig. 5). Distance to dead canopies in the previous years had a similar effect in both types,
but conifers were more likely to die in 2020 when dead canopies occurred close by. In broadleaf forests, mortality was
strongly associated with a marked increase in dead canopy area between 2019 and 2020 (darea). Forest height was an
important predictor of mortality in both forest types (Fig. 4). In contrast, spatial coordinates (longitude and latitude),
included to capture unexplained spatial patterns, contributed little according to partial R? values, and topographic variables

as well as soil type had minimal influence (Fig. 4,5).

Mortality occurrence and spread - g — Forest Type

Forest structure - i . Broadleaf

Topegmphy- i j Coniferous

0 10 20 30
Partial R? [%]

Figure 5: Partial R? values for three groups of environmental variables. Partial R* was calculated along the lines of (Zhang, 2022)
for broadleaf (blue) and coniferous (orange) forests separately. The values indicate the contribution of each variable in the model's
explanation of the observed canopy mortality patterns.

In order to more closely examine the influence of individual environmental variables on canopy mortality, we used partial
effect plots that account for other predictors in the GAMs (Fig. 6). The following subsections explain these effects per group

of environmental variables in more detail.

3.3 Self-reinforcing and spreading effects of canopy mortality

In coniferous stands, dist;; had no effect on the mortality distribution of conifers, this is not surprisingly given the small
partial R? (Fig. 6a). By contrast, proximity to dead canopies in 2019 (dist;s) was a more influential predictor (Fig. 6b),
indicating higher 2020 mortality near trees that had already died in 2019. This pattern was consistent with the observed
increase in dead canopy area between 2019 and 2020 (darea), within a 50 m radius (Fig.6d). The dist,, variable was the most
important predictor. This indicates that mortality in conifers showed strong spatial clustering, with dead canopies tending to
occur in patches within ~20 m of each other (Fig. 6¢).

In broadleaf stands, self-reinforcing patterns were also evident. Similar to conifers, 2017 mortality showed no

influence on 2020 patterns (Fig. 6e), but 2019 mortality was the most important predictor (Fig. 6f). The increase in dead
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canopy area (darea) was also strongly associated with mortality patterns, with local maxima (Fig. 6h). However, unlike

conifers, dist; did not explain mortality distribution (Fig.6g).
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Figure 6: Contribution of environmental variables to the fine-grained spatial distribution and spread of canopy mortality in
Luxembourg in 2020. Shown are partial effect plots derived from GAM models for the conifer mortality (upper panels, orange)
and broadleaf mortality (lower panels, blue). The “distance” variables describe the distance to the closest dead canopy in the
previous years 2017 and 2019 and the distance to other dead canopies in the same year 2020. darea represents the change in dead
canopy area between 2019 and 2020 within a 50 m radius around each data point. The fitted curves describe a smoothed, non-
linear relationship between the predictor variable and the response variable, while all other variables in the model are kept at
their mean value. The shaded area around the curves represents a 95% confidence interval. The left y-axis represents the
predicted probability of the response in relation to the predictor variable. While we might expect average predicted probabilities
to be around 0.5 in a balanced binary dataset, the observational and unbalanced nature of our data leads to deviations from this
baseline. The histograms (grey) and right side y-axis indicate the frequency of dead canopy observations.

3.4 Effects of forest structure on canopy mortality

We found conifer canopy mortality to increase steeply with forest height >10m and remained high in tall stands (Fig. 7a). In
contrast, variables related to forest fragmentation, both outer forest edges (Fig.7b) and inner edges from roads (Fig. 7c¢) had
only minor influence.

In broadleaf stands, the probability of canopy mortality rose steadily with height, leveling off at around 30 m (Fig.
7d). Unlike conifers, broadleaf mortality showed a clearer effect of forest edges, with higher mortality near the forest edge

(Fig. 7e), albeit with a low partial R? (Fig.4). This effect is absent for forest roads (Fig. 7f).
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Figure 7: Contribution of environmental variables to the fine-grained spatial distribution and spread of canopy mortality. Shown
are partial effect plots derived from GAM models for the conifer mortality (upper panels, orange) and broadleaf mortality (lower
panels, blue). Forest Edge describes the distance to the outer edge of each forest, while Forest Edge (roads) describe the distance to
the closest edge inside forests, created by fragmentation. The fitted curves describe a smoothed, non-linear relationship between
the predictor variable and the response variable while all other variables in the model are kept at their mean value. The shaded
area around the curves represents a 95% confidence interval. The left y-axis represents the predicted probability of the response
in relation to the predictor variable. While we might expect average predicted probabilities to be around 0.5 in a balanced binary
dataset, the observational and unbalanced nature of our data leads to deviations from this baseline. The histograms (grey) and
right side y-axis indicate the frequency of dead canopy observations.

3.5 Effects of topography and site conditions on canopy mortality

As shown before, topography played a minor role in explaining canopy mortality patterns for both coniferous and broadleaf
stands, with similar responses between forest types (Fig. 4 and 5). Of the tested variables, TWI appeared as the most relevant,
indicating higher mortality at low TWI values (< 6) for both conifers (Fig. 8c) and broadleaf forests (Fig. 8h).

In conifers, there was no clear effect of elevation (Fig. 8a) or slope (Fig.8b). Broadleaf mortality increased slightly
at elevations above ~250 m (Fig. 8f) and on gentle slopes or plains (Fig. 8g), though these patterns are highly uncertain,
reflected in the low partial R? values. Other topographic factors, such as northness and eastness, showed no discernible

trends (Fig.8e,k).
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Figure 8: Contribution of topographic variables to the fine-grained spatial distribution and spread of canopy mortality. Shown are
partial effect plots derived from GAM models for the conifer mortality (upper panels, orange) and broadleaf mortality (lower
panels, blue). The Topographic Wetness Index (TWI) describes the potential for water accumulation in a landscape based on
terrain characteristics. The fitted curves describe a smoothed, non-linear relationship between the predictor variable and the
response variable while all other variables in the model are kept at their mean value. The shaded area around the curves
represents a 95% confidence interval. The left y-axis represents the predicted probability of the response in relation to the
predictor variable. While we might expect average predicted probabilities to be around 0.5 in a balanced binary dataset, the
observational and unbalanced nature of our data leads to deviations from this baseline. The histograms (grey) and right side y-axis
indicate the frequency of dead canopy observations.

4 Discussion

4.1 Small impact of topography and soil type on canopy mortality

Our findings indicate that topographic variables and soil #ype explained little of the observed canopy mortality in both
coniferous and broadleaf forests. Of the six tested variables, Topographic Wetness Index emerged as the most important. In
contrast, variables such as slope, elevation, northness, eastness, and soil type had little to no effect on the observed mortality
patterns. Luxembourg’s relatively low elevation range (150-600 m a.s.l.) may have reduced the effectiveness of elevation as
a predictor variable. Previous studies that found elevation-related differences in canopy mortality were conducted in regions
with significantly higher elevations exceeding 1,500 m a.s.l. (Cailleret et al., 2014; Paz-Kagan et al., 2017; Rita et al., 2020;
Sturm et al., 2022). In such situations, climatic differences along the elevation gradients may have more pronounced impacts
on potential pest activities as well as precipitation patterns, which both are likely to affect tree mortality. We suggest that in
our study, the small elevational gradient together with the country-wide strong effects of the drought possibly overwrote any
differences in elevation or slope orientation.

Although high-resolution data are generally advantageous for capturing fine-scale variability (Lannuzel et al., 2021;
Pellegrino et al., 2024), they may introduce noise in topographic predictors such as slope, northness, and eastness. This
small-scale terrain variability, which may be ecologically irrelevant, could obscure broader topographic patterns (Guillaume
et al., 2021; Silhan et al., 2022). This might explain why variables like 7WI, which aggregate over broader spatial extents by
accounting for upslope contributing area, were less influenced by small-scale terrain features and therefore more effective at
capturing relevant hydrological gradients.

Meanwhile, the soil type data, comprising 27 classes also showed minimal explanatory value. Although soil
moisture is a known driver of drought-induced tree mortality (Belmonte et al., 2022; McDowell et al., 2022), the categorical
nature and relatively coarse spatial resolution of the data most likely did not capture the specific soil water holding
capacities.

Overall, topographic effects may have been obscured by biotic factors such as bark beetle infestation in conifers and
by the overall severe drought conditions. The lack of influence in broadleaf forests, where bark beetles are not a disturbance
agent, supports the notion that unaccounted variables, like fine-scaled soil properties or soil water holding capacities played

a more important role. However, given the severity and spatial extent of the drought conditions in recent years, it seems
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plausible that topography played only a minor role across all forest types. This poses a concern for forests in future climate
change conditions, as the severity of these hotter drought summers might severely affect even areas thought to be more
resilient due to their topographic situations causing even greater forest loss than anticipated (Knutzen et al., 2025).

Our findings largely refute hypothesis (1): topographic and soil variables provided only limited explanatory value
for drought-induced canopy mortality, likely due to low regional variability, data limitations, and overriding effects of other

factors such as drought severity and biotic disturbances.

4.2 Canopy mortality is higher in tall stands

We found that canopy mortality was related to forest structure and increased in taller stands in both coniferous and broadleaf
forests. Taller stands experienced significantly higher mortality rates, consistent with findings from other studies linking
forest height to increased vulnerability during drought events (Anderegg et al., 2016; Arend et al., 2021; Stovall et al., 2019;
Trugman et al., 2018). Physiologically, tall trees can be more susceptible to hydraulic failure under drought conditions due to
longer water transport pathways and higher evaporative demand (Anderegg et al., 2016; Arend et al., 2021; Bennett et al.,
2015; Trugman et al., 2018). While trees might not die immediately, the cumulative effects of consecutive drought summers
can weaken them over time (McDowell et al., 2022) as for instance reported for beech trees in Switzerland following the
2018 drought (Frei et al., 2022). Additionally, in conifers, increased mortality among taller trees is very likely linked to bark
beetles preference for mature hosts with sufficiently thick bark as they are more suitable for the development of bark beetle
larvae (Pirtskhalava-Karpova et al., 2024; Raffa et al., 2016).

By contrast, forest edges had negligible effect on observed canopy mortality, suggesting that the severity of the
climatic drought conditions extended deep into the forests. While previous research indicates that edge effects can amplify
drought stress (Buras et al., 2018; Sturm et al., 2022), our findings show only a minor influence in broadleaf forests and no
significant effect in conifers. These findings suggest that the severity of the drought conditions of 2018-2020 might have led
to unfavourable conditions even in the forest interior. Similarly, forest fragmentation due to roads had no discernible impact
on mortality patterns, consistent with the weak role of edge effects in this study.

These results partially support hypothesis (2): while forest height was a strong predictor of mortality, forest edge

effects were minimal, likely due to the pervasive severity of the drought across forest interiors.

4.3 Bark beetle infestations is a primary driver of conifer canopy mortality

Our results indicate that bark beetles were a key driver of canopy mortality in conifers, as evidenced by the significant roles
of mortality occurrence and spread. Both dist;s and dist were strong determinants of mortality, consistent with the clustered
spread characteristic of bark beetle infestations (Zhao et al., 2025). The darea variable, which captured changes in the dead
canopy area surrounding our data points, was also important and further supports the interpretation of spreading bark beetle
activity as the infestation grows from single trees to large patches of dead trees (Potterf et al., 2019; Stereniczak et al., 2019).

Forest height emerged as the only other strong predictor, in line with the European spruce bark beetle’s preference for larger
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trees with sufficiently thick bark for tunnelling (Raffa et al., 2016). Taken together, these variables clearly reflect bark
beetle-driven mortality dynamics in conifers.

While bark beetles likely were a key cause of mortality, their impact appears to be strongly modulated by drought,
as confirmed in other studies (Hlasny et al., 2021). Our data reveal little impact of spreading mortality prior to 2018,
suggesting that high bark beetle activity only started following the onset of severe drought conditions. This supports existing
research indicating that hot droughts can both weaken trees (Rouault et al., 2006) and simultaneously accelerate beetle
development, enabling multiple reproductive cycles per year (Fleischer et al., 2016; Lindman et al., 2023; Robbins et al.,
2022; Webb et al., 2025). At the physiological level, we assume that the trees exposed to drought suffered from both
hydraulic failure due to low water availability and rising vapor pressure deficit (Adams et al., 2017), and carbon starvation as
stomata closed to conserve water (Ziegler et al., 2024). Reduced water availability likely also impaired resin flow (Kolb et
al., 2019; Malone et al., 2024), weakening the trees’ natural defense mechanisms. Carbon starvation during drought might
also have decreased the allocation of nonstructural carbohydrates (NSC) to defensive metabolites in the tree's resin (Huang et
al., 2020). These interacting stresses created ideal conditions for bark beetle outbreaks and explain the mortality patterns
observed in our study.

Another layer of complexity lies in the interaction between bark beetle infestations and topography. Previous
studies have shown that bark beetle infestations are often more severe on south- and east-facing slopes, at lower elevations,
and on steeper terrain (Akkuzu et al., 2009; Blomgqvist et al., 2018; Jakoby et al., 2019). Blomgqvist et al., 2018 also found
more severe bark beetle infestations on shallow soils with low water storage capabilities. While such topographic patterns
were not dominant in our mortality models, it does not necessarily mean such relationships were absent. Rather, they may
have been masked by the overriding biotic effect of infestation.

Canopy mortality in broadleaf trees also showed high impact of two variables in the group that was supposed to
indicate the spread of bark beetle infestation. These variables were the dist;o and darea, while dist,y had little explanatory
power. This suggests that while the loss of large-crowned individuals strongly increased the mortality area, new deaths were
not spatially contagious (Fig. 9). Proximity to dead canopies in 2019 (dist;») must also be interpreted with caution, as it partly
reflects the persistence of already-dead trees rather than true neighbourhood effects in both forest types (Fig. 9). Taken
together, these patterns suggest that in conifers, canopy mortality is shaped by contagious bark beetle outbreaks, whereas in
broadleaves it reflects the loss of structurally dominant individuals under stress.

Our findings strongly support hypothesis (3): conifer canopy mortality was closely linked to the spatial and
temporal dynamics of bark beetle spread. At the same time, the contrasting patterns in broadleaf forests emphasise that

identical predictor variables can reflect very different underlying processes depending on forest type.
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Figure 9: Example of dead canopy area within a 50 m radius around a dead canopy core in (a) coniferous and (b) broadleaf forest.
Blue areas indicate canopy mortality detected in 2019, and red areas indicate mortality in 2020. The figure highlights contrasting
mortality patterns between the two forest types: in broadleaf forests, individual dead trees tend to cover larger areas, so additional
mortality in 2020 substantially expands the affected area, comparable in magnitude to the clustered expansion observed in
coniferous stands. The figure also illustrates how proximity to dead canopies from 2019 may contribute to high correlation in the
GAM model, as trees already dead in 2019 generally remain dead in 2020.

5 Conclusions

This study shows that drought-driven canopy mortality in Luxembourg is strongly shaped by forest structure and bark beetle
dynamics, whereas topography and soil type had comparatively limited impact. By leveraging an extremely rich high-
resolution mortality dataset, we were able to capture fine-scale patterns of mortality across the landscape, underscoring the
value of detailed large-scale datasets for understanding forest responses to extreme drought. With new data collecting
platforms developing (e.g., deadtrees.org) there is a growing need to develop analytical methodologies capable of analysing
these high-resolution mortality datasets. Addressing current limitations, such as potential noise in micro-topographic
variables and under-representation of soil characteristics or young and understory vegetation, through long-term monitoring
and improved analytical approaches will further enhance our ability to predict and guide management of forest vulnerability

under changing climate conditions.
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