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Abstract. Atmospheric concentration of methane (CH4), a critical greenhouse gas, increased significantly since pre-industrial

times, with anthropogenic emissions originating primarily from agriculture, fossil fuel use and waste management. How-

ever, considerable uncertainties persist in the detection and quantification of anthropogenic CH4 emissions. In this study, we

present first CH4 observations, plume detections and emission estimates from the new state-of-the-art Airborne Visible In-

fraRed Imaging Spectrometer 4 (AVIRIS-4), which participated in a blind controlled release experiment in September 20245

in southern France. We used an albedo-corrected matched filter to retrieve CH4 maps from the spectral images and estimated

CH4 emission with the Integrated Mass Enhancement (IME) and Cross-Sectional Flux (CSF) methods. Our results demonstrate

that AVIRIS-4 can reliably detect emissions as low as 5.5 kg CH4 h−1 under good weather conditions at low flight altitudes

(<1500 m) and 1.45 kg CH4 h−1 under ideal conditions. While AVIRIS-4 provides highly accurate CH4 maps at <0.5 m res-

olution, emission estimation is limited by the accuracy of the effective wind speed, whose uncertainty and natural variability10

contribute substantially to the overall uncertainty. Using wind speed at source height performs well for small releases (below

20 kg CH4 h−1) (rRMSE = 1.065; rMBE = 0.361) and overall (rRMSE = 0.702; rMBE = -0.204). Using literature-derived

effective wind speeds improves the apparent fit between estimated and reported CH4 emissions, but degrades performance

both in overall agreement (rRMSE = 2.098; rMBE = 0.964) and for low-emission events (rRMSE = 2.367; rMBE = 1.711).

Interestingly, the high spatial resolution makes it possible to retrieve the cast shadow of the CH4 plume, which can be used to15

estimate source and plume height, and could provide an approach for better constraining the height-dependency of the effective

wind speed. On the bottom line, the controlled release experiment provides critical insights into the sensor’s capabilities and

guides further improvements to detect and quantify low intensity sources in the fossil fuel and waste management sectors, with

implications for more accurate global greenhouse gas monitoring.
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1 Introduction20

Methane (CH4), a potent greenhouse gas with a global warming potential 28 times higher than CO2 on a timescale of 100

years, has seen an almost threefold rise from 700 ppb pre-industrial levels to over 1900 ppb due to natural and anthropogenic

sources (Seinfeld and Pandis, 2016). Major contributors include agriculture, fossil fuels, and waste. Due to its short lifetime of

only 9 years, CH4 is removed more quickly compared to most other greenhouse gases. Reducing CH4 emissions is therefore

considered an effective measure to mitigate anthropogenic climate change in the near term. However, there are still significant25

uncertainties in the quantification of anthropogenic CH4 emissions (Saunois et al., 2020).

For instance, Saunois et al. (2020) estimated that uncertainties in emissions from the fossil fuel sector are around 20-35%

with strong regional variations. Reducing these uncertainties is challenging for several reasons. One of them is the fact that an

important fraction of anthropogenic CH4 emissions, e.g., from the fossil fuel sector, result from unintentional leakage, which

cannot be accurately quantified. Additionally, global CH4 emission estimates depend on a network of monitoring stations,30

which is dense and accurate in northern and mid-latitudes but sparser in other regions (Saunois et al., 2020). For these reasons,

satellite remote sensing observations of CH4 have been used to estimate the emissions in a top-down approach (e.g. Alexe

et al., 2015; Bousquet et al., 2018; Fraser et al., 2013). These remote sensors can be separated into area flux mappers (e.g.

Sentinel-5P, MethaneSAT, GOSAT-GW and CO2M) which are designed to have a global to regional coverage and point flux

mappers (e.g. Landsat-8, Sentinel-2, GHGSat, PRISMA and EnMAP) which are used to observe regional to local emissions35

(Jacob et al., 2022).

Most of the currently available CH4 imagers are limited by spatial and/or spectral resolution which hinders the precision and

accuracy of the emission estimates (Bousquet et al., 2018). This results in high detection limits in the range of a few 100 to

several 1000 kg CH4 h−1 for spaceborne instruments such as Sentinel-2 and Sentinel-5, PRISMA, EnMAP or GHGSat (e.g.

Jacob et al., 2022; Gorroño et al., 2023; Joyce et al., 2023). For airborne instruments with a higher spatial resolution such40

as MethaneAIR, GHGSat-AV and the Airborne Visible InfraRed Imaging Spectrometer - Next Generation (AVIRIS-NG), the

detection limit decreases to 10 to 100 kg CH4 h−1 under favourable conditions (e.g. Cusworth et al., 2021; Duren et al., 2019;

Jongaramrungruang et al., 2022; Kuhlmann et al., 2025; Guanter et al., 2025).

CH4 emissions from sources with small emission strengths that cannot be quantified from space (< 100 kg CH4 h−1) are

crucial for two reasons: First, leakages from the production and use of fossil fuels are often small and remain undetected by45

satellite-based approaches. Second, CH4 emissions from oil and gas production have a lognormal distribution with many small

sources but only a few large ones (e.g. Balcombe et al., 2018; Stavropoulou et al., 2023; Williams et al., 2025). Accurate

knowledge of the emission distribution of sources from a given sector or country is crucial for extrapolating CH4 emissions

from the entire sector or country by accounting for sources below the detection limit (Zavala-Araiza et al., 2015; Zhang et al.,

2023; Kuhlmann et al., 2025).50

The detection of low intensity CH4 sources requires a sensor that combines high spatial resolution with a good signal-to-

noise ratio. One such state-of-the-art sensor is the new Airborne Visible InfraRed Imaging Spectrometer 4 (AVIRIS-4). It was

developed by NASA JPL as a successor of AVIRIS-NG in parallel to its sister instruments Earth Surface Mineral Dust Source
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Investigation (EMIT) and AVIRIS-3 which are in service on board the ISS and as airborne sensor respectively (Hueni et al.,

2025). In this paper, we present the processing chain for retrieving CH4 emissions from AVIRIS-4 measurements, show CH455

maps and emission estimates from a blind controlled release experiment and characterise the capabilities and limitations of

AVIRIS-4 for CH4 emission quantification. The analysis considers the influence of flight altitude, meteorological conditions

such as wind speeds and atmospheric stability, illumination and viewing conditions, and surface reflectance on the detection

limit and the quality of the emission quantifications, providing guidance for future campaigns.

2 Data and Methods60

This section covers the description of AVIRIS-4 (Section 2.1) used for the acquisition of remote sensing data in the controlled

release experiment (Section 2.2) and the data processing chain from radiance data processing (Section 2.3), CH4 retrieval

(Section 2.4) and CH4 emission estimation (Section 2.5) to the estimation of uncertainties (Section 2.6).

2.1 AVIRIS-4 sensor specification

AVIRIS-4 is a state-of-the-art imaging spectrometer with identical core components as NASA JPL’s AVIRIS-3 and the EMIT65

spectrometer (Green et al., 2022; Shaw et al., 2022; Hueni et al., 2025). The spectrometer is equipped with a 1280-pixel

sensor array and records hyperspectral data in 328 bands spanning the ultraviolet (UV) to the shortwave infrared (SWIR). In

practice, 1241 pixels receive sufficient illumination and SNR, and 287 bands are retained for data processing. Detailed sensor

specifications are provided in Hueni et al. (2025). Compared to its predecessor it offers enhanced stability, spatial sampling

interval (hereafter referred to as spatial resolution) and signal-to-noise ratio (SNR) (see Table 1).70

2.2 Controlled release experiment

The data for this analysis was acquired during a single-blind controlled release experiment organised by the Environmental

Assessment and Optimization Group at Stanford University between the 16th and 20th of September 2024 at the TotalEnergies

Anomalies Detection Initiatives (TADI) site in Lacq in the south of France (latitude: 43.412◦, longitude: -0.63643◦, elevation

a.s.l.: 95 m) (see Figure 1a). A total of 13 commercial and academic teams, using a range of technologies - including continuous75

monitoring, vehicle-based measurements, drones, airborne in-situ measurements, remote sensing from aircraft, and satellites -

participated in the experiment. The results of all teams were collected and analysed in McManemin (2025). On each campaign

day (8:00 - 18:00 CEST), up to 9 individual controlled releases with rates varying between 0.02 and 350 kg CH4 h−1 were

conducted at different unknown heights between 0.01 to 6.5 m above ground and at different unknown locations on the study

site (see Figure 1b). Each release lasted for 45 minutes and was followed by a 15 minute break before the start of the next80

release. In some periods, no CH4 was released to enable the detection of false positives. Additionally, the wind speed was

measured using a ZX 300 Doppler wind lidar positioned 100 m from the emission sources. The instrument recorded horizontal

and vertical wind speeds, as well as wind direction, at preselected heights between 10 and 300 m above ground level, with a

temporal resolution of approximately 20 seconds. Participating teams were aware of the timing of releases while locations and
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Table 1. Specifications of AVIRIS-4 compared to AVIRIS-NG, adapted from Green et al. (2022) and Hueni et al. (2025).

Category AVIRIS-4 AVIRIS-NG

SPECTRAL

Range 375 to 2504 nm 380 to 2510 nm

Sampling 7.4 nm 5 nm

Response (FWHM) 1 to 1.5 × sampling 1 to 1.5 × sampling

Calibration ±0.1 nm ±0.1 nm

RADIOMETRIC

Range 0 to max Lambertian 0 to max Lambertian

Signal-to-noise ratio (SNR) >3000 @ 600 nm >2000 @ 600 nm

>1200 @ 2200 nm >1000 @ 2200 nm

Calibration 97% (<3% uncertainty) 95% (<5% uncertainty)

SPATIAL

Swath samples 1241 600

Swath angle 40.2° field-of-view 34° field-of-view

IFOV 0.6 mrad 1 mrad

FPS 213 10 - 100

Response (FWHM) 1 to 1.5 × sampling 1 to 1.5 × sampling

flow rates of the releases as well as the wind data were only made available after all teams had submitted their initial emission85

estimates. Details of the release experiment, the participating teams and the synthesis can be found in McManemin (2025). For

the campaign, AVIRIS-4 was mounted on a hydraulic stabilisation mount and built into a Cessna 208B Grand Caravan EX. The

aircraft flew over the release site in either north-south or east-west direction at different altitudes of 12000, 9000, 6000, 4200

and 3300 ft or 3660, 2740, 1830, 1280, 1000 m above mean sea level (amsl) (see Figure 1a). This resulted in average spatial

resolutions of 2.0, 1.5, 1.0, 0.7 and 0.5 m across and 0.35 m along. For the remainder of the article, all wind speed heights are90

given in metres above ground level and all flight altitudes in feet above mean sea level.

2.3 Data processing

2.3.1 Radiometric and spectral calibration, georeferencing

The level 0 data acquired by AVIRIS-4 consists of raw digital numbers and has the spatial dimensions along-track and across-

track as well as a spectral dimension. The level 0 data was converted into level 1 at-sensor radiances (in µW cm−2 nm−1 sr−1)95

using laboratory-measured calibration coefficients. The level 1 data was georeferenced using a parametric approach (Schläpfer

and Richter, 2002), where the geometry of the sensor, its location and orientation acquired from GNSS and inertial navigation
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Figure 1. (a) Location of the controlled release experiment at the TADI site in the south of France (red polygon in the inset map). Superim-

posed are the imaging footprints of AVIRIS-4 for overpasses at 3300 and 12000 ft. (b) Aerial view of the site with the locations of the wind

lidar as well as the potential release locations. The background maps are obtained from © Google Earth.

system (INS) data were combined with a digital elevation model (IGN, 2018) to project the radiometrically corrected data onto

the surface with sub-pixel accuracy. Details on the processing are described in Hueni et al. (2025).

2.3.2 Masking of shadows and water surfaces100

Dark surfaces such as cast shadows and water bodies have a low SNR and therefore produce artefacts when processing the

data. Additionally, cast shadows only contain diffuse radiance, which is inconsistent with the non-scattering assumption in

CH4 retrieval. Cast shadows were especially pronounced in our data, as the controlled release experiment took place in late

September under low solar zenith angles (SZA). For this reason, we masked these areas using a modified version of the cast

detection method described in Schläpfer et al. (2018), using radiances at 450 nm for blue (Lb), 670 nm for red (Lr) and 780105

nm for near-infrared (NIR) (Ln):

ish =
Lr + kn(Ln−Lr)>0

Lb
· 1
aebLb,dark

. (1)

We used the default parameters kn = 0.1, a = 1.58 and b =−0.04 from Schläpfer et al. (2018). Next, we divided the inverse

of the resulting index by the integrated radiance over all wavelengths. After empirical evaluation, values larger than 0.25 were

masked prior to applying the matched filter.110
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2.4 CH4 retrieval

We retrieved CH4 maps from the AVIRIS-4 radiance cube using the computationally efficient matched filter approach following

Foote et al. (2020) and further refined by Kuhlmann et al. (2025). The filter detects a known signal within a noisy background

by enhancing the signal relative to the noise, effectively maximising the output signal-to-noise ratio under the assumption of

additive Gaussian noise.115

2.4.1 Matched filter

Using a linearised form of the Beer-Lambert law, the matched filter (MF) takes the form

αϵ =
(Lobs− µ̂) · Ŝ−1 · t

t⊤ · Ŝ−1 · t
(2)

where αϵ represents the CH4 column enhancement, Lobs the observed spectrum in the two wavelength ranges 1480 to 1800

and 2080 to 2500 nm, µ̂ and Ŝ the median and covariance of the observed spectrum and t = µ̂ ·−s the target spectrum. We used120

the negative of the unit absorption spectrum of CH4 s to align Eq. 2 with derivations in other studies. Thereby, s is calculated

using the radiative transfer equation assuming a geometric air mass factor (AMF), no atmospheric scattering according to

Kuhlmann et al. (2025) and a CH4 enhancement ϵ in the lowest 1000-m layer respectively. The calculation of the plume-

specific enhancement was achieved through an iterative approach, wherein the CH4 maps were initially derived under the

assumption of an enhancement of 0.01 ppm. The mean enhancement in the detected plume was then used for the subsequent125

iteration of the matched filter, which converged after two to three iterations.

2.4.2 Lognormal matched filter

Due to the linearisation of the Beer-Lambert law used in the derivation of the matched filter, it is only valid for weak CH4

enhancements. Therefore, Schaum (2021) argued that a lognormal matched filter (LMF) provides the uniform most powerful

solution for the detection of trace gas plumes, which takes the following form:130

αϵ =
(ln(Lobs)− µ̂) · Ŝ−1 · s

s⊤ · Ŝ−1 · s
(3)

where s is the same unit absorption spectrum as above. This approach has been implemented and evaluated by Pei et al. (2023)

for synthetic WRF-LES and observed data from the PRISMA satellite. According to Schaum (2021), the LMF could improve

the detection performance for pixels with attenuated signal, e.g. with weak enhancement or at higher flight altitudes, due to the

more realistic mean spectrum µ̂ in logarithmic space.135

2.4.3 Albedo correction

We applied the matched filter to the at-sensor radiance of each across-track position to avoid striping caused by differences in

radiometric and spectral calibration of the sensor pixels. However, as outlined in Fahlen et al. (2024), the assumption that the
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reference solar spectrum L0 can be approximated by the mean spectrum µ̂ introduces a bias in the CH4 column enhancement

αϵ over heterogeneous surfaces, which must be corrected as follows:140

αcorr =
1
R
∗αϵ with R =

(Lobs ∗−s) · Ŝ−1 · t
t⊤ · Ŝ−1 · t

(4)

While the correction factor helps mitigate biases in CH4 enhancements, it also amplifies retrieval noise for dark surfaces with

a low signal-to-noise ratio. This effect could be mitigated by masking cast shadows and water surfaces before applying the

matched filter.

2.4.4 Plume shadow correction145

In some of the AVIRIS-4 observations, we observed double plumes due to plume shadows (see Sect. 3.5.4). They present

a challenge for emission estimation because the CH4 retrieval assumes that the light traverses the plume twice, assuming a

geometric AMF that depends both on the solar zenith angle (SZA) and viewing zenith angle (VZA):

AMFgeom = sec(SZA) + sec(VZA) (5)

At the source location, however, the signal originating from the plume does not pass through the plume a second time after150

ground reflection, and thus it is independent of the VZA. Consequently, CH4 enhancements should be scaled by cplume:

cplume =
AMFgeom

sec(VZA)
(6)

For the plume shadow enhancement, the respective correction factor is given by

cshadow =
AMFgeom

sec(SZA)
(7)

When the plume and its shadow were clearly resolved, we estimated the emissions and applied the corresponding correction155

factor. However, when the plumes partially overlapped, this separation was not feasible, limiting the applicability of the cor-

rection method. In such situations, we employed the integrated mass enhancement (IME), which aggregates all detected pixels

without explicitly distinguishing between the plume and its shadow.

2.5 CH4 emission estimation

To estimate the CH4 emissions, we used the integrated mass enhancement (IME) and cross-sectional flux (CSF) method160

implemented in the Python library for data-driven emission quantification (ddeq) (Kuhlmann et al., 2024). The CSF performs

better for longer plumes and more turbulent conditions as it averages the fluxes along several cross-sections. Conversely, the

IME is more appropriate for short plumes and plumes that deviate from a Gaussian plume shape. Both methods assume steady-

state conditions of wind speed and emission rate. Limits of this assumption are further discussed in Section 4.2.

All mass-balance based methods require an estimate of the wind speed U . Ideally, U would correspond to the effective wind165

speed Ueff, which is the mean speed at which the plume is transported (Kuhlmann et al., 2024). However, as the vertical CH4

profile is unknown, we used four different approaches to obtain a wind speed estimate:
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1. 10 m wind speeds U10 from ERA5 reanalysis data (Hersbach et al., 2018) as used for the initial reporting in McManemin

(2025) as ground-based lidar measurements were not available prior to unblinding.

2. 10 m wind speeds U10 from wind lidar measurements.170

3. A linear scaling of the 10-m wind speed derived from model simulations for GHGSat (Varon et al., 2018) :

Ueff = 1.47 ·U10 (8)

4. Wind speed at source height Us, assuming a logarithmic wind profile (Fleagle and Businger, 1980; Seinfeld and Pandis,

2016). Wind profiles were derived assuming a surface roughness of 0.1 m and using on-site measurements of temperature

and wind speed, combined with sensible heat fluxes from ERA5 reanalysis data (Hersbach et al., 2018). While plume175

rise and vertical mixing were not explicitly incorporated into the wind speed calculations, their potential influence was

accounted for in the uncertainty analysis.

We also conducted a sensitivity analysis using lidar wind speeds at other elevations above ground level.

2.5.1 Integrated mass enhancement

The IME approach derives the emission rate Q based on the integrated mass enhancement M of a plume and a residence time180

τ during which CH4 resides within the detectable plume. This residence time is approximated by the wind speed U and the

length L of the detectable plume (Kuhlmann et al., 2024).

Q = τ ·M =
U

L
·M (9)

The plume length L was calculated as the arc length of the centre line curve fitted to the detected plume.

The integrated mass M was computed as185

M =
n∑

(i,j)∈Pa

(Vi,j −Vbg) ·Ai,j (10)

where Vi,j is the vertical column density, Vbg is the background vertical column density, and Ai,j is the pixel area. The trace gas

mass was summed up over the n pixels of the integration area Pa which was obtained by a sufficient extension of the detected

plume in the crosswind direction to include pixels with enhancements below the detection limit. A local CH4 background Vbg

was calculated by applying a low-pass Gaussian filter to the CH4 maps after masking the enhancements including a buffer190

(Kuhlmann et al., 2024).

2.5.2 Cross-sectional flux method

For the CSF, the detected plume is divided into multiple polygons. As in Kuhlmann et al. (2024), a Gaussian curve with linear

background trend was then fitted to the CH4 enhancements of each polygon to obtain the line densities q:

g(y) =
q√
2πσ

exp
(
− (y−µ)2

2σ2

)
+ my + b (11)195
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Here, y is the across-plume direction, σ to the standard width and µ to the mean of the fitted Gaussian curve with linearly

changing background with slope m and offset b.

The emissions Q were then calculated as the product of the wind speed U and the uncertainty-weighted mean of all line

densities q̄:

Q = U · q̄ (12)200

2.6 Estimation of uncertainty

Below we describe how uncertainty components are estimated and propagated for each input to the emission quantification.

2.6.1 CH4 Columns

The uncertainty of CH4 columns σV was calculated as

σV =
√

σ2
t + σ2

inst (13)205

where σinst accounts for correlated and uncorrelated radiance-dependent instrument uncertainties. For this analysis, it was

calculated using the EMIT noise model and propagated through the MF according to Fahlen et al. (2024). For future analyses,

a noise model for AVIRIS-4 will be used, which is currently under development. σt represents correlated uncertainties in the

target t due no-scatter assumptions for the calculation of the unit absorption spectrum s, which was estimated at a conservative

5% for this campaign based on Kuhlmann et al. (2025).210

2.6.2 Pixel area

Uncertainty in pixel area (σA) is treated as a systematic spatial uncertainty, reflecting geolocation and georectification errors.

During this campaign, geolocation accuracy was reduced due to a faulty cable, which impaired the temporal synchronization

between GNSS data and AVIRIS-4 measurements. To assess the resulting geolocation uncertainty, AVIRIS-4 imagery was

visually compared with Google Earth reference imagery. Based on this comparison, a conservative uncertainty of 5% of the215

nominal pixel area was assumed. The cable issue has since been resolved, and additional measures have been implemented to

prevent similar problems in future campaigns.

2.6.3 Wind speed

The uncertainty of the on-site measured wind speed σU is assumed to consist of four terms:

σU =
√

σ2
inst + σ2

rep + σ2
eff + σ2

var (14)220

The term σinst represents the systematic measurement uncertainty of the wind lidar which was estimated as 5% of the wind

speed, based on guidance from the site operators. The term σrep represents the error associated with the spatial displacement

between the wind lidar and the actual plume locations. Given the close proximity of the lidar to the source positions in this
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study, this component is assumed to be negligible or already captured in σvar (see below). The term σeff reflects the uncertainty

introduced by the use of the wind speed at source height instead of a concentration weighted wind profile. It was quantified by225

calculating the mean relative difference between the wind speed at source height and a Gaussian-weighted logarithmic wind

profile. For the latter, we weighted the logarithmic wind profile with Gaussian curves around the source height with standard

deviations ranging from 0.1 to 5 m and source heights between 0.01 and 6.5 m as experienced during the controlled release

experiment. σeff was found to be in the order of 30% for sources between 0 and 1.5 m above the ground and less than 5% for

sources which are more elevated. Here, we used an estimate of 15%. Finally, σvar represents the uncorrelated errors due to the230

natural variability of on-site measured wind data during the overpass. It was quantified as the standard deviation of U10 over a

one-minute window, consistent with the typical residence time of most detectable plumes, which was estimated to be no more

than one minute.

2.6.4 IME

The uncertainties of the emission estimates σQ of the IME were determined by the propagation of error:235

σQ = Q ·
√(σU

U

)2

+
(σL

L

)2

+
(σM

M

)2

(15)

The uncertainty of the plume length σL was estimated as 10% of the plume length or at least half of a pixel. The uncertainty

of the integrated mass σM was calculated as

σM =

√√√√
n∑

(i,j)∈Pa

[
(Ai,j ·σVi,j

)2 + (Ai,j ·σVbg)2 +
(
(Vi,j −Vbg) ·σAi,j

)2]
(16)

where σVi,j
corresponds to the pixel-wise uncertainty of the vertical column density V . Using the trace gas column enhance-240

ment Venhi,j = Vi,j −Vbg, Eq. 16 simplifies to

σenh =

√√√√
n∑

(i,j)∈Pa

[
(Ai,j ·σVenhi,j

)2 + (Venhi,j ·σAi,j
)2
]

(17)

where σAi,j
= σĀ and σVenhi,j

= σ ¯Venh
were assumed to be constant and correspond to the mean within the plume.

2.6.5 CSF

The uncertainties of the emission estimates σQ of the CSF were determined as245

σQ =
√

q̄2 ·σ2
U + U2 ·σ2

q̄ (18)

The uncertainty of the mean line densities σq̄ was obtained as the uncertainty of the mean of the fitted fluxes q along the plume,

which accounts for uncertainties σq of the individual cross sections. Since σq̄ decreases with the square root of the number of

line densities and does not account for the correlation of consecutive line densities, this uncertainty is set to at least 10% of the
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mean line density:250

σq̄ = min(σq̄,0.1 · q̄) (19)

The uncertainty of each cross-section σq was calculated from the uncertainty of the Gaussian fit to each sub-polygon σgauss

and the mean uncertainty of the pixel area σĀ within a sub-polygon:

σq =

√
σ2

gauss +
( q

Ā
·σĀ

)2

(20)

2.7 Probability of detection255

We computed the probability of detection (POD) for AVIRIS-4 according to Conrad et al. (2023) as a function of reported

emissions Qrep, U10 and flight altitude h̃ using the flags "detected" and "not detected" by optimising the predictor and inverse

link functions. This resulted in the following POD function:

POD = 1−




1 +
(
1.03× 1010

) (
5.18× 108

)
Q1.93

(
h̃

1000

)3.88

(u10 + 97.0)9.97




−1.84

(21)

3 Results260

In what follows, we summarise the observing conditions relevant to CH4 retrievals during the controlled-release experiment

(Section 3.1). We then present representative plume images from multiple releases across varied conditions (Section 3.2). Next,

we assess how key parameters influence retrieval performance (Section 3.5), derive detection limits (Section 3.3), and compare

estimated emissions with reported values (Section 3.4).

3.1 Controlled release experiment265

In contrast to previous efforts, this new generation of controlled release experiments was planned to reflect more realistic

natural conditions. While this allows to assess sensor performance in diverse terrain and meteorological conditions it also

introduce limitations associated to different surface coverage, cast shadows and cloud conditions (see Figure 2 for detailed

meteorological setting during all experiments, and Figures A3, A4, A5 and A6 in the Appendix for wind information). Despite

these challenges, we were able to fly 100 overpasses at different hours of the day (see Figure 3 a) and at five altitudes (see270

Figure 3 b), which allowed us to evaluate the influence of wind speeds and spatial resolution on the CH4 detection and emission

estimation. Flights at all flight levels were only scheduled for the first release in the morning and afternoon after refuelling. The

atmospheric stability was estimated to be neutral to unstable for all observations based on the Pasquill stability classes using

U10.
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Figure 2. Schedule of the controlled release experiment with the number of overpasses n for each release and a symbol for the average cloud

conditions during the release. As the releases started either at ’00, ’30 or ’45, the row label indicates the hour of the release end in local time.

If no number of overpasses is given, no release took place during that time window. Bold entries indicate releases observed at all altitude

levels; otherwise, observations were limited to 4200 and 3300 ft. The right-hand panel shows the average SZA for each hour.

Figure 3. (a) Number of overpasses at five different altitudes above mean sea level. (b) Number of overpasses at different hours of the day.
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3.2 Examples of plume images275

Figure 4 (upper row) presents three optimal examples of plumes resulting from three different releases. The plumes appear

largely linear, with minimal influence from turbulence, which is favourable for emission estimation. For stronger sources,

retrieval noise is barely noticeable, but at lower intensities - such as the 26.4 kg CH4 h−1 release - it can interfere with the

plume signal and hinder accurate attribution of enhanced pixels (see Section 3.5.5).

Figure 4. (upper row) Linear CH4 plumes from release events with 26.4, 56.7 and 290 kg CH4 h−1, observed at 3300 ft at an average spatial

resolution of 0.40 to 0.43 m. (lower row) Turbulent CH4 plumes from release events with 290 and 80.1 kg CH4 h−1, observed at 4200 ft at

an average spatial resolution of 0.48 m.

The lower row in Figure 4 shows three turbulent plumes observed during overpasses at 4200 ft, where local enhancements280

caused by turbulent eddies are clearly visible. In these cases, the CSF method outperforms the IME approach, as the effect of

turbulence is reduced through averaging across multiple cross-sections.

In addition to challenging conditions, there was also a case where turbulence impeded emission estimation, shown in Figure

5. A change in wind direction prior to the overpass appears to have caused a large, dispersed "blob" of CH4 enhancements.

Since these conditions violate the steady-state assumption, this case was excluded from emission estimation.285

3.3 Detection limit

The median noise level of CH4 maps was estimated to be around 700 ppm-m or 0.5 g CH4 h−1 for the data of the controlled

release experiment. Out of 100 overpasses, plumes were detected on 68 instances (Figure 6). In the most favourable case,
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Figure 5. CH4 plume from release events with 52.94 kg CH4 h−1, observed at 3300 ft at a spatial resolution of 0.42 m.

the smallest observed plume corresponded to a 1.45 kg CH4 h−1 release at U10 = 0.76 m s−1 and a flight altitude of 4200 ft,

representing the best-case detection limit for AVIRIS-4. Under typical conditions, plumes from releases of 5.5 kg CH4 h−1290

and above were consistently detected at altitudes ≤ 4200 ft, with the exception of two overpasses where shadows from surface

infrastructure obscured the signal. At higher flight altitudes (6000 - 12000 ft), detection performance was more constrained:

for release rates ≤ 9.23 kg CH4h−1, only one plume was detected (6000 ft, U10 = 1.3 m s−1), while the others could not be

observed due to the combined effect of higher winds and lower emissions. The original objective of conducting observations

Figure 6. (a) Reported CH4 emissions vs. on-site lidar wind measurement at 10 m. (b) Probability of detection for a flight altitude of 1000 m.

at multiple flight altitudes was to determine an altitude-dependent detection limit. However, because the CH4 release rates295

were not known in advance, the largest release event captured at all five altitudes was metered at only 9.23 kg CH4 h−1.

This emission rate was below the detection threshold at altitudes above 6000 ft and therefore remained undetectable in those

overpasses. As a consequence, no altitude-dependent detection limit could be established.
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3.4 CH4 emission estimation

Figure 7. Comparison between reported and estimated CH4 emissions using (a) ERA5 10 m wind speeds, (b) lidar 10 m wind speeds, (c)

effective wind speeds using 1.4 ×u10 according to Varon et al. (2018) and (d) effective wind speeds at source height as described in Section

2.5. Insets enlarge the low-emission range and have an independent fit to the emission estimates. It is important to note that the R2 value

represents the coefficient of determination of the weighted regression, which can take negative values.

We were able to estimate the emission from 67 of the 68 detected plumes, 54 of which were estimated using the CSF method300

and 13 using the IME method. Figure 7 shows the reported versus estimated CH4 emissions using four different wind speed

inputs. As outlined in Section 2.5, the initial CH4 emission estimates were calculated using ERA5 U10, shown in subplot (a) of

Figure 7. This approach yields a relatively weak correlation, with a fitted slope of only 0.53 and an R2 value of 0.55. Replacing

ERA5 data with lidar-measured U10 in subplot (b) of Figure 7 substantially improves the agreement, increasing the slope

to 0.65 and an R2 value of 0.73. This highlights the limitations of reanalysis wind data for accurate emission quantification305

(further shown in Figure A1). As a result, the use of ERA5 introduces both correlated and uncorrelated uncertainties in emission

estimates that are difficult to quantify or correct.

Even when using on-site lidar wind speeds (Figure 7b), biases remain: emission rates for small release events tend to be

overestimated, while large releases (e.g. at 80.1 and 290 kg CH4 h−1) are significantly underestimated. This behaviour can be

explained by plume dynamics: Small release events result in short plumes which remain near the emission height (<10 m for310

all releases), making the use of U10 prone to overestimation. In contrast, large releases produce longer plumes that undergo
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greater vertical mixing. The actual effective transport height may thus be above 10 m, resulting in an underestimation of

emissions when using U10. Additional influencing factors are specific to the release equipment, such as the outlet ejection

velocity and whether the emission was oriented horizontally or vertically.

These limitations highlight the importance of estimating an effective wind speed (Ueff) that accounts for both source height315

and vertical mixing. Subplots (c) and (d) in Figure 7 compare two approaches: the method of Varon et al. (2018), which

accounts only for vertical mixing, and the method developed in this study, which accounts only for source height. In subplot

(c), the overall fitted trend lies close to the 1:1 line, but the estimates for small releases are substantially worse than when using

U10. This reflects the fact that Varon et al. (2018) derived the linear relationship between U10 and Ueff for GHGSat, which has

a coarser spatial resolution (50×50 m). At that scale, plumes have more time to mix vertically and are therefore transported320

by winds stronger than U10. In contrast, subplot (d) shows a poorer overall trend than (c) due to the strong influence of large

release events, but the estimates for small releases improve considerably. This suggests that short plumes are well captured

because they remain close to the emission height, whereas vertical mixing is insufficiently accounted for in the case of larger

releases.

To further investigate this hypothesis of strong vertical mixing, we incorporated lidar wind speeds at 20 and 38 m and325

calculated the uncertainty-weighted root mean squared error (RMSE) and relative mean bias error (MBE) between estimated

and reported CH4 emissions, as shown in Figure 8. The results confirm that using Usrc substantially improves emission estimates

for low intensity release events. For release events above 30 kg CH4 h−1, however, using Usrc tends to underestimate emissions

and performs worse than estimates based on U10, U20 and U38. Although the relative MBE decreases for larger releases, the

high relative RMSE indicates substantial variability around the true values. This pattern may reflect the greater influence of330

turbulence on longer plumes compared to shorter ones.

Figure 8. Mean relative root mean squared error (RMSE) and relative mean bias error (MBE) between estimated and reported CH4 emissions

across emission bins.
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In addition to source strength and therefore plume length, absolute wind speed appears to significantly influence the accuracy

of emission estimates. This is illustrated in Figure 9, which shows the scaling factor required to align estimated emissions with

reported values as a function of (a) plume length and (b) effective wind speed. While subplot (a) of Figure 9 supports the

previously discussed hypothesis regarding plume length, subplot (b) reveals that lower wind speeds are associated with larger335

and more variable scaling factors. This observation aligns with the findings of Varon et al. (2018); Sánchez-García et al.

(2022); McManemin (2025), who reported reduced accuracy in emission estimates across various techniques under low wind

speed conditions. This is likely due to the increased variability typically observed at lower wind speeds. In contrast, we did

not observe larger scaling factors for larger coefficients of variation (CoV) in wind direction in subplot (c) of Figure 9 as

discussed in McManemin (2025). The reason for this is that our method does not depend on wind direction, as we do a nearly340

instantaneous measurement. The large spread in angles between the wind direction and the curve fitted to the plume in subplot

(d) further highlights the strong influence of wind turbulence on the observed plumes.

Figure 9. Correlation of (a) plume length, (b) 10 m wind speed, (c) Coefficient of Variation (CoV) and (d) angle between plume curve and

wind direction with the scaling factor required to align estimated CH4 emissions using Lidar 10 m wind speeds with reported values.

This hypothesis is further supported by individual cases where estimated emissions diverge from reported values, as illus-

trated in Figure 10. Subplot (d) shows that the CH4 fluxes across different cross-sections fluctuate strongly between 100 and

200 kg CH4 h−1 due to turbulent wind, likely reflecting both temporal variability in wind speed and changes in plume height345

that exposed it to different wind regimes. In such cases, one might consider using only CH4 enhancements close to the source,

such as those from the first cross-section, where Ueff is expected to better approximate the wind speed at source height. How-

ever, this example shows that even this approach leads to underestimation, indicating that the measured wind speeds do not

accurately reflect actual wind conditions. An analysis of the wind speed during the two minutes of the overpass reveals that

U10 varies between 1 and 3 ms−1. For comparison, a 20 m plume under a 1 m s−1 wind has a residence time of about 20 s,350

which matches the sampling interval of the wind lidar. As a result, the wind speed fluctuations visible in the plume cannot be

resolved by the lidar, and the underestimation can likely be attributed to larger-than-expected temporal variability that is not

captured at the instrument’s temporal resolution.
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Figure 10. (a) RGB image of the release location, (b) CH4 map showing the detected plume and 12 cross-sections, (c) Gaussian fits to the

CH4 columns from the first and last three cross-sections, (d) along-plume flux of all cross-sections and retrieval metadata.

The analysis of uncertainty contributions to total emission estimate uncertainty (Figure A2) indicates that wind speed is

the dominant factor for both the CSF and IME methods. Most of this contribution arises from the natural variability of wind355

speed, with additional influence from uncertainty in the effective wind speed. In comparison, measurement errors in wind speed

account for only a minor portion of the overall uncertainty.

Lastly, one source of deviation between estimated and reported CH4 emissions is the presence of cloud shadows over the

release site as shown in Section 3.5.3, leading to the strong underestimations of the 80.1 kg CH4 h−1 release event observed in

Figure 7. Despite this underestimation, the plumes were still reliably detected, indicating that observations under suboptimal360

cloud conditions can still be valuable e.g. for leak detection.

3.5 Factors affecting the CH4 retrievals

3.5.1 Spatial resolution

Figure 11 shows examples of AVIRIS-4 RGB images and CH4 maps of the release site acquired at 12000, 9000, 6000, 4200, and

3300 ft in the afternoon of the 16th of September. The across-track resolutions are 2.0, 1.5, 1.0, 0.7, and 0.5 m, while the along-365

track resolution is approximately 0.4 m. For the overpasses at 12000 and 6000 ft, the across-track resolution is represented on

the x-axis, whereas for the others it is represented on the y-axis. Black circles indicate an artifact caused by a white object
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located at the release site. This artifact arises because, first, the reflectance signal appears to correlate with the CH4 signal, and

second, the high albedo of the object leads to increased radiance, which in turn produces an artificially elevated enhancement

in the CH4 maps. At higher altitudes (12000 and 9000 ft), the spatial resolution is too coarse to clearly distinguish this artefact370

from a true enhancement. The CH4 plume from the release event with an emission rate of 9.23 kg CH4 h−1 is only visible at

higher spatial resolutions during overpasses at 3300 and 4200 ft.

Figure 11. RGB images and CH4 maps for different flight altitudes. All observations are from a release event on the 16th of September with

reported emissions of 9.23 kg CH4 h−1

3.5.2 Cast shadows

The cast shadows of buildings and objects are clearly visible at high resolution. Shadows compromise the CH4 retrieval, which

assumes a non-scattering atmosphere, since light in shadowed areas originates solely from scattering. Therefore, an efficient375

shadow masking is necessary at these resolutions. Figure 12 shows the effect of the shadow mask for a scene with water bodies

and cast shadows and the release site with a nearby photovoltaic plant. It can be seen that the masking of cast shadows and

dark surfaces such as solar panels is important to prevent biases in the CH4 maps which would interfere with plume detection.

Furthermore, in instances where the plume coincides with shadowed areas, the artificially elevated enhancements would skew

emission estimates. As a result of the shadow mask, CH4 emissions can also be estimated if the plume is transported over380

shadowed areas.

The downside of shadow masking is that some short plumes of small release events could not be detected because they

aligned with shadows. Furthermore, depending on the threshold used for shadow masking, surfaces with low albedos could be

masked, preventing the detection of CH4 emissions.
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Figure 12. Examples of scenes containing cast shadows and water bodies (upper row) and the release site during a release event with

56.7 kg CH4 h−1 (lower row), without and with shadow masking.

3.5.3 Cloud shadows385

During all eight overpasses of the 80.1 kg CH4 h−1 release on the 19th of September, cloud shadows intersected the flight

line while on five out of eight overpasses, cumulus clouds obscured the sun over the release site. Under such conditions, the

measured radiance is dominated by scattered light, violating the assumptions used in calculating the target spectrum. Moreover,

cloud shadows on the flight line render the mean spectrum µ̂ unrepresentative of the observed radiance Lobs over the release

site. Consequently, subtracting µ̂ from Lobs in Eq. 2 partially removes the CH4 signal. This effect is evident in Figure 13,390

which contrasts an overpass with obscured sun at 13:00 UTC with a clear-sun overpass at 12:54 UTC. The lower row shows

Lobs− µ̂ over the same plume-free area in both cases. As can be seen, the cloud shadow strongly reduces the signal. As a

result, emission estimates for shadowed cases, or for scenes with a substantial fraction of cloud shadows along the flight line,

tend to be underestimated. Consequently, a refined retrieval algorithm would be necessary to provide unbiased CH4 maps and

emission estimates.395

3.5.4 Plume shadows

As a consequence of the unprecedentedly high spatial resolution of AVIRIS-4 and the high SZA for some of the overpasses

(see Figure 2), we discovered that, out of 68 detected plumes, 13 were found to contain two plumes that were occasionally

overlapping and occasionally distinct, as illustrated in Figure 14. This phenomenon can be explained as plume shadows: One

plume appears at the actual release location and corresponds to the CH4 absorption signal of the light path that first travels from400

the sun to the ground and, after being reflected, passes through the plume. The second plume is observable at the upper end of

the shadow cast by the pole of the source. This plume corresponds to the absorption signal of the light that first passes through

the plume, is then reflected from the ground and reaches the sensor without passing through the plume a second time. This
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Figure 13. RGB image of 80.1 kg CH4 h−1 release on the 19th of September (a) with and (b) without cloud shadow. The lower row shows

the mean Lobs − µ̂ over the same plume-free area within the wavelength window used for CH4 retrieval for both cases.

Figure 14. Left: RGB image of the study site with a marker on the release location at 6.5 m above ground. Right: CH4 map of the study site

with two plumes visible.

phenomenon has been shown in simulations by Schwaerzel et al. (2020) and first observed by Sánchez-García et al. (2022). It

is important to note that the effect of light passing through the plume only once instead of twice occurs under all conditions405

with sufficiently high SZA. For sensors with coarse spatial resolution, however, the plume and its shadow cannot be resolved

separately and have therefore never been explicitly considered in CH4 retrieval or emission estimation prior to this study.

3.5.5 MF vs. LMF

For the analysis of this study we also tested the LMF which was developed by Schaum (2021) and tested in Pei et al. (2023).

The plume images using the MF and LMF in Figure 15 show that smaller enhancements (upper row) can be detected more410

reliably and accurately using the LMF as worked out in Schaum (2021). In our case, the LMF enabled the detection of a

release as small as 1.45,kg CH4 h−1 at a flight altitude of 4200 ft. This improved detectability can be attributed, in part, to

reduced noise levels in the CH4 retrievals, which facilitated more confident identification of the plume signal. However, the
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LMF also increases biases in background CH4 values compared to the MF as evident in both the upper and lower rows of

Figure 15. Additionally, we observed that the LMF had little to no effect on CH4 enhancements for the largest release events415

in the campaign, such as the 290 kg CH4 h−1 release. This is likely because these stronger enhancements remained within the

linear absorption regime of CH4, where the standard MF already performs effectively.

Figure 15. RGB images and CH4 maps obtained from MF and LMF for release events with 1.45 and 56.7 kg CH4 h−1, observed at 4200

and 3300 ft. Note that the upper row shows a zoomed-in subsection of the scene to be able to see the short plume.

3.6 Estimating the source height from (plume) shadows

The high spatial resolution of AVIRIS-4 offers the unique opportunity to estimate the height h of an emission source based on

the length of the shadow ls in the RGB image (Figure 14a) cast by the emission source using trigonometry:420

h =
ls

tan(SZA)
(22)

Alternatively, the height can be estimated in the same way from the horizontal separation of the starting points of the two

plumes (Figure 14b). With increasing distance, the two plumes move together more closely, suggesting that the plume is

pushed towards the surface directly after the release. Knowledge of the emission height is an important parameter for emission

estimation, as it can be used to determine the effective wind speed, which is a critical input for estimation estimation. In the425

example shown in Figure 14 with an SZA of 50° and a spatial resolution of 0.53 m, the emission plume at the stack must be

6.4 ± 1.1 m above ground which is in agreement with the true emission height of 6.5 m.

We assume that this technique can be applied if the length of the shadow is at least twice as large as the uncertainty in the

length of the shadow σls . The uncertainty in turn is given as the number of pixels with resolution lp which contain both shadow

and illuminated surface, which is at most one at the top and one at the bottom of the shadow. Therefore, the minimum emission430
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height becomes

h >
2 · lp

tan(SZA)
(23)

For the campaign discussed in this study, this minimum height is shown in Figure 16.

Figure 16. Minimum source height in metres above ground at which shadows of emission sources extend over more than one pixel, shown

as a function of SZA and flight altitude above mean sea level.

4 Discussion

4.1 Capabilities and limitations of AVIRIS-4435

Following the success of the AVIRIS Classic and AVIRIS-NG sensors in detecting and quantifying CH4 emissions as demon-

strated in numerous previous studies, this study explores the potential of their successor, AVIRIS-4. Although AVIRIS-4 was

primarily developed for surface and vegetation studies, our results show that CH4 columns can be determined with an un-

precedentedly high spatial resolution, enabling the detection of short plumes from low intensity sources. In combination

with the enhanced SNR, the detection limit is reduced to 5.5 kg CH4 h−1 under good weather conditions and down to be-440

low 1.5 kg CH4 h−1 under ideal conditions. Because the campaign took place in mid-September, we expect the detection

limit could be further reduced under more favourable illumination conditions. As discussed in Section 3.3, we were not able

to determine an altitude-dependent detection limit for AVIRIS-4, which complicates direct comparisons with other airborne

sensors. For instance, studies with AVIRIS-NG operated at altitudes between 3000 and 6000 m report detection limits of 10-

16 kg CH4 h−1 under favourable wind conditions (e.g. Ayasse et al., 2023; Conrad et al., 2023). In our case, the lowest release445

of 9.23 kg CH4 h−1 could not be detected at a comparable altitude of 2740 m, likely due to higher wind speeds. This makes it

difficult to assess whether and by how much the detection limit has improved. In Thorpe et al. (2016), the lowest detected re-

lease was 2.3 kg CH4 h−1, but at a much lower flight altitude of 430 m and under higher wind speeds of 3-5 m s−1. Kuhlmann

et al. (2025) report a detection limit of 15 kg CH4 h−1 at a flight altitude of 6000 m with wind speeds of 0.5 m s−1. Overall,
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comparing detection limits across studies is challenging, as they depend strongly on flight altitude, wind speed, and spectral450

albedo (Conrad et al., 2023).

Decreasing the detection limit is pivotal because low intensity CH4 sources are more numerous than high-emitting ones (e.g.,

Williams et al., 2025; Kuhlmann et al., 2025). Consequently, accurate estimates of total CH4 emissions depend on detecting

smaller sources. For instance, based on the best detection limit of AVIRIS-NG of 15 kg CH4 h−1 reported in Kuhlmann

et al. (2025) and the distribution of oil production sites in Romania across the outlined scenarios, AVIRIS-NG was able to455

detect between 45% and 62% of total emissions. In contrast, assuming a detection limit of 5.5 kg CH4 h−1, AVIRIS-4 would

increase this detection coverage to approximately 67%–81%. Moreover, the detection limit of 5.5 kg CH4 h−1 achieved by

AVIRIS-4 effectively enables the identification of all point sources listed in the E-PRTR registry, which mandates reporting

for emissions exceeding 100000 kg CH4 yr−1 (equivalent to 11.4 kg CH4 h−1) (European Parliament and the Council of the

European Union).460

In comparison with its predecessor, AVIRIS-4 has compromised some of its spectral resolution in order to enhance its

spatial resolution and SNR. This study, along with comparisons to other airborne imaging spectrometers with higher spectral

but lower spatial resolution such as MAMAP2DL (e.g. Krautwurst et al., 2024), demonstrates that this trade-off is beneficial

for detecting small-scale CH4 enhancements from low intensity sources, whose plumes typically extend only a few decimetres

to a few metres.465

The noise level of the CH4 maps was estimated as the standard deviation of the retrieved columns over the brightest 50%

of pixels. This resulted in a noise level of AVIRIS-4 of 700 ppm-m at an average resolution of 0.5 m which is comparable

to reported values of AVIRIS-NG at 5 m resolution for suboptimal illumination conditions (e.g. Borchardt et al., 2021). Such

noise levels are expected, given that the campaign was conducted in mid-September under low solar zenith angles (SZAs). In

addition, negative values were not masked during the CH4 retrieval, which increases the apparent noise.470

The current study also shows that owing to the higher SNR and higher spatial resolution, emissions can also be detected

and estimated with less illumination and under suboptimal surface and atmospheric conditions, which are characterised by

inhomogeneous albedo, strong turbulence, cast shadows and cloud shadows (see Section 3.1), compared to previous controlled

release experiments with AVIRIS-NG (e.g. Thorpe et al., 2016; Duren et al., 2019). For example, the higher spatial resolution

allows for a more accurate filtering for shadow pixels and albedo artefacts which, if undetected, could lead to biases in emis-475

sion estimates, as outlined in Section 3.5.2. This capability allows AVIRIS-4 to be effectively applied to built-up sites with

heterogeneous surface albedo and cast shadows, conditions commonly encountered around CH4 sources in the oil, gas, and

coal mining sectors. However, the higher spatial resolution also results in new challenges. One of them is the double plume

originating from plume shadows illustrated in Figure 14. We corrected for this artifact when the true plume and its shadow were

clearly separated, but its impact on retrieved CH4 enhancements requires further analysis. Additional work is needed to handle480

partially overlapping plumes, especially as the phenomenon of plume shadows also affects instruments with coarser spatial

resolution even if they do not spatially resolve the plume shadow (Schwaerzel et al., 2020). A second challenge that arises

with higher spatial resolution are the higher per-pixel enhancements for larger sources. As a result, the linearisation of the unit

absorption spectrum no longer holds and assumed enhancements for the calculation of the absorption spectrum have greater
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influences on the retrieved enhancements. Therefore, careful selection of the assumed enhancements, e.g. with the iterative485

approach used in this study, is essential.

Lastly, the current study shows mixed results when using the LMF introduced by Schaum (2021). On the one hand, the

proposed improvement for the detection of weak plumes was also observed in this study and lowered the detection limit

even under challenging conditions. On the other hand, the LMF increased local biases in the retrieved CH4 maps which would

impede the (automated) detection of plumes as it introduces elevated background levels that can obscure smaller enhancements490

or cause false positives in regions with complex spatial patterns. Additionally, the improved performance of the LMF for larger

sources reported by Schaum (2021) was not observed. Further systematic analyses will be required to determine under which

circumstances the LMF method can outperform the more established MF.

4.2 Wind speed estimation

As seen in Section 3.4, estimated emissions linearly depend on the wind speeds used. Therefore, accurate estimates of wind495

speeds are crucial for accurate emission estimates. Additionally, our analysis demonstrated that uncertainties in wind speeds

contributed disproportionately to the uncertainty of the estimated emissions. Based on the analysis of this study, the wind

speed representation error (σrepr), uncertainties in effective wind speed (σeff) and instrument precision (σinst) likely need to

be revised upward. Consequently, building on the understanding of wind speed inputs (see Section 4.2.1), future research on

emission estimation from remote sensing data should prioritise methods for deriving the effective wind speed that governs500

plume transport (see Section 4.2.2).

4.2.1 Source of wind speed estimates

As clearly illustrated in Figure A1, near-surface winds can be be highly variable and gusty. We frequently found that U10 mea-

sured by the Lidar varied between 1.0 and 3.0 ms−1 within one minute. These rapid fluctuations highlight that reanalysis wind

fields are insufficient for high-resolution emission estimates with new-generation sensors, as they can introduce substantial505

biases. A high-resolution model may be able to represent this gustiness more realistically in a statistical sense, but capturing

the actual wind conditions at the moment of the overpass remains practically impossible. Alternatively, wind speed data from

existing measurement networks could be used for emission estimation. However, these networks have varying data quality and

might not be available in the vicinity of a CH4 source. Therefore, one could employ mobile instruments as it was used for the

controlled release experiment in the current study. Even if this would provide the most accurate estimate of the wind speed,510

setting up wind speed instrument would negate the advantage of remote sensing instruments which is to image extensive areas

and estimate the emissions of a large number of sources. Additionally, the current analysis has shown that under turbulent

conditions, wind speed representation errors can be substantial, even when wind measurements are taken just 100 m from the

source. Therefore, the best approach would be to measure wind speed profiles in tandem with imaging spectrometry, e.g. by

using an airborne wind lidar as investigated in Thorpe et al. (2021).515
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4.2.2 Effective wind speeds

In addition to determining the small-scale and short-term wind speeds, a further challenge is to determine the effective wind

speed at which the plume was transported. Although an increasing number of studies attempt to derive Ueff from model simula-

tions (e.g. Varon et al., 2018; Guanter et al., 2021; Sánchez-García et al., 2022; Ayasse et al., 2023; Guanter et al., 2025), none

has systematically investigated the effect of emission height, atmospheric stability or surface roughness on Ueff. Moreover, ex-520

isting simulations lack the spatial and temporal resolution required for AVIRIS-4 applications. To advance our understanding of

the effective wind speed, high-resolution model studies are needed to analyse the impact of the aforementioned factors. Ideally,

these results could be parametrised to estimate the effective wind speed based on known driving factors. While estimates for

the 3D wind field, surface roughness and heat fluxes could be obtained from regional weather prediction models, information

about the emission height could be obtained directly from AVIRIS-4 imagery as outlined in Section 3.6. Another innovative525

approach has recently been demonstrated in Eastwood et al. (2025) with AVIRIS-3 where a single plume was observed multiple

times during one overpass by adjusting the flight path of the aircraft. Specifically, the aircraft ascended while approaching the

plume, maintained a level trajectory while flying directly over it, and then descended after passing it. From the resulting three

images, the plume velocity was estimated by calculating optical flow vectors for consecutive CH4 images. While this method

proved to significantly improve the estimates of the effective wind speed compared to reanalysis data and on-site wind lidar530

data, it requires a-priori knowledge of the source location to plan the required flight manoeuvres. One workaround would be to

use real-time in-flight retrieval of CH4 (e.g. Thompson et al., 2015) in combination with pitching AVIRIS-4 using the already

installed stabilisation platform.

5 Conclusions

Detecting and quantifying the emissions from a large number of sources is essential for obtaining accurate inventories of CH4535

emissions. The current study shows that AVIRIS-4 can be used for the improved detection of CH4 emissions and subsequent

quantification. The combination of high spatial resolution with the unprecedentedly high SNR of AVIRIS-4 decreases the

detection limit of AVIRIS-4 to below 5.5 kg CH4 h−1 under good weather conditions and down to 1.5 kg CH4 h−1 under ideal

conditions which effectively enables the identification of all point sources listed in the E-PRTR registry. As a result, previously

undetected low intensity and dispersed sources can be identified and accounted for in emission budgets. We demonstrate that the540

high spatial resolution of AVIRIS-4 enables its effective use under challenging conditions and in heterogeneous environments,

which are frequently encountered in real-world applications. Furthermore, we show how high-resolution AVIRIS-4 data can

be used for the estimation of the source height which is critical information when estimating the effective wind speed. As

with earlier sensors and algorithms, emission estimation with AVIRIS-4 is affected by uncertainties in the estimation of the

effective wind speed - especially at the short length and timescales presented in this study. Overall, this study highlights that545

AVIRIS-4 represents a significant step forward in airborne methane remote sensing, offering unprecedented sensitivity to low-

intensity sources under challenging conditions. At the same time, it underscores the importance of advancing wind speed

estimation techniques and improving retrieval strategies to fully exploit the sensor’s capabilities. Future work should therefore
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focus on integrating AVIRIS-4 observations with dedicated wind measurements and adapting the CH4 retrieval algorithm to

the unprecedentedly high spatial resolution.550

Code availability. The ddeq version 1.0 used for this study is available on Gitlab.com (https://gitlab.com/empa503/remote-sensing/ddeq).

The code for AVIRIS-4 data processing and CH4 retrieval is available on request.

Data availability. ERA5 data are available at https://doi.org/10.24381/cds.adbb2d47 (Hersbach et al., 2018). The retrieved AVIRIS-4 CH4

maps, wind and sources data and estimated emissions are available on the Zenodo data repository (DOI: 10.5281/zenodo.16410532).
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Figure A1 reveals substantial systematic deviations, particularly during daytime, likely caused by small- to mesoscale atmo-555

spheric circulations influenced by local terrain. Such features are not captured by the relatively coarse spatial (0.25° × 0.25°)

and temporal resolution of ERA5. Furthermore, ERA5 fails to resolve turbulent fluctuations in near-surface winds that are

evident in lidar observations.

Figure A1. ERA5 U10 vs. on-site lidar U10. The blue shaded area represents the ERA5 ensemble spread while the red shaded area depicts

the min and max wind speed for 1 minute intervals.

Figure A2. Top row: Relative contribution of the individual uncertainty terms of the CSF and IME to the uncertainty of the estimated

emissions Q. Bottom row: wind speed uncertainty contributions by natural variability σvar, effective wind speed σeff and instrument precision

σinst
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Figure A3. Pair plot of the wind speeds measured by the wind lidar at 10 and 20 m as well as from a meteorological station affixed to the

lidar, approximately 1 m off the ground.
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Figure A4. Average and standard deviation of lidar 10 m wind speed during each release in local time [UTC+2]. Wind data has been

resampled to 1 minute intervals.
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Figure A5. Average and standard deviation of lidar 10 m wind direction during each release in local time [UTC+2]. Wind data has been

resampled to 1 minute intervals.
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Figure A6. Wind roses of lidar 10 m wind speed and direction during each release in local time [UTC+2].
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Figure A7. Uncertainty weighted average estimates for each release using Ueff derived in this paper. The number of observations n, emission

height h, plume length l and average wind speed u are indicated above each bar.
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