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Abstract. Atmospheric concentration of methane (CHy), a eritieal-potent greenhouse gas, increased significantly since pre-
industrial times, with anthropogenic emissions originating primarily from agriculture, fossil fuel use-sector and waste man-
agement. However, considerable uncertainties persist in the detection and quantification of anthropogenic CH4 emissions. In
this study, we present first CHy observations, plume detections and emission estimates from the new state-of-the-art Airborne
Visible InfraRed Imaging Spectrometer 4 (AVIRIS-4), which participated in a blind controlled release experiment in Septem-
ber 2024 in southern France. We used an albedo-corrected matched filter to retrieve CH4 maps from the spectral images and
estimated CH4 emission with the Integrated Mass Enhancement (IME) and Cross-Sectional Flux (CSF) methods. Our results
demonstrate that AVIRIS-4 can reliably detect emissions as low as 5.5 kg CH4 h~! under good weather conditions at low flight
altitudes (<1500m) and 1.45 kg CH4h~! under ideal conditions. These low-altitude detection limits are substantially lower
than published detection limits for the predecessor instrument AVIRIS:NG, which were in the order of 10 - 16 kg CHyh™!
under comparable conditions. While AVIRIS-4 provides highly accurate CH4 maps at <0.5 m resolution, emission estimation
is limited by the accuracy of the effective wind speed, whose uncertainty and natural variability contribute substantially to the
overall uncertainty. Using wind speed at source height performs well for small releases (below 20 kg CH,h—!) ('RMSE =
1.065; rtMBE = 0.361) and overall ({RMSE = 0.702; rMBE = -0.204). Using literature-derived effective wind speeds improves
the apparent fit between estimated and reported CH,4 emissions, but degrades performance both in overall agreement (rRMSE =
2.098; rMBE = 0.964) and for low-emission events (rRMSE = 2.367; tMBE = 1.711). Interestingly, the high spatial resolution
makes it possible to retrieve the cast shadow of the CHy plume, which can be used to estimate source and plume height, and
could provide an approach for better constraining the height-dependency of the effective wind speed. On the bottom line, the
controlled release experiment provides critical insights into the sensor’s capabilities and guides further improvements to detect
and quantify low intensity sources in the fossil fuel and waste management sectors, with implications for more accurate global

greenhouse gas monitoring.
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1 Introduction

Methane (CHy), a potent greenhouse gas with a global warming potential 28 times higher than CO4 on a timescale of 100
years, has seen an almost threefold rise from 700 ppb pre-industrial levels to over 1900 ppb due to natural and anthropogenic
sources (Seinfeld and Pandis, 2016). Major contributors include agriculture, fossil fuels, and waste. Due to its short lifetime of
only 9 years, CHy is removed more quickly compared to most other greenhouse gases. Reducing CH4 emissions is therefore
considered an effective measure to mitigate anthropogenic climate change in the near term. However, there are still significant
uncertainties in the quantification of anthropogenic CH4 emissions (Saunois et al., 2020).

For instance, Saunois et al. (2020) estimated that uncertainties in emissions from the fossil fuel sector are around 20-35%
with strong regional variations. Reducing these uncertainties is challenging for several reasons. One of them is the fact that an
important fraction of anthropogenic CH,4 emissions, e.g., from the fossil fuel sector, result from unintentional leakage, which
cannot be accurately quantified. Additionally, global CH4 emission estimates depend on a network of monitoring stations,
which is dense and accurate in northern and mid-latitudes but sparser in other regions (Saunois et al., 2020). For these reasons,
satellite remote sensing observations of CH4 have been used to estimate the emissions in a top-down approach (e.g. Alexe et al.,
2015; Bousquet et al., 2018; Fraser et al., 2013). These remote sensors can be separated into area flux mappers (e.g. Sentinel-
5P, MethaneSAT -GOSAT-GW-and-€CO2Mand GOSAT-GW) which are designed to have a global to regional coverage and
point flux mappers (e.g. Landsat-8, Sentinel-2, GHGSat, PRISMA and EnMAP) which are used to observe regional to local
emissions (Jacob et al., 2022).

Most of the currently available CH, imagers are limited by spatial and/or spectral resolution which hinders the precision and
accuracy of the emission estimates (Bousquet et al., 2018). This results in high detection limits in the range of a few 100 to
several 1000 kg CHy h~! for spaceborne instruments such as Sentinel-2 and Sentinel-5, PRISMA, EnMAP or GHGSat (e.g.
Jacob et al., 2022; Gorrofio et al., 2023; Joyce et al., 2023). For airborne instruments with a higher spatial resolution such
as MethaneAIR, GHGSat-AV and the Airborne Visible InfraRed Imaging Spectrometer - Next Generation (AVIRIS-NG), the
detection limit decreases to 10 to 100 kg CH4 h~! under favourable conditions (e.g. Cusworth et al., 2021; Duren et al., 2019;
Jongaramrungruang et al., 2022; Kuhlmann et al., 2025; Guanter et al., 2025).

CH, emissions from sources with small emission strengths that cannot be quantified from space (<-<100 kg CHyh™!) are
crucial for two reasons: First, leakages from the production and use of fossil fuels are often small and remain undetected by
satellite-based approaches. Second, CH4 emissions from oil and gas production have a lognormal distribution with many small
sources but only a few large ones (e.g. Balcombe et al., 2018; Stavropoulou et al., 2023; Williams et al., 2025). Accurate
knowledge of the emission distribution of sources from a given sector or country is crucial for extrapolating CH4 emissions
from the entire sector or country by accounting for sources below the detection limit (Zavala-Araiza et al., 2015; Zhang et al.,
2023; Kuhlmann et al., 2025).

The detection of low intensity CH,4 sources requires a sensor that combines high spatial resolution with a good signal-to-
noise ratio. One such state-of-the-art sensor is the new Airborne Visible InfraRed Imaging Spectrometer 4 (AVIRIS-4). It was

developed by NASA JPL as a successor of AVIRIS-NG in parallel to its sister instruments Earth Surface Mineral Dust Source
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Investigation (EMIT) and AVIRIS-3 which are in service on board the ISS and as airborne sensor respectively (Hueni et al.,
2025). In comparison with its predecessor, AVIRIS-4 has traded some of its spectral resolution in order to enhance its spatial
resolution and SNR (see Table 1). In this paper, we present the processing chain for retrieving CH4 emissions from AVIRIS-
4 measurements, show CH, maps and emission estimates from a blind controlled release experiment and characterise the
capabilities and limitations of AVIRIS-4 for CH4 emission quantification. The analysis considers the influence of flight altitude,
meteorological conditions such as wind speeds and atmospheric stability, illumination and viewing conditions, and surface

reflectance on the detection limit and the quality of the emission quantifications, providing guidance for future campaigns.

2 Data and Methods

This section covers the description of AVIRIS-4 (Section 2.1) used for the acquisition of remote sensing data in the controlled
release experiment (Section 2.2) and the data processing chain from radiance data processing (Section 2.3), CHy retrieval

(Section 2.4) and CHy4 emission estimation (Section 2.5) to the estimation of uncertainties (Section 2.6).
2.1 AVIRIS-4 sensor specification

AVIRIS-4 is a state-of-the-art imaging spectrometer with identical core components as NASA JPL’s AVIRIS-3 and the EMIT
spectrometer (Green et al., 2022; Shaw et al., 2022; Hueni et al., 2025). The spectrometer is equipped with a 1280-pixel
sensor array and records hyperspectral data in 328 bands spanning the ultraviolet (UV) to the shortwave infrared (SWIR). In
practice, 1241 pixels receive sufficient illumination and SNR, and 287 bands are retained for data processing. Detailed sensor
specifications are provided in Hueni et al. (2025). Compared to its predecessor it offers enhanced stability, spatial sampling

interval (hereafter referred to as spatial resolution) and signal-to-noise ratio (SNR) (see Table 1).
2.2 Controlled release experiment

The data for this analysis was acquired during a single-blind controlled release experiment organised by the Environmental As-
sessment and Optimization Group at Stanford University between the 16iiand Z(ﬂtﬁ\ of September 2024 at the TotalEnergies
Anomalies Detection Initiatives (TADI) site in Lacq in the south of France (latitude: 43.412°, longitude: -6-:63643-0.636°, ele-
vation a.m.s.l.: 95m) (see Figure 1a). A total of 13 commercial and academic teams, using a range of technologies - including
continuous monitoring, vehicle-based measurements, drones, airborne in-situ measurements, remote sensing from aircraft, and
satellites - participated in the experiment. The results of all teams were collected and analysed in McManemin (2025). On each
campaign day (8:00 - 18:00 CEST), up to 9 individual controlled releases with rates varying between 0.02 and 350 kg CH, h~1
were conducted at different unknown heights between 0.01 to 6.5 m above ground and at different unknown locations on the
study site (see Figure 1b). Each release lasted for 45 minutes and was followed by a 15 minute break before the start of the
next release. In some periods, no CHy was released to enable the detection of false positives. Additionally, the wind speed was
measured using a ZX 300 Doppler wind lidar positioned 100 m from the emission sources. The instrument recorded horizontal

and vertical wind speeds, as well as wind direction, at preselected heights between 10 and 300 m above ground level, with a
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Table 1. Specifications of AVIRIS-4 compared to AVIRIS-NG, adapted from Green et al. (2022) and Hueni et al. (2025).

Category AVIRIS-4 AVIRIS-NG
SPECTRAL
Range 375 to 2504 nm 380 to 2510 nm
Sampling 7.4 nm 5 nm
Response (FWHM) 1 to 1.5 x sampling 1to 1.5 x sampling
Calibration 40.1 nm 40.1 nm
RADIOMETRIC
Range 0 to max Lambertian 0 to max Lambertian

Signal-to-noise ratio (SNR)

>3000 @ 600 nm
>1200 @ 2200 nm

>2000 @ 600 nm
>1000 @ 2200 nm

Calibration 97% (<3% uncertainty)  95% (<5% uncertainty)
SPATIAL

Swath samples 1241 600

Swath angle 40.2° field-of-view 34° field-of-view
IFOV 0.6 mrad 1 mrad

FPS 213 10 - 100

Response (FWHM) 1to 1.5 X sampling 1 to 1.5 X sampling

temporal resolution of approximately 20 seconds. Participating teams were aware of the timing of releases while locations and
flow rates of the releases as well as the wind data were only made available after all teams had submitted their initial emission
estimates. Details of the release experiment, the participating teams and the synthesis can be found in McManemin (2025). For
the campaign, AVIRIS-4 was mounted on a hydraulic stabilisation mount and built into a Cessna 208B Grand Caravan EX. The
aircraft flew over the release site in either north-south or east-west direction at different altitudes of 12000, 9000, 6000, 4200
and 3300 ft or 3660, 2740, 1830, 1280, 1000 m above mean sea level (amsta.m.s.l.) (see Figure 1a). This resulted in average
spatial resolutions of 2.0, 1.5, 1.0, 0.7 and 0.5 m aeress-across-track and 0.35 m alengalong-track. For the remainder of the
article, all wind speed heights are given in metres above ground level and all flight altitudes in feet above-mean-seatevelkam.s.l.

2.3 Data processing

2.3.1 Radiometric and spectral calibration, georeferencing

The level 0 data acquired by AVIRIS-4 consists of raw digital numbers and-has-the-spatial-dimenstons-organized into along-
track and aeress-track-as—-well-as-across-track spatial dimensions and a spectral dimension. The level 0 data was converted
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AVIRIS-4 Footprints
[ 3300ft
12000 ft

Lidar location ¥
o Release locations

Figure 1. (a) Location of the controlled release experiment at the TADI site in the south of France (red polygon in the inset map). Superim-
posed are the imaging footprints of AVIRIS-4 for overpasses at 3300 and 12000 ft. (b) Aerial view of the site with the locations of the wind

lidar as well as the potential release locations. The background maps are obtained from © Google Earth.

into level 1 at-sensor radiances (in yW cm =2 nm ™! sr~!) using laboratory-measured calibration coefficients. The level 1 data
was georeferenced using a parametric approach (Schlipfer and Richter, 2002), where the geometry of the sensor, its location
and orientation acquired from GNSS-global navigation satellite system (GNSS) and inertial navigation system (INS) data
were combined with a digital elevation model (IGN, 2018) to project the radiometrically corrected data onto the surface with

sub-pixel accuracy. Details on the processing are described in Hueni et al. (2025).
2.3.2 Masking of shadows and water surfaces

Dark-Observations over dark surfaces such as cast shadows and water bodies have a low SNR and therefore produce arte-
facts when processing the data. Additionally, cast shadows only contain diffuse radiance, which is inconsistent with the non-
scattering assumption in CHy retrieval. Cast shadows were especially pronounced in our data, as the controlled release ex-
periment took place in late September under low solar zenith angles (SZA). For this reason, we masked these areas using a
modified version of the cast detection method described in Schlipfer et al. (2018), using radiances at 450 nm for blue (L;), 670
nm for red (L,.) and 780 nm for near-infrared (NIR) (L,,):

Lr+kn(Ln_Lr)>0 1
Lb ’ aebLb,dark '

D

lsh =

We used the default parameters k,, = 0.1, a = 1.58 and b = —0.04 from Schldpfer et al. (2018). Next, we divided the inverse
of the resulting index by the integrated radiance over all wavelengths. After empirical evaluation, values larger than 0.25 were

masked prior to applying the matched filter.
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2.4 CHjy retrieval

We retrieved CHy4 maps from the AVIRIS-4 radiance eube-cubes using the computationally efficient matched filter approach
following Foote et al. (2020) and further refined by Kuhlmann et al. (2025). The filter detects a known signal within a noisy
background by enhancing the signal relative to the noise, effectively maximising the output signal-to-noise ratio under the

assumption of additive Gaussian noise.
2.4.1 Matched filter

Using a linearised form of the Beer-Lambert law, the matched filter (MF) takes the form

_ ). 61,
o, = Lo =) 577+ ®)
tT.S-1.¢

where . represents the CH4 column enhancement, L5 the observed spectrum in the two wavelength ranges 1480 to 1800 and

2080 to 2500 nm, /i and S the median and covariance of the observed spectrum and ¢ = [i- —s the target spectrum. We used the
negative of the unit absorption spectrum of CHy s to align Eq. 2 with derivations in other studies. Thereby, s is calculated using
the radiative transfer equation assuming a geometric air mass factor (AMF), no atmospheric scattering according to Kuhlmann
et al. (2025) and a CH4 enhancement € in the lowest +000-m-1000 m layer respectively. The calculation of the plume-specific
enhancement was achieved through an iterative approach, wherein the CH, maps were initially derived under the assumption
of an enhancement of 0.01 ppm. The mean enhancement in the detected plume was then used for the subsequent iteration of

the matched filter, which converged after two-to-three-iterations—three iterations with changes between successive iterations

falling below a 5% threshold. Our iterative approach reduces the approximation error introduced by the linearisation of the
Beer-Lambert law by expanding around the current estimate of « rather than « = 0, which decreases the linearisation error
uadratically in the update step. For large enhancements, this substantially mitigates non-linear absorption effects.

2.4.2 Lognormal matched filter

Due to the linearisation of the Beer-Lambert law used in the derivation of the-matehedfilter——it-is—most matched filter

approaches, they are only valid for weak CH4 enhancements. Therefore, Schaum (2021) argued that a lognormal matched

filter (LMF) provides the uniform most powerful solution for the detection of trace gas plumes, which takes the following

form:

(In(Lobs) — 1) S-l.s
sT-S-1.s

where s is the same unit absorption spectrum as above. This approach has been implemented and evaluated by Pei et al. (2023)

for synthetic WRF-LES and observed data from the PRISMA satellite. According to Schaum (2021), the LMF could improve

3)

Qe =

the detection performance for pixels with attenuated signal, e.g. with weak enhancement or at higher flight altitudes, due to

the more realistic mean spectrum /i in logarithmic space. In the present study, we evaluated the LMF only exploratively to
illustrate its behaviour on AVIRIS-4 data with an emphasis on the smallest and largest release events.
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2.4.3 Albedo correction

We applied the matched filter to the at-sensor radiance of each across-track position to avoid striping caused by differences in
radiometric and spectral calibration of the sensor pixels. However, as outlined in Fahlen et al. (2024), the assumption that the
reference solar spectrum L can be approximated by the mean spectrum [ introduces a bias in the CH4 column enhancement
a. over heterogeneous surfaces, which must be corrected as follows:
(Lobs * —$) - S—1.¢

tT-5-1.¢

1
corr = 75 ¥ O ith R=
(0% R [0 WI

“)

While the correction factor helps mitigate biases in CH4 enhancements, it also amplifies retrieval noise for dark surfaces with
a low signal-to-noise ratio. This effect could be mitigated by masking cast shadows and water surfaces before applying the

matched filter.
2.4.4 Plume shadow correction

In some of the AVIRIS-4 observations, we observed double plumes due to plume shadows (see Sect. 3.5.4). They present
a challenge for emission estimation because the CH4 retrieval assumes that the light traverses the plume twice, assuming a

geometric AMF that depends both on the solar zenith angle (SZA) and viewing zenith angle (VZA):
AMF geom = sec(SZA) +sec(VZA) (5)

At the source location, however, the signal originating from the plume does not pass through the plume a second time after

ground reflection, and thus it is independent of the VZA. Consequently, CH,4 enhancements should be scaled by cpiume:

AMFgeom

me — 6
Cplume sec(VZA) ©
For the plume shadow enhancement, the respective correction factor is given by
AMF geom
)

Cshadow = m
When the plume and its shadow were clearly resolved, we estimated the emissions and applied the corresponding correction
factor. However, when the plumes partially overlapped, this separation was not feasible, limiting the applicability of the cor-
rection method. In such situations, we employed the integrated mass enhancement (IME), which aggregates all detected pixels

without explicitly distinguishing between the plume and its shadow.
2.5 CH,4 emission estimation

To estimate the CH4 emissions, we used the integrated mass enhancement (IME) and cross-sectional flux (CSF) method
implemented in the Python library for data-driven emission quantification (ddeq) (Kuhlmann et al., 2024). The-CSFEperforms
better-We used the CSF for longer plumes and more turbulent conditions as it averages the fluxes along several cross-sections.

Conversely, the IME is-more-appropriate-was used for short plumes and plumes that deviate from a Gaussian plume shape such



175

180

185

190

195

200

as for overlapping double plumes. Both methods assume steady-state conditions of wind speed and emission rate. Limits of
this assumption are further discussed in Section 4.2.

All mass-balance based methods require an estimate of the wind speed U. Ideally, U would correspond to the effective wind
speed U, which is the mean speed at which the plume is transported (Kuhlmann et al., 2024). However, as the vertical CHy

profile is unknown, we used four different approaches to obtain a wind speed estimate:

1. 10m wind speeds U;o from ERAS reanalysis data (Hersbach et al., 2018) as used for the initial reporting in McManemin

(2025) as ground-based lidar measurements were not available prior to unblinding.
2. 10m wind speeds U;o from wind lidar measurements.
3. A linear scaling of the 10-m wind speed derived from model simulations for GHGSat (Varon et al., 2018) :

Uett = 1.47 - Uy ®)

4. Wind speed at source height Uy, assuming a logarithmic wind profile (Fleagle and Businger, 1980; Seinfeld and Pandis,
2016). Wind profiles were derived assuming a surface roughness of 0.1 m and using on-site measurements of temperature
and wind speed, combined with sensible heat fluxes from ERAS reanalysis data (Hersbach et al., 2018). While plume
rise and vertical mixing were not explicitly incorporated into the wind speed calculations, their potential influence was

accounted for in the uncertainty analysis.

We also conducted a sensitivity analysis using lidar wind speeds at other elevations above ground level.
2.5.1 Integrated mass enhancement

The IME approach derives the emission rate () based on the integrated mass enhancement M of a plume and a residence time
7 during which CH, resides within the detectable plume. This residence time is approximated by the wind speed U and the
length L of the detectable plume (Kuhlmann et al., 2024).

Q:T-M:%~M ©)

The plume length L was calculated as the arc length of the centre line curve fitted to the detected plume.

The integrated mass M was computed as

n

M= " (Vij— Vi) Aij (10)
(i,4)EPaq

where V; ; is the vertical column density, V}, is the background vertical column density, and A; ; is the pixel area. The trace gas
mass was summed up over the n pixels of the integration area P, which was obtained by a sufficient extension of the detected
plume in the crosswind direction to include pixels with enhancements below the detection limit. A local CHy4 background V4,

was calculated by applying a low-pass Gaussian filter to the CH, maps after masking the enhancements including a buffer

(Kuhlmann et al., 2024).
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2.5.2 Cross-sectional flux method

For the CSF, the detected plume is divided into multiple polygons. As in Kuhlmann et al. (2024), a Gaussian curve with linear

background trend was then fitted to the CH4 enhancements of each polygon to obtain the line densities g:

N2
o (~U5k ) e (11

g(y) =

2mo 202

Here, y is the across-plume direction, o to the standard width and x4 to the mean of the fitted Gaussian curve with linearly
changing background with slope m and offset b.
The emissions () were then calculated as the product of the wind speed U and the uncertainty-weighted mean of all line

densities ¢:

0=U-q (12)
2.6 Estimation of uncertainty

Below we describe how uncertainty components are estimated and propagated for each input to the emission quantification.
2.6.1 CH,4 Columns

The uncertainty of CH4 columns oy was calculated as

oy = \/Uf +02. \/JE +0dy, (13)

— is the standard deviation of retrieved
CH4 columns in a plume-free region next to the release location with similar surface properties. o, represents correlated

uncertainties in the target ¢ due_to no-scatter assumptions for the calculation of the unit absorption spectrum s, which was

estimated at a conservative 5% for this campaign based on Kuhlmann et al. (2025).
2.6.2 Pixel area

Uncertainty in pixel area (o 4) is treated as a systematic spatial uncertainty, reflecting geolocation and georectification errors.
During this campaign, geolocation accuracy was reduced due to a faulty cable, which impaired the temporal synchronization
between GNSS data and AVIRIS-4 measurements. To assess the resulting geolocation uncertainty, AVIRIS-4 imagery was
visually compared with Google Earth reference imagery. Based on this comparison, a conservative uncertainty of 5% of the
nominal pixel area was assumed. The cable issue has since been resolved, and additional measures have been implemented to

prevent similar problems in future campaigns.
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2.6.3 Wind speed

The uncertainty of the on-site measured wind speed o is assumed to consist of four terms:

ou = \/O'iQnst + O-?ep + O-gff + Ugar (14)

The term o5t represents the systematic measurement uncertainty of the wind lidar which was estimated as 5% of the wind
speed, based on guidance from the site operators. The term o,.;, represents the error associated with the spatial displacement
between the wind lidar and the actual plume locations. Given the close proximity of the lidar to the source positions in this
study, this component is assumed to be negligible or already captured in o, (see below). The term o reflects the uncertainty
introduced by the use of the wind speed at source height instead of a concentration weighted wind profile. It was quantified by
calculating the mean relative difference between the wind speed at source height and a Gaussian-weighted logarithmic wind
profile. For the latter, we weighted the logarithmic wind profile with Gaussian curves around the source height with standard
deviations ranging from 0.1 to 5m and source heights between 0.01 and 6.5 m as experienced during the controlled release
experiment. . was found to be in the order of 30% for sources between 0 and 1.5 m above the ground and less than 5% for
sources which are more elevated. Here, we used an estimate of 15%. Finally, o, represents the uncorrelated errors due to the
natural variability of on-site measured wind data during the overpass. It was quantified as the standard deviation of U over a
one-minute window, consistent with the typical residence time of most detectable plumes, which was estimated to be no more

than one minute.
2.64 IME
The uncertainties of the emission estimates o of the IME were determined by the propagation of error:
ou\? (0L ) 2 (U M ) 2
=0- == = -2 15
ra= 0\ () + () + (5 09

The uncertainty of the plume length o, was estimated as 10% of the plume length or at least half of a pixel. The uncertainty

of the integrated mass o, was calculated as

n

o= > [(Am‘ cov, )2+ (Aij o )2+ (Vi — Vig) - UAM)Q} (16)
(4,)€Pa

where oy, ; corresponds to the pixel-wise uncertainty of the vertical column density V. Using the trace gas column enhance-

J

ment Venhm. =Vi.; — Vbg, Eq. 16 simplifies to

n

Oenh = Z {(Ai,j “OVonn, )2+ (Venn;; - 04, ,;)? 17
(4,5)EPq

where 04, . =ozand oy, , = oy, were assumed to be constant and correspond to the mean within the plume.
1,7 A e“hl,J Venh

10
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2.6.5 CSF

The uncertainties of the emission estimates o of the CSF were determined as

0Q =1/ ol +U? 0} (18)

The uncertainty of the mean line densities o5 was obtained as the uncertainty of the mean of the fitted fluxes ¢ along the plume,
which accounts for uncertainties o, of the individual cross sections. Since o decreases with the square root of the number of
line densities and does not account for the correlation of consecutive line densities, this uncertainty is set to at least 10% of the

mean line density:

The uncertainty of each cross-section o, was calculated from the uncertainty of the Gaussian fit to each sub-polygon ogauss

and the mean uncertainty of the pixel area o 5 within a sub-polygon:

g = \/ogauss n (% ~0A>2 (20)

—1.84
(5.18 x 10%) Q**

POD=1- [ 1+ (1.03x10') T
} (
! ) (u10 + 97.0)"°7

1000

3 Results

In what follows, we summarise the observing conditions relevant to CHy retrievals during the controlled-release experiment
(Section 3.1). We then present representative plume images from multiple releases across varied conditions (Section 3.2). Next,
we assess how key parameters influence retrieval performance (Section 3.5), derive detection limits (Section 3.3), and compare

estimated emissions with reported values (Section 3.4).
3.1 Controlled release experiment

In contrast to previous efforts, this new generation of controlled release experiments was planned to reflect more realistic

natural conditions. While this allows to assess sensor performance in diverse terrain and meteorological conditions it also

11
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introduee-introduces limitations associated to different surface coverage, cast shadows and cloud conditions (see Figure 2 for
detailed meteorological setting during all experiments, and Figures A3, A4, AS and A6 in the Appendix for wind information).
Despite these challenges, we were able to fly 100 overpasses at different hours of the day (see Figure 3a) and at five altitudes
(see Figure 3b), which allowed us to evaluate the influence of wind speeds and spatial resolution on the CH, detection and
emission estimation. Flights at all flight levels were only scheduled for the first release in the morning and afternoon after
refuelling. The atmospheric stability was estimated to be neutral to unstable for all observations based on the Pasquill stability

classes using Ujg.

Cloud cover
QO: clear, ®: few, @: scattered, @: broken, @: overcast
16.09.2024 17.09.2024 18.09.2024 19.09.2024 20.09.2024 SSZSAO[D;O 80

09:00 (@) n=0 @ n=0 @ n=0 @ n=0 @

10:00 O n=0 @ n=0 @ n=0 @ n=0 @
g 11:00 n=5 O n=0 @ n=7 ® n=0 @ n=0 @
5 12:00 n=8 O n=8 0@ n=8 O n=0 @ n=0 @
.§ 13:00 n=8 O n=1 Q@ n=7 O n=0 @ n=0 @
g 14:00 n=0 O n=0 Q n=4 O n=0 Q@ n=0 @

15:00 n=7@® n=0 Q@ n=0 ® n=8 Q@ n=0 @

16:00 n=8 n=0 Q@ n=8 Q@ n=8 ® n=0 @

17:00 e d n=2 Q n=8 O [ J

Figure 2. Schedule of the controlled release experiment with the number of overpasses n for each release and a symbol for the average cloud
conditions during the release. As the releases started either at *00, *30 or "45, the row label indicates the hour of the release end in local time.
If no number of overpasses is given, no release took place during that time window. Bold entries indicate releases observed at all altitude

levels; otherwise, observations were limited to 4200 and 3300 ft. The right-hand panel shows the average SZA for each hour.

3.2 Examples of plume images

Figure 4 (upper row) presents three optimal examples of plumes resulting from three different releases. The plumes appear
largely linear, with minimal influence from turbulence, which is favourable for emission estimation. For stronger sources,
retrieval noise is barely noticeable, but at lower intensities - such as the 26.4 kg CH, h~! release - it can interfere with the
plume signal and hinder accurate attribution of enhanced pixels (see Section 3.5.5).

The lower row in Figure 4 shows three turbulent plumes observed during overpasses at 4200 ft, where local enhancements
caused by turbulent eddies are clearly visible. In these cases, the CSF method outperforms the IME approach, as the effect of

turbulence is reduced through averaging across multiple cross-sections.
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Figure 4. (upper row) Linear CH, plumes from release events with 26.4, 56.7 and 290 kg CH4 h ™!, observed at 3300 ft at an average spatial
resolution of 0.40 to 0.43 m. (lower row) Turbulent CH, plumes from release events with 290 and 80.1 kg CH4 h™", observed at 4200 ft at

an average spatial resolution of 0.48 m.
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In addition to challenging conditions, there was also a case where turbulence impeded emission estimation, shown in Figure
5. A change in wind direction prior to the overpass appears to have caused a large, dispersed "blob" of CH4 enhancements.

Since these conditions violate the steady-state assumption, this case was excluded from emission estimation.

Altitude: 3300 ft, 10:20 UTC
Ugp: 245 ms™!, Q:52.94 kg h™!

X -l'p #_

» r

»

* release site

CH4 columns [g m~2]

Figure 5. CH4 plume from release events with 52.94 kg CH4 h™", observed at 3300 ft at a spatial resolution of 0.42 m.

3.3 Detection limit

The median noise level of CH, maps was estimated to be around 760450 ppm-m or 6-50.3 g CH, h™~! for the data of the con-
trolled release experiment. Out of 100 overpasses, plumes were detected on 68 instances (Figure 6). In the most favourable case,
the smallest observed plume corresponded to a 1.45 kg CH, h~! release at Ujg = 0.76 ms~! and a flight altitude of 4200 ft,
representing the best-case detection limit for AVIRIS-4. Under typical conditions, plumes from releases of 5.5 kg CH, h~!
and above were consistently detected at altitudes < 4200 ft, with the exception of two overpasses where shadows from surface
infrastructure obscured the signal. At higher flight altitudes (6000 - 12000 ft), detection performance was more constrained:
for release rates < 9.23 kg CH4 h—1, only one plume was detected (6000 ft, Ujp = 1.3 m s~1), while the others could not be
observed due to the combined effect of higher winds and lower emissions. {a)Reperted-CHemissions-vs—on-site- lidar-wind

meastrement-atH0-m—(b) Probability-of detection-foraflight-altitude-of +000-m- The original objective of conducting obser-

vations at multiple flight altitudes was to determine an altitude-dependent detection limit. However, because the CHy4 release
rates were not known in advance, the largest release event captured at all five altitudes was metered at only 9.23 kg CH4 h~1.
This emission rate was below the detection threshold at altitudes above 6000 ft and therefore remained undetectable in those
~For the overpasses below 6000 ft,
emissions Qrep, Uy and flight altitude / using the flags "detected” and "not detected” by optimising the predictor and inverse

overpasses.
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link functions. This resulted in the following PoD function which is plotted in Figure 6.
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Figure 6. (a) Reported CH4 emissions vs. on-site lidar wind measurement at 10 m. (b) Probability of detection for a flight altitude of 1000 m.

above mean sea level using Eq. 21.

3.4 CH, emission estimation

We were able to estimate the emission from 67 of the 68 detected plumes, 54 of which were estimated using the CSF method
and 13 using the IME method. Figure 7 shows the reported versus estimated CH4 emissions using four different wind speed
inputs. As outlined in Section 2.5, the initial CH,4 emission estimates were calculated using ERAS U, shown in subplot (a) of
Figure 7. This approach yields a relatively weak correlation, with a fitted slope of only 0.53 and an R? value of 0.55. Replacing
ERAS5 data with lidar-measured Uy in subplot (b) of Figure 7 substantially improves the agreement, increasing the slope
to 0.65 and an R? value of 0.73. This highlights the limitations of reanalysis wind data for accurate emission quantification
(further shown in Figure A1). As a result, the use of ERAS introduces both correlated and uncorrelated uncertainties in emission
estimates that are difficult to quantify or correct.

Even when using on-site lidar wind speeds (Figure 7b), biases remain: emission rates for small release events tend to be
overestimated, while large releases (e.g. at 80.1 and 290 kg CH, h—!) are significantly underestimated. This behaviour can be

explained by plume dynamics: Small release events result in short plumes which remain near the emission height (<10 m for
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Figure 7. Comparison between reported and estimated CH4 emissions using (a) ERAS5 10 m wind speeds, (b) lidar 10 m wind speeds, (c)
effective wind speeds using +-4-<415-1.47 x Uy according to Varon et al. (2018) and (d) effective wind speeds at source height as described
in Section 2.5. Insets enlarge the low-emission range and have an independent fit to the emission estimates. It is important to note that the

R? value represents the coefficient of determination of the weighted regression, which can take negative values.

all releases), making the use of Uy prone to overestimation. In contrast, large releases produce longer plumes that undergo
greater vertical mixing. The actual effective transport height may thus be above 10m, resulting in an underestimation of
emissions when using Upy. Additional influencing factors are specific to the release equipment, such as the outlet ejection
velocity and whether the emission was oriented horizontally or vertically.

These limitations highlight the importance of estimating an effective wind speed (U.) that accounts for both source height
and vertical mixing. Subplots (c) and (d) in Figure 7 compare two approaches: the method of Varon et al. (2018), which
accounts only for vertical mixing, and the method developed in this study, which accounts only for source height. In subplot
(c), the overall fitted trend lies close to the 1:1 line, but the estimates for small releases are substantially worse than when using
Ujp. This reflects the fact that Varon et al. (2018) derived the linear relationship between U;g and U, for GHGSat, which has
a coarser spatial resolution (50x50 m). At that scale, plumes have more time to mix vertically and are therefore transported
by winds stronger than Uyg. In contrast, subplot (d) shows a poorer overall trend than (c) due to the strong influence of large
release events, but the estimates for small releases improve considerably. This suggests that short plumes are well captured
because they remain close to the emission height, whereas vertical mixing is insufficiently accounted for in the case of larger

releases.
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To further investigate this hypothesis of strong vertical mixing, we incorporated lidar wind speeds at 20 and 38 m and
calculated the uncertainty-weighted root mean squared error (RMSE) and relative mean bias error (MBE) between estimated
and reported CH,4 emissions, as shown in Figure 8. The results confirm that using Uy, substantially improves emission estimates
for low intensity release events. For release events above 30 kg CH, h~!, however, using Uy, tends to underestimate emissions
and performs worse than estimates based on Ujg, Usg and Usg. Although the relative MBE decreases for larger releases, the
high relative RMSE indicates substantial variability around the true values. This pattern may reflect the greater influence of

turbulence on longer plumes compared to shorter ones.
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Figure 8. Mean relative root mean squared error (RMSE) and relative mean bias error (MBE) between estimated and reported CH4 emissions

across emission bins.

In addition to source strength and therefore plume length, absolute wind speed appears to significantly influence the accuracy
of emission estimates. This is illustrated in Figure 9, which shows the scaling factor required to align estimated emissions with
reported values as a function of (a) plume length and (b) effective wind speed. While subplot (a) of Figure 9 supports the
previously discussed hypothesis regarding plume length, subplot (b) reveals that lower wind speeds are associated with larger
and more variable scaling factors. This observation aligns with the findings of Varon et al. (2018); Sanchez-Garcia et al.
(2022); McManemin (2025), who reported reduced accuracy in emission estimates across various techniques under low wind
speed conditions. This is likely due to the increased variability typically observed at lower wind speeds. In contrast, we did
not observe larger scaling factors for larger coefficients of variation (CoV) in wind direction in subplot (c) of Figure 9 as
discussed in McManemin (2025). The reason for this is that our method does not depend on wind direction, as we do a nearly
instantaneous measurement. The large spread in angles between the wind direction and the curve fitted to the plume in subplot
(d) further highlights the strong influence of wind turbulence on the observed plumes.

This hypothesis is further supported by individual cases where estimated emissions diverge from reported values, as illus-
trated in Figure 10. Subplot (d) shows that the CH, fluxes across different cross-sections fluctuate strongly between 100 and

200 kg CH, h~! due to turbulent wind, likely reflecting both temporal variability in wind speed and changes in plume height
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Figure 9. Correlation of (a) plume length, (b) 10 m wind speed, (c) Coefficient of Variation (CoV) and (d) angle between plume curve and

wind direction with the scaling factor required to align estimated CH4 emissions using Eidarlidar 10 m wind speeds with reported values.

that exposed it to different wind regimes. In such cases, one might consider using only CH4 enhancements close to the source,
such as those from the first cross-section, where U.g is expected to better approximate the wind speed at source height. How-
ever, this example shows that even this approach leads to underestimation, indicating that the measured wind speeds do not
accurately reflect actual wind conditions. An analysis of the wind speed during the two minutes of the overpass reveals that
Ui varies between 1 and 3##-s=_m s~ . For comparison, a 20 m plume under a 1 m s~! wind has a residence time of about
20 s, which matches the sampling interval of the wind lidar. As a result, the wind speed fluctuations visible in the plume cannot
be resolved by the lidar, and the underestimation can likely be attributed to larger-than-expected temporal variability that is not
captured at the instrument’s temporal resolution.

The analysis of uncertainty contributions to total emission estimate uncertainty (Figure A2) indicates that wind speed is
the dominant factor for both the CSF and IME methods. Most of this contribution arises from the natural variability of wind
speed, with additional influence from uncertainty in the effective wind speed. In comparison, measurement errors in wind speed
account for only a minor portion of the overall uncertainty.

Lastly, one source of deviation between estimated and reported CH, emissions is the presence of cloud shadows over the
release site as shown in Section 3.5.3, leading to the strong underestimations of the 80.1 kg CH, h™! release event observed in
Figure 7. Despite this underestimation, the plumes were still reliably detected, indicating that observations under suboptimal

cloud conditions can still be valuable e.g. for leak detection.

18



380

385

390

_ 0-1.7 m ‘ & CHi 1.7-3.4m 3.4-51m
b
£
=2
-+
T
(]
b
£
=
-
T
(]
=5 0 5 =5 0 5 =5 0 5
Across-plume direction [m] Across-plume direction [m] Across-plume direction [m]
(b) (d)
Center lines W S =2==f==14 Instrument:
0.03 * Time: 2024-09-18 13:45:00 UTC
+ release site (465 px) « Resolution: 0.48 £ 0.11' m
& * CHy noise: 0.00028 kg m~2
g °
002 2 = 2007 Plume detection:
0eE o + Trace gas: CHa
2 = + Plume size: 465 px
E 3 L l + Plume length: 20.0 m
% 2 + Plume maximum age: 20.6 s
S T 100 | T
0.01 Iq [w] Wind:
[} == Bottom-up « Method: Effective wind
— CHy flux fit - Speed: 1.0+ 02ms 1, 34°
§ CHy estimates » Angle between curve and wind: 10°
0.00 0 T T T T T T T

T T
0 2 4 6 8 10 12 14 16 18 20 Emissions:
Along-plume distance [m] « Estimated CHy: 109 + 24.5 kg h™!

+ Bottom-up reported CHy: 290 kg h~!

Figure 10. (a) RGB image of the release location, (b) CH4 map showing the detected plume and 12 cross-sections, (c) Gaussian fits to the

CH4 columns from the first and last three cross-sections, (d) along-plume flux of all cross-sections and retrieval metadata.

3.5 Factors affecting the CH, retrievals
3.5.1 Spatial resolution

Figure 11 shows examples of AVIRIS-4 RGB images and CH4 maps of the release site acquired at 12000, 9000, 6000, 4200, and
3300 ft in the afternoon of the 16™ of September. The across-track resolutions are 2.0, 1.5, 1.0, 0.7, and 0.5 m, while the along-
track resolution is approximately 0.4 m. For the overpasses at 12000 and 6000 ft, the across-track resolution is represented on
the x-axis, whereas for the others it is represented on the y-axis. Black circles indicate an artifact-artefact caused by a white
object located at the release site. This artifact-artefact arises because, first, the reflectance signal appears to correlate with the
CHy, signal, and second, the high albedo of the object leads to increased radiance, which in turn produces an artificially elevated
enhancement in the CH4 maps. At higher altitudes (12000 and 9000 ft), the spatial resolution is too coarse to clearly distinguish
this artefact from a true enhancement. The CH, plume from the release event with an emission rate of 9.23 kg CH, h~! is only

visible at higher spatial resolutions during overpasses at 3300 and 4200 ft.
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Figure 11. RGB images and CH4 maps for different flight altitudes with average spatial resolutions of 2.0, 1.5, 1.0, 0.7 and 0.5 m across-track

and 0.35 m along-track. All observations are from a release event on the 16" of September with reported emissions of 9.23 kg CH, h~!

3.5.2 Cast shadows

The cast shadows of buildings and objects are clearly visible at high spatial resolution. Shadows compromise the CHy retrieval,
which assumes a non-scattering atmosphere, since light in shadowed areas originates solely from scattering. Therefore, an
efficient shadow masking is necessary at these resolutions. Figure 12 shows the effect of the shadow mask for a scene with
water bodies and cast shadows and the release site with a nearby photovoltaic plant. It can be seen that the masking of cast
shadows and dark surfaces such as solar panels is important to prevent biases in the CH4 maps which would interfere with plume
detection. Furthermore, in instances where the plume coincides with shadowed areas, the artificially elevated enhancements
would skew emission estimates. As a result of the shadow mask, CH,4 emissions can also be estimated if the plume is transported
over shadowed areas.

The downside of shadow masking is that some short plumes of small release events could not be detected because they
aligned with shadows. Furthermore, depending on the threshold used for shadow masking, surfaces with low albedos could be

masked, preventing the detection of CH, emissions.
3.5.3 Cloud shadows

During all eight overpasses of the 80.1 kg CH, h™! release on the 19*" of September, cloud shadows intersected the flight
line while on five out of eight overpasses, cumulus clouds obscured the sun over the release site. Under such conditions, the
measured radiance is dominated by scattered light, violating the assumptions used in calculating the target spectrum. Moreover,
cloud shadows on the flight line render the mean spectrum [ unrepresentative of the observed radiance L,p,s over the release
site. Consequently, subtracting i from L, in Eq. 2 partially removes the CHy signal. This effect is evident in Figure 13,

which contrasts an overpass with obscured sun at 13:00 UTC with a clear-sun overpass at 12:54 UTC. The lower row shows
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Figure 12. Examples of scenes containing cast shadows and water bodies (upper row) and the release site during a release event with

56.7 kg CHy h™! (lower row), without and with shadow masking.

410 Ly — [t over the same plume-free area in both cases. As can be seen, the cloud shadow strongly reduces the signal. As a
result, emission estimates for shadowed cases, or for scenes with a substantial fraction of cloud shadows along the flight line,
tend to be underestimated. Consequently, a refined retrieval algorithm would be necessary to provide unbiased CH4 maps and

emission estimates.
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Figure 13. RGB image of 80.1 kg CH4 h™! release on the 19" of September (a) with and (b) without cloud shadow. The lower row shows

the mean Lobs — f1 over the same plume-free area within the wavelength window used for CHy retrieval for both cases.

21



415

420

425

430

435

3.5.4 Plume shadows

As a consequence of the unprecedentedly high spatial resolution of AVIRIS-4 and the high SZA for some of the overpasses
(see Figure 2), we discovered that, out of 68 detected plumes, 13 were found to contain two plumes that were occasionally

overlapping and occasionally distinct, as illustrated in Figure 14. This phenomenon can be explained as plume shadows: One
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Figure 14. Left: RGB image of the study site with a marker on the release location at 6.5 m above ground. Right: CH4 map of the study site

with two plumes visible.

plume appears at the actual release location and corresponds to the CH4 absorption signal of the light path that first travels from
the sun to the ground and, after being reflected, passes through the plume. The second plume is observable at the upper end of
the shadow cast by the pole of the source. This plume corresponds to the absorption signal of the light that first passes through
the plume, is then reflected from the ground and reaches the sensor without passing through the plume a second time. This
phenomenon has been shown in simulations by Schwaerzel et al. (2020) and first observed by Sanchez-Garcia et al. (2022). It
is important to note that the effect of light passing through the plume only once instead of twice occurs under all conditions
with sufficiently high SZA. For sensors with coarse spatial resolution, however, the plume and its shadow cannot be resolved

separately and have therefore never been explicitly considered in CHy4 retrieval or emission estimation prior to this study. To

correct for plume shadows, we applied the method outlined in Section 2.4.4 to the four observed plumes that were clearl
separated. This resulted in a mean correction factor of 2.6.

3.5.5 MF vs. LMF

For the analysis of this study we also tested the LMF which was developed by Schaum (2021) and tested in Pei et al. (2023). The
plume images using the MF and LMF in Figure 15 show that smaller enhancements (upper row) can be detected more reliably
and accurately using the LMF as worked out in Schaum (2021). In our case, the LMF enabled the detection of a release as small
as 1.45;kg CH, h~! at a flight altitude of 4200 ft. This improved detectability can be attributed, in part, to reduced roise-tevels
in-the-random background variability in the retrieved CH retrievalsmaps, which facilitated more confident identification of the
plume signal. However, the LMF also inereases-introduces larger systematic biases in background CH, values compared to the

MF, as evident in both the upper and lower rows of Figuret5- 15. An analysis of the eigenvalues of the covariance matrices for
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different surface albedos suggests that these biases are associated with increased sensitivity of the log-transformed radiances
to pixels with low SNR, which is the case for albedo surfaces with low albedo. Additionally, we observed that the LMF had

little to no effect on CH, enhancements for the largest release events in the campaign, such as the 290 kg CH, h~! release.

This is likely because these
ME-already—performs-effectivelyour iterative MF already compensates for most of the non-linear absorption associated with

high optical depths.
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Figure 15. RGB images and CH4 maps obtained from MF and LMF for release events with 1.45 and 56.7 kg CH, h™', observed at 4200

and 3300 ft. Note that the upper row shows a zoomed-in subsection of the scene to be able to see the short plume.

3.6 Estimating the source height from (plume) shadows

The high spatial resolution of AVIRIS-4 offers the unique opportunity to estimate the height / of an emission source based on
the length of the shadow [, in the RGB image (Figure 14a) cast by the emission source using trigonometry:

h= tan(lTA) 22)
Alternatively, the height can be estimated in the same way from the horizontal separation of the starting points of the two
plumes (Figure 14b). With increasing distance, the two plumes move together more closely, suggesting that the plume is
pushed towards the surface directly after the release. Knowledge of the emission height is an important parameter for emission
estimation, as it can be used to determine the effective wind speed, which is a critical input for estimation estimation. In the
example shown in Figure 14 with an SZA of 50° and a spatial resolution of 0.53 m, the emission plume at the stack must be

6.4 £ 1.1 m above ground which is in agreement with the true emission height of 6.5 m.

We assume that this technique can be a

the-length-of-theshadew-e—reliably applied only if the measured shadow length exceeds its measurement uncertainty by a
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sufficient margin. The uncertainty in tarn

tHuminated-surface—which-is-the shadow length is dominated by pixel discretization at the shadow boundaries, where at most
one at-the-top-and-one-at-the-bottom-mixed pixel can occur at both the upper and lower edge of the shadow. FhereforeRequiring

the shadow length to be at least twice this uncertainty ensures that the shadow is sufficiently resolved. Under this criterion, the

minimum emission height beeemes-that can be resolved is given b

2.1,

- tan(SZA) 23)

For the campaign discussed in this study, this minimum height is shown in Figure 16.
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Figure 16. Minimum source height in metres above ground at which shadows of emission sources extend over more than one pixel, shown

as a function of SZA and flight altitude above mean sea level.

4 Discussion
4.1 Capabilities and limitations of AVIRIS-4

Following the success of the AVIRIS Classic and AVIRIS-NG sensors in detecting and quantifying CH4 emissions as demon-
strated in numerous previous studies, this study explores the potential of their successor, AVIRIS-4. Although AVIRIS-4 was
primarily developed for surface and vegetation studies, our results show that CH, columns can be determined with an un-
precedentedly high spatial resolution, enabling the detection of short plumes from low intensity sources. In combination
with the enhanced SNR, the detection limit is reduced to 5.5 kg CH,4 h~! under good weather conditions and down to be-
low 1.5 kg CHy h~! under ideal conditions. Because the campaign took place in mid-September, we expect the detection
limit could be further reduced under more favourable illumination conditions. As discussed in Section 3.3, we were not able
to determine an altitude-dependent detection limit for AVIRIS-4, which complicates direct comparisons with other airborne
sensors. For instance, studies with AVIRIS-NG operated at altitudes between 3000 and 6000 m report detection limits of 10-

16 kg CH4 h~! under favourable wind conditions (e. g. Ayasse et al., 2023; Conrad et al., 2023). In our case, the lowest release
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0f 9.23 kg CH4 h~! could not be detected at a comparable altitude of 2740 m, likely due to higher wind speeds. This makes it
difficult to assess whether and by how much the detection limit has improved. In Thorpe et al. (2016), the lowest detected re-
lease was 2.3 kg CHy h~!, but at a much lower flight altitude of 430 m and under higher wind speeds of 3-5 m s~1. Kuhlmann
et al. (2025) report a detection limit of 15 kg CH,h™1! at a flight altitude of 6000 m with wind speeds of 0.5 m s~*. Overall,
comparing detection limits across studies is challenging, as they depend strongly on flight altitude, wind speed, and spectral
albedo (Conrad et al., 2023).

Decreasing the detection limit is pivotal because low intensity CH,4 sources are more numerous than high-emitting ones (e.g.,
Williams et al., 2025; Kuhlmann et al., 2025). Consequently, accurate estimates of total CH, emissions depend on detecting
smaller sources. For instance, based on the best detection limit of AVIRIS-NG of 15 kg CH, h—! reported in Kuhlmann
et al. (2025) and the distribution of oil production sites in Romania across the outlined scenarios, AVIRIS-NG was able to
detect between 45% and 62% of total emissions. In contrast, assuming a detection limit of 5.5 kg CHy4 h~!, AVIRIS-4 would
increase this detection coverage to approximately 67%-81%. Moreover, the detection limit of 5.5 kg CH, h~! achieved by
AVIRIS-4 effectively enables the identification of all point sources listed in the E-PRTR registry, which mandates reporting
for emissions exceeding 100000 kg CH4 yr~" (equivalent to 11.4 kg CH, h~!) (European Parliament and the Council of the

European Union).

reselution-and-SNR-This study, along with comparisons to other airborne imaging spectrometers with higher spectral but lower
spatial resolution such as MAMAP2DL (e.g. Krautwurst et al., 2024), demonstrates that this-the trade-off of higher spatial and
slightly lower spectral resolution is beneficial for detecting small-scale CH4 enhancements from low intensity sources, whose
plumes typically extend only a few decimetres to a few metres.

The noise level of the CH4, maps was estimated as the standard deviation of the retrieved columns over the brightest 50%
of pixels. This resulted in a noise level of AVIRIS-4 of 766450 ppm-m at an average resolution of 0.5 m which is comparable
to reported values of AVIRIS-NG at 5 m resolution for suboptimal illumination conditions (e.g. Borchardt et al., 2021). Such
noise levels are expected, given that the campaign was conducted in mid-September under low solar zenith angles (SZAs). In
addition, negative values were not masked during the CHy4 retrieval, which increases the apparent noise.

The current study also shows that owing to the higher SNR and higher spatial resolution, emissions can also be detected
and estimated with less illumination and under suboptimal surface and atmospheric conditions, which are characterised by
inhomogeneous albedo, strong turbulence, cast shadows and cloud shadows (see Section 3.1), compared to previous controlled
release experiments with AVIRIS-NG (e.g. Thorpe et al., 2016; Duren et al., 2019). For example, the higher spatial resolution
allows for a more accurate filtering for shadow pixels and albedo artefacts which, if undetected, could lead to biases in emis-
sion estimates, as outlined in Section 3.5.2. This capability allows AVIRIS-4 to be effectively applied to built-up sites with
heterogeneous surface albedo and cast shadows, conditions commonly encountered around CHy sources in the oil, gas, and
coal mining sectors.

However, the higher spatial resolution also results in new challenges. One of them is the dotble-phime-occurrence of double
plumes originating from plume shadows illustrated in Figure 14. We corrected for this artifact-artefact when the true plume
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and its shadow were clearly separated, but its impact on retrieved CH4 enhancements requires further analysis. Additional

In_this context, a recent study by Gorrofio et al. (2025) systematically investigated the effect of different observation and
illumination geometries on the retrieved CH4 maps (i.e.
that large VZAs and SZAs can lead to artificial elongation or compression of plumes along the plume direction. This bias in
apparent plume length [, directly propagates into emission estimates and likely also occurred in the observations analysed in
this study. However, their influence is probably masked by the comparatively large variability in wind speed. Furthermore,
Gorrofio et al. (2023) found that the parallax effect substantially reduces the PoD due to lower apparent CHy enhancements. In
their simulations, the PoD varied between approximately 0.5 and 0.8 depending on the angular configuration. For the present
study, the influence of parallax effects is likely minor, as the detection outcomes shown in Figure 6 are primarily controlled by
wind speed and flight altitude, The few non-detected plumes with emission rates exceeding 5 kg CHsh™" at low wind speeds
are instead attributable to overlaps with retrieval artefacts. Gorrofio et al. (2025) also demonstrated that when the effective wind
speed Ut is calibrated against the 10 m wind speed Uy using I, biases in L translate into systematic errors in the calibration
itself. As a consequence, emission estimates exhibit errors below 10% for mid-latitude summer conditions, but can reach up
to 30% for wintertime observations. In the context of this study, the parallax-induced bias in Uey is only relevant for emission
estimates derived using the Uey parametrisation of Varon et al. (2018) and does not affect estimates based on wind speeds at
the source height. To mitigate the effect of viewing geometry, Gorrofio et al. (2025) recommended to explicitly account for
observation and illumination geometry in the planning of flight paths for airborne sensors and to calibrate U using plume
simulations that match the angular configuration (“train as you measure”). Overall, additional work is needed to handle-partially
overlapping-phimescorrect for the parallax effect, especially as the-phenomenon-of ptame-shadews-this phenomenon also af-
fects instruments with coarser spatial resolution even if they do not spatially resolve the plume shadow (Schwaerzel et al.,
2020).

arallax effect) and the resulting emission estimates. They showed

A second challenge that arises with higher spatial resolution are the higher per-pixel enhancements for larger sources. As
a result, the linearisation of the unit absorption spectrum around o = 0 no longer holds and assumed enhancements for the
calculation of the absorption spectrum have greater influences on the retrieved enhancements. Therefore, careful selection of
the assumed enhancements, e.g. with the iterative approach used in this study, is essential.

Lastly, the current study shows mixed results when using the LMF introduced by Schaum (2021). On the one hand, the

proposed improvement for the detection of weak plumes was also observed in this study and lowered the detection limit

even under challenging conditions. On the other hand, the LMF increased local biases in the retrieved CH4 maps which weuld

we attribute to the amplification of noise by.
the log-transform in pixels with low SNR, caused by low albedo. This spatially more heterogeneous background can obscure
small enhancements or produce false detections. In contrast to Schaum (2021), we did not observe an improved performance of
the LMF for largersourcesreported-by-Schaum-(2021)-wasnotobserved-Furtherlarge release events. The iterative MF applied
in our study seems to successfully account for most non-linear absorption in pixels with large CHy enhancement. Therefore,

further systematic analyses will be required to ¢
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established-MF-develop approaches that reduce or correct for this noise amplification in the LMF. Other approaches, such
as WEM-DOAS (e.g. Borchardt et al., 2021), may also help better account for non-linear effects arising from strong emission
sources. However, they are computationally more expensive than the MF and tend to work better for sensors with higher
spectral resolution.

4.2 Wind speed estimation

As seen in Section 3.4, estimated emissions linearly depend on the wind speeds used. Therefore, accurate estimates of wind
speeds are crucial for accurate emission estimates. Additionally, our analysis demonstrated that uncertainties in wind speeds
contributed disproportionately to the uncertainty of the estimated emissions. Based on the analysis of this study, the wind
speed representation error (orepr), uncertainties in effective wind speed (oefr) and instrument precision (ojng) likely need to
be revised upward. Consequently, building on the understanding of wind speed inputs (see Section 4.2.1), future research on
emission estimation from remote sensing data should prioritise methods for deriving the effective wind speed that governs

plume transport (see Section 4.2.2).
4.2.1 Source of wind speed estimates

As clearly illustrated in Figure A1, near-surface winds can be be highly variable and gusty. We frequently found that Uy
measured by the Eidarlidar varied between 1.0 and 3.04#-s— ms ™! within one minute. These rapid fluctuations highlight that
reanalysis wind fields are insufficient for high-resolution emission estimates with new-generation sensors, as they can introduce
substantial biases. A high-resolution model may be able to represent this gustiness more realistically in a statistical sense, but
capturing the actual wind conditions at the moment of the overpass remains practically impossible. Alternatively, wind speed
data from existing measurement networks could be used for emission estimation. However, these networks have varying data
quality and might not be available in the vicinity of a CH, source. Therefore, one could employ mobile instruments as it was
used for the controlled release experiment in the current study. Even if this would provide the most accurate estimate of the
wind speed, setting up wind speed instrument would negate the advantage of remote sensing instruments which is to image
extensive areas and estimate the emissions of a large number of sources. Additionally, the current analysis has shown that under
turbulent conditions, wind speed representation errors can be substantial, even when wind measurements are taken just 100 m
from the source. Therefore, the best approach would be to measure wind speed profiles in tandem with imaging spectrometry,

e.g. by using an airborne wind lidar as investigated in Thorpe et al. (2021).
4.2.2 Effective wind speeds

In addition to determining the small-scale and short-term wind speeds, a further challenge is to determine the effective wind
speed at which the plume was transported. Although an increasing number of studies attempt to derive Ug-Uyg from model
simulations (e.g. Varon et al., 2018; Guanter et al., 2021; Sanchez-Garcia et al., 2022; Ayasse et al., 2023; Guanter et al.,

2025), none has systematically investigated the effect of emission height, atmospheric stability or surface roughness on Ukgt.
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Moreover, existing simulations lack the spatial and temporal resolution required for AVIRIS-4 applications. To advance our
understanding of the effective wind speed, high-resolution model studies are needed to analyse the impact of the aforemen-
tioned factors. Ideally, these results could be parametrised to estimate the effective wind speed based on known driving factors.
While estimates for the 3D wind field, surface roughness and heat fluxes could be obtained from regional weather prediction
models, information about the emission height could be obtained directly from AVIRIS-4 imagery as outlined in Section 3.6.
Another innovative approach has recently been demonstrated in Eastwood et al. (2025) with AVIRIS-3 where a single plume
was observed multiple times during one overpass by adjusting the flight path of the aircraft. Specifically, the aircraft ascended
while approaching the plume, maintained a level trajectory while flying directly over it, and then descended after passing it.
From the resulting three images, the plume velocity was estimated by calculating optical flow vectors for consecutive CHy
images. While this method proved to significantly improve the estimates of the effective wind speed compared to reanalysis
data and on-site wind lidar data, it requires a-priori knowledge of the source location to plan the required flight manoeuvres.
One workaround would be to use real-time in-flight retrieval of CHy (e.g. Thompson et al., 2015) in combination with pitch-
ing AVIRIS-4 using the already installed stabilisation platform. Alternatively, machine learning based models could be used
. Joyce et al., 2023; Rouet-Leduc and Hulbert, 2024) or
. Jongaramrungruang et al., 2022; Bruno et al., 2024; Ouerghi et al., 2025; Plewa et al., 2025). These

to estimate trace gas emissions either directly from radiance data (e.

from plume images (e.

approaches have recently shown that it is possible to infer emission rates without explicitly relying on external wind data, Their
main advantages are that they can, just as the other approach outlined above, bypass wind speed uncertainties and additionally,
provide rapid and automated emission estimates at large scales. While these models are very promising, they are still limited
in their representativeness due to a lack of wind speed information within a single image. Furthermore, they provide limited

interpretability and their uncertainty quantification is still less mature than for the traditional approaches based on the mass
balance.

5 Conclusions

Detecting and quantifying the emissions from a large number of sources is essential for obtaining accurate inventories of CHy
emissions. The current study shows that AVIRIS-4 can be used for the improved detection of CH, emissions and subsequent
quantification. The combination of high spatial resolution with the unprecedentedly high SNR of AVIRIS-4 decreases the
detection limit of AVIRIS-4 to below 5.5 kg CH, h~! under good weather conditions and down to 1.5 kg CH4 h~! under ideal

conditions. This is below the 10 - 16 kg CH, h™* detection limits reported for its predecessor AVIRIS-NG in previous studies.

In practice, AVIRIS-4 therefore extends the range of reliably detectable point sources by approximately a factor of two to three
relative to AVIRIS-NG when flown at low altitudes, which effectively enables the identification of all point sources listed in

the E-PRTR registry. As a result, previously undetected low intensity and dispersed sources can be identified and accounted for
in emission budgets. We demonstrate that the high spatial resolution of AVIRIS-4 enables its effective use under challenging
conditions and in heterogeneous environments, which are frequently encountered in real-world applications. Furthermore, we

show how high-resolution AVIRIS-4 data can be used for the estimation of the source height which is critical information when
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estimating the effective wind speed. As with earlier sensors and algorithms, emission estimation with AVIRIS-4 is affected by
uncertainties in the estimation of the effective wind speed—, especially at the short length and timescales presented in this
study. Overall, this study highlights that AVIRIS-4 represents a significant step forward in airborne methane remote sensing,
offering unprecedented sensitivity to low-intensity sources under challenging conditions. At the same time, it underscores
the importance of advancing wind speed estimation techniques and improving retrieval strategies to fully exploit the sensor’s
capabilities. Future work should therefore focus on integrating AVIRIS-4 observations with dedicated wind measurements and

adapting the CHy, retrieval algorithm to the unprecedentedly high spatial resolution.

Code availability. The ddeq version 1.0 used for this study is available on Gitlab.com (https://gitlab.com/empa503/remote-sensing/ddeq).

The code for AVIRIS-4 data processing and CHy retrieval is available on request.

Data availability. ERAS data are available at https://doi.org/10.24381/cds.adbb2d47 (Hersbach et al., 2018). The retrieved AVIRIS-4 CH4

maps, wind and sources data and estimated emissions are available on the Zenodo data repository (DOI: 10.5281/zenodo.16410532).
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Appendix A: Additional figures

Figure A1 reveals substantial systematic deviations, particularly during daytime, likely caused by small- to mesoscale atmo-
620 spheric circulations influenced by local terrain. Such features are not captured by the relatively coarse spatial (0.25° x 0.25°)
and temporal resolution of ERAS. Furthermore, ERAS fails to resolve turbulent fluctuations in near-surface winds that are

evident in lidar observations.

—— ERA5 ensemble mean
64 ERA5 ensemble spread
— Lidar 1 h mean

Lidar 1 min interval

10 m wind speed [m s~1]
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Figure Al. ERAS Ui vs. on-site lidar Uyo. The blue shaded area represents the ERAS ensemble spread while the red shaded area depicts

the min and max wind speed for 1 minute intervals.

Figure A2 shows that the uncertainty in the wind speed oy contributes 99.4% to the total uncertainty of the estimated

emissions o, for the CSF and 91.3% for the IME. o, in turn consists 90.4% of natural wind speed variability o.;.
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Figure A2. Top row: Relative contribution of the individual uncertainty terms of the CSF and IME to the uncertainty of the estimated
emissions (). Bottom row: wind speed uncertainty contributions by natural variability oy, effective wind speed o and instrument precision
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Figure A3. Pair plot of the wind speeds measured by the wind lidar at 10 and 20 m as well as from a meteorological station affixed to the

lidar, approximately 1 m off the ground.
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Lidar 10 m wind speed [m s71]

16.09.2024 17.09.2024 18.09.2024 19.09.2024 20.09.2024
09:00 N/A 1.1+ 0.5 1.7 + 0.6 1.5 + 0.3 1.8 £ 0.4
10:00 N/A 1.4+ 0.4 0.9 0.3 0.9+0.3 1.6 + 0.4

§ 11:00 1.7 £ 0.7 0.9+0.3 0.9+0.3 0.8+ 0.3 0.8+ 0.3

O

5 |12:00 21+0.8 1.1+ 0.5 1.4 + 0.5 1.1+0.4 0.8 + 0.4

é 13:00 2.5+0.9 22+0.8 1.5+ 0.6 1.2+ 0.6 1.0+ 0.5

g 14:00 2.3+0.9 1.5 + 0.6 1.7 + 0.7 2.0 +0.8 22+0.6
15:00 3.2+0.9 1.3+ 0.5 2.0+ 0.9 21+1.0 1.8+ 0.6
16:00 2.9+0.8 1.2 +0.5 2.0+0.8 2.4 +1.0 1.5+ 0.6
17:00 N/A N/A 2.1+0.9 3.1+0.9 N/A

Figure A4. Average and standard deviation of lidar 10 m wind speed during each release in local time [UTC+2]. Wind data has been

resampled to 1 minute intervals.
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Lidar 10 m wind direction [°]

16.09.2024 17.09.2024 18.09.2024 19.09.2024 20.09.2024
09:00 N/A 15 £+ 40 112 + 26 153 + 16 135+ 78
10:00 N/A 303 £ 32 143 = 56 93 + 44 131 + 24
'(E 11:00 113 + 35 292 + 68 213 £ 52 122 + 52 169 + 61
o
=) 12:00 139 + 48 318 £ 63 246 £ 47 172 £ 45 222 £ 50
-% 13:00 315 + 38 321 £ 42 187 = 45 236 £ 64 317 £ 55
g 14:00 319 £+ 37 330 £ 44 130 = 76 55 + 39 301 £ 12
15:00 317 £ 24 258 + 43 86 + 34 57 £ 46 336 + 44
16:00 329 + 26 226 + 39 66 + 53 72 + 33 114 + 43
17:00 N/A N/A 53+ 34 73 + 28 N/A

Figure AS. Average and standard deviation of lidar 10 m wind direction during each release in local time [UTC+2]. Wind data has been

resampled to 1 minute intervals.
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Figure A6. Wind roses of lidar 10 m wind speed and direction during each release in local time [UTC+2].
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CH,4 emissions [kg h™1]
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Figure A7. Uncertainty weighted average estimates for each release using U derived in this paper. The number of observations n, emission

height h, plume length [ and average wind speed u are indicated above each bar.
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