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Abstract. Atmospheric concentration of methane (CH4), a critical
:::::
potent greenhouse gas, increased significantly since pre-

industrial times, with anthropogenic emissions originating primarily from agriculture, fossil fuel use
:::::
sector

:
and waste man-

agement. However, considerable uncertainties persist in the detection and quantification of anthropogenic CH4 emissions. In

this study, we present first CH4 observations, plume detections and emission estimates from the new state-of-the-art Airborne

Visible InfraRed Imaging Spectrometer 4 (AVIRIS-4), which participated in a blind controlled release experiment in Septem-5

ber 2024 in southern France. We used an albedo-corrected matched filter to retrieve CH4 maps from the spectral images and

estimated CH4 emission with the Integrated Mass Enhancement (IME) and Cross-Sectional Flux (CSF) methods. Our results

demonstrate that AVIRIS-4 can reliably detect emissions as low as 5.5 kgCH4 h
−1 under good weather conditions at low flight

altitudes (<1500 m) and 1.45 kgCH4 h
−1 under ideal conditions.

:::::
These

::::::::::
low-altitude

::::::::
detection

:::::
limits

:::
are

:::::::::::
substantially

:::::
lower

:::
than

:::::::::
published

::::::::
detection

:::::
limits

:::
for

:::
the

::::::::::
predecessor

:::::::::
instrument

:::::::::::
AVIRIS-NG,

::::::
which

::::
were

:::
in

:::
the

::::
order

:::
of

::
10

::
-
::
16

:
kgCH4 h

−110

:::::
under

:::::::::
comparable

::::::::::
conditions. While AVIRIS-4 provides highly accurate CH4 maps at <0.5 m resolution, emission estimation

is limited by the accuracy of the effective wind speed, whose uncertainty and natural variability contribute substantially to the

overall uncertainty. Using wind speed at source height performs well for small releases (below 20 kgCH4 h
−1) (rRMSE =

1.065; rMBE = 0.361) and overall (rRMSE = 0.702; rMBE = -0.204). Using literature-derived effective wind speeds improves

the apparent fit between estimated and reported CH4 emissions, but degrades performance both in overall agreement (rRMSE =15

2.098; rMBE = 0.964) and for low-emission events (rRMSE = 2.367; rMBE = 1.711). Interestingly, the high spatial resolution

makes it possible to retrieve the cast shadow of the CH4 plume, which can be used to estimate source and plume height, and

could provide an approach for better constraining the height-dependency of the effective wind speed. On the bottom line, the

controlled release experiment provides critical insights into the sensor’s capabilities and guides further improvements to detect

and quantify low intensity sources in the fossil fuel and waste management sectors, with implications for more accurate global20

greenhouse gas monitoring.
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1 Introduction

Methane (CH4), a potent greenhouse gas with a global warming potential 28 times higher than CO2 on a timescale of 100

years, has seen an almost threefold rise from 700 ppb pre-industrial levels to over 1900 ppb due to natural and anthropogenic

sources (Seinfeld and Pandis, 2016). Major contributors include agriculture, fossil fuels, and waste. Due to its short lifetime of25

only 9 years, CH4 is removed more quickly compared to most other greenhouse gases. Reducing CH4 emissions is therefore

considered an effective measure to mitigate anthropogenic climate change in the near term. However, there are still significant

uncertainties in the quantification of anthropogenic CH4 emissions (Saunois et al., 2020).

For instance, Saunois et al. (2020) estimated that uncertainties in emissions from the fossil fuel sector are around 20-35%

with strong regional variations. Reducing these uncertainties is challenging for several reasons. One of them is the fact that an30

important fraction of anthropogenic CH4 emissions, e.g., from the fossil fuel sector, result from unintentional leakage, which

cannot be accurately quantified. Additionally, global CH4 emission estimates depend on a network of monitoring stations,

which is dense and accurate in northern and mid-latitudes but sparser in other regions (Saunois et al., 2020). For these reasons,

satellite remote sensing observations of CH4 have been used to estimate the emissions in a top-down approach (e.g. Alexe et al.,

2015; Bousquet et al., 2018; Fraser et al., 2013). These remote sensors can be separated into area flux mappers (e.g. Sentinel-35

5P, MethaneSAT , GOSAT-GW and CO2M
:::
and

:::::::::::
GOSAT-GW) which are designed to have a global to regional coverage and

point flux mappers (e.g. Landsat-8, Sentinel-2, GHGSat, PRISMA and EnMAP) which are used to observe regional to local

emissions (Jacob et al., 2022).

Most of the currently available CH4 imagers are limited by spatial and/or spectral resolution which hinders the precision and

accuracy of the emission estimates (Bousquet et al., 2018). This results in high detection limits in the range of a few 100 to40

several 1000 kgCH4 h
−1 for spaceborne instruments such as Sentinel-2 and Sentinel-5, PRISMA, EnMAP or GHGSat (e.g.

Jacob et al., 2022; Gorroño et al., 2023; Joyce et al., 2023). For airborne instruments with a higher spatial resolution such

as MethaneAIR, GHGSat-AV and the Airborne Visible InfraRed Imaging Spectrometer - Next Generation (AVIRIS-NG), the

detection limit decreases to 10 to 100 kgCH4 h
−1 under favourable conditions (e.g. Cusworth et al., 2021; Duren et al., 2019;

Jongaramrungruang et al., 2022; Kuhlmann et al., 2025; Guanter et al., 2025).45

CH4 emissions from sources with small emission strengths that cannot be quantified from space (<
::
<100 kgCH4 h

−1) are

crucial for two reasons: First, leakages from the production and use of fossil fuels are often small and remain undetected by

satellite-based approaches. Second, CH4 emissions from oil and gas production have a lognormal distribution with many small

sources but only a few large ones (e.g. Balcombe et al., 2018; Stavropoulou et al., 2023; Williams et al., 2025). Accurate

knowledge of the emission distribution of sources from a given sector or country is crucial for extrapolating CH4 emissions50

from the entire sector or country by accounting for sources below the detection limit (Zavala-Araiza et al., 2015; Zhang et al.,

2023; Kuhlmann et al., 2025).

The detection of low intensity CH4 sources requires a sensor that combines high spatial resolution with a good signal-to-

noise ratio. One such state-of-the-art sensor is the new Airborne Visible InfraRed Imaging Spectrometer 4 (AVIRIS-4). It was

developed by NASA JPL as a successor of AVIRIS-NG in parallel to its sister instruments Earth Surface Mineral Dust Source55
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Investigation (EMIT) and AVIRIS-3 which are in service on board the ISS and as airborne sensor respectively (Hueni et al.,

2025). In
:::::::::
comparison

::::
with

:::
its

::::::::::
predecessor,

:::::::::
AVIRIS-4

:::
has

::::::
traded

::::
some

:::
of

::
its

:::::::
spectral

::::::::
resolution

:::
in

::::
order

::
to
::::::::
enhance

::
its

::::::
spatial

::::::::
resolution

:::
and

:::::
SNR

::::
(see

:::::
Table

::
1).

:::
In this paper, we present the processing chain for retrieving CH4 emissions from AVIRIS-

4 measurements, show CH4 maps and emission estimates from a blind controlled release experiment and characterise the

capabilities and limitations of AVIRIS-4 for CH4 emission quantification. The analysis considers the influence of flight altitude,60

meteorological conditions such as wind speeds and atmospheric stability, illumination and viewing conditions, and surface

reflectance on the detection limit and the quality of the emission quantifications, providing guidance for future campaigns.

2 Data and Methods

This section covers the description of AVIRIS-4 (Section 2.1) used for the acquisition of remote sensing data in the controlled

release experiment (Section 2.2) and the data processing chain from radiance data processing (Section 2.3), CH4 retrieval65

(Section 2.4) and CH4 emission estimation (Section 2.5) to the estimation of uncertainties (Section 2.6).

2.1 AVIRIS-4 sensor specification

AVIRIS-4 is a state-of-the-art imaging spectrometer with identical core components as NASA JPL’s AVIRIS-3 and the EMIT

spectrometer (Green et al., 2022; Shaw et al., 2022; Hueni et al., 2025). The spectrometer is equipped with a 1280-pixel

sensor array and records hyperspectral data in 328 bands spanning the ultraviolet (UV) to the shortwave infrared (SWIR). In70

practice, 1241 pixels receive sufficient illumination and SNR, and 287 bands are retained for data processing. Detailed sensor

specifications are provided in Hueni et al. (2025). Compared to its predecessor it offers enhanced stability, spatial sampling

interval (hereafter referred to as spatial resolution) and signal-to-noise ratio (SNR) (see Table 1).

2.2 Controlled release experiment

The data for this analysis was acquired during a single-blind controlled release experiment organised by the Environmental As-75

sessment and Optimization Group at Stanford University between the 16th
:

th
:
and 20th

:

th
:
of September 2024 at the TotalEnergies

Anomalies Detection Initiatives (TADI) site in Lacq in the south of France (latitude: 43.412◦, longitude: -0.63643
:::::
-0.636◦, ele-

vation a.
::
m.s.l.: 95 m) (see Figure 1a). A total of 13 commercial and academic teams, using a range of technologies - including

continuous monitoring, vehicle-based measurements, drones, airborne in-situ measurements, remote sensing from aircraft, and

satellites - participated in the experiment. The results of all teams were collected and analysed in McManemin (2025). On each80

campaign day (8:00 - 18:00 CEST), up to 9 individual controlled releases with rates varying between 0.02 and 350 kgCH4 h
−1

were conducted at different unknown heights between 0.01 to 6.5 m above ground and at different unknown locations on the

study site (see Figure 1b). Each release lasted for 45 minutes and was followed by a 15 minute break before the start of the

next release. In some periods, no CH4 was released to enable the detection of false positives. Additionally, the wind speed was

measured using a ZX 300 Doppler wind lidar positioned 100 m from the emission sources. The instrument recorded horizontal85

and vertical wind speeds, as well as wind direction, at preselected heights between 10 and 300 m above ground level, with a
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Table 1. Specifications of AVIRIS-4 compared to AVIRIS-NG, adapted from Green et al. (2022) and Hueni et al. (2025).

Category AVIRIS-4 AVIRIS-NG

SPECTRAL

Range 375 to 2504 nm 380 to 2510 nm

Sampling 7.4 nm 5 nm

Response (FWHM) 1 to 1.5 × sampling 1 to 1.5 × sampling

Calibration ±0.1 nm ±0.1 nm

RADIOMETRIC

Range 0 to max Lambertian 0 to max Lambertian

Signal-to-noise ratio (SNR) >3000 @ 600 nm >2000 @ 600 nm

>1200 @ 2200 nm >1000 @ 2200 nm

Calibration 97% (<3% uncertainty) 95% (<5% uncertainty)

SPATIAL

Swath samples 1241 600

Swath angle 40.2° field-of-view 34° field-of-view

IFOV 0.6 mrad 1 mrad

FPS 213 10 - 100

Response (FWHM) 1 to 1.5 × sampling 1 to 1.5 × sampling

temporal resolution of approximately 20 seconds. Participating teams were aware of the timing of releases while locations and

flow rates of the releases as well as the wind data were only made available after all teams had submitted their initial emission

estimates. Details of the release experiment, the participating teams and the synthesis can be found in McManemin (2025). For

the campaign, AVIRIS-4 was mounted on a hydraulic stabilisation mount and built into a Cessna 208B Grand Caravan EX. The90

aircraft flew over the release site in either north-south or east-west direction at different altitudes of 12000, 9000, 6000, 4200

and 3300 ft or 3660, 2740, 1830, 1280, 1000 m above mean sea level (amsl
::::::
a.m.s.l.) (see Figure 1a). This resulted in average

spatial resolutions of 2.0, 1.5, 1.0, 0.7 and 0.5 m across
::::::::::
across-track and 0.35 m along

::::::::::
along-track. For the remainder of the

article, all wind speed heights are given in metres above ground level and all flight altitudes in feet above mean sea level.
::::::
a.m.s.l.

95

2.3 Data processing

2.3.1 Radiometric and spectral calibration, georeferencing

The level 0 data acquired by AVIRIS-4 consists of raw digital numbers and has the spatial dimensions
::::::::
organized

::::
into

:
along-

track and across-track as well as
::::::::::
across-track

::::::
spatial

::::::::::
dimensions

:::
and

:
a spectral dimension. The level 0 data was converted
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Figure 1. (a) Location of the controlled release experiment at the TADI site in the south of France (red polygon in the inset map). Superim-

posed are the imaging footprints of AVIRIS-4 for overpasses at 3300 and 12000 ft. (b) Aerial view of the site with the locations of the wind

lidar as well as the potential release locations. The background maps are obtained from © Google Earth.

into level 1 at-sensor radiances (in µWcm−2 nm−1 sr−1) using laboratory-measured calibration coefficients. The level 1 data100

was georeferenced using a parametric approach (Schläpfer and Richter, 2002), where the geometry of the sensor, its location

and orientation acquired from GNSS
:::::
global

:::::::::
navigation

:::::::
satellite

:::::::
system

:::::::
(GNSS)

:
and inertial navigation system (INS) data

were combined with a digital elevation model (IGN, 2018) to project the radiometrically corrected data onto the surface with

sub-pixel accuracy. Details on the processing are described in Hueni et al. (2025).

2.3.2 Masking of shadows and water surfaces105

Dark
::::::::::
Observations

::::
over

:::::
dark surfaces such as cast shadows and water bodies have a low SNR and therefore produce arte-

facts when processing the data. Additionally, cast shadows only contain diffuse radiance, which is inconsistent with the non-

scattering assumption in CH4 retrieval. Cast shadows were especially pronounced in our data, as the controlled release ex-

periment took place in late September under low solar zenith angles (SZA). For this reason, we masked these areas using a

modified version of the cast detection method described in Schläpfer et al. (2018), using radiances at 450 nm for blue (Lb), 670110

nm for red (Lr) and 780 nm for near-infrared (NIR) (Ln):

ish =
Lr + kn(Ln −Lr)>0

Lb
· 1

aebLb,dark
. (1)

We used the default parameters kn = 0.1, a= 1.58 and b=−0.04 from Schläpfer et al. (2018). Next, we divided the inverse

of the resulting index by the integrated radiance over all wavelengths. After empirical evaluation, values larger than 0.25 were

masked prior to applying the matched filter.115
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2.4 CH4 retrieval

We retrieved CH4 maps from the AVIRIS-4 radiance cube
::::
cubes

:
using the computationally efficient matched filter approach

following Foote et al. (2020) and further refined by Kuhlmann et al. (2025). The filter detects a known signal within a noisy

background by enhancing the signal relative to the noise, effectively maximising the output signal-to-noise ratio under the

assumption of additive Gaussian noise.120

2.4.1 Matched filter

Using a linearised form of the Beer-Lambert law, the matched filter (MF) takes the form

αϵ =
(Lobs − µ̂) · Ŝ−1 · t

t⊤ · Ŝ−1 · t
(2)

where αϵ represents the CH4 column enhancement, Lobs the observed spectrum in the two wavelength ranges 1480 to 1800 and

2080 to 2500 nm, µ̂ and Ŝ the median and covariance of the observed spectrum and t= µ̂ ·−s the target spectrum. We used the125

negative of the unit absorption spectrum of CH4 s to align Eq. 2 with derivations in other studies. Thereby, s is calculated using

the radiative transfer equation assuming a geometric air mass factor (AMF), no atmospheric scattering according to Kuhlmann

et al. (2025) and a CH4 enhancement ϵ in the lowest 1000-m
::::::
1000 m

:
layer respectively. The calculation of the plume-specific

enhancement was achieved through an iterative approach, wherein the CH4 maps were initially derived under the assumption

of an enhancement of 0.01 ppm. The mean enhancement in the detected plume was then used for the subsequent iteration of130

the matched filter, which converged after two to three iterations .
::::
three

::::::::
iterations

::::
with

:::::::
changes

::::::::
between

:::::::::
successive

::::::::
iterations

:::::
falling

::::::
below

:
a
::::
5%

::::::::
threshold.

::::
Our

:::::::
iterative

::::::::
approach

:::::::
reduces

:::
the

::::::::::::
approximation

:::::
error

:::::::::
introduced

:::
by

:::
the

::::::::::
linearisation

:::
of

:::
the

:::::::::::
Beer-Lambert

::::
law

::
by

:::::::::
expanding

::::::
around

::::
the

::::::
current

:::::::
estimate

:::
of

:
α
::::::

rather
::::
than

::::::
α= 0,

:::::
which

:::::::::
decreases

:::
the

::::::::::
linearisation

:::::
error

::::::::::
quadratically

::
in
:::
the

::::::
update

::::
step.

::::
For

::::
large

:::::::::::::
enhancements,

:::
this

:::::::::::
substantially

:::::::
mitigates

:::::::::
non-linear

:::::::::
absorption

::::::
effects.

:

2.4.2 Lognormal matched filter135

Due to the linearisation of the Beer-Lambert law used in the derivation of the matched filter , it is
:::
most

::::::::
matched

:::::
filter

:::::::::
approaches,

:::::
they

:::
are only valid for weak CH4 enhancements. Therefore, Schaum (2021) argued that a lognormal matched

filter (LMF) provides the uniform most powerful solution for the detection of trace gas plumes, which takes the following

form:

αϵ =
(ln(Lobs)− µ̂) · Ŝ−1 · s

s⊤ · Ŝ−1 · s
(3)140

where s is the same unit absorption spectrum as above. This approach has been implemented and evaluated by Pei et al. (2023)

for synthetic WRF-LES and observed data from the PRISMA satellite. According to Schaum (2021), the LMF could improve

the detection performance for pixels with attenuated signal, e.g. with weak enhancement or at higher flight altitudes, due to

the more realistic mean spectrum µ̂ in logarithmic space.
::
In

:::
the

:::::::
present

:::::
study,

:::
we

::::::::
evaluated

:::
the

:::::
LMF

::::
only

::::::::::::
exploratively

::
to

:::::::
illustrate

::
its

:::::::::
behaviour

::
on

:::::::::
AVIRIS-4

::::
data

::::
with

::
an

::::::::
emphasis

:::
on

:::
the

:::::::
smallest

:::
and

::::::
largest

::::::
release

::::::
events.145
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2.4.3 Albedo correction

We applied the matched filter to the at-sensor radiance of each across-track position to avoid striping caused by differences in

radiometric and spectral calibration of the sensor pixels. However, as outlined in Fahlen et al. (2024), the assumption that the

reference solar spectrum L0 can be approximated by the mean spectrum µ̂ introduces a bias in the CH4 column enhancement

αϵ over heterogeneous surfaces, which must be corrected as follows:150

αcorr =
1

R
∗αϵ with R=

(Lobs ∗−s) · Ŝ−1 · t
t⊤ · Ŝ−1 · t

(4)

While the correction factor helps mitigate biases in CH4 enhancements, it also amplifies retrieval noise for dark surfaces with

a low signal-to-noise ratio. This effect could be mitigated by masking cast shadows and water surfaces before applying the

matched filter.

2.4.4 Plume shadow correction155

In some of the AVIRIS-4 observations, we observed double plumes due to plume shadows (see Sect. 3.5.4). They present

a challenge for emission estimation because the CH4 retrieval assumes that the light traverses the plume twice, assuming a

geometric AMF that depends both on the solar zenith angle (SZA) and viewing zenith angle (VZA):

AMFgeom = sec(SZA)+ sec(VZA) (5)

At the source location, however, the signal originating from the plume does not pass through the plume a second time after160

ground reflection, and thus it is independent of the VZA. Consequently, CH4 enhancements should be scaled by cplume:

cplume =
AMFgeom

sec(VZA)
(6)

For the plume shadow enhancement, the respective correction factor is given by

cshadow =
AMFgeom

sec(SZA)
(7)

When the plume and its shadow were clearly resolved, we estimated the emissions and applied the corresponding correction165

factor. However, when the plumes partially overlapped, this separation was not feasible, limiting the applicability of the cor-

rection method. In such situations, we employed the integrated mass enhancement (IME), which aggregates all detected pixels

without explicitly distinguishing between the plume and its shadow.

2.5 CH4 emission estimation

To estimate the CH4 emissions, we used the integrated mass enhancement (IME) and cross-sectional flux (CSF) method170

implemented in the Python library for data-driven emission quantification (ddeq) (Kuhlmann et al., 2024). The CSF performs

better
:::
We

::::
used

:::
the

::::
CSF for longer plumes and more turbulent conditions as it averages the fluxes along several cross-sections.

Conversely, the IME is more appropriate
:::
was

::::
used for short plumes and plumes that deviate from a Gaussian plume shape

::::
such

7



::
as

:::
for

::::::::::
overlapping

::::::
double

::::::
plumes. Both methods assume steady-state conditions of wind speed and emission rate. Limits of

this assumption are further discussed in Section 4.2.175

All mass-balance based methods require an estimate of the wind speed U . Ideally, U would correspond to the effective wind

speed Ueff, which is the mean speed at which the plume is transported (Kuhlmann et al., 2024). However, as the vertical CH4

profile is unknown, we used four different approaches to obtain a wind speed estimate:

1. 10 m wind speeds U10 from ERA5 reanalysis data (Hersbach et al., 2018) as used for the initial reporting in McManemin

(2025) as ground-based lidar measurements were not available prior to unblinding.180

2. 10 m wind speeds U10 from wind lidar measurements.

3. A linear scaling of the 10-m wind speed derived from model simulations for GHGSat (Varon et al., 2018) :

Ueff = 1.47 ·U10 (8)

4. Wind speed at source height Us, assuming a logarithmic wind profile (Fleagle and Businger, 1980; Seinfeld and Pandis,

2016). Wind profiles were derived assuming a surface roughness of 0.1 m and using on-site measurements of temperature185

and wind speed, combined with sensible heat fluxes from ERA5 reanalysis data (Hersbach et al., 2018). While plume

rise and vertical mixing were not explicitly incorporated into the wind speed calculations, their potential influence was

accounted for in the uncertainty analysis.

We also conducted a sensitivity analysis using lidar wind speeds at other elevations above ground level.

2.5.1 Integrated mass enhancement190

The IME approach derives the emission rate Q based on the integrated mass enhancement M of a plume and a residence time

τ during which CH4 resides within the detectable plume. This residence time is approximated by the wind speed U and the

length L of the detectable plume (Kuhlmann et al., 2024).

Q= τ ·M =
U

L
·M (9)

The plume length L was calculated as the arc length of the centre line curve fitted to the detected plume.195

The integrated mass M was computed as

M =

n∑
(i,j)∈Pa

(Vi,j −Vbg) ·Ai,j (10)

where Vi,j is the vertical column density, Vbg is the background vertical column density, and Ai,j is the pixel area. The trace gas

mass was summed up over the n pixels of the integration area Pa which was obtained by a sufficient extension of the detected

plume in the crosswind direction to include pixels with enhancements below the detection limit. A local CH4 background Vbg200

was calculated by applying a low-pass Gaussian filter to the CH4 maps after masking the enhancements including a buffer

(Kuhlmann et al., 2024).
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2.5.2 Cross-sectional flux method

For the CSF, the detected plume is divided into multiple polygons. As in Kuhlmann et al. (2024), a Gaussian curve with linear

background trend was then fitted to the CH4 enhancements of each polygon to obtain the line densities q:205

g(y) =
q√
2πσ

exp

(
− (y−µ)2

2σ2

)
+my+ b (11)

Here, y is the across-plume direction, σ to the standard width and µ to the mean of the fitted Gaussian curve with linearly

changing background with slope m and offset b.

The emissions Q were then calculated as the product of the wind speed U and the uncertainty-weighted mean of all line

densities q̄:210

Q= U · q̄ (12)

2.6 Estimation of uncertainty

Below we describe how uncertainty components are estimated and propagated for each input to the emission quantification.

2.6.1 CH4 Columns

The uncertainty of CH4 columns σV was calculated as215

σV =
√

σ2
t +σ2

inst

√
σ2
t +σ2

CH4
::::::::::

(13)

where σinst accounts for correlated and uncorrelated radiance-dependent instrument uncertainties. For this analysis, it was

calculated using the EMIT noise model and propagated through the MF according to Fahlen et al. (2024). For future analyses,

a noise model for AVIRIS-4 will be used, which is currently under development.
:::::
σCH4 :

is
:::

the
::::::::

standard
::::::::
deviation

::
of

::::::::
retrieved

::::
CH4 :::::::

columns
:::

in
:
a
::::::::::

plume-free
::::::
region

::::
next

::
to

::::
the

::::::
release

:::::::
location

::::
with

:::::::
similar

::::::
surface

::::::::::
properties. σt represents correlated220

uncertainties in the target t due
::
to

:
no-scatter assumptions for the calculation of the unit absorption spectrum s, which was

estimated at a conservative 5% for this campaign based on Kuhlmann et al. (2025).

2.6.2 Pixel area

Uncertainty in pixel area (σA) is treated as a systematic spatial uncertainty, reflecting geolocation and georectification errors.

During this campaign, geolocation accuracy was reduced due to a faulty cable, which impaired the temporal synchronization225

between GNSS data and AVIRIS-4 measurements. To assess the resulting geolocation uncertainty, AVIRIS-4 imagery was

visually compared with Google Earth reference imagery. Based on this comparison, a conservative uncertainty of 5% of the

nominal pixel area was assumed. The cable issue has since been resolved, and additional measures have been implemented to

prevent similar problems in future campaigns.

9



2.6.3 Wind speed230

The uncertainty of the on-site measured wind speed σU is assumed to consist of four terms:

σU =
√
σ2
inst +σ2

rep +σ2
eff +σ2

var (14)

The term σinst represents the systematic measurement uncertainty of the wind lidar which was estimated as 5% of the wind

speed, based on guidance from the site operators. The term σrep represents the error associated with the spatial displacement

between the wind lidar and the actual plume locations. Given the close proximity of the lidar to the source positions in this235

study, this component is assumed to be negligible or already captured in σvar (see below). The term σeff reflects the uncertainty

introduced by the use of the wind speed at source height instead of a concentration weighted wind profile. It was quantified by

calculating the mean relative difference between the wind speed at source height and a Gaussian-weighted logarithmic wind

profile. For the latter, we weighted the logarithmic wind profile with Gaussian curves around the source height with standard

deviations ranging from 0.1 to 5 m and source heights between 0.01 and 6.5 m as experienced during the controlled release240

experiment. σeff was found to be in the order of 30% for sources between 0 and 1.5 m above the ground and less than 5% for

sources which are more elevated. Here, we used an estimate of 15%. Finally, σvar represents the uncorrelated errors due to the

natural variability of on-site measured wind data during the overpass. It was quantified as the standard deviation of U10 over a

one-minute window, consistent with the typical residence time of most detectable plumes, which was estimated to be no more

than one minute.245

2.6.4 IME

The uncertainties of the emission estimates σQ of the IME were determined by the propagation of error:

σQ =Q ·
√(σU

U

)2
+
(σL

L

)2
+
(σM

M

)2
(15)

The uncertainty of the plume length σL was estimated as 10% of the plume length or at least half of a pixel. The uncertainty

of the integrated mass σM was calculated as250

σM =

√√√√ n∑
(i,j)∈Pa

[
(Ai,j ·σVi,j

)2 +(Ai,j ·σVbg
)2 +

(
(Vi,j −Vbg) ·σAi,j

)2]
(16)

where σVi,j
corresponds to the pixel-wise uncertainty of the vertical column density V . Using the trace gas column enhance-

ment Venhi,j
= Vi,j −Vbg, Eq. 16 simplifies to

σenh =

√√√√ n∑
(i,j)∈Pa

[
(Ai,j ·σVenhi,j

)2 +(Venhi,j
·σAi,j

)2
]

(17)

where σAi,j
= σĀ and σVenhi,j

= σ ¯Venh
were assumed to be constant and correspond to the mean within the plume.255
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2.6.5 CSF

The uncertainties of the emission estimates σQ of the CSF were determined as

σQ =
√
q̄2 ·σ2

U +U2 ·σ2
q̄ (18)

The uncertainty of the mean line densities σq̄ was obtained as the uncertainty of the mean of the fitted fluxes q along the plume,

which accounts for uncertainties σq of the individual cross sections. Since σq̄ decreases with the square root of the number of260

line densities and does not account for the correlation of consecutive line densities, this uncertainty is set to at least 10% of the

mean line density:

σq̄ =min(σq̄,0.1 · q̄) (19)

The uncertainty of each cross-section σq was calculated from the uncertainty of the Gaussian fit to each sub-polygon σgauss

and the mean uncertainty of the pixel area σĀ within a sub-polygon:265

σq =

√
σ2
gauss +

( q

Ā
·σĀ

)2
(20)

2.7 Probability of detection

We computed the probability of detection (POD) for AVIRIS-4 according to Conrad et al. (2023) as a function of reported

emissions Qrep, U10 and flight altitude h̃ using the flags "detected" and "not detected" by optimising the predictor and inverse

link functions. This resulted in the following POD function:270

POD= 1−

1+
(
1.03× 1010

) (
5.18× 108

)
Q1.93(

h̃

1000

)3.88

(u10 +97.0)
9.97


−1.84

3 Results

In what follows, we summarise the observing conditions relevant to CH4 retrievals during the controlled-release experiment

(Section 3.1). We then present representative plume images from multiple releases across varied conditions (Section 3.2). Next,

we assess how key parameters influence retrieval performance (Section 3.5), derive detection limits (Section 3.3), and compare275

estimated emissions with reported values (Section 3.4).

3.1 Controlled release experiment

In contrast to previous efforts, this new generation of controlled release experiments was planned to reflect more realistic

natural conditions. While this allows to assess sensor performance in diverse terrain and meteorological conditions it also

11



introduce
::::::::
introduces

:
limitations associated to different surface coverage, cast shadows and cloud conditions (see Figure 2 for280

detailed meteorological setting during all experiments, and Figures A3, A4, A5 and A6 in the Appendix for wind information).

Despite these challenges, we were able to fly 100 overpasses at different hours of the day (see Figure 3a) and at five altitudes

(see Figure 3b), which allowed us to evaluate the influence of wind speeds and spatial resolution on the CH4 detection and

emission estimation. Flights at all flight levels were only scheduled for the first release in the morning and afternoon after

refuelling. The atmospheric stability was estimated to be neutral to unstable for all observations based on the Pasquill stability285

classes using U10.

Figure 2. Schedule of the controlled release experiment with the number of overpasses n for each release and a symbol for the average cloud

conditions during the release. As the releases started either at ’00, ’30 or ’45, the row label indicates the hour of the release end in local time.

If no number of overpasses is given, no release took place during that time window. Bold entries indicate releases observed at all altitude

levels; otherwise, observations were limited to 4200 and 3300 ft. The right-hand panel shows the average SZA for each hour.

3.2 Examples of plume images

Figure 4 (upper row) presents three optimal examples of plumes resulting from three different releases. The plumes appear

largely linear, with minimal influence from turbulence, which is favourable for emission estimation. For stronger sources,

retrieval noise is barely noticeable, but at lower intensities - such as the 26.4 kgCH4 h
−1 release - it can interfere with the290

plume signal and hinder accurate attribution of enhanced pixels (see Section 3.5.5).

The lower row in Figure 4 shows three turbulent plumes observed during overpasses at 4200 ft, where local enhancements

caused by turbulent eddies are clearly visible. In these cases, the CSF method outperforms the IME approach, as the effect of

turbulence is reduced through averaging across multiple cross-sections.
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Figure 3. (a) Number of overpasses at five different altitudes above mean sea level. (b) Number of overpasses at different hours of the day.

Figure 4. (upper row) Linear CH4 plumes from release events with 26.4, 56.7 and 290 kgCH4 h
−1, observed at 3300 ft at an average spatial

resolution of 0.40 to 0.43 m. (lower row) Turbulent CH4 plumes from release events with 290 and 80.1 kgCH4 h
−1, observed at 4200 ft at

an average spatial resolution of 0.48 m.
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In addition to challenging conditions, there was also a case where turbulence impeded emission estimation, shown in Figure295

5. A change in wind direction prior to the overpass appears to have caused a large, dispersed "blob" of CH4 enhancements.

Since these conditions violate the steady-state assumption, this case was excluded from emission estimation.

Figure 5. CH4 plume from release events with 52.94 kgCH4 h
−1, observed at 3300 ft at a spatial resolution of 0.42 m.

3.3 Detection limit

The median noise level of CH4 maps was estimated to be around 700
:::
450 ppm-m or 0.5

::
0.3 gCH4 h

−1 for the data of the con-

trolled release experiment. Out of 100 overpasses, plumes were detected on 68 instances (Figure 6). In the most favourable case,300

the smallest observed plume corresponded to a 1.45 kgCH4 h
−1 release at U10 = 0.76m s−1 and a flight altitude of 4200 ft,

representing the best-case detection limit for AVIRIS-4. Under typical conditions, plumes from releases of 5.5 kgCH4 h
−1

and above were consistently detected at altitudes ≤ 4200 ft, with the exception of two overpasses where shadows from surface

infrastructure obscured the signal. At higher flight altitudes (6000 - 12000 ft), detection performance was more constrained:

for release rates ≤ 9.23 kgCH4h−1, only one plume was detected (6000 ft, U10 = 1.3m s−1), while the others could not be305

observed due to the combined effect of higher winds and lower emissions. (a) Reported CH4 emissions vs. on-site lidar wind

measurement at 10 m. (b) Probability of detection for a flight altitude of 1000 m. The original objective of conducting obser-

vations at multiple flight altitudes was to determine an altitude-dependent detection limit. However, because the CH4 release

rates were not known in advance, the largest release event captured at all five altitudes was metered at only 9.23 kgCH4 h
−1.

This emission rate was below the detection threshold at altitudes above 6000 ft and therefore remained undetectable in those310

overpasses. As a consequence, no altitude-dependent detection limit could be established.
::
For

:::
the

::::::::::
overpasses

:::::
below

:::::::
6000 ft,

::
we

:::::::::
computed

:::
the

::::::::::
probability

::
of

::::::::
detection

::::::
(PoD)

:::
for

:::::::::
AVIRIS-4

::::::::
according

:::
to

:::::::::::::::::
Conrad et al. (2023)

::
as

:
a
::::::::

function
::
of

::::::::
reported

::::::::
emissions

::::
Qrep,

::::
U10:::

and
:::::
flight

:::::::
altitude

:
h̃
:::::
using

:::
the

:::::
flags

::::::::
"detected"

::::
and

::::
"not

::::::::
detected"

::
by

:::::::::
optimising

:::
the

::::::::
predictor

::::
and

::::::
inverse
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:::
link

:::::::::
functions.

::::
This

::::::
resulted

::
in
:::

the
:::::::::
following

::::
PoD

:::::::
function

:::::
which

::
is

::::::
plotted

::
in

::::::
Figure

::
6.

PoD = 1−

1+
(
1.03× 1010

) (
5.18× 108

)
Q1.93(

h̃

1000

)3.88

(U10 +97.0)
9.97


−1.84

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(21)315

Figure 6.
::
(a)

:::::::
Reported

::::
CH4::::::::

emissions
::
vs.

:::::
on-site

::::
lidar

::::
wind

::::::::::
measurement

::
at

::::
10 m.

:::
(b)

::::::::
Probability

::
of

:::::::
detection

::
for

::
a
::::
flight

::::::
altitude

::
of

::::::
1000 m.

::::
above

:::::
mean

::
sea

::::
level

:::::
using

::
Eq.

:::
21.

3.4 CH4 emission estimation

We were able to estimate the emission from 67 of the 68 detected plumes, 54 of which were estimated using the CSF method

and 13 using the IME method. Figure 7 shows the reported versus estimated CH4 emissions using four different wind speed

inputs. As outlined in Section 2.5, the initial CH4 emission estimates were calculated using ERA5 U10, shown in subplot (a) of320

Figure 7. This approach yields a relatively weak correlation, with a fitted slope of only 0.53 and an R2 value of 0.55. Replacing

ERA5 data with lidar-measured U10 in subplot (b) of Figure 7 substantially improves the agreement, increasing the slope

to 0.65 and an R2 value of 0.73. This highlights the limitations of reanalysis wind data for accurate emission quantification

(further shown in Figure A1). As a result, the use of ERA5 introduces both correlated and uncorrelated uncertainties in emission

estimates that are difficult to quantify or correct.325

Even when using on-site lidar wind speeds (Figure 7b), biases remain: emission rates for small release events tend to be

overestimated, while large releases (e.g. at 80.1 and 290 kgCH4 h
−1) are significantly underestimated. This behaviour can be

explained by plume dynamics: Small release events result in short plumes which remain near the emission height (<10 m for
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Figure 7. Comparison between reported and estimated CH4 emissions using (a) ERA5 10 m wind speeds, (b) lidar 10 m wind speeds, (c)

effective wind speeds using 1.4 ×u10:::
1.47

:::::
×U10:

according to Varon et al. (2018) and (d) effective wind speeds at source height as described

in Section 2.5. Insets enlarge the low-emission range and have an independent fit to the emission estimates. It is important to note that the

R2 value represents the coefficient of determination of the weighted regression, which can take negative values.

all releases), making the use of U10 prone to overestimation. In contrast, large releases produce longer plumes that undergo

greater vertical mixing. The actual effective transport height may thus be above 10 m, resulting in an underestimation of330

emissions when using U10. Additional influencing factors are specific to the release equipment, such as the outlet ejection

velocity and whether the emission was oriented horizontally or vertically.

These limitations highlight the importance of estimating an effective wind speed (Ueff) that accounts for both source height

and vertical mixing. Subplots (c) and (d) in Figure 7 compare two approaches: the method of Varon et al. (2018), which

accounts only for vertical mixing, and the method developed in this study, which accounts only for source height. In subplot335

(c), the overall fitted trend lies close to the 1:1 line, but the estimates for small releases are substantially worse than when using

U10. This reflects the fact that Varon et al. (2018) derived the linear relationship between U10 and Ueff for GHGSat, which has

a coarser spatial resolution (50×50 m). At that scale, plumes have more time to mix vertically and are therefore transported

by winds stronger than U10. In contrast, subplot (d) shows a poorer overall trend than (c) due to the strong influence of large

release events, but the estimates for small releases improve considerably. This suggests that short plumes are well captured340

because they remain close to the emission height, whereas vertical mixing is insufficiently accounted for in the case of larger

releases.
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To further investigate this hypothesis of strong vertical mixing, we incorporated lidar wind speeds at 20 and 38 m and

calculated the uncertainty-weighted root mean squared error (RMSE) and relative mean bias error (MBE) between estimated

and reported CH4 emissions, as shown in Figure 8. The results confirm that using Usrc substantially improves emission estimates345

for low intensity release events. For release events above 30 kgCH4 h
−1, however, using Usrc tends to underestimate emissions

and performs worse than estimates based on U10, U20 and U38. Although the relative MBE decreases for larger releases, the

high relative RMSE indicates substantial variability around the true values. This pattern may reflect the greater influence of

turbulence on longer plumes compared to shorter ones.

Figure 8. Mean relative root mean squared error (RMSE) and relative mean bias error (MBE) between estimated and reported CH4 emissions

across emission bins.

In addition to source strength and therefore plume length, absolute wind speed appears to significantly influence the accuracy350

of emission estimates. This is illustrated in Figure 9, which shows the scaling factor required to align estimated emissions with

reported values as a function of (a) plume length and (b) effective wind speed. While subplot (a) of Figure 9 supports the

previously discussed hypothesis regarding plume length, subplot (b) reveals that lower wind speeds are associated with larger

and more variable scaling factors. This observation aligns with the findings of Varon et al. (2018); Sánchez-García et al.

(2022); McManemin (2025), who reported reduced accuracy in emission estimates across various techniques under low wind355

speed conditions. This is likely due to the increased variability typically observed at lower wind speeds. In contrast, we did

not observe larger scaling factors for larger coefficients of variation (CoV) in wind direction in subplot (c) of Figure 9 as

discussed in McManemin (2025). The reason for this is that our method does not depend on wind direction, as we do a nearly

instantaneous measurement. The large spread in angles between the wind direction and the curve fitted to the plume in subplot

(d) further highlights the strong influence of wind turbulence on the observed plumes.360

This hypothesis is further supported by individual cases where estimated emissions diverge from reported values, as illus-

trated in Figure 10. Subplot (d) shows that the CH4 fluxes across different cross-sections fluctuate strongly between 100 and

200 kgCH4 h
−1 due to turbulent wind, likely reflecting both temporal variability in wind speed and changes in plume height
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Figure 9. Correlation of (a) plume length, (b) 10 m wind speed, (c) Coefficient of Variation (CoV) and (d) angle between plume curve and

wind direction with the scaling factor required to align estimated CH4 emissions using Lidar
:::
lidar

:
10 m wind speeds with reported values.

that exposed it to different wind regimes. In such cases, one might consider using only CH4 enhancements close to the source,

such as those from the first cross-section, where Ueff is expected to better approximate the wind speed at source height. How-365

ever, this example shows that even this approach leads to underestimation, indicating that the measured wind speeds do not

accurately reflect actual wind conditions. An analysis of the wind speed during the two minutes of the overpass reveals that

U10 varies between 1 and 3ms−1
:
m

::::
s−1. For comparison, a 20 m plume under a 1 m s−1 wind has a residence time of about

20 s, which matches the sampling interval of the wind lidar. As a result, the wind speed fluctuations visible in the plume cannot

be resolved by the lidar, and the underestimation can likely be attributed to larger-than-expected temporal variability that is not370

captured at the instrument’s temporal resolution.

The analysis of uncertainty contributions to total emission estimate uncertainty (Figure A2) indicates that wind speed is

the dominant factor for both the CSF and IME methods. Most of this contribution arises from the natural variability of wind

speed, with additional influence from uncertainty in the effective wind speed. In comparison, measurement errors in wind speed

account for only a minor portion of the overall uncertainty.375

Lastly, one source of deviation between estimated and reported CH4 emissions is the presence of cloud shadows over the

release site as shown in Section 3.5.3, leading to the strong underestimations of the 80.1 kgCH4 h
−1 release event observed in

Figure 7. Despite this underestimation, the plumes were still reliably detected, indicating that observations under suboptimal

cloud conditions can still be valuable e.g. for leak detection.
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Figure 10. (a) RGB image of the release location, (b) CH4 map showing the detected plume and 12 cross-sections, (c) Gaussian fits to the

CH4 columns from the first and last three cross-sections, (d) along-plume flux of all cross-sections and retrieval metadata.

3.5 Factors affecting the CH4 retrievals380

3.5.1 Spatial resolution

Figure 11 shows examples of AVIRIS-4 RGB images and CH4 maps of the release site acquired at 12000, 9000, 6000, 4200, and

3300 ft in the afternoon of the 16th of September. The across-track resolutions are 2.0, 1.5, 1.0, 0.7, and 0.5 m, while the along-

track resolution is approximately 0.4 m. For the overpasses at 12000 and 6000 ft, the across-track resolution is represented on

the x-axis, whereas for the others it is represented on the y-axis. Black circles indicate an artifact
::::::
artefact caused by a white385

object located at the release site. This artifact
::::::
artefact

:
arises because, first, the reflectance signal appears to correlate with the

CH4 signal, and second, the high albedo of the object leads to increased radiance, which in turn produces an artificially elevated

enhancement in the CH4 maps. At higher altitudes (12000 and 9000 ft), the spatial resolution is too coarse to clearly distinguish

this artefact from a true enhancement. The CH4 plume from the release event with an emission rate of 9.23 kgCH4 h
−1 is only

visible at higher spatial resolutions during overpasses at 3300 and 4200 ft.390
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Figure 11. RGB images and CH4 maps for different flight altitudes
:::
with

::::::
average

:::::
spatial

:::::::::
resolutions

:
of
::::
2.0,

:::
1.5,

:::
1.0,

::
0.7

:::
and

:::::
0.5 m

:::::::::
across-track

:::
and

:::
0.35

::
m

:::::::::
along-track. All observations are from a release event on the 16th of September with reported emissions of 9.23 kgCH4 h

−1

3.5.2 Cast shadows

The cast shadows of buildings and objects are clearly visible at high
:::::
spatial

:
resolution. Shadows compromise the CH4 retrieval,

which assumes a non-scattering atmosphere, since light in shadowed areas originates solely from scattering. Therefore, an

efficient shadow masking is necessary at these resolutions. Figure 12 shows the effect of the shadow mask for a scene with

water bodies and cast shadows and the release site with a nearby photovoltaic plant. It can be seen that the masking of cast395

shadows and dark surfaces such as solar panels is important to prevent biases in the CH4 maps which would interfere with plume

detection. Furthermore, in instances where the plume coincides with shadowed areas, the artificially elevated enhancements

would skew emission estimates. As a result of the shadow mask, CH4 emissions can also be estimated if the plume is transported

over shadowed areas.

The downside of shadow masking is that some short plumes of small release events could not be detected because they400

aligned with shadows. Furthermore, depending on the threshold used for shadow masking, surfaces with low albedos could be

masked, preventing the detection of CH4 emissions.

3.5.3 Cloud shadows

During all eight overpasses of the 80.1 kgCH4 h
−1 release on the 19th of September, cloud shadows intersected the flight

line while on five out of eight overpasses, cumulus clouds obscured the sun over the release site. Under such conditions, the405

measured radiance is dominated by scattered light, violating the assumptions used in calculating the target spectrum. Moreover,

cloud shadows on the flight line render the mean spectrum µ̂ unrepresentative of the observed radiance Lobs over the release

site. Consequently, subtracting µ̂ from Lobs in Eq. 2 partially removes the CH4 signal. This effect is evident in Figure 13,

which contrasts an overpass with obscured sun at 13:00 UTC with a clear-sun overpass at 12:54 UTC. The lower row shows
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Figure 12. Examples of scenes containing cast shadows and water bodies (upper row) and the release site during a release event with

56.7 kgCH4 h
−1 (lower row), without and with shadow masking.

Lobs − µ̂ over the same plume-free area in both cases. As can be seen, the cloud shadow strongly reduces the signal. As a410

result, emission estimates for shadowed cases, or for scenes with a substantial fraction of cloud shadows along the flight line,

tend to be underestimated. Consequently, a refined retrieval algorithm would be necessary to provide unbiased CH4 maps and

emission estimates.

Figure 13. RGB image of 80.1 kgCH4 h
−1 release on the 19th of September (a) with and (b) without cloud shadow. The lower row shows

the mean Lobs − µ̂ over the same plume-free area within the wavelength window used for CH4 retrieval for both cases.
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3.5.4 Plume shadows

As a consequence of the unprecedentedly high spatial resolution of AVIRIS-4 and the high SZA for some of the overpasses415

(see Figure 2), we discovered that, out of 68 detected plumes, 13 were found to contain two plumes that were occasionally

overlapping and occasionally distinct, as illustrated in Figure 14. This phenomenon can be explained as plume shadows: One

Figure 14. Left: RGB image of the study site with a marker on the release location at 6.5 m above ground. Right: CH4 map of the study site

with two plumes visible.

plume appears at the actual release location and corresponds to the CH4 absorption signal of the light path that first travels from

the sun to the ground and, after being reflected, passes through the plume. The second plume is observable at the upper end of

the shadow cast by the pole of the source. This plume corresponds to the absorption signal of the light that first passes through420

the plume, is then reflected from the ground and reaches the sensor without passing through the plume a second time. This

phenomenon has been shown in simulations by Schwaerzel et al. (2020) and first observed by Sánchez-García et al. (2022). It

is important to note that the effect of light passing through the plume only once instead of twice occurs under all conditions

with sufficiently high SZA. For sensors with coarse spatial resolution, however, the plume and its shadow cannot be resolved

separately and have therefore never been explicitly considered in CH4 retrieval or emission estimation prior to this study.
::
To425

::::::
correct

:::
for

:::::
plume

::::::::
shadows,

:::
we

:::::::
applied

:::
the

:::::::
method

:::::::
outlined

::
in

:::::::
Section

:::::
2.4.4

::
to

:::
the

::::
four

::::::::
observed

::::::
plumes

::::
that

:::::
were

::::::
clearly

::::::::
separated.

::::
This

:::::::
resulted

::
in

:
a
:::::
mean

:::::::::
correction

:::::
factor

::
of

::::
2.6.

3.5.5 MF vs. LMF

For the analysis of this study we also tested the LMF which was developed by Schaum (2021) and tested in Pei et al. (2023). The

plume images using the MF and LMF in Figure 15 show that smaller enhancements (upper row) can be detected more reliably430

and accurately using the LMF as worked out in Schaum (2021). In our case, the LMF enabled the detection of a release as small

as 1.45, kgCH4 h
−1 at a flight altitude of 4200 ft. This improved detectability can be attributed, in part, to reduced noise levels

in the
::::::
random

::::::::::
background

:::::::::
variability

::
in

::
the

::::::::
retrieved CH4 retrievals

::::
maps, which facilitated more confident identification of the

plume signal. However, the LMF also increases
:::::::::
introduces

:::::
larger

:::::::::
systematic biases in background CH4 values compared to the

MF,
:
as evident in both the upper and lower rows of Figure15.

:::
15.

:::
An

:::::::
analysis

::
of

:::
the

::::::::::
eigenvalues

::
of

:::
the

:::::::::
covariance

:::::::
matrices

:::
for435
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:::::::
different

::::::
surface

:::::::
albedos

:::::::
suggests

::::
that

:::::
these

:::::
biases

:::
are

:::::::::
associated

::::
with

::::::::
increased

:::::::::
sensitivity

::
of

:::
the

::::::::::::::
log-transformed

::::::::
radiances

::
to

:::::
pixels

::::
with

::::
low

:::::
SNR,

:::::
which

::
is

:::
the

::::
case

:::
for

::::::
albedo

:::::::
surfaces

::::
with

::::
low

::::::
albedo.

:
Additionally, we observed that the LMF had

little to no effect on CH4 enhancements for the largest release events in the campaign, such as the 290 kgCH4 h
−1 release.

This is likely because these stronger enhancements remained within the linear absorption regime of CH4, where the standard

MF already performs effectively
:::
our

:::::::
iterative

::::
MF

::::::
already

:::::::::::
compensates

:::
for

::::
most

:::
of

:::
the

:::::::::
non-linear

:::::::::
absorption

:::::::::
associated

::::
with440

::::
high

:::::
optical

::::::
depths.

Figure 15. RGB images and CH4 maps obtained from MF and LMF for release events with 1.45 and 56.7 kgCH4 h
−1, observed at 4200

and 3300 ft. Note that the upper row shows a zoomed-in subsection of the scene to be able to see the short plume.

3.6 Estimating the source height from (plume) shadows

The high spatial resolution of AVIRIS-4 offers the unique opportunity to estimate the height h of an emission source based on

the length of the shadow ls in the RGB image (Figure 14a) cast by the emission source using trigonometry:

h=
ls

tan(SZA)
(22)445

Alternatively, the height can be estimated in the same way from the horizontal separation of the starting points of the two

plumes (Figure 14b). With increasing distance, the two plumes move together more closely, suggesting that the plume is

pushed towards the surface directly after the release. Knowledge of the emission height is an important parameter for emission

estimation, as it can be used to determine the effective wind speed, which is a critical input for estimation estimation. In the

example shown in Figure 14 with an SZA of 50° and a spatial resolution of 0.53 m, the emission plume at the stack must be450

6.4 ± 1.1 m above ground which is in agreement with the true emission height of 6.5 m.

We assume that this technique can be applied if the length of the shadow is at least twice as large as the uncertainty in

the length of the shadow σls:::::::
reliably

::::::
applied

::::
only

::
if
:::
the

:::::::::
measured

::::::
shadow

::::::
length

:::::::
exceeds

:::
its

:::::::::::
measurement

::::::::::
uncertainty

::
by

::
a
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:::::::
sufficient

:::::::
margin. The uncertainty in turn is given as the number of pixels with resolution lp which contain both shadow and

illuminated surface, which is
::
the

:::::::
shadow

:::::
length

::
is
:::::::::
dominated

:::
by

::::
pixel

::::::::::::
discretization

::
at

::
the

:::::::
shadow

::::::::::
boundaries,

:::::
where

:
at most455

one at the top and one at the bottom
:::::
mixed

::::
pixel

:::
can

:::::
occur

::
at

::::
both

:::
the

:::::
upper

:::
and

:::::
lower

:::::
edge of the shadow. Therefore

::::::::
Requiring

::
the

:::::::
shadow

:::::
length

:::
to

::
be

::
at

::::
least

:::::
twice

:::
this

::::::::::
uncertainty

::::::
ensures

::::
that

:::
the

::::::
shadow

::
is

:::::::::
sufficiently

::::::::
resolved.

::::::
Under

:::
this

:::::::
criterion, the

minimum emission height becomes
:::
that

:::
can

:::
be

:::::::
resolved

::
is

::::
given

:::
by

h >
2 · lp

tan(SZA)
(23)

For the campaign discussed in this study, this minimum height is shown in Figure 16.

Figure 16. Minimum source height in metres above ground at which shadows of emission sources extend over more than one pixel, shown

as a function of SZA and flight altitude above mean sea level.
460

4 Discussion

4.1 Capabilities and limitations of AVIRIS-4

Following the success of the AVIRIS Classic and AVIRIS-NG sensors in detecting and quantifying CH4 emissions as demon-

strated in numerous previous studies, this study explores the potential of their successor, AVIRIS-4. Although AVIRIS-4 was

primarily developed for surface and vegetation studies, our results show that CH4 columns can be determined with an un-465

precedentedly high spatial resolution, enabling the detection of short plumes from low intensity sources. In combination

with the enhanced SNR, the detection limit is reduced to 5.5 kgCH4 h
−1 under good weather conditions and down to be-

low 1.5 kgCH4 h
−1 under ideal conditions. Because the campaign took place in mid-September, we expect the detection

limit could be further reduced under more favourable illumination conditions. As discussed in Section 3.3, we were not able

to determine an altitude-dependent detection limit for AVIRIS-4, which complicates direct comparisons with other airborne470

sensors. For instance, studies with AVIRIS-NG operated at altitudes between 3000 and 6000 m report detection limits of 10-

16 kgCH4 h
−1 under favourable wind conditions (e.g. Ayasse et al., 2023; Conrad et al., 2023). In our case, the lowest release
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of 9.23 kgCH4 h
−1 could not be detected at a comparable altitude of 2740 m, likely due to higher wind speeds. This makes it

difficult to assess whether and by how much the detection limit has improved. In Thorpe et al. (2016), the lowest detected re-

lease was 2.3 kgCH4 h
−1, but at a much lower flight altitude of 430 m and under higher wind speeds of 3-5 m s−1. Kuhlmann475

et al. (2025) report a detection limit of 15 kgCH4 h
−1 at a flight altitude of 6000 m with wind speeds of 0.5 m s−1. Overall,

comparing detection limits across studies is challenging, as they depend strongly on flight altitude, wind speed, and spectral

albedo (Conrad et al., 2023).

Decreasing the detection limit is pivotal because low intensity CH4 sources are more numerous than high-emitting ones (e.g.,

Williams et al., 2025; Kuhlmann et al., 2025). Consequently, accurate estimates of total CH4 emissions depend on detecting480

smaller sources. For instance, based on the best detection limit of AVIRIS-NG of 15 kgCH4 h
−1 reported in Kuhlmann

et al. (2025) and the distribution of oil production sites in Romania across the outlined scenarios, AVIRIS-NG was able to

detect between 45% and 62% of total emissions. In contrast, assuming a detection limit of 5.5 kgCH4 h
−1, AVIRIS-4 would

increase this detection coverage to approximately 67%–81%. Moreover, the detection limit of 5.5 kgCH4 h
−1 achieved by

AVIRIS-4 effectively enables the identification of all point sources listed in the E-PRTR registry, which mandates reporting485

for emissions exceeding 100000 kgCH4 yr
−1 (equivalent to 11.4 kgCH4 h

−1) (European Parliament and the Council of the

European Union).

In comparison with its predecessor, AVIRIS-4 has compromised some of its spectral resolution in order to enhance its spatial

resolution and SNR. This study, along with comparisons to other airborne imaging spectrometers with higher spectral but lower

spatial resolution such as MAMAP2DL (e.g. Krautwurst et al., 2024), demonstrates that this
::
the

:
trade-off

::
of

::::::
higher

:::::
spatial

::::
and490

::::::
slightly

:::::
lower

:::::::
spectral

::::::::
resolution

:
is beneficial for detecting small-scale CH4 enhancements from low intensity sources, whose

plumes typically extend only a few decimetres to a few metres.

The noise level of the CH4 maps was estimated as the standard deviation of the retrieved columns over the brightest 50%

of pixels. This resulted in a noise level of AVIRIS-4 of 700
:::
450 ppm-m at an average resolution of 0.5 m which is comparable

to reported values of AVIRIS-NG at 5 m resolution for suboptimal illumination conditions (e.g. Borchardt et al., 2021). Such495

noise levels are expected, given that the campaign was conducted in mid-September under low solar zenith angles (SZAs). In

addition, negative values were not masked during the CH4 retrieval, which increases the apparent noise.

The current study also shows that owing to the higher SNR and higher spatial resolution, emissions can also be detected

and estimated with less illumination and under suboptimal surface and atmospheric conditions, which are characterised by

inhomogeneous albedo, strong turbulence, cast shadows and cloud shadows (see Section 3.1), compared to previous controlled500

release experiments with AVIRIS-NG (e.g. Thorpe et al., 2016; Duren et al., 2019). For example, the higher spatial resolution

allows for a more accurate filtering for shadow pixels and albedo artefacts which, if undetected, could lead to biases in emis-

sion estimates, as outlined in Section 3.5.2. This capability allows AVIRIS-4 to be effectively applied to built-up sites with

heterogeneous surface albedo and cast shadows, conditions commonly encountered around CH4 sources in the oil, gas, and

coal mining sectors.505

However, the higher spatial resolution also results in new challenges. One of them is the double plume
:::::::::
occurrence

::
of

::::::
double

::::::
plumes originating from plume shadows illustrated in Figure 14. We corrected for this artifact

::::::
artefact

:
when the true plume
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and its shadow were clearly separated, but its impact on retrieved CH4 enhancements requires further analysis. Additional

::
In

:::
this

::::::::
context,

:
a
::::::

recent
:::::
study

:::
by

::::::::::::::::::
Gorroño et al. (2025)

::::::::::::
systematically

::::::::::
investigated

:::
the

::::::
effect

::
of

::::::::
different

::::::::::
observation

::::
and

::::::::::
illumination

:::::::::
geometries

:::
on

:::
the

::::::::
retrieved

::::
CH4:::::

maps
::::
(i.e.

:::::::
parallax

::::::
effect)

:::
and

:::
the

::::::::
resulting

::::::::
emission

::::::::
estimates.

:::::
They

:::::::
showed510

:::
that

:::::
large

:::::
VZAs

:::
and

::::::
SZAs

:::
can

::::
lead

::
to

:::::::
artificial

:::::::::
elongation

:::
or

::::::::::
compression

::
of
:::::::

plumes
:::::
along

:::
the

:::::
plume

:::::::::
direction.

::::
This

::::
bias

::
in

:::::::
apparent

:::::
plume

::::::
length

::
L

:::::::
directly

:::::::::
propagates

::::
into

:::::::
emission

::::::::
estimates

::::
and

:::::
likely

::::
also

:::::::
occurred

::
in
:::
the

:::::::::::
observations

::::::::
analysed

::
in

:::
this

:::::
study.

:::::::::
However,

::::
their

::::::::
influence

::
is

::::::::
probably

:::::::
masked

::
by

:::
the

::::::::::::
comparatively

:::::
large

:::::::::
variability

::
in

:::::
wind

::::::
speed.

:::::::::::
Furthermore,

:::::::::::::::::
Gorroño et al. (2025)

:::::
found

::::
that

:::
the

::::::
parallax

:::::
effect

:::::::::::
substantially

:::::::
reduces

::
the

::::
PoD

::::
due

::
to

:::::
lower

:::::::
apparent

::::
CH4:::::::::::::

enhancements.
::
In

::::
their

::::::::::
simulations,

:::
the

::::
PoD

::::::
varied

:::::::
between

::::::::::::
approximately

:::
0.5

:::
and

:::
0.8

:::::::::
depending

:::
on

:::
the

::::::
angular

::::::::::::
configuration.

:::
For

:::
the

:::::::
present515

:::::
study,

:::
the

:::::::
influence

:::
of

:::::::
parallax

:::::
effects

::
is

:::::
likely

::::::
minor,

::
as

:::
the

::::::::
detection

::::::::
outcomes

::::::
shown

::
in

:::::
Figure

::
6

:::
are

::::::::
primarily

::::::::
controlled

:::
by

::::
wind

:::::
speed

:::
and

:::::
flight

:::::::
altitude.

::::
The

:::
few

:::::::::::
non-detected

::::::
plumes

:::::
with

:::::::
emission

::::
rates

:::::::::
exceeding

::
5 kgCH4 h

−1
::
at

:::
low

:::::
wind

::::::
speeds

::
are

:::::::
instead

:::::::::
attributable

::
to

:::::::
overlaps

::::
with

:::::::
retrieval

::::::::
artefacts.

::::::::::::::::::
Gorroño et al. (2025)

:::
also

:::::::::::
demonstrated

:::
that

:::::
when

:::
the

:::::::
effective

:::::
wind

:::::
speed

:::
Ueff::

is
::::::::
calibrated

::::::
against

:::
the

:::::
10 m

::::
wind

:::::
speed

::::
U10:::::

using
::
L,

::::::
biases

::
in

::
L

:::::::
translate

:::
into

:::::::::
systematic

::::::
errors

::
in

:::
the

:::::::::
calibration

::::
itself.

:::
As

::
a
:::::::::::
consequence,

::::::::
emission

::::::::
estimates

::::::
exhibit

:::::
errors

::::::
below

::::
10%

:::
for

::::::::::
mid-latitude

:::::::
summer

::::::::::
conditions,

:::
but

:::
can

:::::
reach

:::
up520

::
to

::::
30%

:::
for

:::::::::
wintertime

:::::::::::
observations.

::
In

:::
the

::::::
context

:::
of

:::
this

:::::
study,

:::
the

::::::::::::::
parallax-induced

::::
bias

::
in

:::
Ueff::

is
::::
only

:::::::
relevant

:::
for

::::::::
emission

:::::::
estimates

:::::::
derived

:::::
using

:::
the

::::
Ueff :::::::::::::

parametrisation
::
of

::::::::::::::::
Varon et al. (2018)

:::
and

::::
does

:::
not

:::::
affect

::::::::
estimates

::::::
based

::
on

:::::
wind

::::::
speeds

::
at

::
the

::::::
source

:::::::
height.

::
To

::::::::
mitigate

:::
the

:::::
effect

::
of

:::::::
viewing

:::::::::
geometry,

::::::::::::::::::
Gorroño et al. (2025)

:::::::::::
recommended

:::
to

::::::::
explicitly

:::::::
account

:::
for

:::::::::
observation

::::
and

::::::::::
illumination

::::::::
geometry

:::
in

:::
the

:::::::
planning

:::
of

:::::
flight

::::
paths

:::
for

::::::::
airborne

::::::
sensors

::::
and

::
to

:::::::
calibrate

::::
Ueff:::::

using
::::::
plume

:::::::::
simulations

::::
that

:::::
match

:::
the

::::::
angular

:::::::::::
configuration

::::::
(“train

::
as

:::
you

:::::::::
measure”).

:::::::
Overall,

:::::::::
additional work is needed to handle partially525

overlapping plumes
:::::
correct

:::
for

:::
the

:::::::
parallax

:::::
effect, especially as the phenomenon of plume shadows

:::
this

:::::::::::
phenomenon

:
also af-

fects instruments with coarser spatial resolution even if they do not spatially resolve the plume shadow (Schwaerzel et al.,

2020).

A second challenge that arises with higher spatial resolution are the higher per-pixel enhancements for larger sources. As

a result, the linearisation of the unit absorption spectrum
::::::
around

:::::
α= 0

:
no longer holds and assumed enhancements for the530

calculation of the absorption spectrum have greater influences on the retrieved enhancements. Therefore, careful selection of

the assumed enhancements, e.g. with the iterative approach used in this study, is essential.

Lastly, the current study shows mixed results when using the LMF introduced by Schaum (2021). On the one hand, the

proposed improvement for the detection of weak plumes was also observed in this study and lowered the detection limit

even under challenging conditions. On the other hand, the LMF increased local biases in the retrieved CH4 maps which would535

impede the (automated) detection of plumes as it introduces elevated background levels that can obscure smaller enhancements

or cause false positives in regions with complex spatial patterns. Additionally, the
::
we

:::::::
attribute

::
to

:::
the

:::::::::::
amplification

::
of
:::::
noise

:::
by

::
the

::::::::::::
log-transform

::
in

:::::
pixels

:::::
with

:::
low

:::::
SNR,

::::::
caused

:::
by

:::
low

::::::
albedo.

:::::
This

:::::::
spatially

:::::
more

::::::::::::
heterogeneous

::::::::::
background

:::
can

:::::::
obscure

::::
small

::::::::::::
enhancements

::
or

:::::::
produce

::::
false

:::::::::
detections.

::
In

:::::::
contrast

::
to

:::::::::::::
Schaum (2021),

:::
we

:::
did

:::
not

:::::::
observe

::
an improved performance of

the LMF for larger sources reported by Schaum (2021) was not observed. Further
::::
large

::::::
release

::::::
events.

:::
The

:::::::
iterative

:::
MF

:::::::
applied540

::
in

:::
our

:::::
study

:::::
seems

::
to

:::::::::::
successfully

::::::
account

:::
for

:::::
most

:::::::::
non-linear

:::::::::
absorption

::
in

:::::
pixels

::::
with

:::::
large

::::
CH4::::::::::::

enhancement.
:::::::::
Therefore,

:::::
further

:
systematic analyses will be required to determine under which circumstances the LMFmethod can outperform the more
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established MF
::::::
develop

::::::::::
approaches

::::
that

::::::
reduce

::
or

:::::::
correct

:::
for

:::
this

:::::
noise

:::::::::::
amplification

:::
in

:::
the

:::::
LMF.

:::::
Other

::::::::::
approaches,

:::::
such

::
as

:::::::::::
WFM-DOAS

:::::::::::::::::::::::
(e.g. Borchardt et al., 2021),

::::
may

::::
also

::::
help

:::::
better

:::::::
account

:::
for

::::::::
non-linear

::::::
effects

::::::
arising

:::::
from

:::::
strong

::::::::
emission

::::::
sources.

:::::::::
However,

::::
they

:::
are

::::::::::::::
computationally

:::::
more

::::::::
expensive

:::::
than

:::
the

::::
MF

:::
and

::::
tend

:::
to

:::::
work

:::::
better

:::
for

:::::::
sensors

::::
with

::::::
higher545

::::::
spectral

:::::::::
resolution.

4.2 Wind speed estimation

As seen in Section 3.4, estimated emissions linearly depend on the wind speeds used. Therefore, accurate estimates of wind

speeds are crucial for accurate emission estimates. Additionally, our analysis demonstrated that uncertainties in wind speeds

contributed disproportionately to the uncertainty of the estimated emissions. Based on the analysis of this study, the wind550

speed representation error (σrepr), uncertainties in effective wind speed (σeff) and instrument precision (σinst) likely need to

be revised upward. Consequently, building on the understanding of wind speed inputs (see Section 4.2.1), future research on

emission estimation from remote sensing data should prioritise methods for deriving the effective wind speed that governs

plume transport (see Section 4.2.2).

4.2.1 Source of wind speed estimates555

As clearly illustrated in Figure A1, near-surface winds can be be highly variable and gusty. We frequently found that U10

measured by the Lidar
::::
lidar varied between 1.0 and 3.0ms−1 ms−1 within one minute. These rapid fluctuations highlight that

reanalysis wind fields are insufficient for high-resolution emission estimates with new-generation sensors, as they can introduce

substantial biases. A high-resolution model may be able to represent this gustiness more realistically in a statistical sense, but

capturing the actual wind conditions at the moment of the overpass remains practically impossible. Alternatively, wind speed560

data from existing measurement networks could be used for emission estimation. However, these networks have varying data

quality and might not be available in the vicinity of a CH4 source. Therefore, one could employ mobile instruments as it was

used for the controlled release experiment in the current study. Even if this would provide the most accurate estimate of the

wind speed, setting up wind speed instrument would negate the advantage of remote sensing instruments which is to image

extensive areas and estimate the emissions of a large number of sources. Additionally, the current analysis has shown that under565

turbulent conditions, wind speed representation errors can be substantial, even when wind measurements are taken just 100 m

from the source. Therefore, the best approach would be to measure wind speed profiles in tandem with imaging spectrometry,

e.g. by using an airborne wind lidar as investigated in Thorpe et al. (2021).

4.2.2 Effective wind speeds

In addition to determining the small-scale and short-term wind speeds, a further challenge is to determine the effective wind570

speed at which the plume was transported. Although an increasing number of studies attempt to derive Ueff :::
Ueff from model

simulations (e.g. Varon et al., 2018; Guanter et al., 2021; Sánchez-García et al., 2022; Ayasse et al., 2023; Guanter et al.,

2025), none has systematically investigated the effect of emission height, atmospheric stability or surface roughness on Ueff.
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Moreover, existing simulations lack the spatial and temporal resolution required for AVIRIS-4 applications. To advance our

understanding of the effective wind speed, high-resolution model studies are needed to analyse the impact of the aforemen-575

tioned factors. Ideally, these results could be parametrised to estimate the effective wind speed based on known driving factors.

While estimates for the 3D wind field, surface roughness and heat fluxes could be obtained from regional weather prediction

models, information about the emission height could be obtained directly from AVIRIS-4 imagery as outlined in Section 3.6.

Another innovative approach has recently been demonstrated in Eastwood et al. (2025) with AVIRIS-3 where a single plume

was observed multiple times during one overpass by adjusting the flight path of the aircraft. Specifically, the aircraft ascended580

while approaching the plume, maintained a level trajectory while flying directly over it, and then descended after passing it.

From the resulting three images, the plume velocity was estimated by calculating optical flow vectors for consecutive CH4

images. While this method proved to significantly improve the estimates of the effective wind speed compared to reanalysis

data and on-site wind lidar data, it requires a-priori knowledge of the source location to plan the required flight manoeuvres.

One workaround would be to use real-time in-flight retrieval of CH4 (e.g. Thompson et al., 2015) in combination with pitch-585

ing AVIRIS-4 using the already installed stabilisation platform.
:::::::::::
Alternatively,

:::::::
machine

:::::::
learning

::::::
based

::::::
models

:::::
could

::
be

:::::
used

::
to

:::::::
estimate

::::
trace

::::
gas

::::::::
emissions

:::::
either

:::::::
directly

::::
from

::::::::
radiance

::::
data

::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Joyce et al., 2023; Rouet-Leduc and Hulbert, 2024)

::
or

::::
from

::::::
plume

::::::
images

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Jongaramrungruang et al., 2022; Bruno et al., 2024; Ouerghi et al., 2025; Plewa et al., 2025).

::::::
These

:::::::::
approaches

::::
have

:::::::
recently

::::::
shown

:::
that

::
it

:
is
:::::::
possible

::
to
:::::
infer

:::::::
emission

::::
rates

:::::::
without

::::::::
explicitly

::::::
relying

::
on

:::::::
external

:::::
wind

::::
data.

:::::
Their

::::
main

:::::::::
advantages

:::
are

::::
that

::::
they

:::
can,

::::
just

::
as

:::
the

::::
other

::::::::
approach

:::::::
outlined

::::::
above,

::::::
bypass

::::
wind

:::::
speed

:::::::::::
uncertainties

:::
and

:::::::::::
additionally,590

::::::
provide

:::::
rapid

:::
and

:::::::::
automated

::::::::
emission

::::::::
estimates

::
at

::::
large

::::::
scales.

::::::
While

::::
these

:::::::
models

:::
are

::::
very

:::::::::
promising,

::::
they

:::
are

:::
still

:::::::
limited

::
in

::::
their

:::::::::::::::
representativeness

:::
due

:::
to

:
a
::::
lack

::
of

:::::
wind

:::::
speed

::::::::::
information

::::::
within

:
a
::::::
single

::::::
image.

:::::::::::
Furthermore,

::::
they

::::::
provide

:::::::
limited

::::::::::::
interpretability

:::
and

:::::
their

:::::::::
uncertainty

::::::::::::
quantification

::
is

::::
still

:::
less

::::::
mature

:::::
than

:::
for

:::
the

:::::::::
traditional

:::::::::
approaches

:::::
based

:::
on

:::
the

:::::
mass

:::::::
balance.

5 Conclusions595

Detecting and quantifying the emissions from a large number of sources is essential for obtaining accurate inventories of CH4

emissions. The current study shows that AVIRIS-4 can be used for the improved detection of CH4 emissions and subsequent

quantification. The combination of high spatial resolution with the unprecedentedly high SNR of AVIRIS-4 decreases the

detection limit of AVIRIS-4 to below 5.5 kgCH4 h
−1 under good weather conditions and down to 1.5 kgCH4 h

−1 under ideal

conditions
:
.
::::
This

::
is

:::::
below

:::
the

::
10

::
-
::
16 kgCH4 h

−1
:::::::
detection

:::::
limits

:::::::
reported

:::
for

::
its

::::::::::
predecessor

:::::::::::
AVIRIS-NG

::
in

:::::::
previous

:::::::
studies.600

::
In

:::::::
practice,

::::::::
AVIRIS-4

::::::::
therefore

:::::::
extends

:::
the

::::
range

:::
of

::::::
reliably

:::::::::
detectable

::::
point

:::::::
sources

::
by

::::::::::::
approximately

::
a

:::::
factor

::
of

:::
two

::
to

:::::
three

::::::
relative

::
to

:::::::::::
AVIRIS-NG

:::::
when

:::::
flown

::
at

:::
low

::::::::
altitudes,

:
which effectively enables the identification of all point sources listed in

the E-PRTR registry. As a result, previously undetected low intensity and dispersed sources can be identified and accounted for

in emission budgets. We demonstrate that the high spatial resolution of AVIRIS-4 enables its effective use under challenging

conditions and in heterogeneous environments, which are frequently encountered in real-world applications. Furthermore, we605

show how high-resolution AVIRIS-4 data can be used for the estimation of the source height which is critical information when
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estimating the effective wind speed. As with earlier sensors and algorithms, emission estimation with AVIRIS-4 is affected by

uncertainties in the estimation of the effective wind speed-
:
, especially at the short length and timescales presented in this

study. Overall, this study highlights that AVIRIS-4 represents a significant step forward in airborne methane remote sensing,

offering unprecedented sensitivity to low-intensity sources under challenging conditions. At the same time, it underscores610

the importance of advancing wind speed estimation techniques and improving retrieval strategies to fully exploit the sensor’s

capabilities. Future work should therefore focus on integrating AVIRIS-4 observations with dedicated wind measurements and

adapting the CH4 retrieval algorithm to the unprecedentedly high spatial resolution.

Code availability. The ddeq version 1.0 used for this study is available on Gitlab.com (https://gitlab.com/empa503/remote-sensing/ddeq).

The code for AVIRIS-4 data processing and CH4 retrieval is available on request.615

Data availability. ERA5 data are available at https://doi.org/10.24381/cds.adbb2d47 (Hersbach et al., 2018). The retrieved AVIRIS-4 CH4

maps, wind and sources data and estimated emissions are available on the Zenodo data repository (DOI: 10.5281/zenodo.16410532).
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Appendix A:
:::::::::
Additional

::::::
figures

Figure A1 reveals substantial systematic deviations, particularly during daytime, likely caused by small- to mesoscale atmo-

spheric circulations influenced by local terrain. Such features are not captured by the relatively coarse spatial (0.25° × 0.25°)620

and temporal resolution of ERA5. Furthermore, ERA5 fails to resolve turbulent fluctuations in near-surface winds that are

evident in lidar observations.

Figure A1. ERA5 U10 vs. on-site lidar U10. The blue shaded area represents the ERA5 ensemble spread while the red shaded area depicts

the min and max wind speed for 1 minute intervals.

:::::
Figure

:::
A2

::::::
shows

::::
that

:::
the

::::::::::
uncertainty

::
in

:::
the

:::::
wind

:::::
speed

::::
σU :::::::::

contributes
::::::
99.4%
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to
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::::::::::
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::::
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::::
and

:::::
91.3%
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the

:::::
IME.

:::
σU ::

in
::::
turn

::::::
consists

::::::
90.4%

::
of

::::::
natural

:::::
wind

:::::
speed

::::::::
variability

::::
σvar.:
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Figure A2. Top row: Relative contribution of the individual uncertainty terms of the CSF and IME to the uncertainty of the estimated

emissions Q. Bottom row: wind speed uncertainty contributions by natural variability σvar, effective wind speed σeff and instrument precision

σinst
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Figure A3. Pair plot of the wind speeds measured by the wind lidar at 10 and 20 m as well as from a meteorological station affixed to the

lidar, approximately 1 m off the ground.
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Figure A4. Average and standard deviation of lidar 10 m wind speed during each release in local time [UTC+2]. Wind data has been

resampled to 1 minute intervals.
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Figure A5. Average and standard deviation of lidar 10 m wind direction during each release in local time [UTC+2]. Wind data has been

resampled to 1 minute intervals.
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Figure A6. Wind roses of lidar 10 m wind speed and direction during each release in local time [UTC+2].
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Figure A7. Uncertainty weighted average estimates for each release using Ueff derived in this paper. The number of observations n, emission

height h, plume length l and average wind speed u are indicated above each bar.
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