
Reviewer #3 

This paper presents an interesting study that applies graph neural networks (GNNs) to model 

discharge over a river network. The methodology is sound, the paper is well written, and the 

structure is clear. This could be a very important contribution to the rainfall–runoff literature. 

Recommendation: minor revision. Most of my comments are about clarity and reporting. 

However, a few items could become major if the justification is weak or if the implementation is 

not as intended: (a) whether the baseline LSTM comparison is fair (retrained vs “extracted”), (b) 

whether a 180-day input window is sufficient for the target processes and basin scale, and (c) 

whether the forcing selection (especially using soil moisture as an input) is appropriate and 

clearly framed/justified. 

 

We sincerely thank Reviewer #3 for the careful reading of the manuscript and for the constructive and 

insightful comments. Below, we address each comment in detail.  

General comments: 

1. The title can be more specific. For example: “A GNN routing module is all you need 

for routing LSTM rainfall–runoff models …” or “… for accounting for routing in 

deep learning-based rainfall–runoff models.” 

A GNN Routing Module Is All You Need for LSTM Rainfall–Runoff Models 

We thank the reviewer for this helpful suggestion. We considered making the title more specific; 

however, we chose to retain the current wording to avoid an overly long and narrowly scoped title. 

The proposed examples would explicitly reference particular model components (e.g., LSTM), 

whereas the primary intent of the title is to highlight the broader message of the study: the 

importance of explicitly representing routing in deep learning–based rainfall–runoff modelling. 

 

2. Please expand the literature review on existing GNN applications in hydrology in the 

Introduction (around lines 68–70). The current text mainly states that prior work does 

not use GNNs to explicitly model routing. 

 

We thank the reviewer for this suggestion. We have expanded the literature review as follows: 

 

"Several recent studies have explored GNNs in R-R modeling, treating them as spatiotemporal 

modules within DL frameworks and highlighting their potential. These models typically combine 

GNNs with LSTMs or other recurrent architectures to capture both spatial and temporal dynamics. 

For example, Sun et al. (2022) utilized GNNs to capture physics-based connectivity, demonstrating 

that graph-based data fusion can serve as an effective surrogate for process-based models. 

Similarly, Deng et al. (2023) addressed the non-Euclidean structure of river networks using 

spatiotemporal graph convolutions to capture upstream-downstream correlations. Beyond surface 

water, Gai et al. (2023) applied GNNs to simulate spring discharge by modeling the complex 

subsurface connectivity of karst systems. More recently, Wang et al. (2025) showed that optimizing 

graph topologies, specifically transforming tree-like networks into dense graphs can accelerate 

flood warnings by capturing long-range dependencies. These models typically combine GNNs with 

LSTMs or other recurrent architectures to capture spatiotemporal dynamics, with a primary focus 



on improving representations of spatial variability in inputs or learning latent inter-basin 

correlations, rather than explicitly modeling the flow-routing process along river networks." 

 

3. The model uses three forcings: precipitation, soil moisture, and air temperature (lines 

100–102). Why is soil moisture treated as a meteorological forcing (or as a state / 

reanalysis product)? Please justify this choice, and explain why other variables (e.g., 

wind, radiation) are not included, as they are commonly used in other LSTM studies. 

 

We treat soil moisture as an input because it acts as the primary physical control on runoff 

generation, particularly for flood events. In the context of the Upper Danube, runoff is heavily 

influenced by the antecedent wetness condition of the catchment. By explicitly providing the model 

with the soil moisture state (derived from the ERA5-Land reanalysis), we allow the LSTM to 

directly map the basin's saturation level to discharge. This approach aligns with the growing 

availability of high-resolution soil moisture products, particularly from satellite observations, 

whose spatial and temporal capabilities are rapidly expanding.  

Our decision to exclude wind speed and solar radiation is based on the fact that their hydrological 

signal is already implicitly encoded within the ERA5-Land soil moisture variable we utilize. 

Moreover, the primary objective of this study is to compare the proposed LSTM–GNN framework 

with a baseline LSTM using identical input information. The inclusion of additional dynamic 

variables will be explored in future work. 

 

Following sentences have revised: 

“Three daily meteorological and hydrological variables provided in the LamaH-CE dataset 

including precipitation, soil moisture (fraction of water in topsoil layer 0 to 100 cm depth), and 2 

m air temperature are derived from the ERA5-Land reanalysis (Muñoz-Sabater et al, 2021) and 

serve as the dynamic inputs for the R-R model.” 

 

4. The introduction to the different GNN architectures should be explained in more detail, 

since this is a key selling point. Only listing names and references may not be sufficient 

for many readers. A short, verbal description of each architecture (or a simple summary 

in the Supporting Information) would help. 

 

Following text added for Supporting Information: 

 

GNN Architectures for River Routing 

To explicitly model basin-scale runoff routing, we evaluate four distinct Graph Neural Network 

(GNN) architectures. Each architecture defines a different mechanism for aggregating hydrological 

information from upstream subbasins and propagating it downstream along the river network. Let 

ℎ𝑖
(𝑙) ∈ ℝ𝑑denote the latent feature embedding of subbasin 𝑖at GNN layer 𝑙, 𝒩(𝑖)the set of upstream 

neighbors of node 𝑖, and 𝜎(⋅)a nonlinear activation function (e.g., ReLU).All four architectures 

share the same LSTM-generated initial node embeddings ℎ𝑖
(0)

(Section 3.1.1) and differ only in how 

they propagate information through the river network graph during the routing phase. 

 

1. Graph Convolutional Network (GCN) 

The Graph Convolutional Network (GCN; Kipf & Welling, 2016) approximates a spectral 

convolution on the river network graph. Information is propagated by averaging feature 

representations from upstream neighbors, weighted by the graph’s normalized connectivity 



structure. The update rule is given by: 

ℎ𝑖
(𝑙+1)

= 𝜎

(

 
 
∑

1

√𝑑̃𝑖𝑑̃𝑗
𝑗∈𝒩(𝑖)∪{𝑖}

 𝑊(𝑙)ℎ𝑗
(𝑙)

)

 
 
, 

 

where 𝑊(𝑙)is a learnable weight matrix and 𝑑̃𝑖denotes the degree of node 𝑖, including self-loops. 

From a hydrological perspective, GCN assumes that the influence of upstream subbasins is 

determined primarily by the network topology, treating all tributaries as having a structurally fixed 

contribution weight normalized by node degree. This symmetric normalization ensures that nodes 

with many upstream connections (e.g., downstream confluences) do not receive disproportionately 

large signals, simulating a simplified routing scenario where flow from each tributary contributes 

proportionally based on network structure rather than hydrological state. 

 

2. Graph Attention Network (GAT) 

The Graph Attention Network (GAT; Veličković et al., 2017) extends GCN by introducing a 

learnable attention mechanism that assigns adaptive weights to upstream neighbors. This is 

particularly relevant for river routing, where tributaries may contribute unequally depending on 

their current hydrological conditions. The node update is defined as: 

ℎ𝑖
(𝑙+1)

= 𝜎( ∑ 𝛼𝑖𝑗
(𝑙)

𝑗∈𝒩(𝑖)∪{𝑖}

 𝑊(𝑙)ℎ𝑗
(𝑙)) , 

 

where the attention coefficient 𝛼𝑖𝑗represents the learned importance of upstream subbasin 𝑗to 

subbasin 𝑖. These coefficients are computed as: 

𝛼𝑖𝑗 =
exp⁡ (LeakyReLU(𝑎⊤[𝑊ℎ𝑖  ∥  𝑊ℎ𝑗]))

∑ exp 𝑘∈𝒩(𝑖)∪{𝑖} (LeakyReLU(𝑎⊤[𝑊ℎ𝑖  ∥  𝑊ℎ𝑘]))
, 

 

where ∥denotes vector concatenation and 𝑎⁡is a learnable attention vector. Hydrologically, GAT 

allows the model to dynamically emphasize dominant upstream signals (e.g., a major tributary 

experiencing a flood event) while down-weighting less influential contributions, providing a 

flexible representation of flow routing. 

 

3. GraphSAGE 

GraphSAGE (Hamilton et al., 2017) is an inductive GNN framework that explicitly separates 

neighbor aggregation from node update. It summarizes upstream information using a chosen 

aggregation function and then combines this summary with the local node state. The update rule is: 

ℎ𝑖
(𝑙+1)

= 𝜎 (𝑊(𝑙) ⋅ CONCAT (ℎ𝑖
(𝑙),AGG  ({ℎ𝑗

(𝑙) ∣ 𝑗 ∈ 𝒩(𝑖)}))) , 

 

where AGG denotes an aggregation operator (e.g., mean pooling). In the context of river routing, 

GraphSAGE first aggregates upstream runoff information to represent total incoming flow 

conditions and then fuses this information with the local subbasin state, enabling flexible and 

scalable routing representations. 

 

4. Chebyshev Spectral GCN (ChebNet) 



The Chebyshev Spectral Graph Convolutional Network (ChebNet; Defferrard et al., 2016) extends 

spectral graph convolutions by approximating filters using Chebyshev polynomials of the graph 

Laplacian, avoiding costly eigen decomposition. The update rule is given by: 

ℎ(𝑙+1) = 𝜎 (∑ 𝜃𝑘
(𝑙)

𝐾−1

𝑘=0

 𝑇𝑘(𝐿̃) ℎ
(𝑙)) , 

 

where 𝑇𝑘(⋅)denotes the Chebyshev polynomial of order 𝑘, 𝐿̃is the scaled normalized Laplacian of 

the river network, and 𝜃𝑘
(𝑙)

are learnable coefficients. By controlling the polynomial order 𝐾, 

ChebNet explicitly defines the spatial receptive field of routing, allowing information to propagate 

across multiple upstream subbasins within a single layer. This makes ChebNet particularly suited 

for capturing long-range upstream dependencies in large river basins. 

 

5. Baseline comparison: lines 193–194 mention a baseline LSTM. Is this LSTM re-trained 

/ fine-tuned as a standalone model, or directly extracted from the LSTM-GNN framework? 

If it is extracted without proper re-training, this could bias the comparison, which could be a 

major problem of the paper. Please clarify. 

 

Thank you for raising this critical methodological concern. We can confidently confirm that our 

comparison is methodologically sound and unbiased. 

The baseline LSTM model is independently trained from scratch as a standalone model. It is not 

extracted from the LSTM-GNN framework without retraining. 

Our comparison is fair and methodologically rigorous for the following reasons. First, the baseline 

LSTM and the LSTM–GNN models were trained in fully independent training runs, with separate 

model initialization, training loops, and hyperparameter optimization. Second, both models share the 

same architectural foundation, specifically an identical LSTM configuration and static feature 

integration. Third, both models were trained using the same training data and identical train–validation–

test splits. Fourth, the same optimization procedure was applied to both models, including the use of 

the MSE loss function and the Adam optimizer. Finally, each model was trained to convergence with 

weights optimally tuned for its respective architecture: the baseline LSTM was optimized for direct 

discharge prediction, whereas the LSTM–GNN was optimized for runoff generation followed by 

explicit GNN-based routing. 

Proposed Manuscript Clarification: 

To eliminate any ambiguity, we will revise Section 3.1 as follows: 

“The best-performing LSTM–GNN configuration is compared against a baseline LSTM model that is 

independently trained from scratch as a standalone model. The baseline uses the same LSTM 

architecture and static feature integration as the LSTM component within the LSTM–GNN framework, 

but replaces the GNN routing module with a direct linear output layer for discharge prediction. Both 

models are trained independently using identical training data, loss functions, and optimization 

procedures, ensuring a fair comparison in which the only difference is the presence or absence of 

explicit spatial routing.”  

6. Lines 130–131: why is a 180-day sliding window used? This may be short for capturing 



annual-scale dynamics of catchments. Please justify this choice and, if possible, add a 

sensitivity test (e.g., 365 days or longer). 

 

We appreciate the reviewer's question regarding the choice of the 180-day input window. To 

address this systematically, we conducted a sensitivity analysis comparing window sizes of 

180 and 365 days. 

For fair comparison, both models were trained with identical sample sizes (extracted from the 

365-day window dataset to ensure no temporal gaps). 

Based on these results, we selected the 180-day window as optimal because the 365-day window 

provides only a marginal improvement in NSE (+0.02) but requires substantially more GPU 

memory (~2× increase), limiting batch size and training scalability. For operational deployment 

and future extensions, the 180-day window is more practical.  

 

Please note that the sample counts in this sensitivity analysis differ from those reported in the 

main paper results. This is because the sensitivity analysis required creating a no-gap dataset 

from the 365-day window to ensure fair comparison, whereas the main paper uses all available 

samples from the optimal 180-day window configuration. 

 

 

 

Specific comments: 

1. Line 161: please check the notation for concatenation of two vectors. 

Revised.  

2. Line 169: “which can be defined in different ways to investigate the impact of river 

network representation”, please add more details (what are the different definitions 

considered?). 

We have modified the paragraph in the paper as follows: 

“The connectivity is encoded in an adjacency matrix 𝐴 ∈ ℝ𝑛×𝑛, which can be defined in different 

ways to investigate the impact of river network representation, including binary connectivity (𝐴𝑖𝑗 =

1 for connected subbasins), inverse distance weighting (𝐴𝑖𝑗 = 1/𝑑𝑖𝑗, where 𝑑𝑖𝑗is the Euclidean 

distance), or inverse travel-time weighting. In this study, we adopt a directed inverse travel-time–

weighted adjacency, where each entry is defined as 𝐴𝑖𝑗 = 1/travel_time
𝑖𝑗

if water flows from 

subbasin 𝑖to subbasin 𝑗, and 𝐴𝑖𝑗 = 0⁡otherwise. Travel time is estimated using time-of-



concentration calculations based on the Kirpich equation (Kirpich, 1940).” 

 

3. Line 171: please clarify whether 𝐴j,𝑖 is non-zero whenever 𝐴𝑖,j is non-zero (i.e., 

whether the river connections are directional or symmetric). 

            The adjacency matrix A is directional. 

4. Table 1: please improve table formatting; the square-root notation is not clearly visible. 

We have changed the font. 

5. Figure 2: please improve aesthetics/readability; arrows and text overlap and are hard to 

read. 

Revised as follows: 

 

6. Figure 3: in the caption, “m3/s” should use a superscript: 𝑚3/𝑠. 

             Revised. 

7. Line 240: “NSELST-GAT-NSELSTM” — the mathematical notation is unclear. Please 

revise for readability. 

             Revised. 

 


