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‘A GNN Routing Module Is All You Need for LSTM Rainfall-Runoff Models’

by H. Mosaffa et al.
Dear Editor,

I have reviewed the manuscript. My conclusions and comments are as follows:

1. Scope
The article is within the scope of HESS.

2. Summary

In their manuscript, the authors test a series of data-based hydrological models combining an LSTM
for catchment rainfall-runoff with a Graph Neural Network (GNN) for river routing. They test four
GNN alternatives: Graph Convolutional Network (GCN), Graph Attention Network (GAT), Graph
SAmple and aggreGatE (GraphSAGE), and Chebyshev Spectral Graph Convolutional Network
(ChebNet). As a benchmark, they use a standard LSTM-only model. Neither of the models receives
any observed streamflow as input. They apply their models to a 30-year daily data set of
meteorological drivers (precipitation, air temperature, soil moisture), static attributes and river
gauge observations of 530 catchments in the upper Danube catchments taken from the LamaH-CE
data set. The catchment sizes range from tens to thousands of square kilometers. Analyzing the time-
wise out-of-sample testing results, the authors find that all LSTM-GNN models outperform the
LSTM- only, that the GAT is the best among the GNN alternatives, and that performance
improvements by the GNN addition increase with catchment size and number of upstream
connecting nodes.

3. Evaluation

Overall, this is a well-designed study on a relevant topic, with conclusions that are supported by the
data and that that will have an impact on data-based hydrological modeling. There are only a few
adjustments necessary for clarification and to increase readability of the paper.

We sincerely thank Dr. Ehret for the careful reading of the manuscript and for the constructive and
insightful comments. Below, we address each comment in detail.

e Inthe LSTM-GNN approaches, each subcatchment has a unique place in the river network
graph. Is each catchment LSTM then jointly trained with all catchments, but each as a single-
catchment LSTM, or are they jointly trained as regional LSTM? Please clarify. Also, the
LSTM-only, is it trained as a regional model? Please clarify.

Thank you for this clarification request. We clarify as follows:

In the LSTM-GNN framework, each subcatchment has its own dedicated LSTM unit that processes
local inputs (precipitation, temperature, soil moisture). However, these individual LSTMs are not
trained independently. Instead, they are jointly trained end-to-end as part of the complete LSTM-GNN
architecture. Specifically,



* Shared parameters: All 530 subcatchment LSTMs share the same weight matrices and bias vectors
(i.e., there is a single set of LSTM parameters applied to all nodes)

* Joint optimization: During training, the loss is computed across all stations simultaneously, and
backpropagation updates the shared LSTM parameters based on the collective error across the entire
network. * End-to-end learning: The LSTM encoder and GNN routing module are trained together in a
unified framework.

Similarly, the LSTM-only model is also trained as a regional model with shared parameters across all
catchments. The key difference between the two approaches is that the baseline LSTM predicts
discharge at each gauge independently, without any spatial information exchange, whereas the LSTM—
GNN incorporates explicit routing via the graph structure.

We added the following clarification to Section 3.1.1:

“Our proposed model consists of two primary components: an LSTM module for local runoff
generation and a GNN module for spatial runoff routing. Each subbasin is represented as a node in
the river network and is associated with a local LSTM that processes catchment-averaged
meteorological inputs. Importantly, these subbasin-level LSTMs are not trained independently;
instead, all LSTMSs share a single set of parameters and are trained jointly as a regional model. The
GNN component then enables information exchange between subbasins according to the river
network topology, explicitly modelling runoff routing. The entire framework is trained end-to-end
across all subbasins simultaneously. The overall structure is visualized in Figure 2 and described in
the following subsections.”

e Are the GNN nodes placed only at gauge locations, or also at river confluence points?
Please clarify.
GNN nodes are placed only at gauged locations.

We have revised the following sentences “We propose a novel LSTM—GNN model to predict the R—R
process by jointly capturing local runoff generation and basin-scale flow routing within a unified
framework. In contrast to traditional lumped models that treat the catchment as a single unit, our
approach partitions the basin into multiple hydrologically connected subbasins, each represented as a
node in a graph, with nodes corresponding exclusively to gauged subbasin outlets.”

e How are the catchment areas for each gauge determined for the LSTM-GNN and the LSTM-
only? I assume for the LSTM-GNN it is either the upstream catchment (for a headwater
gauge), or the intermediate catchment between the closest upstream gauge(s) and the current
gauge, correct? And for the LSTM-only it is the total upstream catchment, independent from
the presence of any upstream gauges. If my assumptions are correct, then the catchment-
averaged drivers and static attributes will differ between the LSTM-GNN and the LSTM-only.
Please clarify. Also, consider including two histograms or cdf's showing the distribution of
catchment sizes for both the LSTM- GNN and LSTM-only case.

Both the LSTM—GNN and baseline LSTM-only models use exactly the same catchment
delineation. For each gauge, all dynamic meteorological inputs and static attributes are spatially
averaged over the total upstream contributing area of that gauge. As a result, the catchment-
averaged drivers and static attributes are identical for both models. The only difference between the
two approaches lies in the inclusion of explicit spatial routing via the GNN in the LSTM-GNN
framework.



We have clarified this point in Section 2 (Study area and dataset):

“Crucially, these dynamic inputs are spatially averaged over the entire upstream catchment
contributing to each gauge, providing a single representative value per basin per day.”

Up to Vienna, the Danube catchment already covers more than 100.000 km?, but the largest
catchment included in this study is only 2.500 km? (Line 97). Why? The advantage of LSTM-
GNNs over LSTM-only should be even more evident for very large catchments. Please
clarify.

Thank you for pointing this out. The value reported in the original manuscript referred to
individual subbasin sizes, not the total upstream contributing area. We have corrected this for
clarity.

The maximum upstream contributing area included in the study is approximately 131,000
km?. The manuscript has been revised accordingly to avoid confusion.

Sequence length is 180 days (Line 130). Why not 1 year, especially if there are snow-
dominated catchments included?

We appreciate the reviewer's question regarding the choice of the 180-day input window. To
address this systematically, we conducted a sensitivity analysis comparing window sizes of
180 and 365 days.

For fair comparison, both models were trained with identical sample sizes (extracted from the
365-day window dataset to ensure no temporal gaps).

Based on these results, we selected the 180-day window as optimal because the 365-day window

provides only a marginal improvement in NSE (+0.02) but requires substantially more GPU

memory (~2x increase), limiting batch size and training scalability. For operational deployment

and future extensions, the 180-day window is more practical.

Please note that the sample counts in this sensitivity analysis differ from those reported in the
main paper results. This is because the sensitivity analysis required creating a no-gap dataset
from the 365-day window to ensure fair comparison, whereas the main paper uses all available
samples from the optimal 180-day window configuration.
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For the LSTM-GNN, is the LSTM-output of the individual catchments rescaled to [m?*/s],
before it is fed into the GNN part? In other words, how is it assured in the workflow that the



relative runoff contribution of each catchment is correctly represented? Please clarify.

Thank you for this question. We clarify the data flow and scaling as follows.

The LSTM component does not directly output discharge values in physical units [m3/s]. Instead,
it produces latent feature embeddings of dimension 128 that encode the temporal hydrological state

of each subbasin. Specifically, as described in Section 3.1.1, the final hidden state th)represents a
learned summary of the runoff-generating processes for subbasin iin latent space, rather than a
physical discharge quantity. These temporal embeddings are then concatenated with encoded static
catchment attributes (59 features) to form a combined latent representation. This combined
embedding remains in latent space and serves as the input to the GNN. The GNN operates entirely
on these latent representations, performing message passing and aggregation across the river network
to model spatial routing. Only after the final GNN layer is the resulting embedding transformed into
a discharge prediction through a linear output layer. The predicted values are produced in the same
normalized space as the training targets (log-transformed discharge). During evaluation, these
predictions are inverse-transformed using the inverse of the positive robust log transformation to
obtain discharge values in physical units [m3/s].

We have added the following clarification to Section 3.1:

“This combined representation h_i serves as the input to the GNN module and captures both the
temporal runoff dynamics and static catchment characteristics of subbasin i, notably, routing is
performed on these latent representations, and discharge values are predicted only after the GNN
processing..”

e Fig. 3: Unclear for which hop the results are shown. Also, in subplot d the color-coding is
missing.

The subtitle has revised as follows “Boxplots comparing the baseline LSTM and four LSTM—GNN
architectures (GAT, GCN, GraphSAGE, and ChebNet) across 530 stations using NSE, KGE, its
components (a, p), correlation coefficient (CC), and RMSE (m3/s) for 3 hop. Green boxes
indicate the best-performing model for each metric, while red boxes denote the lowest-performing

model. And others in yellow”

e All Figures: The dashed lines are hard to see. Use color-coding only.
Done.

e Fig. 5: Is this really a plot of all testing timesteps and all gauges? Please clarify. Visually

this is dominated by the floods in the few largest catchments. Maybe it is more illustrative
to show plots of scaled streamflow, where separately for each gauge, streamflow is scaled
[0,1].
The original figure included all data points but was indeed visually dominated by high-
discharge events from large catchments. Following your suggestion, we have replaced
Figure 5 with normalized scatter plots where the discharge for each gauge is scaled to the
range [0,1].

We have revised the result section:

“Scatter plots of normalized predicted versus observed discharge (Figure 5), where flow
values for each station are scaled to the [0,1] range, highlight the reduced bias and tighter
clustering around the 1:1 line for LSTM-GNN models compared to the baseline. Among all
models, LSTM—-GAT predictions most closely align with the 1:1 line.”
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e Fig. 6: This is not very helpful as it does not reveal any distinct pattern. Consider replacing it
with a plot of ANSE vs. catchment size (similar to Fig. 7d, but more detailed).

We thank the reviewer for this constructive suggestion. We have completely revised Figure 6 to
provide much richer spatial information that reveals distinct geographic and hydrological patterns.
The new Figure 6 now employs a multi-layer visualization approach that encodes multiple variables
simultaneously: Point color: Five discrete categories of ANSE (from < -0.25 to > 0.25), River network
thickness: Scaled by drainage area, and background elevation (DEM)

This enhanced visualization reveals several distinct spatial patterns that were not apparent in the
original figure:

e Elevation-dependent performance: Stations with negative or minimal improvement are
predominantly located in high-elevation.

e Downstream accumulation benefit: Stations with strong improvement (dark blue dots, ANSE >
0.25) cluster along major river reaches with large drainage areas (thick river lines), particularly in
the lowland sections where flow routing and upstream contributions are most significant.

Also the text revised as follows “To further investigate where the LSTM—GAT model, the best-
performing GNN architectures, offers improvements over the baseline LSTM, we conducted a spatial
comparison of performance metrics across all gauged stations. The difference in NSE values (ANSE =
NSELSTM-GAT- NSELSTM) was calculated for each of the 530 stations (Figure 6). Positive
differences, shown in red, indicate locations where LSTM—GAT outperformed the baseline, while
negative differences (blue) denote stations where the baseline LSTM achieved higher NSE. River
network thickness is scaled by drainage area, and background colours show elevation from DEM. The
analysis reveals that LSTM—GAT achieved higher NSE scores at 78% of stations. Stations showing
strong improvement (ANSE > 0.25, dark blue) are predominantly located along major river reaches
with large drainage areas. Conversely, stations with negative changes (red dots) are concentrated in
high-elevation headwaters.”
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e Fig. 7 d: Here it seems that catchments > 100.000 km? are included, but only few. How does
this match with the statements in Line 97?

Revised.

e Fig. 9: Use same color-coding as in previous figures.

Done.

e As the topic is closely related, the authors may wish to take a look at a recent preprint by Kraft
et al. (2025).

We thank the reviewer for bringing this relevant recent work to our attention. We have reviewed Kraft
et al. (2025) and recognize important parallels between DROP and our approach. Both studies
demonstrate that incorporating explicit routing significantly improves deep learning-based
hydrological predictions.

We have added to Discussion as follows.

“Kraft et al. (2025) showed that incorporating routing into lumped LSTM baselines across
Switzerland yielded substantial performance gains (KGE improvements of 24—62%). *

Yours sincerely,
Uwe Ehret
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