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Dear Editor, 

 

I have reviewed the manuscript. My conclusions and comments are as follows: 

1. Scope 

The article is within the scope of HESS. 

2. Summary 

In their manuscript, the authors test a series of data-based hydrological models combining an LSTM 

for catchment rainfall-runoff with a Graph Neural Network (GNN) for river routing. They test four 

GNN alternatives: Graph Convolutional Network (GCN), Graph Attention Network (GAT), Graph 

SAmple and aggreGatE (GraphSAGE), and Chebyshev Spectral Graph Convolutional Network 

(ChebNet). As a benchmark, they use a standard LSTM-only model. Neither of the models receives 

any observed streamflow as input. They apply their models to a 30-year daily data set of 

meteorological drivers (precipitation, air temperature, soil moisture), static attributes and river 

gauge observations of 530 catchments in the upper Danube catchments taken from the LamaH-CE 

data set. The catchment sizes range from tens to thousands of square kilometers. Analyzing the time- 

wise out-of-sample testing results, the authors find that all LSTM-GNN models outperform the 

LSTM- only, that the GAT is the best among the GNN alternatives, and that performance 

improvements by the GNN addition increase with catchment size and number of upstream 

connecting nodes. 

3. Evaluation 

Overall, this is a well-designed study on a relevant topic, with conclusions that are supported by the 

data and that that will have an impact on data-based hydrological modeling. There are only a few 

adjustments necessary for clarification and to increase readability of the paper. 

We sincerely thank Dr. Ehret for the careful reading of the manuscript and for the constructive and 

insightful comments. Below, we address each comment in detail.  

 

• In the LSTM-GNN approaches, each subcatchment has a unique place in the river network 

graph. Is each catchment LSTM then jointly trained with all catchments, but each as a single-

catchment LSTM, or are they jointly trained as regional LSTM? Please clarify. Also, the 

LSTM-only, is it trained as a regional model? Please clarify. 

 

Thank you for this clarification request. We clarify as follows: 

In the LSTM-GNN framework, each subcatchment has its own dedicated LSTM unit that processes 

local inputs (precipitation, temperature, soil moisture). However, these individual LSTMs are not 

trained independently. Instead, they are jointly trained end-to-end as part of the complete LSTM-GNN 

architecture. Specifically,  



• Shared parameters: All 530 subcatchment LSTMs share the same weight matrices and bias vectors 

(i.e., there is a single set of LSTM parameters applied to all nodes)  

• Joint optimization: During training, the loss is computed across all stations simultaneously, and 

backpropagation updates the shared LSTM parameters based on the collective error across the entire 

network. • End-to-end learning: The LSTM encoder and GNN routing module are trained together in a 

unified framework. 

Similarly, the LSTM-only model is also trained as a regional model with shared parameters across all 

catchments. The key difference between the two approaches is that the baseline LSTM predicts 

discharge at each gauge independently, without any spatial information exchange, whereas the LSTM–

GNN incorporates explicit routing via the graph structure. 

We added the following clarification to Section 3.1.1: 

“Our proposed model consists of two primary components: an LSTM module for local runoff 

generation and a GNN module for spatial runoff routing. Each subbasin is represented as a node in 

the river network and is associated with a local LSTM that processes catchment-averaged 

meteorological inputs. Importantly, these subbasin-level LSTMs are not trained independently; 

instead, all LSTMs share a single set of parameters and are trained jointly as a regional model. The 

GNN component then enables information exchange between subbasins according to the river 

network topology, explicitly modelling runoff routing. The entire framework is trained end-to-end 

across all subbasins simultaneously. The overall structure is visualized in Figure 2 and described in 

the following subsections.” 

• Are the GNN nodes placed only at gauge locations, or also at river confluence points? 

Please clarify. 

GNN nodes are placed only at gauged locations.  

We have revised the following sentences “We propose a novel LSTM–GNN model to predict the R–R 

process by jointly capturing local runoff generation and basin-scale flow routing within a unified 

framework. In contrast to traditional lumped models that treat the catchment as a single unit, our 

approach partitions the basin into multiple hydrologically connected subbasins, each represented as a 

node in a graph, with nodes corresponding exclusively to gauged subbasin outlets.” 

 

• How are the catchment areas for each gauge determined for the LSTM-GNN and the LSTM-

only? I assume for the LSTM-GNN it is either the upstream catchment (for a headwater 

gauge), or the intermediate catchment between the closest upstream gauge(s) and the current 

gauge, correct? And for the LSTM-only it is the total upstream catchment, independent from 

the presence of any upstream gauges. If my assumptions are correct, then the catchment-

averaged drivers and static attributes will differ between the LSTM-GNN and the LSTM-only. 

Please clarify. Also, consider including two histograms or cdf's showing the distribution of 

catchment sizes for both the LSTM- GNN and LSTM-only case. 

 

Both the LSTM–GNN and baseline LSTM-only models use exactly the same catchment 

delineation. For each gauge, all dynamic meteorological inputs and static attributes are spatially 

averaged over the total upstream contributing area of that gauge. As a result, the catchment-

averaged drivers and static attributes are identical for both models. The only difference between the 

two approaches lies in the inclusion of explicit spatial routing via the GNN in the LSTM–GNN 

framework. 

 



We have clarified this point in Section 2 (Study area and dataset): 

 

“Crucially, these dynamic inputs are spatially averaged over the entire upstream catchment 

contributing to each gauge, providing a single representative value per basin per day.” 

 

 

• Up to Vienna, the Danube catchment already covers more than 100.000 km², but the largest 

catchment included in this study is only 2.500 km² (Line 97). Why? The advantage of LSTM-

GNNs over LSTM-only should be even more evident for very large catchments. Please 

clarify. 

 

Thank you for pointing this out. The value reported in the original manuscript referred to 

individual subbasin sizes, not the total upstream contributing area. We have corrected this for 

clarity. 

The maximum upstream contributing area included in the study is approximately 131,000 

km². The manuscript has been revised accordingly to avoid confusion. 

 

• Sequence length is 180 days (Line 130). Why not 1 year, especially if there are snow-

dominated catchments included? 

We appreciate the reviewer's question regarding the choice of the 180-day input window. To 

address this systematically, we conducted a sensitivity analysis comparing window sizes of 

180 and 365 days. 

For fair comparison, both models were trained with identical sample sizes (extracted from the 

365-day window dataset to ensure no temporal gaps). 

Based on these results, we selected the 180-day window as optimal because the 365-day window 

provides only a marginal improvement in NSE (+0.02) but requires substantially more GPU 

memory (~2× increase), limiting batch size and training scalability. For operational deployment 

and future extensions, the 180-day window is more practical.  

 

Please note that the sample counts in this sensitivity analysis differ from those reported in the 

main paper results. This is because the sensitivity analysis required creating a no-gap dataset 

from the 365-day window to ensure fair comparison, whereas the main paper uses all available 

samples from the optimal 180-day window configuration. 

 

 

 

 

• For the LSTM-GNN, is the LSTM-output of the individual catchments rescaled to [m³/s], 

before it is fed into the GNN part? In other words, how is it assured in the workflow that the 



relative runoff contribution of each catchment is correctly represented? Please clarify. 

 

Thank you for this question. We clarify the data flow and scaling as follows. 

The LSTM component does not directly output discharge values in physical units [𝑚3/𝑠]. Instead, 

it produces latent feature embeddings of dimension 128 that encode the temporal hydrological state 

of each subbasin. Specifically, as described in Section 3.1.1, the final hidden state ℎ𝑖
(𝐿)

represents a 

learned summary of the runoff-generating processes for subbasin 𝑖in latent space, rather than a 

physical discharge quantity. These temporal embeddings are then concatenated with encoded static 

catchment attributes (59 features) to form a combined latent representation. This combined 

embedding remains in latent space and serves as the input to the GNN. The GNN operates entirely 

on these latent representations, performing message passing and aggregation across the river network 

to model spatial routing. Only after the final GNN layer is the resulting embedding transformed into 

a discharge prediction through a linear output layer. The predicted values are produced in the same 

normalized space as the training targets (log-transformed discharge). During evaluation, these 

predictions are inverse-transformed using the inverse of the positive_robust_log transformation to 

obtain discharge values in physical units [𝑚3/𝑠]. 

 

We have added the following clarification to Section 3.1: 

“This combined representation h_i serves as the input to the GNN module and captures both the 

temporal runoff dynamics and static catchment characteristics of subbasin i; notably, routing is 

performed on these latent representations, and discharge values are predicted only after the GNN 

processing..” 

 

 

• Fig. 3: Unclear for which hop the results are shown. Also, in subplot d the color-coding is 

missing. 

 

The subtitle has revised as follows “Boxplots comparing the baseline LSTM and four LSTM–GNN 

architectures (GAT, GCN, GraphSAGE, and ChebNet) across 530 stations using NSE, KGE, its 

components (α, β), correlation coefficient (CC), and RMSE (m3/s) for 3_hop. Green boxes 

indicate the best-performing model for each metric, while red boxes denote the lowest-performing 

model. And others in yellow” 

• All Figures: The dashed lines are hard to see. Use color-coding only. 

Done. 

• Fig. 5: Is this really a plot of all testing timesteps and all gauges? Please clarify. Visually 

this is dominated by the floods in the few largest catchments. Maybe it is more illustrative 

to show plots of scaled streamflow, where separately for each gauge, streamflow is scaled 

[0,1]. 

The original figure included all data points but was indeed visually dominated by high-

discharge events from large catchments. Following your suggestion, we have replaced 

Figure 5 with normalized scatter plots where the discharge for each gauge is scaled to the 

range [0,1]. 

 

We have revised the result section: 

“Scatter plots of normalized predicted versus observed discharge (Figure 5), where flow 

values for each station are scaled to the [0,1] range, highlight the reduced bias and tighter 

clustering around the 1:1 line for LSTM-GNN models compared to the baseline. Among all 

models, LSTM–GAT predictions most closely align with the 1:1 line.” 



 

• Fig. 6: This is not very helpful as it does not reveal any distinct pattern. Consider replacing it 

with a plot of dNSE vs. catchment size (similar to Fig. 7d, but more detailed). 

 

We thank the reviewer for this constructive suggestion. We have completely revised Figure 6 to 

provide much richer spatial information that reveals distinct geographic and hydrological patterns. 

The new Figure 6 now employs a multi-layer visualization approach that encodes multiple variables 

simultaneously: Point color: Five discrete categories of ΔNSE (from < -0.25 to > 0.25), River network 

thickness: Scaled by drainage area, and background elevation (DEM) 

This enhanced visualization reveals several distinct spatial patterns that were not apparent in the 

original figure: 

• Elevation-dependent performance: Stations with negative or minimal improvement are 

predominantly located in high-elevation. 

• Downstream accumulation benefit: Stations with strong improvement (dark blue dots, ΔNSE > 

0.25) cluster along major river reaches with large drainage areas (thick river lines), particularly in 

the lowland sections where flow routing and upstream contributions are most significant. 

Also the text revised as follows “To further investigate where the LSTM–GAT model, the best-

performing GNN architectures, offers improvements over the baseline LSTM, we conducted a spatial 

comparison of performance metrics across all gauged stations. The difference in NSE values (ΔNSE = 

NSELSTM-GAT– NSELSTM) was calculated for each of the 530 stations (Figure 6). Positive 

differences, shown in red, indicate locations where LSTM–GAT outperformed the baseline, while 

negative differences (blue) denote stations where the baseline LSTM achieved higher NSE. River 

network thickness is scaled by drainage area, and background colours show elevation from DEM. The 

analysis reveals that LSTM–GAT achieved higher NSE scores at 78% of stations. Stations showing 

strong improvement (ΔNSE > 0.25, dark blue) are predominantly located along major river reaches 

with large drainage areas. Conversely, stations with negative  changes (red dots) are concentrated in 

high-elevation headwaters.” 



 

 

 
 

• Fig. 7 d: Here it seems that catchments > 100.000 km² are included, but only few. How does 

this match with the statements in Line 97? 

 

Revised. 

 

• Fig. 9: Use same color-coding as in previous figures. 

 

Done. 

 

• As the topic is closely related, the authors may wish to take a look at a recent preprint by Kraft 

et al. (2025). 

We thank the reviewer for bringing this relevant recent work to our attention. We have reviewed Kraft 

et al. (2025) and recognize important parallels between DROP and our approach. Both studies 

demonstrate that incorporating explicit routing significantly improves deep learning-based 

hydrological predictions.  

We have added to Discussion as follows. 

“Kraft et al. (2025) showed that incorporating routing into lumped LSTM baselines across 

Switzerland yielded substantial performance gains (KGE improvements of 24–62%). “ 

 

 

Yours sincerely, 

Uwe Ehret 
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