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Abstract. Widespread thermal degradation in permafrost regions is accelerating the development of retrogressive thaw slumps
(RTS), which threaten ecological stability and infrastructure. Existing RTS modeling studies, however, are largely confined to
static susceptibility mapping, lacking the capacity to predict their spatiotemporal evolution. To bridge this gap, we developed
a new dynamic RTS evolution model (RTSEvo) that couples three modules: (1) a time-series forecast of regional RTS area,
(2) a machine-learning module for pixel-level probability mapping, and (3) a constrained spatial allocation module that
simulates RTS expansion by integrating neighborhood effects, stochasticity, and a novel retrogressive erosion factor. Validated
using 2021 and 2022 manually interpreted RTS maps of the Beiluhe Basin, the model successfully simulated RTS growth,
with the Logistic Regression-based model showing superior stability and accuracy. An interesting finding is that predictive
skill is significantly enhanced by integrating process-based rules with statistical probability. The inclusion of a novel
retrogressive erosion factor, which mechanistically simulates headwall retreat, proved critical, improving model performance
by over 29.3% as measured by the Figure of Merit. The primary innovation of this study is the successful realization of a
regional-scale dynamic simulation and prediction of RTS. This model offers a more robust scientific tool for RTS-related risk

mitigation strategies.

1 Introduction

Permafrost, defined as ground that remains at or below 0 °C for at least two consecutive years, is a critical component of
the cryosphere, underlies approximately 15% of the Northern Hemisphere's exposed land area (Obu, 2021). The Qinghai-Tibet
Plateau (QTP) hosts the most extensive permafrost terrain in the world’s low to mid-latitudes and is a recognized hotspot of
climate sensitivity (Cheng et al., 2019; Yao et al., 2019; Zhao et al., 2024). In recent decades, the QTP has warmed at more
than twice the global average rate (Kuang and Jiao, 2016; Zhang et al., 2021), triggering widespread permafrost degradation.

This is evidenced by rising ground temperatures, a deepening active layer, and a reduction in permafrost extent (Zhang et al.,
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2022; Ran et al., 2018). The rate of active layer thickening, for instance, has accelerated to an estimated 46.7 = 26.9 cm per
decade (Ziteng et al., 2025).

A prominent and destructive consequence of the rapid thawing of ice-rich permafrost is the proliferation of thermokarst
hazards, particularly retrogressive thaw slumps (RTSs) (Maier et al., 2025a). An RTS is a form of slope failure characterized
by a steep, retreating headwall where exposed ground ice melts, leading to the downslope movement of a slurry of thawed
sediment and water. The spatiotemporal footprint of these features across the QTP is expanding dramatically, with the total
area of RTS increasing more than 26-fold since 1986 (Yang et al., 2023). These disturbances not only threaten the stability of
alpine ecosystems (Lantz et al., 2009) and the safety of critical infrastructure (Niu et al., 2005; Hjort et al., 2022) but also
mobilize large quantities of previously frozen organic carbon (Mu et al., 2016; Cassidy et al., 2017), creating a positive
feedback to global climate change (Zhou et al., 2023).

The development of RTS is governed by a complex interplay of environmental controls. They typically form on gentle
slopes in areas of warm permafrost (mean annual ground temperature > —1 °C) with high ground ice content. While climate
warming and heavy precipitation are primary drivers that reduce slope stability (Luo et al., 2024b), local factors such as
engineering disturbances and thermal erosion also play a crucial role (Li et al., 2024; Jin et al., 2005; Luo et al., 2022b). To
identify high-risk areas, many recent studies have successfully applied machine learning algorithms such as random forests
(RF) and generalized linear models (GLM) to produce static susceptibility maps (Yin et al., 2023; Wang et al., 2024; Yin et
al., 2021; Rudy et al., 2016).

However, these susceptibility assessments have a fundamental limitation: they provide a static snapshot of risk based on
a set of conditioning factors, but they cannot capture the inherently dynamic evolution of RTS. The expansion of an RTS is
not merely a probabilistic occurrence but a process-driven phenomenon characterized by positive feedback mechanisms, such
as the continuous exposure of ice at the headwall (Deng et al., 2024; Lewkowicz and Way, 2019), which accelerates retreat.
Static models lack the capacity to simulate this temporal progression or predict how RTS fields will evolve under future climate
scenarios.

To address this gap, inspiration can be drawn from the well-established field of Land Use and Land Cover Change (LUCC)
modeling. For decades, LUCC models have been developed to simulate the spatiotemporal dynamics of landscape change by
coupling a macro-scale projection of change with a spatially explicit allocation module (Verburg et al., 2002; Verburg and
Overmars, 2009). This framework is well-suited for modeling process-driven phenomena because the allocation of new cells
is governed by transition rules that can encode underlying processes. For example, the common use of neighborhood effect in
LUCC models is a simple but powerful way to represent the positive feedback and spatial contagion characteristic of RTS
expansion. This flexible structure allows for the integration of more sophisticated, physically-based rules that can guid the
simulation. This methodological paradigm, which combines statistical probabilities with process-driven spatial rules, therefore
offers a promising foundation for dynamically modeling RTS evolution.

Building on this approach, we developed an innovative dynamic evolution model for RTS (RTSEvo). This framework

moves beyond static susceptibility by coupling three core modules: (1) a time-series forecasting module to project the total
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regional RTS area demand; (2) a machine learning module to generate a baseline pixel-level occurrence probability based on
environmental drivers; and (3) a constrained spatial allocation module that simulates RTS expansion by integrating the
occurrence probability with neighborhood effects, a retrogressive erosion factor, and stochasticity, ensuring the total simulated
area matches the projected demand. By explicitly modeling spatial propagation and temporal growth, our approach aims to

provide a more realistic and predictive tool for regional disaster risk assessment and management under a changing climate.

2 Material and methods
2.1 The RTS evolution model framework

Our model (RTSEvo v1.0) simulates RTS evolution by discretizing the landscape into a grid of cells (pixels). Unlike
LUCC models that often manage transitions among multiple land cover types, our model simplifies the system to a binary
classification. Each cell exists in one of two states: non-RTS (value = 0) or RTS (value = 1). This focus allows the framework
to concentrate on the irreversible transition of cells from a non-RTS to an RTS state over annual time steps. This state transition
is governed by a modular framework designed to integrate regional-scale trends with local-scale drivers (Figure 1).

The framework consists of three core, interlinked modules. (a) RTS areal demand forecasting module: This module
projects the total RTS area for the target year, establishing a top-down, macro-scale constraint on overall RTS expansion. (b)
Base occurrence probability mapping module: This module uses machine learning to calculate the baseline probability of RTS
initiation for each individual pixel based on its unique environmental characteristics (e.g., topography, climate, geology). (c)
Constrained spatial allocation module: This module serves as the dynamic engine of the model. It iteratively allocates new
RTS cells on the landscape by combining the base occurrence probability with spatial interaction rules (neighborhood and
retrogressive erosion effects) until the estimate total area demand is met.

The model is calibrated using a historical RTS distribution map from a reference year. The optimal model parameters are
determined by systematically tuning them to maximize the agreement between the simulated and observed RTS patterns from

the reference year.
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Figure 1. Conceptual framework and workflow of the dynamic retrogressive thaw slump (RTS) evolution model. The workflow begins
with processing multi-source data to train the model. It consists of three interlinked modules: (i) Areal demand forecasting, which uses
Holt’s linear trend model to project the total RTS area serving as a macro-scale constraint; (ii) Base occurrence probability mapping,
which employs machine learning algorithms (Random Forest or Logistic Regression) to generate a pixel-level probability map for RTS
initiation; and (iii) Constrained spatial allocation, which dynamically allocates new RTS pixels by integrating the base probability with
neighborhood effect, a retrogressive erosion factor, a stochastic factor, and an adaptive inertia coefficient until the projected area demand
is met. Model parameters are optimized through a calibration process that maximizes the Figure of Merit (FoM), and final performance is

evaluated using FoM, Kappa, F1 Score and Moran's I.

2.2 Module 1: RTS areal demand forecasting

A key constraint for the simulation is the total new area of RTS to be allocated in a given year. To prevent uncontrolled
expansion, we first forecast this regional demand. We employed Holt’s linear trend method, an exponential smoothing

technique well-suited for time-series data exhibiting a clear trend (Holt, 2004), which has been observed for RTS growth on
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the QTP since 2011 (Maier et al., 2025b). The method uses a level equation (current magnitude), a trend equation (rate of
change), and a forecast equation:

Level equation: L=ay,+(1—-a)l,_, +b,_)

Trend equation: b, =" (I, —1,_)+(1—- )b, (1)

Forecast equation: 3., =1, + hb,

where, [, is the estimated level (baseline area) at time t, b, is the estimated trend (growth rate), y; is the observed area at time

t, and 37(t ) is the forecasted area for /4 time steps into the future. The smoothing parameters for level (a) and trend (8*)

range from 0 to 1 and control the weighting of recent versus past observations.

2.3 Module 2: Base occurrence probability mapping

This module quantifies the intrinsic suitability of each pixel for RTS formation based on a suite of environmental driving
factors, independent of its spatial context. We tested two widely used machine learning algorithms for this task: Logistic
Regression (LR) and Random Forest (RF).

LR is a generalized linear model that calculates the probability of an outcome using the sigmoid function, providing a
clear, interpretable relationship between the drivers and RTS occurrence (Cramer, 2003). The probability P; for pixel i is given
by:

1

P(X')=———
{0 (1+e77)

2

where, X represents the feature vector for a single pixel i, containing the values of all environmental driving factors for that
specific pixel, and z = wyx! + wyxt + -+ + wyxl + b, is the linear combination of weighted predictor variable. w represents
the weights associated with each predictor variable, and b is the bias term.

RF is an ensemble learning algorithm that builds a multitude of decision trees and aggregates their outputs. It is robust to
non-linear relationships and interactions between variables. The probability is calculated as the proportion of trees in the forest

that classify the pixel as RTS (Breiman, 2001; Sun et al., 2021):

Tree;ppr i
E 1(Tree, (X') =1
n=1 ( n( ) ) (3)

Tr €Cotal

R(X")=

where, 1(-) is the indicator function and Tree, . is the total number of trees in the forest. Tree, (X*) refers to the prediction
from a single decision tree within the RF, i.e., the output of the n-th tree when it’s given the feature vector X' as input.

The performance of machine learning models is highly dependent on the selection of their hyperparameters, which are
settings that control the learning process itself (Probst et al., 2019). To find the optimal configuration for both the RF and LR
models, we implemented a systematic tuning process. While traditional methods like Grid Search and Randomized Grid Search

are common, they can be computationally inefficient, especially with many parameters. Therefore, we employed Latin
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Hypercube Sampling (LHS), a more advanced statistical method for parameter optimization. LHS is superior because it
explores the parameter space more efficiently by dividing each parameter's range into equal intervals and sampling exactly
one value from each interval, ensuring a more uniform and representative coverage with fewer trials (McKay et al., 1979). We
first defined a plausible search range for each key hyperparameters in the RF and LR models (Table 1). For RF, this included
parameters like the number of trees (n_estimators) and maximum tree depth (max_depth); for LR, it included regularization
strength (C) and the optimization algorithm (solver). LHS was used to generate 100 unique combinations of hyperparameters
from these ranges. Then each parameter combination was evaluated using 10-fold cross-validation accuracy as the objective
function. The hyperparameter combination that resulted in the highest average cross-validation accuracy was selected as the

optimal configuration for the final model used for base occurrence probability mapping.

Table 1. Hyperparameter search ranges for Random Forest (RF) and Logistic Regression (LR) models. These ranges were systematically

explored using Latin Hypercube Sampling to find the optimal parameter combination for the base occurrence probability mapping.

Method Hyperparameter Search range Meaning
Random forest n_estimators (100,1000) the number of decision trees
max_depth (2,20) maximum depth of each tree

maximum number of

max_features (1,20) features considered for
splitting a node

minimum number of samples

min_samples_leaf (1,20) required at a leaf node
minimum number of samples
min_samples_split (2,20) required to split an internal
node
Logistic regression C (0.01,10) inverse of the regularization
strength
solver ('liblinear', 'Ibfgs','saga") optimization algorithm
penalty (11',12" the type of regularization
maximum number of
max_iter (1,5000) iterations for the

optimization algorithm

2.4 Module 3: Constrained RTS spatial allocation

This module transforms the static probability map from Module 2 into a dynamic RTS distribution that adheres to the
area demand from Module 1. This is achieved through an iterative process within a cellular automata framework (Wolfram,
1983; Toffoli and Margolus, 1987). At each iteration £, a total transition probability (P}‘oml,i) is calculated for every non-RTS
cell, integrating the base probability with four dynamic factors:

k k .k k .k
PTota,’ ; =P xU; x Erosion; x RA; x Inertia; (4)



150

155

160

165

https://doi.org/10.5194/egusphere-2025-5005

Preprint. Discussion started: 20 October 2025 EG U h

© Author(s) 2025. CC BY 4.0 License. spnere
(COoM

where, P; is the base occurrence probability representing the intrinsic suitability of the pixel i, as calculated in Module 2; U¥
represents neighborhood effect that accounts for spatial autocorrelation, based on the principle that a new RTS is more likely
to form near existing ones; Erosionf is a retrogressive erosion factor, a novel component designed to mimic characteristic
upslope (headward) retreat of RTS; RA¥ is a stochastic factor designed to simulate the inherent randomness and unmodeled
variables in natural systems; and Inertia¥ denotes an adaptive inertia coefficient as a dynamic regulator that accelerates or
decelerates the overall rate of new RTS allocation to ensure the final simulated area matches the target area demand from
Module 1.
The neighborhood effect factor is calculated as the density of RTS cells within a defined neighborhood window:
> it =1

Uk=MN oy, (5)
NxN -1

k-1 _
i =

where the numerator counts RTS cellsinan N X N window at the previous iteration (k — 1) and w is a weight factor. 1(s
1) is an indicator function that counts how many neighboring cells are already in the RTS state (s=1).

The retrogressive erosion factor assigns a higher probability weight to cells located in the direction opposite to the local
slope aspect (Luo et al., 2024a), thereby promoting directional growth. The directional weight (w,,,,) is calculated based on
the angular difference (A@) between the potential growth direction and the theoretical erosion direction (8., osion), Which is

180° from the slope aspect, representing how closely its direction aligns with the ideal erosion path. The equations are given

as follows:
Orrosion = (Oyspecs +1807) mod360°
Hmn%ij = arctan 2(1 —m,n— ]) mod 360o
Af = mln(| Hmn—n‘j - gerosion |’3600_ | Hmn—ﬁj - Herosion |)
W,,, =Ccos(A8/2) (6)
Z Winn Xl(sﬁm = 1)
Erosion! = XN
Z Wmn
NxN

where, 0g5pec: is the standard slope aspect for the cell calculated from the digital elevation model (DEM), 0,5 is the
azimuth angle for a central cell at coordinates (i, ) to each of its neighbors at coordinates (m,n). 1(s,,, = 1) is an indicator
function (where state s=1). Erosion’ is thus calculated as a proportion of a numerator term that sums the directional weights
(Wmn) of all neighboring cells that are currently in the RTS state, over the denominator that is the sum of the directional weights
of all neighbors, regardless of their state.

The stochastic factor (RA! ) is based on an extreme value distribution (Coles, 2002; Davison and Huser, 2015):

RA' =1+ B x (“logR)% e — 0.5) 7)
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where, R is a random value between 0 and 1, &gocp, and Ssiocn control the shape and magnitude of the perturbation. The search
range of g, Was set to (0.01, 0.5) for practical purpose, as this range ensures an introduction of moderate, plausible
fluctuations without destabilizing the model. The range of Bg:ocn Was set to (0.1, 1) which aims to balance the influence of
randomness in the model.

The inertia coefficient is calculated by a piecewise function (Equation 8). The core variable is D¥, which represents the

difference between the number of simulated RTS cells and the required number (the demand) at iteration 4.

Inertia"™ if‘Dk_l‘ < ‘Dk_2‘
k-2
Inertia® =1 Inertia"™ X—— ifD*' < D2 <0
D ®)
k-1
Inertia"™ x —— if 0 <D"?* < D*!

Once the total transition probability (P{foml'i) is calculated for each non-RTS cells, a probability threshold method is used
to determine if a state change occur. If P}‘omli > PKy eshoias the cell’s state transitions from non-RTS (0) to RTS (1). Crucially,
this state transition is assumed to be irreversible; once a pixel converts to the RTS state, it remains in that state for all subsequent
time steps of the simulation. This entire allocation process continues iteratively. The simulation for a given year concludes

when the total area of simulated RTS cells meets the target demand projected by Module 1.

2.5 Model calibration

The Constrained Spatial Allocation module contains several key parameters (e.g., neighborhood size N, neighborhood
weight w, stochastic shape parameters g, and proportional coefficient S0 ) that require calibration (Table 2). We
implemented a systematic calibration procedure using LHS to efficiently sample the multi-dimensional parameter space. For
each parameter set generated by LHS, the model was run to simulate the RTS distribution for a historical reference year. The
performance of each run was evaluated by comparing the simulated map to the actual observed map using the Figure of Merit
(FoM) metric, which measures the accuracy of change detection. The parameter set that yielded the highest FoM was selected

as the optimal configuration for future simulations.

Table 2. Parameter search ranges and optimal values for the constrained RTS spatial allocation module

Parameter Value Range Logistic regression Random forest
Neighborhood size (N) [3,5,7,9,11,13,15,17, 19] 3 3
Neighborhood weight (w) 0, 1) 0.813 0.759
Shape parameter (g ocp) (0.01, 0.5) 0.04 0.351
Proportional coefficient (Bg¢ocn) 0.1, 1) 0.161 0.498
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2.6 Case study application: Beiluhe Basin, QTP
2.6.1 Study area

We tested and validated our model in the Beiluhe Basin, a region in the central QTP (Figure 2) that is a representative

hotspot for permafrost degradation. Situated at an average elevation of over 4,500 m, the basin is underlain by continuous, ice-

195 rich permafrost, with volumetric ice content exceeding 25% (Yin et al., 2017). The permafrost here is thermally sensitive,
classified as warm with a mean annual ground temperature at 15 m depth ranging from —1.8 to —0.5 °C (Luo et al., 2015). The
landscape is dominated by alpine meadows and alpine grasslands, which cover over 40% of the regional land area (Yin et al.,
2017). The local climate is cold and semi-arid; observations from the Wudaoliang meteorological station near the Beiluhe
Basin, show a mean annual air temperature of —5.0 °C and mean annual precipitation of approximately 300 mm (Figure 2b).

200  Over 90% of this precipitation is concentrated in the summer months (May to September), while annual evaporation exceeds
1,000 mm. Since 1960, the region has experienced a significant warming and humidification trend, with an accelerated rate of
increase in both temperature and precipitation after 2000 (Yu et al., 2025). The combination of climate change, topography,

and vulnerable permafrost has resulted in the formation of over 450 documented RTS features (Xia et al., 2024a), making it

an ideal study area for this study.
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Figure 2. Location of the Beiluhe Basin study area, regional climate trends, and RTS distribution. (a) Permafrost distribution on the QTP,
with the study area marked by a red star. Permafrost data are from Cao et al. (2023). (b) Air temperature and precipitation records from the
nearby Wudaoliang weather station (1955-2021), with trend lines illustrating regional warming and humidification. (c) A 2022 PlanetScope
satellite image (Planet Team, 2025) of the Beiluhe Basin overlaid with mapped RTS boundaries. RTS boundaries are from Xia et al. (2024a).

210  2.6.2 Data acquisition and preparation
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The ground-truth data for this study consisted of annual RTS inventories for the Beiluhe Basin from 2016 to 2022. Over
this period, more than 200 new RTS were identified, covering a cumulative area of 1,042.47 ha (Xia et al., 2024a). Individual
slump areas ranged from 0.11 to 22.39 ha, with an average of 2.61 ha (Luo et al., 2022a). These inventories were derived from
the manual interpretation of high-resolution (3-meter) PlanetScope imagery acquired in August of each year; their high
reliability was confirmed by a low relative area error of 4.6% when compared against field-mapped boundaries (Xia et al.,
2024a). Because August marks the end of the summer thaw season, the resulting maps are assumed to represent the full extent
of RTS activity for the annual cycle spanning from September of the preceding year to August of the current year.

For the explanatory variables, a comprehensive set of 36 potential driving factors was initially compiled (Table Al),
spanning six categories: topography, climate, geology, hydrology and vegetation, permafrost characteristics, and human
activities (Rudy et al., 2016; He et al., 2024; Lacelle et al., 2009; Kokelj et al., 2015; Yin et al., 2023). The suitability of the
remaining factors was validated using non-parametric tests to assess differences between RTS and non-RTS groups. The
Mann—Whitney U test was applied to numerical data and the chi-square test to categorical data. The results confirmed that all
but one factor (clay content at 100-200 cm depth) showed a statistically significant difference (p<0.01), supporting their
inclusion as potential predictors (Figure Al and Figure A2). Finally, all selected data layers were prepared for modeling by

resampling them to a uniform 10 m spatial resolution, which is our modeling resolution.

2.6.3 Data preprocessing and feature engineering

We used the annual RTS inventories from 2016 to 2020 to construct a robust dataset for the model, holding the 2021 and
2022 maps in reserve for independent model validation. We developed a dynamic, multi-period approach to create the sample
set, which is a significant improvement over traditional static methods that fail to capture the temporal dynamics of expansion.
Our method extracts only those pixels that changed state from non-RTS to RTS between any two consecutive years within the
2016-2020 timeframe. These "changed pixels," representing active expansion fronts, were aggregated to form a cumulative
dataset of positive samples (labeled "1"). This strategy trains the model on the specific environmental conditions that trigger
new growth and, by pooling data from multiple years, ensures the model is robust to a variety of annual climate conditions.
An equal number of stable non-RTS pixels were then randomly selected as negative samples ("0") to create a balanced 1:1
dataset.

The predictor variables for these samples underwent extensive preprocessing. Categorical variables (Table A1) such as
slope aspect, lithology, and land use/land cover were converted into a binary (0 or 1) vector format using one-hot encoding to
prevent the model from learning false ordinal relationships. During this step, the permafrost type variable was excluded from
the analysis, as its uniformity across the study area offered no predictive power. Continuous variables were subsequently scaled
to a [0, 1] range using Min-Max Normalization (Halder et al., 2025) to ensure they contributed equitably to the model.

The initial feature space after preprocessing consisted of 51 dimensions, comprising 18 categorical features generated
through one-hot encoding and 33 numerical features. To reduce dimensionality and identify the most influential predictors

(Guyon and Elisseef, 2003), we employed Recursive Feature Elimination with Cross-Validation based on Random Forest

10
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(Misra and Yadav, 2020). This process identified an optimal subset of 14 variables that maximized model accuracy (Figure
A3), including factors related to topography (DEM), vegetation (Normalized Difference Vegetation Index), climate
(Cumulative precipitation, Maximum summer precipitation, Maximum summer temperature), geology (Distance from fault,
Semi-hard rock, Clay content at 60-100 cm, Silt content at 30-60 cm), human activity (alpine grassland, alpine meadow,
distance from railway), and permafrost (thaw degree days, ground ice content).

Finally, this prepared dataset of 14 features was partitioned into a 70% training set for model fitting and hyperparameter
tuning (for the base probability mapping module), and a 30% testing set for unbiased evaluation. The statistical homogeneity
of these split was confirmed using Kolmogorov-Smirnov (K-S) and chi-square tests, with K-S statistics for all numerical
features below 0.0061 and chi-square statistics for all categorical features above 1.2 (all corresponding p-values > 0.05),

indicating no significant distributional differences between the sets (Table A2).

2.7 Experimental design and performance evaluation

We designed three experiments to systematically evaluate the performance of each component of the model framework
and the framework as a whole.

Experiment 1: Areal Demand Forecasting. To test the capability of this time series forecasting module, we trained the
Holt's linear trend model using the observed total RTS area for each year from 2016 to 2020. The trained model was then used
to predict the total RTS area for 2021 and 2022. The performance was evaluated using the coefficient of determination (R?)
and the Mean Absolute Percentage Error (MAPE).

Experiment 2: Base Occurrence Probability Mapping. To test the discriminative power of the machine learning models,
the full dataset derived from the 2016-2020 RTS maps was partitioned into a 70% training set and a 30% testing set. The
training set was used to fit the models and optimize their hyperparameters. The held-out testing set was used for an unbiased
evaluation of performance, which was assessed using the Area Under the Receiver Operating Characteristic (ROC) curve
(AUC) (Hanley and McNeil, 1982). The temporal robustness of the models was also verified using rolling time-window cross-
validation (Roberts et al., 2017).

Experiment 3: Full Evolution Model Simulation. To test the performance of the entire RTS evolution model, we first
calibrated the parameters of the spatial allocation module using the observed 2020 RTS map as the reference year. With the
optimal parameters determined, we then ran the full simulation starting from the 2020 RTS distribution to predict the RTS
maps for 2021 and 2022. The performance of these final simulations was assessed by comparing the simulated maps to the
observed maps using three metrics, each assessing a different aspect of the simulation's quality: overall spatial accuracy, change
detection capability, and spatial pattern fidelity.

First, the Kappa coefficient (Equation 9) and F1 Score (Equation 10) were used to measure overall spatial accuracy. This
metric quantifies the level of agreement between the simulated and observed maps, correcting for agreement that could have
occurred by chance (Cohen, 1960). It ranges from -1 to 1, with values closer to 1 indicating higher consistency between the

simulated and actual data.
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Kappa = @ x100% )

e

where, p, is the proportion of correctly classified cells and p,, is the expected agreement by chance.

F =2 precision - recall (10)

precision + recall

where precision is the proportion of predicted RTS that are actually RTS, and recall is the proportion of actual RTS that are
correctly predicted.

Second, FoM (Equation 11) was used to specifically assess the model's change detection capability (Pontius et al., 2008).
FoM is a more stringent metric that focuses on the model's ability to correctly simulate new RTS growth. It ranges from O to
1, with higher values indicating a more accurate capture of the evolution process.

Hit

FoM = x100% (11)
Miss + Hit + False alarm

where Hit is the number of pixels that were correctly simulated as new RTS growth, Miss is the number of pixels that were
actual new RTS growth but were not identified by the model, and False alarm is the number of pixels that the model incorrectly
simulated as new RTS growth, but in reality, did not change.

Finally, the global Moran's I index (Equation 12) was used to evaluate the model's ability to reproduce the observed
spatial pattern (Moran, 1950). This metric assesses the degree of spatial autocorrelation in the simulated RTS distribution. It
ranges from -1 to 1, where positive values indicate spatial clustering, negative values indicate dispersion, and values near 0
suggest a random spatial pattern.

I:£X27=1Z;=1wy(yif =0 =¥ 1)

So > i)

where n is the total number of spatial units in the study area, y; and y; are attribute values for pixel i and j, respectively, ¥ is

the mean of the attribute values across all spatial units, w;; is a spatial weight defines the relationship between pixel i and pixel

J, and S is the sum of all the spatial weights in the map.

3 Results
3.1 Areal demand Forecast

The Holt's linear trend model was trained using RTS area data from 2016 to 2020 to forecast the total area demand for
2021 and 2022 (Experiment 1). The model’s performance was evaluated against the observed RTS areas derived from the RTS
distribution maps, yielding R? = 0.545 and MAPE = 11.3%. The model fit was noted to be strong for the 2017-2020 period,
with the lower overall R? value influenced by a relatively large discrepancy for 2016. The model parameters were revealing:

a level smoothing coefficient ( @) of 0.6650 indicated that the forecast was highly sensitive to recent observations, reflecting
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the strong influence of short-term factors like extreme precipitation on RTS area. A trend smoothing coefficient ( £ ) of 0.6650
suggested that the long-term growth trend is stable and changes rapidly, consistent with the inertia of geological processes.
The model's initial trend value of 3,484,800 m?/a confirmed a significant expansion rate at the start of the study period. This
expansion occurred in the context of the region's observed warming rate of 0.4° C per decade (Yao et al., 2022), which is a

known driver of permafrost degradation.

3.2 Performance of base occurrence probability models

The predictive performance of the RF and LR models, which form the basis of the probability mapping module, was
evaluated using the testing dataset in Experiment 2. The hyperparameter optimization process yielded significant
improvements for both models. The AUC for the RF model increased from an initial 0.9434 to 0.9903, and the AUC for the
LR model increased from 0.8573 to 0.8777 (Figure 3c, g). Both optimized models demonstrated excellent discriminative
performance (AUC > 0.85), with the RF model achieving the highest accuracy. The rolling time-window validation confirmed
that the models effectively captured spatiotemporal dynamics, maintaining high performance across different annual periods.
The RF model was particularly stable, with AUC values consistently above 0.91 for all validation windows. The LR model
also remained stable with AUC values mostly above 0.85, though it showed a performance dip to 0.7771 for the 2019-2020
test set (Figure 3d, h). While the near-perfect AUC of the RF model could suggest potential overfitting, its performance on
unseen future years in the rolling time-window validation remained excellent, with AUCs consistently above 0.91. This
indicates that while the model is highly tuned, it still generalizes well. In contrast, the smaller gap between the LR model's
main AUC (0.8777) and its temporal validation scores (mostly >0.85) suggests the simpler model was less prone to overfitting.

Based on the hyperparameter-optimized models, occurrence probability maps were predicted for the 2020-2021 and
2021-2022 periods (Figure 3a, b, e, ). A visual analysis reveals significant similarities between the predictions of both the RF
and LR models. In both years, the models agreed on the general spatial pattern, identifying the highest RTS occurrence
probabilities in the central regions of the basin while assigning lower probabilities to the peripheral areas. This overall pattern
is consistent with the known distribution of existing RTSs. Despite this broad agreement, the models produced distinct spatial
textures. The RF model's output is characterized by discrete, scattered patches of high probability (Figure 3a for 2021, b for
2022), whereas the LR model yields continuous, ribbon-like zones with more gradual transitions between high- and low-risk
areas, revealing finer spatial details (Figure 3e for 2021, f for 2022). The LR model consistently identified a larger proportion
of high-probability pixels (probability > 0.9) than the RF model in both 2021 (2.67% vs. 2.07%) and 2022 (1.12% vs. 0.22%)).
These high-risk zones from the LR model demonstrate a higher degree of spatial consistency with the observed clusters of
actual RTSs. Comparing the predictions between the two years reveals subtle inter-annual variations that reflect the models'
sensitivity to the different climate inputs. For instance, in the LR model's predictions, the peak probabilities appear slightly

less intense and widespread in the 2022 map (Figure 3f) compared to the 2021 map (Figure 3e).
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Figure 3. Performance of the base probability models and resulting spatial predictions. (a, b, e, f) Spatial distribution maps of
predicted RTS occurrence probability for the 2020-2021 (a, e) and 2021-2022 (b, f) periods for the Random Forest (RF) (a,
b) and Logistic Regression (LR) (e, f) models, respectively. (c, g) Receiver Operating Characteristic (ROC) curves illustrating
the performance improvement before (Initial) and after (Updated) hyperparameter optimization. (d, h) Results of the rolling

time-window validation.

3.3 Model calibration and spatiotemporal simulation

In Experiment 3, the full Logistic Regression Evolution Model (LR-EM) and Random Forest Evolution Model (RF-EM)
were first calibrated using the observed 2020 RTS distribution as the reference target, with optimized parametric values present
in Table 2. In this calibration step, both models achieved a strong fit to the data (Table 3). While both models demonstrated
high overall spatial accuracy with Kappa coefficients and F1 Scores exceeding 88%, this metric can be inflated by the large
number of correctly identified stable pixels. A more stringent evaluation is the FoM, which focuses only on how well the
models predict change. In this regard, the LR-EM exhibited a superior ability to capture new growth, achieving a FoM of
20.05%, which surpassed the RF-EM's 17.36%. Both calibrated models also effectively reproduced the observed spatial
clustering; the Moran's I of the simulated results for both the LR-EM (0.603) and RF-EM (0.599) closely matched the Moran's
I of the actual 2020 RTS distribution (0.596).

Table 3. Performance metrics for the model calibration (2020) and independent validation (2021-2022), which were measured

against the observed RTS distribution for each year.

Type Figure of Merit Kappa F1 Score Moran’s I

Actual 2020 RTS - - - 0.596
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LR-EM 2020 20.05% 89.43% 89.84% 0.603
RF-EM 2020 17.36% 88.89% 89.32% 0.599
Actual 2021 RTS - 0.609
LR-EM 2021 12.00% 94.79% 95.74% 0.616
RF-EM 2021 10.77% 94.87% 95.08% 0.613
Actual 2022 RTS - - - 0.619
LR-EM 2022 8.88% 91.51% 91.89% 0.631
RF-EM 2022 8.78% 91.22% 91.61% 0.631

Following calibration, the models with their optimized parameters were used for a predictive simulation of RTS evolution
for the subsequent years, 2021 and 2022, which served as an independent validation. The LR-EM model again outperformed
the RF-EM in both years in terms of absolute accuracy (Table 3). In 2021, the LR-EM achieved a FoM of 12.00% compared
to 10.77% for the RF-EM. However, the accuracy of both models declined in 2022, a drop likely linked to a severe summer
heatwave that year (Zhu et al., 2024). This event highlighted differences in model robustness; while the RF-EM's performance
declined less sharply, the LR-EM still achieved higher accuracy scores (FoM, Kappa and F1 Score) in both validation years.
A spatial analysis of the simulation errors (Figure 4) provides further insight. It reveals that while the models correctly identify
the active margins of existing slumps as the primary zones for new growth, they struggle with the precise pixel-by-pixel
location of the expansion. Most errors, both observed growth that the model missed (Misses) and areas incorrectly simulated
as growth (False Alarms), are concentrated along these active boundaries. Visually, the LR-EM tended to produce larger, more
contiguous clusters of correctly predicted pixels (Hits), which is consistent with its higher FoM score (Figure 4c,d).

Despite the variations in pixel-level accuracy, both models demonstrated excellent performance in reproducing the overall
spatial patterns of RTS development. The average relative error of the Moran's I index was controlled within 1.5% for both
models, validating the effectiveness of the spatial allocation rules in capturing the characteristic clustering of RTSs.
Furthermore, a qualitative comparison of slump morphology in the validation areas (Figure 4) shows that the simulations
successfully captured the general shape, size, and orientation of the observed RTS expansion. The simulated slump boundaries,
however, were generally smoother and less intricate than their real-world counterparts, indicating that while the model captures

the macro-scale process, it tends to simplify fine-scale boundary details.
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Figure 4. Comparison of simulated and observed RTS spatial distributions in the Beiluhe Basin for 2021-2022. The main maps show the
overall simulated distributions and performance metrics for the (a) RF-EM in 2021, (b) RF-EM in 2022, (c) LR-EM in 2021, and (d) LR-

EM in 2022. The inset panels provide a detailed visual comparison between the observed (“Actual pattern”) and simulated slump morphology

for four representative sub-regions (numbering 1-4), randomly selected from areas with intense RTS expansion. The circular insets provide

detailed views of four representative sub-regions (numbering 5-8) randomly selected from areas with intense RTS expansion showing spatial

comparison of simulated version observed RTS expansion, where the classification for each year is benchmarked against the observed 2020

map. Note that the 2022 expansion simulations in the circle insets show the cumulative change from 2020 to 2022. Correct prediction (Red):

Pixels that were correctly simulated as new RTS growth (Hits). False prediction (Green): Pixels representing either observed growth that the

model missed (Misses) or areas incorrectly simulated as growth (False Alarms). No change (Blank): Areas that correctly remained non-RTS

in both the simulation and reality.

4 Discussion

4.1 Advancing from static susceptibility to dynamic evolution
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Traditional RTS research has focused on producing static susceptibility maps, which are effective at identifying high-risk
areas but cannot capture the temporal evolution or spatial propagation of these dynamic features. Our framework represents a
significant advance by introducing a dynamic spatial allocation module constrained by a macro-scale area demand. This
approach offers three key advantages over static methods: (1) it ensures that simulated spatial patterns are consistent with
observed regional expansion trends; (2) calibration against historical distributions yields higher predictive accuracy in
reproducing the extent and clustering of RTS development; and (3) it provides a true predictive capability that is essential for
forecasting RTS response under future climate scenarios.

From a scientific and practical standpoint, this predictive power is invaluable. It provides a more robust tool for assessing
short- and long-term risks to critical infrastructure on permafrost regions and offers a quantitative method for understanding
the cascading impacts of permafrost degradation, such as the mobilization of previously frozen carbon. However, this dynamic
approach also introduces challenges. A key issue is the potential for error propagation, where small inaccuracies in early
simulation steps can accumulate over time and lead to deviations in long-term predictions. Furthermore, the base probability
models showed some sensitivity to non-stationary environmental conditions. This was particularly evident in 2022, when a
severe summer heatwave altered permafrost stability and led to a decline in simulation accuracy, highlighting the challenges
data-driven models face when extrapolating to extreme events not well-represented in the training data.

While the RTSEvo model adopts its core structure, a top-down demand constraining a bottom-up allocation from
established LUCC modeling framework, it is technically specialized for geohazard simulation in two fundamental ways. First,
it introduces a calibration procedure for its spatial allocation parameters. Unlike many LUCC models where transition rule
parameters are often set empirically or manually based on expert knowledge, the RTSEvo model implements a systematic
optimization routine to optimize the neighborhood effect and stochasticity. Furthermore, this calibration is driven by
maximizing FoM, a metric that specially measures the accuracy of new slump growth. Second, and most critically, the model
integrates mechanistic, process-based rules that differs significantly from the empirical rules common in LUCC. By embedding
this understanding of a physical process directly into the allocation rules, the model moves to capture the characteristic

morphology and directional growth of slumps.

4.2 The critical role of process-based rules

A central innovation of our model is the integration of process-based rules, particularly the retrogressive erosion factor,
into a data-driven framework. We conducted a comparative experiment to quantify the contribution of these process-based
rules. Baseline models, using only the base occurrence probability, were compared to the full evolution models for the 2020
simulation. The results were obvious: the FoM for the LR-based model increased from 6.67% (baseline) to 20.05% (full model),
and the RF-based model's FoM jumped from 0.42% to 17.36%. This demonstrates that the spatial allocation rules, which
account for processes like connectivity and retrogressive erosion, are essential for accurately capturing RTS evolution.

To specifically quantify the importance of the retrogressive erosion factor, we conducted a further sensitivity analysis,

comparing the performance of the full evolution models with and without this single factor in the allocation module across 50
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randomized trials (Figure 5). The results show that excluding the retrogressive erosion factor led to a statistically significant
(p < 0.05) reduction in simulation accuracy. In 2021, its inclusion improved the FoM from 9.99% to 11.94% for the LR-EM
and 8.41% to 11.15% for the RF-EM. The impact was even more pronounced in 2022, where the FoM improved by 29.3% for
the LR-EM and 22.3% for the RF-EM. The larger relative improvement in 2022 is particularly noteworthy. During the
anomalous 2022 heatwave, the predictive power of the purely statistical model components was diminished. In this context of
high statistical uncertainty, the physical rule provided by the erosion factor became even more critical, acting as a stabilizing
constraint that guided the simulation toward a physically plausible outcome, and highlighting the value of integrating physical
principles into data-driven models,

The theoretical importance of this factor stems from its ability to encode fundamental geomorphic feedbacks that are
otherwise absent in purely statistical frameworks. In natural RTS evolution, headwall retreat is governed by thermally driven
ice melt and subsequent slope failure, which cause spatially directional growth. By introducing a directional weighting term
aligned with the upslope retreat, the model effectively reduces spatial randomness in cell transitions and enhances spatial
autocorrelation consistent with observed morphodynamics. This physical constraint allows the model to allocate new RTS
pixels preferentially along physically plausible trajectories, thereby improving both pixel-level accuracy (FoM) and pattern-
level realism (Moran's I).

To further understand the drivers of RTS initiation, a SHAP analysis was performed (Figure A4). The results identified
maximum summer temperature (mean SHAP value: 0.09) and ground ice content (0.087) as the two most influential factors,
representing the key energy input and material basis for RTS development. Factors of moderate importance, such as land cover
(alpine meadow) and geology (semi-hard rock), reflect the synergistic control of surface conditions. In contrast, parameters
such as the vegetation index (0.05), distance to fault (0.049), and soil particle content (0.02—0.03) show relatively weaker
impacts. Notably, temperature-related variables were significantly more important than precipitation parameters, a finding
consistent with the known mechanisms of permafrost degradation on the QTP and field observations that link RTS events to

years with anomalously high temperatures (Lewkowicz and Way, 2019; Luo et al., 2022b).
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Figure 5. The impact of the retrogressive erosion factor on the simulation accuracy for 2021 and 2022. "No Erosion" means the model

versions without the erosion factor.

4.3 Limitations

Although the proposed evolution model has demonstrated effectiveness in simulating RTS dynamics, several limitations
remain to be addressed, primarily stemming from data and modeling assumptions. A primary source of uncertainty lies in the
accuracy of the RTS inventory datasets used for calibration and validation. While high-resolution imagery and field surveys
minimize mapping errors, the delineation of slump boundaries is still subject to interpreter bias, seasonal visibility constraints,
and the time gaps between observations (Xia et al., 2024a; Nitze et al., 2025). These uncertainties can propagate into the
training samples and affect the model's reliability. The driving factor datasets also have inherent uncertainties. While prepared
at a high spatial resolution, they may not adequately capture local or short-term extreme events, such as heatwaves, intense
precipitation, or seismic disturbances, that are known to play a key role in triggering or accelerating RTS activity (Yin et al.,
2023; Chen et al., 2024; Nesterova et al., 2024; Luo et al., 2025). This omission likely contributed to the decline in model
accuracy observed under the anomalous conditions of the 2022 extreme heatwave.

The modeling framework also embeds several assumptions that require careful consideration. The model assumes
synchronicity between RTS mapping and environmental drivers by using annual snapshots of both. In reality, RTS initiation
and expansion is likely to exhibit a time-lagged response to climate and geomorphic forcing (Dai et al., 2025), which means
an annual resolution may oversimplify the true dynamics. Furthermore, the framework assumes that once a pixel converts to
an RTS, it irreversibly remains in that state. This assumption is reasonable over short- to medium-term simulations; however,
over longer temporal horizons, slumps may stabilize, revegetate, or partially infill, effectively transitioning back toward non-

RTS states (Krautblatter et al., 2024). Ignoring this reversibility could lead to a systematic overestimation of long-term RTS
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persistence. Therefore, future improvements should focus on integrating multi-source uncertainty quantification, incorporating
event-based drivers such as extreme climate anomalies and seismic activity, and relaxing the irreversibility assumption to
account for possible slump stabilization processes. These enhancements will improve the evolution model's robustness and

generalizability in different environmental settings.

5 Conclusions

In this study, we developed and validated a novel dynamic evolution model for retrogressive thaw slumps (RTS). The
model framework integrates three core modules: a time-series forecast to establish regional RTS areal demand, machine
learning algorithms to map base occurrence probability, and a constrained spatial allocation module that incorporates
neighborhood effects, stochasticity, and a retrogressive erosion factor. The results yield three key conclusions:

(1) Applied and validated in the Beiluhe Basin, QTP for 2021 and 2022, the model successfully simulated RTS expansion.
The Logistic Regression-based model (LR-EM) achieved a Figure of Merit (FoM) of 12.00% and simulated Moran's I values
closely matching those of the actual RTS distribution in the independent 2021 validation, demonstrating its effectiveness as a
new tool for forecasting RTS evolution in space and time.

(2) While both the Random Forest (RF-EM) and LR-EM evolution models performed well, the LR-EM demonstrated
superior accuracy and stability in both calibration and validation years.

(3) The integration of process-based rules is critical for accurately simulating RTS behavior. The retrogressive erosion
factor significantly enhanced model performance, increasing the FoM by up to 29.3% compared to simulations without this
process.

The primary contribution of this work is the successful development of a framework capable of moving beyond static
susceptibility mapping to the dynamic, regional-scale simulation of RTS evolution. This dynamic modeling framework
provides a more robust scientific basis for RTS-related risk mitigation strategies for critical infrastructure and for quantifying

the cascading impacts of permafrost degradation.

Appendix A

Table Al. Summary of potential driving factors used for RTS modeling. Soil particle content (sand, clay, and silt) is provided for six depth
layers (0-5, 5-15, 15-30, 30-60, 60—100, and 100-200 cm). Note that permafrost type was excluded as a variable for this case study, as the

entire study area consists of continuous permafrost.

Category Predictort Variable Type Dataset/Resolution Data Source
Topographi | Elevation Numerical NASADEM (30 m) NASA JPL (2020),
cal factors i https://doi.org/10.5067/MEASURES/
Slope Numerical NASADEM/NASADEM_HGT.001

20




https://doi.org/10.5194/egusphere-2025-5005
Preprint. Discussion started: 20 October 2025
(© Author(s) 2025. CC BY 4.0 License.

EGUsphere\

Slope aspect Categorical
Profile Numerical
curvature
Hydrologic | Topographic Numerical
al factors wetness Index
Distance from | Numerical GlobeLand30 National Geomatics Center of China,
river and lake (30m) http://www.webmap.cn/mapDataActio
n.do?method=globalLandCover
Vegetation | Normalized Numerical MODIS MOD13QI1 (250 m) | National Aeronautics and Space
index difference Administration,
vegetation https:/www.earthdata.nasa.gov/
index (NDVI)
Climate Cumulative Numerical Monthly mean temperature | Peng (2019), https://doi.org/10.11888/
factors precipitation and precipitation dataset for | Meteoro.tpdc.270961
Maximum Numerical China (1 km)
summer
precipitation
Maximum Numerical
summer
temperature
Geological | Distance to fault | Numerical Active Fault Map (30 m) China Earthquake Disaster Prevention
condition Center, https://www.activefault-
datacenter.cn
Soil particle | Numerical A China dataset of soil | Shiand Wei (2024),
content (sand, properties for land surface | https://doi.org/10.11888/Terre.tpdc.30
modeling (90 m) 1235
clay, silt)
Lithology Categorical 1:500000 Engineering | Qi (2021),
geological petrofabric | https://doi.org/10.11888/SolidEar.tpdc.
database of Qinghai Tibet | 272211
Plateau
Human Distance from | Numerical Third pole 1:100,000 road | (Adc, 2019),
factors railway dataset (2014) http://poles.tpdc.ac.cn/en/data/c239564
1-0fd5-491b-8741-36a6cfc6401e/
Landuse/landco | Categorical A 10 m resolution land cover | https://doi.org/10.5281/zenodo.108750
ver type map of the Tibetan Plateau | 21
(LULC) with  detailed vegetation
types
(10 m)
Permafrost | Freezing degree | Numerical Monthly mean temperature | Peng (2019),
characterist | days (FDD),°C dataset for China (1 km) https://doi.org/10.11888/Meteoro.tpde.
ics d 270961;
Thaw  degree | Numerical Monthly mean precipitation | https://doi.org/10.5281/zenodo.311419
days (TDD),°C dataset for China (1 km) 4
d
Ground ice | Numerical Ground ice content | https://doi.org/10.5281/zenodo.700987
content predictions for the Northern | 5
Hemisphere permafrost
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region at 1-km resolution,
version 1.1

EGUsphere\

Active layer | Numerical

Frozen ground change data

Yan (2023),

thickness set in the Tibetan Plateau (1 | https://doi.org/10.11888/Cryos.tpdec.30
km) 0955
Permafrost type | Categorical 1 km Cao et al. (2023),

https://doi.org/10.6084/m9.figshare.19
642362

T As RTS map from August captures the cumulative result of the entire summer thaw season, predictor variables cover the same period of

the September-to-August “growth” year to avoid temporal mismatch.

Table A2. Statistical tests for consistency between the training and testing dataset split. Clay60-100 and silt30-60 refer to the clay and silt

contents at depths of 60—100 cm and 30-60 cm, respectively. TDD is thawing degree days, calculated as the sum of mean daily temperatures

above 0°C.
Feature Statistic p-Value
Kolmogorov-Smirnov Test
DEM 0.0061 0.1986
NDVI 0.0053 0.3455
Cumulative precipitation 0.0052 0.3645
Maximum summer precipitation 0.0048 0.4672
Maximum summer Temperature 0.0026 0.9863
Distance from fault 0.0045 0.5557
clay60-100 0.0047 0.4924
silt30-60 0.0037 0.7758
Distance from railway 0.0035 0.8467
TDD 0.0031 0.9225
Ground ice content 0.0016 1
Chi-Square Test
Semi-hard rock 1.4681 0.2256
Grassland 1.6264 0.2022
Meadow 1.2778 0.2583
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495  Figure Al. Frequency distribution of categorical predictor variables for RTS versus non-RTS locations. The bar charts compare the relative
frequencies of categories for (a) Land use/Land cover, (b) Lithology, and (c) Slope aspect. A statistically significant difference (p<0.01)

between all the groups, as determined by the chi-square test.
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Figure A2. Distribution of numerical predictor variables for RTS versus non-RTS locations. The box-and-whisker plots compare the
500 distributions for zones where RTSs occurred (RTS=1) and where they did not (RTS=0). Significance levels between groups, determined by
the Mann-Whitney U test, are indicated as follows: ns, not significant; *p < 0.05; **p <0.01; ***p <0.001.
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Figure A3. Feature selection curve from the Recursive Feature Elimination with Cross-Validation analysis. The curve plots the mean 10-

fold cross-validation accuracy against the number of features included in the model, with the shaded envelope representing +1 standard

505  deviation. Peak model accuracy (0.97) is achieved with an optimal subset of 14 features, which was used for the final model.
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Figure A4. Feature importance ranking based on Shapley Additive Explanations (SHAP) values.

Code and data availability. The source code for the thaw slump evolution model is publicly available on GitHub

(https://github.com/nanzt/RTSEvo). The inventory data of retrogressive thaw slumps across the Tibetan Plateau from 2016 to 2022 can be
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accessed at https://doi.org/10.5281/zen0do.10928346 (Xia et al., 2024b). The driving datasets and results for model simulations are
available via https://doi.org/10.6084/m9.figshare.30325243.
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