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Abstract. Widespread thermal degradation in permafrost regions is accelerating the development of retrogressive thaw slumps 

(RTS), which threaten ecological stability and infrastructure. Existing RTS modeling studies, however, are largely confined to 

static susceptibility mapping, lacking the capacity to predict their spatiotemporal evolution. To bridge this gap, we developed 15 

a new dynamic RTS evolution model (RTSEvo) that couples three modules: (1) a time-series forecast of regional RTS area, 

(2) a machine-learning module for pixel-level probability mapping, and (3) a constrained spatial allocation module that 

simulates RTS expansion by integrating neighborhood effects, stochasticity, and a novel retrogressive erosion factor. Validated 

using 2021 and 2022 manually interpreted RTS maps of the Beiluhe Basin, the model successfully simulated RTS growth, 

with the Logistic Regression-based model showing superior stability and accuracy. An interesting finding is that predictive 20 

skill is significantly enhanced by integrating process-based rules with statistical probability. The inclusion of a novel 

retrogressive erosion factor, which mechanistically simulates headwall retreat, proved critical, improving model performance 

by over 29.3% as measured by the Figure of Merit. The primary innovation of this study is the successful realization of a 

regional-scale dynamic simulation and prediction of RTS. This model offers a more robust scientific tool for RTS-related risk 

mitigation strategies.  25 

1 Introduction 

Permafrost, defined as ground that remains at or below 0 °C for at least two consecutive years, is a critical component of 

the cryosphere, underlies approximately 15% of the Northern Hemisphere's exposed land area (Obu, 2021). The Qinghai-Tibet 

Plateau (QTP) hosts the most extensive permafrost terrain in the world’s low to mid-latitudes and is a recognized hotspot of 

climate sensitivity (Cheng et al., 2019; Yao et al., 2019; Zhao et al., 2024). In recent decades, the QTP has warmed at more 30 

than twice the global average rate (Kuang and Jiao, 2016; Zhang et al., 2021), triggering widespread permafrost degradation. 

This is evidenced by rising ground temperatures, a deepening active layer, and a reduction in permafrost extent (Zhang et al., 
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2022; Ran et al., 2018). The rate of active layer thickening, for instance, has accelerated to an estimated 46.7 ± 26.9 cm per 

decade (Ziteng et al., 2025). 

A prominent and destructive consequence of the rapid thawing of ice-rich permafrost is the proliferation of thermokarst 35 

hazards, particularly retrogressive thaw slumps (RTSs) (Maier et al., 2025a). An RTS is a form of slope failure characterized 

by a steep, retreating headwall where exposed ground ice melts, leading to the downslope movement of a slurry of thawed 

sediment and water. The spatiotemporal footprint of these features across the QTP is expanding dramatically, with the total 

area of RTS increasing more than 26-fold since 1986 (Yang et al., 2023). These disturbances not only threaten the stability of 

alpine ecosystems (Lantz et al., 2009) and the safety of critical infrastructure (Niu et al., 2005; Hjort et al., 2022) but also 40 

mobilize large quantities of previously frozen organic carbon (Mu et al., 2016; Cassidy et al., 2017), creating a positive 

feedback to global climate change (Zhou et al., 2023).  

The development of RTS is governed by a complex interplay of environmental controls. They typically form on gentle 

slopes in areas of warm permafrost (mean annual ground temperature > −1 °C) with high ground ice content. While climate 

warming and heavy precipitation are primary drivers that reduce slope stability (Luo et al., 2024b), local factors such as 45 

engineering disturbances and thermal erosion also play a crucial role (Li et al., 2024; Jin et al., 2005; Luo et al., 2022b). To 

identify high-risk areas, many recent studies have successfully applied machine learning algorithms such as random forests 

(RF) and generalized linear models (GLM) to produce static susceptibility maps (Yin et al., 2023; Wang et al., 2024; Yin et 

al., 2021; Rudy et al., 2016).  

However, these susceptibility assessments have a fundamental limitation: they provide a static snapshot of risk based on 50 

a set of conditioning factors, but they cannot capture the inherently dynamic evolution of RTS. The expansion of an RTS is 

not merely a probabilistic occurrence but a process-driven phenomenon characterized by positive feedback mechanisms, such 

as the continuous exposure of ice at the headwall (Deng et al., 2024; Lewkowicz and Way, 2019), which accelerates retreat. 

Static models lack the capacity to simulate this temporal progression or predict how RTS fields will evolve under future climate 

scenarios.  55 

To address this gap, inspiration can be drawn from the well-established field of Land Use and Land Cover Change (LUCC) 

modeling. For decades, LUCC models have been developed to simulate the spatiotemporal dynamics of landscape change by 

coupling a macro-scale projection of change with a spatially explicit allocation module (Verburg et al., 2002; Verburg and 

Overmars, 2009). This framework is well-suited for modeling process-driven phenomena because the allocation of new cells 

is governed by transition rules that can encode underlying processes. For example, the common use of neighborhood effect in 60 

LUCC models is a simple but powerful way to represent the positive feedback and spatial contagion characteristic of RTS 

expansion. This flexible structure allows for the integration of more sophisticated, physically-based rules that can guid the 

simulation. This methodological paradigm, which combines statistical probabilities with process-driven spatial rules, therefore 

offers a promising foundation for dynamically modeling RTS evolution.  

Building on this approach, we developed an innovative dynamic evolution model for RTS (RTSEvo). This framework 65 

moves beyond static susceptibility by coupling three core modules: (1) a time-series forecasting module to project the total 
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regional RTS area demand; (2) a machine learning module to generate a baseline pixel-level occurrence probability based on 

environmental drivers; and (3) a constrained spatial allocation module that simulates RTS expansion by integrating the 

occurrence probability with neighborhood effects, a retrogressive erosion factor, and stochasticity, ensuring the total simulated 

area matches the projected demand. By explicitly modeling spatial propagation and temporal growth, our approach aims to 70 

provide a more realistic and predictive tool for regional disaster risk assessment and management under a changing climate.  

2 Material and methods 

2.1 The RTS evolution model framework 

Our model (RTSEvo v1.0) simulates RTS evolution by discretizing the landscape into a grid of cells (pixels). Unlike 

LUCC models that often manage transitions among multiple land cover types, our model simplifies the system to a binary 75 

classification. Each cell exists in one of two states: non-RTS (value = 0) or RTS (value = 1). This focus allows the framework 

to concentrate on the irreversible transition of cells from a non-RTS to an RTS state over annual time steps. This state transition 

is governed by a modular framework designed to integrate regional-scale trends with local-scale drivers (Figure 1). 

The framework consists of three core, interlinked modules. (a) RTS areal demand forecasting module: This module 

projects the total RTS area for the target year, establishing a top-down, macro-scale constraint on overall RTS expansion. (b) 80 

Base occurrence probability mapping module: This module uses machine learning to calculate the baseline probability of RTS 

initiation for each individual pixel based on its unique environmental characteristics (e.g., topography, climate, geology). (c) 

Constrained spatial allocation module: This module serves as the dynamic engine of the model. It iteratively allocates new 

RTS cells on the landscape by combining the base occurrence probability with spatial interaction rules (neighborhood and 

retrogressive erosion effects) until the estimate total area demand is met.  85 

The model is calibrated using a historical RTS distribution map from a reference year. The optimal model parameters are 

determined by systematically tuning them to maximize the agreement between the simulated and observed RTS patterns from 

the reference year.  
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Figure 1. Conceptual framework and workflow of the dynamic retrogressive thaw slump (RTS) evolution model. The workflow begins 90 

with processing multi-source data to train the model. It consists of three interlinked modules: (i) Areal demand forecasting, which uses 

Holt’s linear trend model to project the total RTS area serving as a macro-scale constraint; (ii) Base occurrence probability mapping, 

which employs machine learning algorithms (Random Forest or Logistic Regression) to generate a pixel-level probability map for RTS 

initiation; and (iii) Constrained spatial allocation, which dynamically allocates new RTS pixels by integrating the base probability with 

neighborhood effect, a retrogressive erosion factor, a stochastic factor, and an adaptive inertia coefficient until the projected area demand 95 

is met. Model parameters are optimized through a calibration process that maximizes the Figure of Merit (FoM), and final performance is 

evaluated using FoM, Kappa, F1 Score and Moran's I.  

2.2 Module 1: RTS areal demand forecasting 

A key constraint for the simulation is the total new area of RTS to be allocated in a given year. To prevent uncontrolled 

expansion, we first forecast this regional demand. We employed Holt’s linear trend method, an exponential smoothing 100 

technique well-suited for time-series data exhibiting a clear trend (Holt, 2004), which has been observed for RTS growth on 
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the QTP since 2011 (Maier et al., 2025b). The method uses a level equation (current magnitude), a trend equation (rate of 

change), and a forecast equation:  

 

1 1

* *
1 1

( | )

Level equation:       (1 )( )

 Trend equation:      ( ) (1 )

ˆForecast equation:  

t t t t

t t t t

t h t t t

l ay a l b

b l l b

y l hb

 

− −

− −

+

= + − +


= − + −
 = +


 (1) 

where, 𝑙𝑡 is the estimated level (baseline area) at time 𝑡, 𝑏𝑡 is the estimated trend (growth rate),  𝑦𝑡 is the observed area at time 105 

t, and 𝑦̂(𝑡 + ℎ|𝑡) is the forecasted area for h time steps into the future.  The smoothing parameters for level (𝑎) and trend (𝛽∗) 

range from 0 to 1 and control the weighting of recent versus past observations. 

2.3 Module 2: Base occurrence probability mapping  

This module quantifies the intrinsic suitability of each pixel for RTS formation based on a suite of environmental driving 

factors, independent of its spatial context. We tested two widely used machine learning algorithms for this task: Logistic 110 

Regression (LR) and Random Forest (RF).  

LR is a generalized linear model that calculates the probability of an outcome using the sigmoid function, providing a 

clear, interpretable relationship between the drivers and RTS occurrence (Cramer, 2003). The probability  𝑃𝑖  for pixel i is given 

by: 
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where, Xi represents the feature vector for a single pixel i, containing the values of all environmental driving factors for that 

specific pixel, and 𝑧 = 𝑤1𝑥1
𝑖 + 𝑤2𝑥2

𝑖 + ⋯ + 𝑤𝑛𝑥𝑛
𝑖 + 𝑏, is the linear combination of weighted predictor variable. 𝑤 represents 

the weights associated with each predictor variable, and 𝑏 is the bias term. 

RF is an ensemble learning algorithm that builds a multitude of decision trees and aggregates their outputs. It is robust to 

non-linear relationships and interactions between variables. The probability is calculated as the proportion of trees in the forest 120 

that classify the pixel as RTS  (Breiman, 2001; Sun et al., 2021): 

 1
( ( ) 1)

( )

totalTree i
ni n

i

total

Tree X
P X

Tree

=
=

=
 1

 (3) 

where, 1(·) is the indicator function and 𝑇𝑟𝑒𝑒𝑡𝑜𝑡𝑎𝑙  is the total number of trees in the forest. 𝑇𝑟𝑒𝑒𝑛(𝑋𝑖) refers to the prediction 

from a single decision tree within the RF, i.e., the output of the n-th tree when it’s given the feature vector Xi as input.  

The performance of machine learning models is highly dependent on the selection of their hyperparameters, which are 125 

settings that control the learning process itself (Probst et al., 2019). To find the optimal configuration for both the RF and LR 

models, we implemented a systematic tuning process. While traditional methods like Grid Search and Randomized Grid Search 

are common, they can be computationally inefficient, especially with many parameters. Therefore, we employed Latin 
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Hypercube Sampling (LHS), a more advanced statistical method for parameter optimization. LHS is superior because it 

explores the parameter space more efficiently by dividing each parameter's range into equal intervals and sampling exactly 130 

one value from each interval, ensuring a more uniform and representative coverage with fewer trials (McKay et al., 1979). We 

first defined a plausible search range for each key hyperparameters in the RF and LR models (Table 1). For RF, this included 

parameters like the number of trees (n_estimators) and maximum tree depth (max_depth); for LR, it included regularization 

strength (C) and the optimization algorithm (solver). LHS was used to generate 100 unique combinations of hyperparameters 

from these ranges. Then each parameter combination was evaluated using 10-fold cross-validation accuracy as the objective 135 

function. The hyperparameter combination that resulted in the highest average cross-validation accuracy was selected as the 

optimal configuration for the final model used for base occurrence probability mapping.  

Table 1. Hyperparameter search ranges for Random Forest (RF) and Logistic Regression (LR) models. These ranges were systematically 

explored using Latin Hypercube Sampling to find the optimal parameter combination for the base occurrence probability mapping. 

Method Hyperparameter Search range  Meaning 

Random forest n_estimators (100,1000) the number of decision trees 

max_depth (2,20) maximum depth of each tree 

max_features (1,20) 

maximum number of 

features considered for 

splitting a node 

min_samples_leaf (1,20) 
minimum number of samples 

required at a leaf node 

min_samples_split (2,20) 

minimum number of samples 

required to split an internal 

node 

Logistic regression 
C (0.01,10) 

inverse of the regularization 

strength 

solver ('liblinear', 'lbfgs','saga') optimization algorithm 

penalty ('l1','l2') the type of regularization 

max_iter (1,5000) 

maximum number of 

iterations for the 

optimization algorithm 

2.4 Module 3: Constrained RTS spatial allocation 140 

This module transforms the static probability map from Module 2 into a dynamic RTS distribution that adheres to the 

area demand from Module 1. This is achieved through an iterative process within a cellular automata framework (Wolfram, 

1983; Toffoli and Margolus, 1987). At each iteration k, a total transition probability (𝑃𝑇𝑜𝑡𝑎𝑙,𝑖
𝑘 ) is calculated for every non-RTS 

cell, integrating the base probability with four dynamic factors: 

 
,  k k k k k

Total i i i i i iP P U Erosion RA Inertia=      (4) 145 
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where, 𝑃𝑖  is the base occurrence probability representing the intrinsic suitability of the pixel 𝑖, as calculated in Module 2; 𝑈𝑖
𝑘 

represents neighborhood effect that accounts for spatial autocorrelation, based on the principle that a new RTS is more likely 

to form near existing ones;  𝐸𝑟𝑜𝑠𝑖𝑜𝑛𝑖
𝑘 is a retrogressive erosion factor, a novel component designed to mimic characteristic 

upslope (headward) retreat of RTS; 𝑅𝐴𝑖
𝑘 is a stochastic factor designed to simulate the inherent randomness and unmodeled 

variables in natural systems; and 𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑖
𝑘  denotes an adaptive inertia coefficient as a dynamic regulator that accelerates or 150 

decelerates the overall rate of new RTS allocation to ensure the final simulated area matches the target area demand from 

Module 1.  

The neighborhood effect factor is calculated as the density of RTS cells within a defined neighborhood window:  
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where the numerator counts RTS cells in an 𝑁 × 𝑁 window at the previous iteration (𝑘 − 1) and 𝑤 is a weight factor. 𝟏(𝑠𝑖
𝑘−1 =155 

1) is an indicator function that counts how many neighboring cells are already in the RTS state (s=1). 

The retrogressive erosion factor assigns a higher probability weight to cells located in the direction opposite to the local 

slope aspect (Luo et al., 2024a), thereby promoting directional growth. The directional weight (𝑤𝑚𝑛) is calculated based on 

the angular difference (∆𝜃) between the potential growth direction and the theoretical erosion direction (𝜃𝑒𝑟𝑜𝑠𝑖𝑜𝑛), which is 

180° from the slope aspect, representing how closely its direction aligns with the ideal erosion path. The equations are given 160 

as follows: 
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where, 𝜃𝑎𝑠𝑝𝑒𝑐𝑡  is the standard slope aspect for the cell calculated from the digital elevation model (DEM), 𝜃𝑚𝑛→𝑖𝑗  is the 

azimuth angle for a central cell at coordinates (i, j) to each of its neighbors at coordinates (𝑚, 𝑛). 𝟏(𝑠𝑚𝑛 = 1) is an indicator 

function (where state s=1). 𝐸𝑟𝑜𝑠𝑖𝑜𝑛𝑖
𝑘  is thus calculated as a proportion of a numerator term that sums the directional weights 165 

(𝑤𝑚𝑛) of all neighboring cells that are currently in the RTS state, over the denominator that is the sum of the directional weights 

of all neighbors, regardless of their state. 

The stochastic factor (𝑅𝐴𝑖
𝑡 ) is based on an extreme value distribution (Coles, 2002; Davison and Huser, 2015):  

 (( log ) )  1     0.5stochk
i stochR RA

 −= +  −  (7) 
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where, R is a random value between 0 and 1, 𝛼𝑠𝑡𝑜𝑐ℎ and 𝛽𝑠𝑡𝑜𝑐ℎ control the shape and magnitude of the perturbation. The search 170 

range of 𝛼𝑠𝑡𝑜𝑐ℎ  was set to (0.01, 0.5) for practical purpose, as this range ensures an introduction of moderate, plausible 

fluctuations without destabilizing the model. The range of 𝛽𝑠𝑡𝑜𝑐ℎ was set to (0.1, 1) which aims to balance the influence of 

randomness in the model. 

The inertia coefficient is calculated by a piecewise function (Equation 8). The core variable is 𝐷𝑘, which represents the 

difference between the number of simulated RTS cells and the required number (the demand) at iteration k. 175 
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Once the total transition probability (𝑃𝑇𝑜𝑡𝑎𝑙,𝑖
𝑘 ) is calculated for each non-RTS cells, a probability threshold method is used 

to determine if a state change occur. If 𝑃𝑇𝑜𝑡𝑎𝑙,𝑖
𝑘  > 𝑃𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑘 , the cell’s state transitions from non-RTS (0) to RTS (1). Crucially, 

this state transition is assumed to be irreversible; once a pixel converts to the RTS state, it remains in that state for all subsequent 

time steps of the simulation. This entire allocation process continues iteratively. The simulation for a given year concludes 180 

when the total area of simulated RTS cells meets the target demand projected by Module 1. 

2.5 Model calibration 

The Constrained Spatial Allocation module contains several key parameters (e.g., neighborhood size N, neighborhood 

weight w, stochastic shape parameters 𝛼𝑠𝑡𝑜𝑐ℎ  and proportional coefficient 𝛽𝑠𝑡𝑜𝑐ℎ ) that require calibration (Table 2). We 

implemented a systematic calibration procedure using LHS to efficiently sample the multi-dimensional parameter space. For 185 

each parameter set generated by LHS, the model was run to simulate the RTS distribution for a historical reference year. The 

performance of each run was evaluated by comparing the simulated map to the actual observed map using the Figure of Merit 

(FoM) metric, which measures the accuracy of change detection. The parameter set that yielded the highest FoM was selected 

as the optimal configuration for future simulations. 

Table 2. Parameter search ranges and optimal values for the constrained RTS spatial allocation module 190 

Parameter Value Range Logistic regression  Random forest 

Neighborhood size (N) [3, 5, 7, 9, 11, 13, 15, 17, 19] 3 3 

Neighborhood weight (w) (0, 1) 0.813 0.759 

Shape parameter (𝛼𝑠𝑡𝑜𝑐ℎ) (0.01, 0.5) 0.04 0.351 

Proportional coefficient (𝛽𝑠𝑡𝑜𝑐ℎ) (0.1, 1) 0.161 0.498 

https://doi.org/10.5194/egusphere-2025-5005
Preprint. Discussion started: 20 October 2025
c© Author(s) 2025. CC BY 4.0 License.



9 

 

2.6 Case study application: Beiluhe Basin, QTP 

2.6.1 Study area 

We tested and validated our model in the Beiluhe Basin, a region in the central QTP (Figure 2) that is a representative 

hotspot for permafrost degradation. Situated at an average elevation of over 4,500 m, the basin is underlain by continuous, ice-

rich permafrost, with volumetric ice content exceeding 25% (Yin et al., 2017). The permafrost here is thermally sensitive, 195 

classified as warm with a mean annual ground temperature  at 15 m depth ranging from –1.8 to –0.5 °C (Luo et al., 2015). The 

landscape is dominated by alpine meadows and alpine grasslands, which cover over 40% of the regional land area (Yin et al., 

2017). The local climate is cold and semi-arid; observations from the Wudaoliang meteorological station near the Beiluhe 

Basin, show a mean annual air temperature of –5.0 °C and mean annual precipitation of approximately 300 mm (Figure 2b). 

Over 90% of this precipitation is concentrated in the summer months (May to September), while annual evaporation exceeds 200 

1,000 mm. Since 1960, the region has experienced a significant warming and humidification trend, with an accelerated rate of 

increase in both temperature and precipitation after 2000 (Yu et al., 2025).  The combination of climate change, topography, 

and vulnerable permafrost has resulted in the formation of over 450 documented RTS features (Xia et al., 2024a), making it 

an ideal study area for this study.  

 205 

Figure 2. Location of the Beiluhe Basin study area, regional climate trends, and RTS distribution. (a) Permafrost distribution on the QTP, 

with the study area marked by a red star. Permafrost data are from Cao et al. (2023). (b) Air temperature and precipitation records from the 

nearby Wudaoliang weather station (1955-2021), with trend lines illustrating regional warming and humidification. (c) A 2022 PlanetScope 

satellite image (Planet Team, 2025)  of the Beiluhe Basin overlaid with mapped RTS boundaries. RTS boundaries are from Xia et al. (2024a). 

2.6.2 Data acquisition and preparation 210 

https://doi.org/10.5194/egusphere-2025-5005
Preprint. Discussion started: 20 October 2025
c© Author(s) 2025. CC BY 4.0 License.



10 

 

The ground-truth data for this study consisted of annual RTS inventories for the Beiluhe Basin from 2016 to 2022. Over 

this period, more than 200 new RTS were identified, covering a cumulative area of 1,042.47 ha (Xia et al., 2024a). Individual 

slump areas ranged from 0.11 to 22.39 ha, with an average of 2.61 ha (Luo et al., 2022a). These inventories were derived from 

the manual interpretation of high-resolution (3-meter) PlanetScope imagery acquired in August of each year; their high 

reliability was confirmed by a low relative area error of 4.6% when compared against field-mapped boundaries (Xia et al., 215 

2024a). Because August marks the end of the summer thaw season, the resulting maps are assumed to represent the full extent 

of RTS activity for the annual cycle spanning from September of the preceding year to August of the current year. 

For the explanatory variables, a comprehensive set of 36 potential driving factors was initially compiled (Table A1), 

spanning six categories: topography, climate, geology, hydrology and vegetation, permafrost characteristics, and human 

activities (Rudy et al., 2016; He et al., 2024; Lacelle et al., 2009; Kokelj et al., 2015; Yin et al., 2023). The suitability of the 220 

remaining factors was validated using non-parametric tests to assess differences between RTS and non-RTS groups. The 

Mann–Whitney U test was applied to numerical data and the chi-square test to categorical data. The results confirmed that all 

but one factor (clay content at 100–200 cm depth) showed a statistically significant difference (p<0.01), supporting their 

inclusion as potential predictors (Figure A1 and Figure A2). Finally, all selected data layers were prepared for modeling by 

resampling them to a uniform 10 m spatial resolution, which is our modeling resolution.  225 

2.6.3 Data preprocessing and feature engineering 

We used the annual RTS inventories from 2016 to 2020 to construct a robust dataset for the model, holding the 2021 and 

2022 maps in reserve for independent model validation. We developed a dynamic, multi-period approach to create the sample 

set, which is a significant improvement over traditional static methods that fail to capture the temporal dynamics of expansion. 

Our method extracts only those pixels that changed state from non-RTS to RTS between any two consecutive years within the 230 

2016–2020 timeframe. These "changed pixels," representing active expansion fronts, were aggregated to form a cumulative 

dataset of positive samples (labeled "1"). This strategy trains the model on the specific environmental conditions that trigger 

new growth and, by pooling data from multiple years, ensures the model is robust to a variety of annual climate conditions. 

An equal number of stable non-RTS pixels were then randomly selected as negative samples ("0") to create a balanced 1:1 

dataset. 235 

The predictor variables for these samples underwent extensive preprocessing. Categorical variables (Table A1) such as 

slope aspect, lithology, and land use/land cover were converted into a binary (0 or 1) vector format using one-hot encoding to 

prevent the model from learning false ordinal relationships. During this step, the permafrost type variable was excluded from 

the analysis, as its uniformity across the study area offered no predictive power. Continuous variables were subsequently scaled 

to a [0, 1] range using Min-Max Normalization (Halder et al., 2025) to ensure they contributed equitably to the model.  240 

The initial feature space after preprocessing consisted of 51 dimensions, comprising 18 categorical features generated 

through one-hot encoding and 33 numerical features. To reduce dimensionality and identify the most influential predictors 

(Guyon and Elisseef, 2003), we employed Recursive Feature Elimination with Cross-Validation based on Random Forest 
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(Misra and Yadav, 2020). This process identified an optimal subset of 14 variables that maximized model accuracy (Figure 

A3), including factors related to topography (DEM), vegetation (Normalized Difference Vegetation Index), climate 245 

(Cumulative precipitation, Maximum summer precipitation, Maximum summer temperature), geology (Distance from fault, 

Semi-hard rock, Clay content at 60-100 cm, Silt content at 30-60 cm), human activity (alpine grassland, alpine meadow, 

distance from railway), and permafrost (thaw degree days, ground ice content).  

Finally, this prepared dataset of 14 features was partitioned into a 70% training set for model fitting and hyperparameter 

tuning (for the base probability mapping module), and a 30% testing set for unbiased evaluation. The statistical homogeneity 250 

of these split was confirmed using Kolmogorov-Smirnov (K-S) and chi-square tests, with K-S statistics for all numerical 

features below 0.0061 and chi-square statistics for all categorical features above 1.2 (all corresponding p-values > 0.05), 

indicating no significant distributional differences between the sets (Table A2).  

2.7 Experimental design and performance evaluation 

We designed three experiments to systematically evaluate the performance of each component of the model framework 255 

and the framework as a whole. 

Experiment 1: Areal Demand Forecasting. To test the capability of this time series forecasting module, we trained the 

Holt's linear trend model using the observed total RTS area for each year from 2016 to 2020. The trained model was then used 

to predict the total RTS area for 2021 and 2022. The performance was evaluated using the coefficient of determination (R2) 

and the Mean Absolute Percentage Error (MAPE). 260 

Experiment 2: Base Occurrence Probability Mapping. To test the discriminative power of the machine learning models, 

the full dataset derived from the 2016–2020 RTS maps was partitioned into a 70% training set and a 30% testing set. The 

training set was used to fit the models and optimize their hyperparameters. The held-out testing set was used for an unbiased 

evaluation of performance, which was assessed using the Area Under the Receiver Operating Characteristic (ROC) curve 

(AUC) (Hanley and McNeil, 1982). The temporal robustness of the models was also verified using rolling time-window cross-265 

validation (Roberts et al., 2017). 

Experiment 3: Full Evolution Model Simulation. To test the performance of the entire RTS evolution model, we first 

calibrated the parameters of the spatial allocation module using the observed 2020 RTS map as the reference year. With the 

optimal parameters determined, we then ran the full simulation starting from the 2020 RTS distribution to predict the RTS 

maps for 2021 and 2022. The performance of these final simulations was assessed by comparing the simulated maps to the 270 

observed maps using three metrics, each assessing a different aspect of the simulation's quality: overall spatial accuracy, change 

detection capability, and spatial pattern fidelity.  

First, the Kappa coefficient (Equation 9) and F1 Score (Equation 10) were used to measure overall spatial accuracy. This 

metric quantifies the level of agreement between the simulated and observed maps, correcting for agreement that could have 

occurred by chance (Cohen, 1960). It ranges from -1 to 1, with values closer to 1 indicating higher consistency between the 275 

simulated and actual data.  

https://doi.org/10.5194/egusphere-2025-5005
Preprint. Discussion started: 20 October 2025
c© Author(s) 2025. CC BY 4.0 License.



12 

 

 0Kappa 100%
1

e

e

p p

p

−
= 

−
 (9) 

where, 𝑝0 is the proportion of correctly classified cells and 𝑝𝑒 is the expected agreement by chance.  
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where precision is the proportion of predicted RTS that are actually RTS, and recall is the proportion of actual RTS that are 280 

correctly predicted. 

Second, FoM (Equation 11) was used to specifically assess the model's change detection capability (Pontius et al., 2008). 

FoM is a more stringent metric that focuses on the model's ability to correctly simulate new RTS growth. It ranges from 0 to 

1, with higher values indicating a more accurate capture of the evolution process.  

 FoM 100%
 

Hit

Miss Hit False alarm
= 

+ +
 (11) 285 

where Hit is the number of pixels that were correctly simulated as new RTS growth, Miss is the number of pixels that were 

actual new RTS growth but were not identified by the model, and False alarm is the number of pixels that the model incorrectly 

simulated as new RTS growth, but in reality, did not change. 

Finally, the global Moran's I index (Equation 12) was used to evaluate the model's ability to reproduce the observed 

spatial pattern (Moran, 1950). This metric assesses the degree of spatial autocorrelation in the simulated RTS distribution. It 290 

ranges from -1 to 1, where positive values indicate spatial clustering, negative values indicate dispersion, and values near 0 

suggest a random spatial pattern.  
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where n is the total number of spatial units in the study area, 𝑦𝑖  and 𝑦𝑗 are attribute values for pixel i and j, respectively, 𝑦̅ is 

the mean of the attribute values across all spatial units, 𝑤𝑖𝑗 is a spatial weight defines the relationship between pixel i and pixel 295 

j, and 𝑆0 is the sum of all the spatial weights in the map. 

3 Results 

3.1 Areal demand Forecast 

The Holt's linear trend model was trained using RTS area data from 2016 to 2020 to forecast the total area demand for 

2021 and 2022 (Experiment 1). The model’s performance was evaluated against the observed RTS areas derived from the RTS 300 

distribution maps, yielding R2 = 0.545 and MAPE = 11.3%. The model fit was noted to be strong for the 2017-2020 period, 

with the lower overall R2 value influenced by a relatively large discrepancy for 2016. The model parameters were revealing: 

a level smoothing coefficient (α) of 0.6650 indicated that the forecast was highly sensitive to recent observations, reflecting 
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the strong influence of short-term factors like extreme precipitation on RTS area. A trend smoothing coefficient (β∗) of 0.6650 

suggested that the long-term growth trend is stable and changes rapidly, consistent with the inertia of geological processes. 305 

The model's initial trend value of 3,484,800 m²/a confirmed a significant expansion rate at the start of the study period. This 

expansion occurred in the context of the region's observed warming rate of 0.4°C per decade (Yao et al., 2022), which is a 

known driver of permafrost degradation.  

3.2 Performance of base occurrence probability models 

The predictive performance of the RF and LR models, which form the basis of the probability mapping module, was 310 

evaluated using the testing dataset in Experiment 2. The hyperparameter optimization process yielded significant 

improvements for both models. The AUC for the RF model increased from an initial 0.9434 to 0.9903, and the AUC for the 

LR model increased from 0.8573 to 0.8777 (Figure 3c, g). Both optimized models demonstrated excellent discriminative 

performance (AUC > 0.85), with the RF model achieving the highest accuracy. The rolling time-window validation confirmed 

that the models effectively captured spatiotemporal dynamics, maintaining high performance across different annual periods. 315 

The RF model was particularly stable, with AUC values consistently above 0.91 for all validation windows. The LR model 

also remained stable with AUC values mostly above 0.85, though it showed a performance dip to 0.7771 for the 2019–2020 

test set (Figure 3d, h). While the near-perfect AUC of the RF model could suggest potential overfitting, its performance on 

unseen future years in the rolling time-window validation remained excellent, with AUCs consistently above 0.91. This 

indicates that while the model is highly tuned, it still generalizes well. In contrast, the smaller gap between the LR model's 320 

main AUC (0.8777) and its temporal validation scores (mostly >0.85) suggests the simpler model was less prone to overfitting. 

Based on the hyperparameter-optimized models, occurrence probability maps were predicted for the 2020–2021 and 

2021–2022 periods (Figure 3a, b, e, f). A visual analysis reveals significant similarities between the predictions of both the RF 

and LR models. In both years, the models agreed on the general spatial pattern, identifying the highest RTS occurrence 

probabilities in the central regions of the basin while assigning lower probabilities to the peripheral areas. This overall pattern 325 

is consistent with the known distribution of existing RTSs. Despite this broad agreement, the models produced distinct spatial 

textures. The RF model's output is characterized by discrete, scattered patches of high probability (Figure 3a for 2021, b for 

2022), whereas the LR model yields continuous, ribbon-like zones with more gradual transitions between high- and low-risk 

areas, revealing finer spatial details (Figure 3e for 2021, f for 2022). The LR model consistently identified a larger proportion 

of high-probability pixels (probability > 0.9) than the RF model in both 2021 (2.67% vs. 2.07%) and 2022 (1.12% vs. 0.22%). 330 

These high-risk zones from the LR model demonstrate a higher degree of spatial consistency with the observed clusters of 

actual RTSs. Comparing the predictions between the two years reveals subtle inter-annual variations that reflect the models' 

sensitivity to the different climate inputs. For instance, in the LR model's predictions, the peak probabilities appear slightly 

less intense and widespread in the 2022 map (Figure 3f) compared to the 2021 map (Figure 3e). 

 335 
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Figure 3. Performance of the base probability models and resulting spatial predictions. (a, b, e, f) Spatial distribution maps of 

predicted RTS occurrence probability for the 2020–2021 (a, e) and 2021–2022 (b, f) periods for the Random Forest (RF) (a, 

b) and Logistic Regression (LR) (e, f) models, respectively. (c, g) Receiver Operating Characteristic (ROC) curves illustrating 

the performance improvement before (Initial) and  after (Updated) hyperparameter optimization. (d, h) Results of the rolling 340 

time-window validation.  

3.3 Model calibration and spatiotemporal simulation 

In Experiment 3, the full Logistic Regression Evolution Model (LR-EM) and Random Forest Evolution Model (RF-EM) 

were first calibrated using the observed 2020 RTS distribution as the reference target, with optimized parametric values present 

in Table 2. In this calibration step, both models achieved a strong fit to the data (Table 3). While both models demonstrated 345 

high overall spatial accuracy with Kappa coefficients and F1 Scores exceeding 88%, this metric can be inflated by the large 

number of correctly identified stable pixels. A more stringent evaluation is the FoM, which focuses only on how well the 

models predict change. In this regard, the LR-EM exhibited a superior ability to capture new growth, achieving a FoM of 

20.05%, which surpassed the RF-EM's 17.36%. Both calibrated models also effectively reproduced the observed spatial 

clustering; the Moran's I of the simulated results for both the LR-EM (0.603) and RF-EM (0.599) closely matched the Moran's 350 

I of the actual 2020 RTS distribution (0.596).  

Table 3. Performance metrics for the model calibration (2020) and independent validation (2021-2022), which were measured 

against the observed RTS distribution for each year. 

Type Figure of Merit Kappa F1 Score Moran’s I 

Actual 2020 RTS - - - 0.596 
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LR-EM 2020 20.05% 89.43% 89.84% 0.603 

RF-EM 2020 17.36% 88.89% 89.32% 0.599 

Actual 2021 RTS   - 0.609 

LR-EM 2021 12.00% 94.79% 95.74% 0.616 

RF-EM 2021 10.77% 94.87% 95.08% 0.613 

Actual 2022 RTS - - - 0.619 

LR-EM 2022 8.88% 91.51% 91.89% 0.631 

RF-EM 2022 8.78% 91.22% 91.61% 0.631 

Following calibration, the models with their optimized parameters were used for a predictive simulation of RTS evolution 

for the subsequent years, 2021 and 2022, which served as an independent validation. The LR-EM model again outperformed 355 

the RF-EM in both years in terms of absolute accuracy (Table 3). In 2021, the LR-EM achieved a FoM of 12.00% compared 

to 10.77% for the RF-EM. However, the accuracy of both models declined in 2022, a drop likely linked to a severe summer 

heatwave that year (Zhu et al., 2024). This event highlighted differences in model robustness; while the RF-EM's performance 

declined less sharply, the LR-EM still achieved higher accuracy scores (FoM, Kappa and F1 Score) in both validation years. 

A spatial analysis of the simulation errors (Figure 4) provides further insight. It reveals that while the models correctly identify 360 

the active margins of existing slumps as the primary zones for new growth, they struggle with the precise pixel-by-pixel 

location of the expansion. Most errors, both observed growth that the model missed (Misses) and areas incorrectly simulated 

as growth (False Alarms), are concentrated along these active boundaries. Visually, the LR-EM tended to produce larger, more 

contiguous clusters of correctly predicted pixels (Hits), which is consistent with its higher FoM score (Figure 4c,d). 

Despite the variations in pixel-level accuracy, both models demonstrated excellent performance in reproducing the overall 365 

spatial patterns of RTS development. The average relative error of the Moran's I index was controlled within 1.5% for both 

models, validating the effectiveness of the spatial allocation rules in capturing the characteristic clustering of RTSs. 

Furthermore, a qualitative comparison of slump morphology in the validation areas (Figure 4) shows that the simulations 

successfully captured the general shape, size, and orientation of the observed RTS expansion. The simulated slump boundaries, 

however, were generally smoother and less intricate than their real-world counterparts, indicating that while the model captures 370 

the macro-scale process, it tends to simplify fine-scale boundary details. 
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Figure 4. Comparison of simulated and observed RTS spatial distributions in the Beiluhe Basin for 2021–2022. The main maps show the 

overall simulated distributions and performance metrics for the (a) RF-EM in 2021, (b) RF-EM in 2022, (c) LR-EM in 2021, and (d) LR-

EM in 2022. The inset panels provide a detailed visual comparison between the observed (“Actual pattern”) and simulated slump morphology 375 

for four representative sub-regions (numbering 1-4), randomly selected from areas with intense RTS expansion. The circular insets provide 

detailed views of four representative sub-regions (numbering 5-8) randomly selected from areas with intense RTS expansion showing spatial 

comparison of simulated version observed RTS expansion, where the classification for each year is benchmarked against the observed 2020 

map. Note that the 2022 expansion simulations in the circle insets  show the cumulative change from 2020 to 2022. Correct prediction (Red): 

Pixels that were correctly simulated as new RTS growth (Hits). False prediction (Green): Pixels representing either observed growth that the 380 

model missed (Misses) or areas incorrectly simulated as growth (False Alarms). No change (Blank): Areas that correctly remained non-RTS 

in both the simulation and reality. 

4 Discussion 

4.1 Advancing from static susceptibility to dynamic evolution 
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Traditional RTS research has focused on producing static susceptibility maps, which are effective at identifying high-risk 385 

areas but cannot capture the temporal evolution or spatial propagation of these dynamic features. Our framework represents a 

significant advance by introducing a dynamic spatial allocation module constrained by a macro-scale area demand. This 

approach offers three key advantages over static methods: (1) it ensures that simulated spatial patterns are consistent with 

observed regional expansion trends; (2) calibration against historical distributions yields higher predictive accuracy in 

reproducing the extent and clustering of RTS development; and (3) it provides a true predictive capability that is essential for 390 

forecasting RTS response under future climate scenarios. 

From a scientific and practical standpoint, this predictive power is invaluable. It provides a more robust tool for assessing 

short- and long-term risks to critical infrastructure on permafrost regions and offers a quantitative method for understanding 

the cascading impacts of permafrost degradation, such as the mobilization of previously frozen carbon. However, this dynamic 

approach also introduces challenges. A key issue is the potential for error propagation, where small inaccuracies in early 395 

simulation steps can accumulate over time and lead to deviations in long-term predictions. Furthermore, the base probability 

models showed some sensitivity to non-stationary environmental conditions. This was particularly evident in 2022, when a 

severe summer heatwave altered permafrost stability and led to a decline in simulation accuracy, highlighting the challenges 

data-driven models face when extrapolating to extreme events not well-represented in the training data. 

While the RTSEvo model adopts its core structure, a top-down demand constraining a bottom-up allocation from 400 

established LUCC modeling framework, it is technically specialized for geohazard simulation in two fundamental ways. First, 

it introduces a calibration procedure for its spatial allocation parameters. Unlike many LUCC models where transition rule 

parameters are often set empirically or manually based on expert knowledge, the RTSEvo model implements a systematic 

optimization routine to optimize the neighborhood effect and stochasticity. Furthermore, this calibration is driven by 

maximizing FoM, a metric that specially measures the accuracy of new slump growth. Second, and most critically, the model 405 

integrates mechanistic, process-based rules that differs significantly from the empirical rules common in LUCC. By embedding 

this understanding of a physical process directly into the allocation rules, the model moves to capture the characteristic 

morphology and directional growth of slumps. 

4.2 The critical role of process-based rules 

A central innovation of our model is the integration of process-based rules, particularly the retrogressive erosion factor, 410 

into a data-driven framework. We conducted a comparative experiment to quantify the contribution of these process-based 

rules. Baseline models, using only the base occurrence probability, were compared to the full evolution models for the 2020 

simulation. The results were obvious: the FoM for the LR-based model increased from 6.67% (baseline) to 20.05% (full model), 

and the RF-based model's FoM jumped from 0.42% to 17.36%. This demonstrates that the spatial allocation rules, which 

account for processes like connectivity and retrogressive erosion, are essential for accurately capturing RTS evolution. 415 

To specifically quantify the importance of the retrogressive erosion factor, we conducted a further sensitivity analysis, 

comparing the performance of the full evolution models with and without this single factor in the allocation module across 50 
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randomized trials (Figure 5). The results show that excluding the retrogressive erosion factor led to a statistically significant 

(p < 0.05) reduction in simulation accuracy. In 2021, its inclusion improved the FoM from 9.99% to 11.94% for the LR-EM 

and 8.41% to 11.15% for the RF-EM. The impact was even more pronounced in 2022, where the FoM improved by 29.3% for 420 

the LR-EM and 22.3% for the RF-EM. The larger relative improvement in 2022 is particularly noteworthy. During the 

anomalous 2022 heatwave, the predictive power of the purely statistical model components was diminished. In this context of 

high statistical uncertainty, the physical rule provided by the erosion factor became even more critical, acting as a stabilizing 

constraint that guided the simulation toward a physically plausible outcome, and highlighting the value of integrating physical 

principles into data-driven models, 425 

The theoretical importance of this factor stems from its ability to encode fundamental geomorphic feedbacks that are 

otherwise absent in purely statistical frameworks. In natural RTS evolution, headwall retreat is governed by thermally driven 

ice melt and subsequent slope failure, which cause spatially directional growth. By introducing a directional weighting term 

aligned with the upslope retreat, the model effectively reduces spatial randomness in cell transitions and enhances spatial 

autocorrelation consistent with observed morphodynamics. This physical constraint allows the model to allocate new RTS 430 

pixels preferentially along physically plausible trajectories, thereby improving both pixel-level accuracy (FoM) and pattern-

level realism (Moran's I). 

To further understand the drivers of RTS initiation, a SHAP analysis was performed (Figure A4). The results identified 

maximum summer temperature (mean SHAP value: 0.09) and ground ice content (0.087) as the two most influential factors, 

representing the key energy input and material basis for RTS development. Factors of moderate importance, such as land cover 435 

(alpine meadow) and geology (semi-hard rock), reflect the synergistic control of surface conditions. In contrast, parameters 

such as the vegetation index (0.05), distance to fault (0.049), and soil particle content (0.02–0.03) show relatively weaker 

impacts. Notably, temperature-related variables were significantly more important than precipitation parameters, a finding 

consistent with the known mechanisms of permafrost degradation on the QTP and field observations that link RTS events to 

years with anomalously high temperatures (Lewkowicz and Way, 2019; Luo et al., 2022b). 440 
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Figure 5. The impact of the retrogressive erosion factor on the simulation accuracy for 2021 and 2022. "No Erosion" means the model 

versions without the erosion factor.  

4.3 Limitations 

Although the proposed evolution model has demonstrated effectiveness in simulating RTS dynamics, several limitations 445 

remain to be addressed, primarily stemming from data and modeling assumptions. A primary source of uncertainty lies in the 

accuracy of the RTS inventory datasets used for calibration and validation. While high-resolution imagery and field surveys 

minimize mapping errors, the delineation of slump boundaries is still subject to interpreter bias, seasonal visibility constraints, 

and the time gaps between observations (Xia et al., 2024a; Nitze et al., 2025). These uncertainties can propagate into the 

training samples and affect the model's reliability. The driving factor datasets also have inherent uncertainties. While prepared 450 

at a high spatial resolution, they may not adequately capture local or short-term extreme events, such as heatwaves, intense 

precipitation, or seismic disturbances, that are known to play a key role in triggering or accelerating RTS activity (Yin et al., 

2023; Chen et al., 2024; Nesterova et al., 2024; Luo et al., 2025). This omission likely contributed to the decline in model 

accuracy observed under the anomalous conditions of the 2022 extreme heatwave.  

The modeling framework also embeds several assumptions that require careful consideration. The model assumes 455 

synchronicity between RTS mapping and environmental drivers by using annual snapshots of both. In reality, RTS initiation 

and expansion is likely to exhibit a time-lagged response to climate and geomorphic forcing (Dai et al., 2025), which means 

an annual resolution may oversimplify the true dynamics. Furthermore, the framework assumes that once a pixel converts to 

an RTS, it irreversibly remains in that state. This assumption is reasonable over short- to medium-term simulations; however, 

over longer temporal horizons, slumps may stabilize, revegetate, or partially infill, effectively transitioning back toward non-460 

RTS states (Krautblatter et al., 2024). Ignoring this reversibility could lead to a systematic overestimation of long-term RTS 
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persistence. Therefore, future improvements should focus on integrating multi-source uncertainty quantification, incorporating 

event-based drivers such as extreme climate anomalies and seismic activity, and relaxing the irreversibility assumption to 

account for possible slump stabilization processes. These enhancements will improve the evolution model's robustness and 

generalizability in different environmental settings. 465 

5 Conclusions 

In this study, we developed and validated a novel dynamic evolution model for retrogressive thaw slumps (RTS). The 

model framework integrates three core modules: a time-series forecast to establish regional RTS areal demand, machine 

learning algorithms to map base occurrence probability, and a constrained spatial allocation module that incorporates 

neighborhood effects, stochasticity, and a retrogressive erosion factor. The results yield three key conclusions: 470 

(1) Applied and validated in the Beiluhe Basin, QTP for 2021 and 2022, the model successfully simulated RTS expansion.  

The Logistic Regression-based model (LR-EM) achieved a Figure of Merit (FoM) of 12.00% and simulated Moran's I values 

closely matching those of the actual RTS distribution in the independent 2021 validation, demonstrating its effectiveness as a 

new tool for forecasting RTS evolution in space and time. 

(2) While both the Random Forest (RF-EM) and LR-EM evolution models performed well, the LR-EM demonstrated 475 

superior accuracy and stability in both calibration and validation years.  

(3) The integration of process-based rules is critical for accurately simulating RTS behavior. The retrogressive erosion 

factor significantly enhanced model performance, increasing the FoM by up to 29.3% compared to simulations without this 

process. 

The primary contribution of this work is the successful development of a framework capable of moving beyond static 480 

susceptibility mapping to the dynamic, regional-scale simulation of RTS evolution. This dynamic modeling framework 

provides a more robust scientific basis for RTS-related risk mitigation strategies for critical infrastructure and for quantifying 

the cascading impacts of permafrost degradation.  

Appendix A 

Table A1. Summary of potential driving factors used for RTS modeling. Soil particle content (sand, clay, and silt) is provided for six depth 485 

layers (0–5, 5–15, 15–30, 30–60, 60–100, and 100–200 cm). Note that permafrost type was excluded as a variable for this case study, as the 

entire study area consists of continuous permafrost.  

Category Predictor† Variable Type Dataset/Resolution Data Source 

Topographi

cal factors 

Elevation Numerical NASADEM (30 m) NASA JPL (2020), 

https://doi.org/10.5067/MEASURES/

NASADEM/NASADEM_HGT.001 Slope Numerical 
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Slope aspect Categorical 

Profile 

curvature 

Numerical 

Hydrologic

al factors 

Topographic 

wetness Index  

Numerical 

Distance from 

river and lake 

Numerical GlobeLand30 

(30m) 

National Geomatics Center of China, 

http://www.webmap.cn/mapDataActio

n.do?method=globalLandCover 

Vegetation 

index 

Normalized 

difference 

vegetation 

index (NDVI) 

Numerical MODIS MOD13Q1 (250 m) National Aeronautics and Space 

Administration, 

https:/www.earthdata.nasa.gov/ 

Climate 

factors 

Cumulative 

precipitation 

Numerical Monthly mean temperature 

and precipitation dataset for 

China (1 km) 

Peng (2019), https://doi.org/10.11888/

Meteoro.tpdc.270961 

Maximum 

summer 

precipitation 

Numerical 

Maximum 

summer 

temperature 

Numerical 

Geological 

condition 

Distance to fault Numerical Active Fault Map (30 m) China Earthquake Disaster Prevention 

Center, https://www.activefault-

datacenter.cn 

Soil particle 

content （sand, 

clay, silt） 

Numerical A China dataset of soil 

properties for land surface 

modeling (90 m) 

Shi and Wei (2024), 

https://doi.org/10.11888/Terre.tpdc.30

1235 

Lithology Categorical 1:500000 Engineering 

geological petrofabric 

database of Qinghai Tibet 

Plateau 

Qi (2021), 

https://doi.org/10.11888/SolidEar.tpdc.

272211 

Human 

factors 

Distance from 

railway 

Numerical Third pole 1:100,000 road 

dataset (2014) 

(Adc, 2019),  

http://poles.tpdc.ac.cn/en/data/c239564

1-0fd5-491b-8741-36a6cfc6401e/ 

Landuse/landco

ver type 

(LULC) 

Categorical A 10 m resolution land cover 

map of the Tibetan Plateau 

with detailed vegetation 

types 

(10 m) 

https://doi.org/10.5281/zenodo.108750

21 

Permafrost 

characterist

ics 

Freezing degree 

days (FDD),℃̇̇   

d 

Numerical Monthly mean temperature 

dataset for China (1 km)  

Peng (2019), 

https://doi.org/10.11888/Meteoro.tpdc.

270961;  

Thaw degree 

days (TDD),℃̇̇  

d 

Numerical Monthly mean precipitation 

dataset for China (1 km)  

https://doi.org/10.5281/zenodo.311419

4 

Ground ice 

content 

Numerical Ground ice content 

predictions for the Northern 

Hemisphere permafrost 

https://doi.org/10.5281/zenodo.700987

5 
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region at 1-km resolution, 

version 1.1 

Active layer 

thickness 

Numerical Frozen ground change data 

set in the Tibetan Plateau (1 

km) 

Yan (2023), 

https://doi.org/10.11888/Cryos.tpdc.30

0955 

Permafrost type Categorical 1 km Cao et al. (2023), 

https://doi.org/10.6084/m9.figshare.19

642362 

† As RTS map from August captures the cumulative result of the entire summer thaw season, predictor variables cover the same period of 

the September-to-August “growth” year to avoid temporal mismatch.  

Table A2. Statistical tests for consistency between the training and testing dataset split. Clay60-100 and silt30-60 refer to the clay and silt 490 

contents at depths of 60–100 cm and 30–60 cm, respectively. TDD is thawing degree days, calculated as the sum of mean daily temperatures 

above 0°C.  

Feature Statistic  p-Value 

Kolmogorov-Smirnov Test 

DEM 0.0061 0.1986 

NDVI 0.0053 0.3455 

Cumulative precipitation 0.0052 0.3645 

Maximum summer precipitation 0.0048 0.4672 

Maximum summer Temperature 0.0026 0.9863 

Distance from fault 0.0045 0.5557 

clay60-100 0.0047 0.4924 

silt30-60 0.0037 0.7758 

Distance from railway 0.0035 0.8467 

TDD 0.0031 0.9225 

Ground ice content 0.0016 1 

Chi-Square Test 

Semi-hard rock 1.4681 0.2256 

Grassland 1.6264 0.2022 

Meadow 1.2778 0.2583 
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Figure A1. Frequency distribution of categorical predictor variables for RTS versus non-RTS locations. The bar charts compare the relative 495 

frequencies of categories for (a) Land use/Land cover, (b) Lithology, and (c) Slope aspect. A statistically significant difference (p<0.01) 

between all the groups, as determined by the chi-square test. 
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Figure A2. Distribution of numerical predictor variables for RTS versus non-RTS locations. The box-and-whisker plots compare the 

distributions for zones where RTSs occurred (RTS=1) and where they did not (RTS=0). Significance levels between groups, determined by 500 

the Mann-Whitney U test, are indicated as follows: ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001. 
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Figure A3. Feature selection curve from the Recursive Feature Elimination with Cross-Validation analysis. The curve plots the mean 10-

fold cross-validation accuracy against the number of features included in the model, with the shaded envelope representing ±1 standard 

deviation. Peak model accuracy (0.97) is achieved with an optimal subset of 14 features, which was used for the final model.  505 

 

Figure A4. Feature importance ranking based on Shapley Additive Explanations (SHAP) values.  

Code and data availability. The source code for the thaw slump evolution model is publicly available on GitHub 

(https://github.com/nanzt/RTSEvo). The inventory data of retrogressive thaw slumps  across the Tibetan Plateau from 2016 to 2022 can be 
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accessed at https://doi.org/10.5281/zenodo.10928346 (Xia et al., 2024b). The driving datasets and results for model simulations are 510 

available via https://doi.org/10.6084/m9.figshare.30325243. 
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