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Abstract. Global dynamic vegetation models (DGVMs) are essential tools for studying the changes in terrestrial ecosystems 10 

and their responses to climate change and human activities. However, these models exhibit substantial uncertainties when 

applied to croplands, particularly in regions with multiple cropping systems. These uncertainties arise from variations in 

planting types and phenology, which are influenced by sowing and harvesting schedules. This study focused on the 

phenological estimation errors of DGVMs in typical double - cropping agricultural regions. The Huang - Huai - Hai Plain in 

eastern China was chosen, which is one of the most important grain-producing areas with mainly winter wheat-summer crop 15 

rotation. A comparative analysis was conducted between the seven models from the TRENDY project and three remote sensing 

observations over last two decades. The results indicate that remote sensing vegetation indices consistently exhibit a typical 

bimodal structure in the study area, with peaks in April and August, corresponding to the growth peaks of the two-season crops. 

However, none of the DGVMs successfully capture this bimodal pattern. Given that multiple cropping systems are widespread 

in middle- and low-latitude regions with favorable water and temperature conditions, improving the simulation capabilities of 20 

DGVMs in such areas is an urgent and critical issue for advancing global vegetation modeling. 

1 Introdution 

Vegetation change, its attribution, and the feedback effects on climate are currently important topics of research. Terrestrial 

vegetation growth is highly sensitive to global changes(Houghton, 1995). Since the Industrial Revolution(Esau et al., 2016), 

various factors such as the increase in atmospheric carbon dioxide concentration(Keenan et al., 2013), climate warming(Xu et 25 

al., 2013; Lucht et al., 2002), enhanced nitrogen deposition(Penuelas et al., 2013), and land-use changes have significantly 

impacted the growth of terrestrial vegetation through complex biophysical and chemical processes(Lambin et al., 2001; Klein 

Goldewijk and Ramankutty, 2004). Therefore, globally, under the combined influence of natural and human activities, 

vegetation has shown a “greening” phenomenon, which refers to the statistically significant increase trend in vegetation 

greenness at an interannual scale (Piao et al., 2019). Vegetation changes have been primarily monitored through remote sensing, 30 

which provides relatively reliable long-term and large-scale observations. Remote sensing-derived vegetation indices, e.g., the 
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leaf area index (LAI)(Zhu et al., 2016), normalized difference vegetation index (NDVI)(Myneni et al., 1997) and enhanced 

vegetation index (EVI)(Huete et al., 2002) were widely used.  

Both climate change and human activities have been investigated as driving forces behind greening processes. Notably, 

dynamic global vegetation models (DGVMs) have provided precise quantitative results(Schierhorn et al., 2013; Estel et al., 35 

2015). A study analyzing the changing trends and driving factors of cumulative LAI during the global terrestrial growing 

season from 1982 to 2009, using remote sensing-based LAI time series and global vegetation dynamic models(Zhu et al., 

2016), found that the cumulative LAI increase significantly across approximately 25 to 50% of the world’s vegetated land, 

whereas less than 4% exhibited a notable decline. The same study further indicated that the rising atmospheric carbon dioxide 

concentration is the main driver of terrestrial vegetation change (70%), followed by nitrogen deposition (9%), climate change 40 

(8%) and land use (4%). The CO2 fertilization effect is most evident in tropical areas(Ahlström et al., 2015).  

However, managed lands—particularly croplands—have been shown by observations to make a substantial contribution to 

global greening, challenging the conclusion from DGVMs that attributes this trend primarily to the CO₂ fertilization effect. In 

addition, China's greening is primarily observed in forests (42%) and cropland (32%), while India's greening is largely driven 

by croplands (82%), with a smaller contribution from forests (4.4%)(Chen et al., 2019). This highlights the critical need to 45 

rigorously evaluate and improve DGVMs’ capacity to simulate agricultural systems. 

To effectively study vegetation dynamics, it is essential to first validate that Dynamic Global Vegetation Models (DGVMs) 

can accurately capture the fundamental seasonal characteristics of vegetation, particularly its phenological aspects. Phenology 

changes, including the advancement of the start of the growing season (SOS), the delay of the end of the growing season (EOS), 

and the enhancement of peak greenness, can significantly alter the Earth's seasonal landscape. Vegetation can adapt to climate 50 

change through relatively fast mechanisms, such as phenological or physiological adjustments. By modifying the growing 

season and phenology, global warming is expected to increase the productivity of northern ecosystems(Huang et al., 2017). 

Compared to natural vegetation, cropland vegetation differs significantly, particularly because agricultural activities give rise 

to unique phenological traits. This is especially evident in regions with high-intensity agriculture—namely, double-cropped 

farmlands—which exhibit phenological characteristics that are markedly different from those of natural vegetation.  55 

Multiple cropping is common and widespread land-use management strategy in low-land tropical and subtropical agriculture 

where rainy seasons are long enough or irrigation is viable. Changes in cropping intensity, not just in harvested area and crop 

yields are associated with crop production. Research indicates that multiple cropping systems cover 135 million hectares (12% 

of global cropland), with 85 million hectares in irrigated agriculture. About 34%, 13%, and 10% of the rice, wheat, and maize 

areas, respectively, are under multiple cropping systems, underscoring the importance of these systems for cereal production 60 

(Waha et al., 2020).  

Intensifying multiple cropping is considered an important means of increasing food production without expanding cropland 

area(Wu et al., 2018). However, processes related to multiple cropping are rarely represented in current DGVMs. Cropping 

intensity is generally expressed on a scale of 1-3, corresponding to single, double, and triple cropping, respectively. Yet, 

because multiple cropping systems are often complex and interspersed with intermittent fallow periods, many such areas are 65 
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not stably cultivated over long timescales(Waha et al., 2025). In light of this, we selected the Huang-Huai-Hai Plain, a highly 

representative double-cropping region, as our study area. Since the 1980s, this region has been dominated by a winter wheat–

summer crop double-cropping system. The objective of this study is to highlight the significant limitations that remain in 

current DGVMs with respect to accurately simulating the vegetation seasonality driven by intensively managed double-

cropping systems. 70 

2 Data and Methods 

2.1 Study Area 

The Huang-Huai-Hai Plain, formed by the alluvial deposits of the Yellow River, Huaihe River, Haihe River, and their 

tributaries, is located in eastern China. It lies within the warm temperate continental monsoon climate zone, covering area 

between 31°N–43°N and 112°E–124°E. The topography is illustrated in Fig.1a, using Global 15 Arc-Second Elevation 75 

(Weatherall et al., 2024). While plains dominate the area, there are also several mountainous regions, including Mount Tai in 

Shandong Province, and the Taihang and Yan Mountains on the western edge of Hebei Province. The North China Plain (NCP) 

is one of the most significant agricultural regions in China, encompassing approximately 18 million hectares of farmland, or 

18.3% of the national total. The double-cropping system of winter wheat and summer maize, named for the seasons in which 

they are planted, accounts for 60% of the arable land in this area.(Sun et al., 2007) 80 

 
Figure 1: The location of Huang-Huai-Hai Plain and its land cover types. a) Location of the study plain and its topography. b-d) 
Land cover types of 3 years of 2000, 2015 and 2020 based on RESDC data at xx resolution. The land use types represented by serial 
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numbers 1-7 are Paddy cropland, dry cropland, woodland, grassland, water body, build land, unused land. More detail of the Land 
cover types and changes is listed in Table 1. 85 

2.2 Dataset 

In this study, LAI was employed to characterize vegetation conditions due to its well-defined ecological significance and 

extensive utilization in global greening research. Monthly LAI datasets simulated by seven DGVMs from the TRENDY project 

(Sitch et al., 2024) with a spatial resolution of 0.5 degrees are selected for analysis. 

To complement the model simulations and reflect real-world vegetation conditions, three remote-sensing-derived LAI datasets 90 

were also incorporated. The 8-day 500 m resolution MODIS LAI (MOD15A2H, Version 6.1)(Myneni et al., 2021) were 

obtained from the LAADS DAAC (Level-1B and Atmosphere Archive & Distribution System Distributed Active Archive 

Center).  

The GLASS (The Global Land Surface Satellite) LAI dataset (version V60)(Ma and Liang, 2022), featuring an 8-day temporal 

resolution and 0.05 degrees spatial resolution, was developed using a bidirectional long short-term memory (BiLSTM) 95 

machine learning model applied to MODIS observations. 

The Global Inventory Modeling and Mapping Studies (GIMMS) LAI4g dataset, spanning 1982-2020, was generated by 

integrating AVHRR data (1982-2003) and reprocessed MODIS LAI (2004-2020) through a backpropagation neural network 

(BPNN) and data consolidation method (Zhu et al., 2023)24. This dataset provides a spatial resolution of 1/12th degrees and 

a semi-monthly temporal resolution. 100 

To ensure consistency in comparative analysis with DGVM outputs, all LAI datasets were standardized to a common temporal 

coverage (2001-2023), spatial resolution (0.5 degrees), and monthly temporal resolution. Detailed dataset parameters are 

summarized in Table 2. 

The land-cover dataset (Fig.1b-d) sourced from the Data Center for Resources and Environmental Sciences, Chinese Academy 

of Sciences (RESDC) (https://www.resdc.cn) provides a 1 km spatial resolution(徐新良 et al., 2018). Derived from Landsat 105 

imagery, this dataset categorizes land into six primary land use/land cover classes, with proportional distributions detailed in 

Table 1. A notable characteristic is the explicit separation of paddy fields and dry fields within the cropland category. This 

distinction facilitates a clear assessment of the prevalence of double-cropping systems in the study area and confirms that 

cropping systems and planting areas remained relatively stable throughout the research period. 

2.3 Seasonal cycle and trend analysis  110 

Given that the Huang-Huai-Hai Plain is a typical double-cropping agricultural region, two spatial masks—one for cropland 

and the other for natural vegetation (including grassland and woodland)—were constructed to analyse statistical differences 

between artificially managed and unmanaged land.  
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The Mann-Kendall test was applied to assess the significance of temporal trends in the variables. The coefficient of 

determination (R²) and F-test were used to evaluate the goodness-of-fit of linear regressions and their corresponding statistical 115 

significance. 

3 Results 

3.1 Annual LAI spatial pattern and regional average inter-annual trends 

We first evaluated the spatial distribution of the multi-year mean LAI (Fig.2). The results from the remote-sensing datasets are 

largely consistent, showing denser vegetation cover in the southwest, where the mid-latitude monsoon climate brings higher 120 

temperatures and precipitation compared with the north, creating more favorable conditions for vegetation growth. By contrast, 

the TRENDY simulations only partly reproduce this north-south gradient, while exhibiting more pronounced spatial 

discrepancies in LAI magnitude. Four of the seven models substantially overestimate LAI values. Whereas the three remote-

sensing products report a maximum annual mean LAI of around 2 at the 0.5° grid scale, some model outputs exceed 5, 

indicating a significant overestimation of vegetation density. Among the models, LPJ-GUESS shows the closest agreement 125 

with remote-sensing datasets in terms of both mean values and spatial patterns. 

 
Figure 2: The spatial distribution of average annual LAI of Huang-Huai-Hai Plain. Fig.2a-j respectively represents LAI4g, MOD15, 
GLASS, ED, ISAM, LPJ-GUESS, LPJml, LPXBern, ORCHIDEE and VISIT. 

Regional mean values are shown in Fig.3a. The three remote-sensing datasets are broadly consistent, while DGVMs yield 130 

considerably higher estimates, in some cases exceeding the observational values by more than fourfold. In terms of magnitude 

comparisons, remote-sensing-derived LAI shows only minor differences between cropland and natural vegetation, with mean 

annual values stabilizing around 1. DGVMs, however, apply different parameterizations for cropland and natural vegetation, 

resulting in divergent LAI ranges. For instance, models such as ED, ISAM, LPJml, and VISIT predict higher LAI in natural 
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vegetation, whereas LPJ-GUESS, LPXBern, and ORCHIDEE estimate greater LAI in croplands. These findings suggest that 135 

DGVMs still exhibit substantial uncertainties in simulating vegetation distribution in cropland areas.  

 
Figure 3: Average annual LAI and linear fitting trends of LAI of cropland and natural vegetation. a) the height of the bar graph 
represents the average annual LAI value and the error bar represents plus or minus one standard deviation. The dark colors with 
‘c’ on left represent the cropland and the light colours with ‘n’ on right represent the natural vegetation. b) the height of the bar 140 
graph represents linear trend of average annual LAI, Red represents a positive trend and blue represents a negative trend; The 
asterisk(*) on the top of bar means the linear trend pass the significance test(p <0.05). 

Long-term vegetation dynamics represent another key indicator. With rising atmospheric CO₂ concentrations, ecosystems—

absent disturbances such as extreme climate events—tend to exhibit enhanced canopy greenness, reflected as multi-year 

increases in vegetation indices or LAI. In this region, all three remote-sensing datasets reveal a significant greening trend 145 

across both croplands and natural vegetation. Notably, natural vegetation shows slightly higher LAI increase rates: LAI4g 

(0.0171 yr-¹), MOD15 (0.0141 yr-¹), and GLASS (0.0224 yr-¹), compared with croplands: LAI4g (0.0123 yr-¹), MOD15 (0.0130 

yr-¹), and GLASS (0.0151 yr-¹). By contrast, although most models also simulate an increasing LAI trend in this region, ISAM 

and LPJml instead produce declining trends, which is clearly inconsistent with observations.  

The spatial distribution of long-term trends is shown in Fig.4. All three remote-sensing datasets consistently reveal a greening 150 

pattern, both in terms of spatial extent and magnitude (Fig.4a-c). In contrast, ISAM produces a widespread declining trend, 

clearly differing from the other DGVMs, while LPX-Bern substantially overestimates the greening magnitude. In the linear 
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trend analysis, the remote-sensing datasets consistently indicate steady greening, whereas DGVMs show substantial 

divergence in both magnitude and direction, underscoring persistent model biases in capturing long-term vegetation changes. 

 155 
Figure 4: The spatial distribution of annual LAI linear fitting trends of Huang-Huai-Hai Plain. Fig.2a-j respectively represents 
LAI4g, MOD15, GLASS, ED, ISAM, LPJ-GUESS, LPJml, LPXBern, ORCHIDEE and VISIT. 

3.2 Seasonal patterns comparison  

The phenology of double-cropping farmlands differs markedly from that of natural vegetation, exhibiting two biological cycles 

within a single year. While phenological studies often characterize vegetation dynamics using indicators such as the start, end, 160 

and length of the growing season, our focus here is on broader temporal patterns—specifically, whether current DGVMs 

capture the fundamental bimodal pattern of LAI. In this study, the Huang-Huai-Hai Plain serves as a representative double-

cropping region in China, dominated by a winter wheat–summer crop rotation system. Winter wheat is typically sown in early 

October and harvested in early June of the following year, a schedule that is relatively fixed given the limited alternatives for 

overwintering field crops. By contrast, summer crops—such as maize, soybean, or cotton—are sown immediately after the 165 

wheat harvest and mature by late September. This sequential cropping system results in two distinct seasonal peaks in monthly 

LAI, occurring in April and August and corresponding to the peak growth phases of the two crops (Fig.5a1-c1). All remote-

sensing vegetation indices consistently confirm this bimodal pattern. Furthermore, two sharp declines in LAI are observed 

around June and October, coinciding with the harvest periods. 
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 170 
Figure 5: Seasonal cycles and linear fitting trends of monthly LAI for cropland. The dataset names are abbreviated in 

the subheading; The line graph represents the monthly average of LAI and the bar graph represents linear trend of 

average monthly LAI, Red represents a positive trend and blue represents a negative trend; The asterisk(*) on the top 

of bar means the linear trend pass the significance test(p <0.05). 

 175 

By contrast, none of the dynamic global vegetation models (DGVMs) successfully reproduce the bimodal LAI structure of 

croplands, indicating that current model frameworks do not adequately represent multiple cropping systems. Moreover, the 

simulated seasonal patterns of cropland LAI differ considerably across models, which can be broadly grouped into three types. 

The first type, exemplified by ISAM, LPJ-GUESS, and ORCHIDEE, shows a single summer peak lasting only 1–2 months, 

with LAI gradually increasing from its winter minimum. The second type, represented by ED, LPX-Bern, and VISIT, is 180 

characterized by rapid increases and decreases in LAI during spring and autumn, with an extended high-LAI period during the 

summer half-year (exceeding five months). The third type, as in LPJml, displays a maximum LAI in late spring. These 

differences reflect contrasting representations of cropland vegetation characteristics among models. Compared with remote-

sensing observations, it is evident that current DGVMs fail to capture the phenology of double-cropping systems. 

For comparison with cropland vegetation, we further extracted LAI data for natural vegetation (Fig.6). Unlike the bimodal 185 

structure observed in croplands, remotely sensed LAI of natural vegetation exhibits a unimodal seasonal pattern, closely 
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aligned with variations in hydrothermal conditions, with the peak typically occurring between July and August. By contrast, 

the simulations retain a bimodal structure similar to that of croplands. It is also noteworthy that the simulated differences 

between cropland and natural vegetation are far less pronounced than those indicated by remote-sensing observations. 

A direct comparison of the two seasonal cycle plots in Fig.S2 renders the results more evident: LAI growth rates simulated by 190 

the ED model decline during mid-year, corroborating our earlier hypothesis. Another key observation is that, from January to 

April, cropland LAIs consistently exceed those of natural vegetation in remote-sensing datasets (Fig.S2a,S2b,S2c). We 

attribute this to anthropogenic management practices—including sowing, irrigation, and fertilization—that accelerate the 

growth cycle of winter wheat, leading to its peak to occur earlier than that of natural vegetation. Simulated datasets, however, 

do not align with this finding. 195 

 
Figure 6: Seasonal cycles and linear fitting trends of monthly LAI for natural vegetation. The dataset names are abbreviated in the 
subheading; The line graph represents the monthly average of LAI and the bar graph represents linear trend of average monthly 
LAI, Red represents a positive trend and blue represents a negative trend; The asterisk (*) on the top of bar means the linear trend 
pass the significance test (p <0.05). 200 

3.2 Inter-annual trends over different months  

Seasonal differences are reflected not only in the climatological seasonal cycle but also in the month-to-month variations in 

long-term trends. For croplands, the monthly LAI linear trends from remote-sensing datasets show a persistent greening signal 

in nearly all months (except July in MOD15), particularly during the first half of the year (Fig.4). The strongest increases occur 
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in April–May, coinciding with the peak growth of winter wheat, whereas trends in the second cropping season are 205 

comparatively weaker. For natural vegetation, greening is concentrated in the latter half of the year (April–September), with a 

reduced signal in July, likely due to mixed pixels containing croplands and natural vegetation. Overall, natural vegetation 

exhibits slightly higher long-term LAI growth rates than croplands. 

To further examine seasonal characteristics of long-term changes, we divided the year according to the double-cropping system: 

spring growing season (SGS, March–May), summer sowing/transition season (SSS, June–July), autumn growing season (AGS, 210 

August–October), and winter season (WS, November–February). The spatial distribution of monthly LAI linear trends derived 

from remote sensing (Fig.7) reveals that croplands show the strongest greening during SGS. The greening signal diminishes 

during the transition period, weakens further in AGS, and remains marginal but positive during WS. In contrast, DGVMs fail 

to reproduce these seasonal features and in some cases even show opposite trend directions. 

Taken together, DGVM-simulated vegetation indices do not accurately capture vegetation dynamics in the Huang-Huai-Hai 215 

Plain, particularly in cropland regions. Three main issues stand out: (1) models tend to overestimate absolute LAI values; (2) 

they fail to represent the seasonal dynamics of the double-cropping system, especially the timing and intensity of growth stages; 

and (3) they underestimate the contribution of croplands to the regional greening trend. 

Overall, the simulated vegetation indexes from DGVMs may not capture the actual vegetation condition in the Huang-Huai-

Hai Plain, particularly for cropland. It is mainly reflected in three points. First, DGVMs tend to overestimate the overall 220 

magnitude of LAI. Second, they fail to accurately reproduce the seasonal dynamics of double-cropping systems, especially the 

timing and intensity of growth phases. Third, they underestimate the contribution of cropland to regional greening trends. 

 
Figure 7: The spatial distribution of time division LAI linear trends of Huang-Huai-Hai Plain. Divide the year into four periods, The 
whole year is divided into four periods, corresponding to the four periods of cropland. The 3rd,4th,5th months corresponding to the 225 
rapid growth period of wheat; The 6th,7th months corresponding to the period of wheat harvest and corn sowing; The 8th,9th,10th 
months corresponding to the growth period of corn and harvest; The 11th,12th,1st,2nd months corresponding to the winter period 
of wheat. 
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4 Discussion 

Dynamic global vegetation models (DGVMs) are widely used to assess ecosystem responses to climate change(Prentice et al., 230 

2007), and most land surface models embedded within Earth system models now include such capabilities(Martín Belda et al., 

2022; Lawrence et al., 2019). However, their ability to simulate human-managed land cover remains limited, particularly for 

urban green spaces and croplands. Under climate warming, intensifying cultivation to increase food production has become 

an important strategy, with double-cropping systems being one of the most representative examples. 

In this study, we focus on the Huang-Huai-Hai Plain, one of the world’s longest-standing double-cropping regions, to 235 

systematically analyze the seasonal characteristics and long-term dynamics of vegetation. Comparison with multiple DGVM 

simulations reveals substantial biases in both the representation of double-cropping seasonal cycles and long-term greening 

trends, highlighting the urgent need to improve model performance in such agricultural regions. 

Previous research has shown that approximately 70% of the global greening trend can be attributed to the CO₂ fertilization 

effect(Zhu et al., 2016). More recent analyses emphasize the significant contribution of croplands to greening, while pointing 240 

to the need for improved representation of human land-use practices in models(Chen et al., 2019). Mathison et al. used the 

JULES land surface model to simulate multi-season crop rotations at sites in France and India, thereby improving the accuracy 

of carbon and energy fluxes during secondary crop growing seasons(Mathison et al., 2021). 

The accuracy of DGVMs depends on three major factors: (1) mechanistic understanding of real-world processes; (2) regional 

parameter optimization; and (3) the precision of input driver datasets. The Huang-Huai-Hai case study demonstrates that 245 

simulated vegetation indices differ significantly from satellite-based observations, particularly in the amplitude and 

characteristics of seasonal cycles. This discrepancy arises because current DGVMs lack explicit mechanisms for double-

cropping systems. Inappropriate parameterizations may also lead to systematic overestimation of grid-scale LAI values. 

Moreover, the TRENDY project employs the HYDE global historical environment database(Klein Goldewijk et al., 2017) as 

a proxy for cropland dynamics. Yet, while global products are useful at large scales, regional-scale land use/cover change 250 

(LUCC) datasets are often more accurate. The RESDC LUCC dataset, derived from remote sensing and validated at local 

scales, provides a more realistic representation of land cover in the Huang-Huai-Hai Plain. A comparison of HYDE3.3 and 

RESDC (Fig.8) shows that HYDE unrealistically exaggerates interannual variability in cropland area, despite the relative 

stability of land use in this region, and that its spatial distribution of croplands deviates from actual conditions. 

Although remote-sensing data provide consistent and robust evidence, the assumption that each 0.5° grid cell represents a 255 

homogeneous land cover type introduces additional uncertainty, since these grid cells often contain mixed land uses, with 

croplands occupying only part of the area. This assumption may obscure the seasonal dynamics of croplands in model 

simulations. 

To improve the accuracy and applicability of DGVMs, future research should extend analyses to larger regions to investigate 

double-cropping and fallow systems at the global scale, with a particular focus on three priorities: (1) incorporating explicit 260 
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mechanisms for cropping systems; (2) optimizing regional parameterizations; and (3) integrating locally validated LUCC and 

crop calendar datasets. 

Further improvements will also require more accurate information on cropping intensity. For future projections, such estimates 

must account for both climate change and socioeconomic development to provide realistic scenarios of cultivation intensity. 

In addition, modeling must better reflect crop-specific characteristics: winter–spring crops are typically dominated by winter 265 

wheat, whereas summer crops vary more widely (e.g., maize, soybean, cotton), although their seasonal cycles are relatively 

well defined. 

 
Figure 8: Total area and distribution of cropland of the Huang-Huai-Hai Plain. a) Annual total cropland area b) Coverage ratio of 
cropland from HYDE3.3 in 2010 c) Coverage ratio of cropland from RESDC in 2010. 270 

5 Conclusions 

By integrating satellite observations with dynamic global vegetation model (DGVM) simulations of leaf area index (LAI), this 

study systematically evaluated vegetation growth dynamics in the Huang-Huai-Hai Plain. The results highlight three major 

limitations of current DGVMs in representing the double-cropping agricultural system: 

First, DGVMs systematically overestimate LAI values. In some cases, simulated values far exceed the observational range. 275 

For example, satellite-based estimates at the 0.5° grid scale show an annual maximum mean LAI of around 2, whereas several 

DGVMs produce values greater than 5. Such discrepancies can lead to misinterpretations of vegetation cover and productivity 

in double-cropping regions. 

Second, DGVMs fail to capture the seasonal dynamics of double-cropping systems. Remote-sensing observations reveal a 

characteristic bimodal LAI structure in the Huang-Huai-Hai Plain, with peaks in April (winter wheat) and August (summer 280 

maize). However, none of the seven DGVMs included in the TRENDY project reproduce this seasonal pattern. This deficiency 

constrains the models’ predictive ability for crop-related ecological processes, including carbon cycling and water balance. 

Third, DGVMs underestimate the contribution of croplands to regional greening trends. Satellite observations clearly identify 

croplands as the dominant driver of greening in the Huang-Huai-Hai Plain, yet DGVM outputs diverge substantially from 

observations in both spatial patterns and temporal dynamics. 285 
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Improving DGVM representation of double-cropping systems is therefore critical for enhancing the predictive accuracy of 

global change models. Future research should prioritize: (1) embedding explicit mechanisms of double-cropping into model 

structures; (2) optimizing parameterizations at regional scales; and (3) incorporating high-resolution, locally validated datasets 

on land use, cropping systems, and phenology. These advances will substantially improve the ability of DGVMs to simulate 

the complex interactions among human activities, agricultural systems, and terrestrial ecosystems under global environmental 290 

change. 
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https://www.resdc.cn/. 
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