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Abstract. Improving the simulation of carbon and water exchanges is crucial for reliable crop modelling under changing 

climate conditions. Although model calibration is a key step, optimising multiple outputs can be challenging and often reveals 

trade-offs between calibration objectives. We applied a Pareto-based multi-objective calibration with the Speed-constrained 

Multi-objective Particle Swarm Optimisation (SMPSO) algorithm to the Daisy soil–plant–atmosphere model, targeting dry 10 

matter (DM), net ecosystem exchange (NEE), and latent heat flux (LE) of winter wheat crops. 

The optimal parameter set achieved good accuracy for all objectives (RMSE = 0.948 𝑡 ℎ𝑎−1 for DM, 1.49 𝑔𝐶 𝑚−2 𝑑𝑎𝑦−1 for 

daily NEE and 30.7 𝑊 𝑚−2 for daily LE) but revealed singular trade-offs. The strong compromise between dry matter and 

NEE likely suggests wrong parameterisation and measurement bias, while the trade-off between NEE and LE reflects 

equifinality issues from evapotranspiration partitioning. Lastly, this analysis also pointed out limitations in simulating stomatal 15 

regulation during heatwaves conditions, supporting the decoupling between transpiration and carbon assimilation. These 

findings show that Pareto-based calibration can also serve as a diagnostic tool, identifying structural weaknesses and guiding 

targeted improvements in process representation for more robust crop model evaluation. 

1 Introduction 

Crop models are essential tools for yield forecasting and decision-making, but also for assessing the impact of climate change 20 

and understanding the complex interactions within the soil–plant–atmosphere continuum (Asseng et al., 2019). Over recent 

decades, they have been actively developed to account for changing environmental conditions such as rising temperature and 

elevated atmospheric CO2 (Timlin et al., 2024). As a result, crop models now integrate more complex approaches and detailed 

processes, replacing for instance the tipping-bucket approach with Richard’s equation for soil water dynamics, or using 

biochemical photosynthesis models (Farquhar et al., 2001) instead of radiation-use efficiency. Biochemical models are often 25 

coupled with stomatal conductance models to jointly simulate CO2 and water fluxes (Keenan et al., 2010). Such couplings are 

now implemented in advanced crop models such as GECROS (Yin and van Laar, 2005) and Daisy (Plauborg et al., 2010) as 

well as in most terrestrial biosphere models (e.g. SiB2, ORCHIDEE, IBIS, JULES, etc.). These biosphere models have also 

been combined with crop models in order to improve crop development and yield predictions while accurately simulating gas 

exchanges. Few examples are SiBcrop (Lokupitiya et al., 2009), ORCHIDEE–STICS (de Noblet-Ducoudré et al., 2004), Agro–30 

IBIS (Kucharik, 2003) and JULES–SUCROS (Van den Hoof et al., 2011). 
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In these couplings, carbon and water fluxes between vegetation and atmosphere are assumed to only be regulated by stomatal 

behaviour. When water is not limiting, plants open their stomata in order to maximise their carbon uptake. Conversely, they 

reduce their stomatal aperture under water stressed conditions, compromising between carbon assimilation and water loss 

(Manzoni et al., 2011). This response is often represented by a decrease of 𝑔1 , the slope parameter connecting stomatal 35 

conductance to carbon assimilation (Zhou et al., 2013; Liu et al., 2009). Nevertheless, as stomatal behaviour is influenced by 

multiple drivers (soil water status, atmospheric dryness, leaf temperature …) which often co-exist during extreme events such 

as droughts or heatwaves, plant responses may sometimes be contradictory (Grossiord et al., 2020). To date, these complex 

interactions remain poorly understood and insufficiently represented in models (Liu K. et al., 2024; Sabot et al., 2022). 

In this context, where stomatal behaviour controls both carbon assimilation and water loss, model calibration requires 40 

simultaneous assessment of different outputs. Calibrating against a single output (e.g. evapotranspiration) can result in 

compensating errors or masking structural deficiencies (Cameron et al., 2022). Multi-objective calibration therefore provides 

a well-suited framework, although it presents a significant challenge due to the high-dimensional parameter space of such 

models, the large computational cost of search algorithms and the potentially conflicting nature of targeted objectives. 

Extensively used in calibration of hydrological models (e.g., Efstratiadis and Koutsoyiannis, 2010; Jahandideh-Tehrani et al., 45 

2020, Moges et al., 2020), Multi-Objective Optimisation (MOO) algorithms aim at optimising all objectives simultaneously 

and explicitly handle conflicting objectives by exploring trade-offs using a Pareto-based sampling approach (Sharma and 

Kumar, 2022). This method allows modellers to select any points on the Pareto front, i.e. select an optimal parameter set 

depending on the modeller’s preference (Tang et al., 2018). 

Beyond identifying optimal parameter sets, Pareto-based calibration can also provide valuable insights into model behaviour.  50 

It can help detect ill-posed models, revealing structural inadequacies, missing processes or equifinality (Kollat et al., 2012; 

Efstratiadis and Koutsoyiannis, 2010). Recently, Harvey et al. (2023) analysed the change of the Pareto front solutions between 

calibration and validation sets, pointing out the influence of data type and model structure. Another study used Pareto-optimal 

solutions as informative priors to guide posterior uncertainty estimation within a Bayesian framework (Tang et al., 2018).  

In this case study, five growing seasons of winter wheat, cultivated on a Belgian site, were simulated using Daisy soil–plant–55 

atmosphere model (Plauborg et al., 2010). We applied a swarm-based MOO algorithm called Speed-constrained Multi-

objective Particle Swarm Optimisation (SMPSO) targeting three outputs: dry matter of vegetation organs (DM), Net CO2 

Ecosystem Exchange (NEE) and latent heat flux (LE). The last two variables capture the coupling between carbon and water 

cycles, whereas NEE and DM (considering carbon as a known fraction) are essential for assessing the crop carbon budget. By 

calibrating against these three outputs, our objectives were to improve model performance as well as to explore the trade-offs 60 

between them, revealing potential issues such as structural shortcomings or equifinality. 
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2 Materials and methods 

2.1. Case study 

The study site is a 12 ha cropland located in Lonzée, Belgium, with a temperate maritime climate (𝑇̅ = 11.1°𝐶 and annual 

precipitation of 716 mm). Cultivated for more than 85 years on a silt loam soil, this site is equipped with an eddy covariance 65 

system and a micrometeorological station since 2004, as a part of the Fluxnet network. Since 2017, this monitoring site has 

integrated the ICOS network as a Level 2 station named BE-Lon (https://www.icos-cp.eu/). 

This study focuses on five growing seasons of winter wheat (Triticum aestivum L.) which are summarised in Table 1. Sown in 

late October, TOB and SKY varieties are known to reach heading and maturity stages faster than SAH and SMA cultivars 

(Meza et al., 2018; 2023). As the same cultivar was sown for VAL and SAH, VAL season was set aside for the validation. 70 

During these five seasons, regular measurements of biomass were performed along with continuous measurements of NEE 

and LE. These flux data were corrected for frequency losses and filtered for low turbulence and nonstationary conditions, 

contributing to high-quality coverages detailed in Table 1. Flux data treatment is described in De Ligne et al. (2010) and 

Pastorello et al. (2020). Data collection (fluxes, biomass and soil) as well as additional information on the site, measurements 

or management activities can be found in Delhez et al. (2025).  75 

Table 1: Summary of winter wheat crops in BE-Lon. Coverage of NEE and LE corresponds to the fraction of high-quality hourly 

data during the calibration period. 

 VAL SAH TOB SMA SKY 

Variety Sahara Sahara Tobak KWS Smart LG Skyscraper 

Sowing – Harvest 14 Oct 10 – 16 Aug 11 14 Oct 14 – 2 Aug 15 29 Oct 16 – 30 Jul 17 10 Oct 18 – 1 Aug 19 28 Oct 21 – 24 Jul 22 

Anthesis 

(± 5 days) 
10 Jun 11 28 Jun 15 15 Jun 17 12 Jun 19 9 Jun 22 

Grain yield (t ha-1) 9.16 8.81 8.63 9.71 11.31 

Studied period 1 Mar 10 – 31 Jul 11 1 Mar 14 – 4 Aug 15 1 Mar 16 – 2 Aug 17 1 Mar 19 – 3 Aug 19 1 Mar 22 – 24 Jul 22 

Measured dry 

matter 

Vegetative (leaf+stem), 

storage organ 

Vegetative (leaf+stem), 

storage organ 

Leaf, stem, storage 

organ 

Leaf, stem, storage 

organ 

Leaf, stem, root, 

storage organ 

NEE coverage (%) 45.7 46.9 42.6 34.2 47.9 

LE coverage (%) 51.0 58.4 61.7 45.7 63.0 
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2.2 Daisy model 80 

2.2.1 Model description and set-up 

Daisy is a crop process-based model simulating carbon, nitrogen and water cycles of the soil–vegetation–atmosphere 

continuum. Initially published by Hansen et al. (1991), Daisy has since been extensively described (Abrahamsen and Hansen, 

2000; Hansen et al., 2012), developed (Plauborg et al., 2010; Holbak et al., 2021), evaluated and compared (Palosuo et al., 

2011; Tenreiro et al., 2020; Yin et al., 2020) in the literature. Different modelling options are included in Daisy and must be 85 

selected by the modeller depending on its objectives and data availability. 

In the present study, the 1D version of Daisy was used with an hourly time resolution. Hourly measurements of air temperature, 

air vapour pressure, global radiation, wind strength and precipitation were provided as inputs. Water movement in unsaturated 

soil is described by Richard’s equation and, for each soil layer, retention and conductivity curves have been established with 

the Mualem–van Genuchten model (Mualem, 1976; van Genuchten, 1980). Below the soil profile, there is an aquitard layer 90 

(i.e., water blocking layer) and an aquifer whose pressure varies according to water table depth measurements also provided 

as inputs. Potential evapotranspiration is estimated with the FAO56 Penman-Monteith equation, using the reference 

evapotranspiration (ET0) adjusted to surface cover through bare soil and crop coefficients (Allen et al., 1998; 2006). Water 

can be evaporated from free water surfaces (canopy interception or ponding), from soil surface or transpired by plants. Actual 

soil evaporation is governed by the soil hydraulic conductivity, as soil water must be transported to the soil surface. As for the 95 

actual transpiration, it is computed together with the entire surface energy balance within the soil–vegetation–atmosphere 

transfer (SVAT) module (Plauborg et al., 2010). To solve numerically this energy balance, the SVAT module is coupled with 

the biochemical photosynthesis model of de Pury and Farquhar (1997) and a stomatal conductance empirical model (Leuning, 

1995). In this version, the stomatal conductance 𝑔𝑠 is adjusted to account for hydraulic signalling (Plauborg et al., 2010): 

𝑔𝑠 = 𝑔0 +
𝑔1⋅𝑒−𝛿|ψc|

(1+
𝑉𝑃𝐷

𝐷0
)⋅(𝐶𝑠−Γ)

 𝐴𝑛𝑒𝑡,          (1) 100 

where 𝐴𝑛𝑒𝑡 is the net leaf CO2 assimilation rate, 𝐶𝑠 is the CO2 concentration at the leaf surface, Γ is the CO2 compensation 

point, VPD is the vapour pressure deficit, 𝜓𝑐 is the crown water potential (with the related parameter 𝛿) and 𝑔0, 𝑔1 and 𝐷0 are 

Leuning parameters. 

Compared to Daisy v7.0.7, several modifications related to the diffuse radiation, maintenance respiration and carbon reserve 

remobilisation were made (Appendix A) and later integrated in the latest version (v7.1.0). 105 

2.2.2 Model parameters 

In their global sensitivity analysis performed on yield, NEE and LE, Delhez et al. (2025) demonstrated the significant influence 

of about 25 parameters out of 200. However, some adjustments to their selection have made for this present work. The 

influential parameters related to the phenology, the allocation and the diffuse fraction of radiation have already been estimated 

separately, as direct measurements are carried out at BE-Lon station. Additionally, the temperature scaling constant 𝑐_𝑉𝑚 and 110 
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the leaf RuBisCO-N fraction were discarded and set to their default value because of their high correlation with other 

parameters. Conversely, some parameters were added as this study takes new processes into account, such as the photosynthetic 

contribution of stem and storage organs. Hence, there are 22 parameters included in this study, all described in Table 2. 

Table 2: Model parameters used in this study and their acceptable range.  

Parameter Rangeb Units Description 

𝑓𝑃𝑆𝐼𝐼a 0.16 – 0.5 - Fraction of PAR effectively absorbed by PSII (in Daisy: 

alfa) 

𝑋𝑛a 0.002 – 0.0006 mol mol-1 s-1 Ratio of photosynthetic capacity Vmax to leaf 

RubisCO-N 

𝐷0
a 500 – 3500 Pa Leuning empirical coefficient 

𝑔1
a 9 – 18 - Leuning stomatal slope (in Daisy: m) 

𝑔0
a 0.008 – 0.02 mol m-2 s-1 Leuning stomatal intercept (in Daisy: b) 

𝛿a 0 – 1 - Empirical constant for hydraulic signalling 

𝑆𝑝𝐿𝐴𝐼a 0.0144 – 0.0216 m2 g-1 Specific leaf area 

𝑆ℎ𝑙𝑑𝑅𝑒𝑠𝐶a 20 – 50 % Capacity of shielded reserves as fraction of stem dry 

matter 

𝑁𝑁𝐼𝑐𝑟𝑖𝑡
a 1.26 – 1.54 - Stem/leaf partitioning modifier (threshold) 

𝑆𝑂𝑟𝑔𝑃ℎ𝑜𝑡𝐸𝑓𝑓a 0 – 1 - Photosynthetic efficiency of storage organ 

𝑆𝑡𝑒𝑚𝑃ℎ𝑜𝑡𝐸𝑓𝑓a 0 – 1 - Photosynthetic efficiency of stem 

𝑃𝑒𝑛𝑃𝑎𝑟2 0 – 5 °C Root penetration rate parameter (threshold) 

𝜎𝑁𝐼𝑅 0.72 – 0.95 - Leaf scattering coefficient of NIR 

𝜀𝑙𝑒𝑎𝑓 0.94 – 0.99 - Leaf emissivity for longwave radiation 

𝑘𝑛𝑒𝑡 0.3 – 0.5 - Radiation extinction coefficient 

𝐴𝑏𝑟𝑢𝑛𝑡 0.5 – 0.57 - Brunt parameter (offset) 

𝐵𝑏𝑟𝑢𝑛𝑡 0.065 – 0.075 hPa-1/2 Brunt parameter (vapour pressure factor) 

𝐾𝑒 0.4 – 0.7 - Conversion of ET0 to bare soil evap. (in Daisy: 

EpFactor) 

𝐾𝑐 1 – 1.4 - Conversion of ET0 to crop transp. (in Daisy: EpFac) 

𝐾𝑠𝑎𝑡,1 0.01 – 0.05 cm h-1 Hydraulic conductivity at saturation of first soil layer 

𝐾𝑎𝑞𝑢𝑖𝑡𝑎𝑟𝑑  0.005 – 0.05 cm h-1 Hydraulic conductivity at saturation of the aquitard 

𝑍𝑎𝑞𝑢𝑖𝑡𝑎𝑟𝑑 1 – 2.5 m Thickness of the aquitard 

a Parameter estimated separately for each growing season (cultivar-specific). 115 
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b The acceptable ranges were established from measurements, literature and Daisy reference manual.  

2.3 Multi-objective calibration 

2.3.1 Key concepts 

Calibrating model parameters while considering multiple objectives simultaneously can be formulated as a minimisation 

problem (Eq. 2): 120 

 min 𝐹(𝐱) = [

𝐹1(𝐱)
𝐹2(𝐱)

𝐹3(𝐱)
] ,           (2) 

where 𝐱 is a vector of model parameters to be optimised and 𝐹𝑖 represents the objective functions. In this study, the objective 

functions correspond to the relative root mean square error (rRMSE) between modelled and observed values (Eq. 3): 

𝐹𝑖(𝐱) =
√

1

𝑛
∑ (𝑦𝑘−𝑑𝑘)2𝑛

𝑘=1

1

𝑛
∑ 𝑑𝑘

𝑛
𝑘=1

 ,           (3) 

Here, 𝑦𝑘  and 𝑑𝑘  denote the modelled and observed values at time step 𝑘 for DM (𝑖 = 1), NEE (𝑖 = 2) and LE (𝑖 = 3). 125 

Normalising the RMSE by the mean of observed data in Eq. 3 enables fair comparison across variables of different scales.  

As these objectives can be conflicting, the minimisation problem defined in Eq. (2) typically results in a set of trade-off 

solutions known as the Pareto-optimal set, rather than a single solution (Deb, 2001). In this set, improving one objective cannot 

occur without degrading at least one of the others. For this reason, these solutions are also referred to as non-dominated 

solutions. Visualising these non-dominated solutions in the objective space, referred to as the Pareto front, helps to assess the 130 

relationship among objectives and identify model structural errors (Efstratiadis and Koutsoyiannis, 2010). 

2.3.2 Search algorithm – SMPSO 

Particle Swarm Optimisation (PSO) is a population-based optimisation technique inspired by the social behaviour of birds 

within a flock (Kennedy and Eberhart, 1995). Each potential solution, called a particle 𝑖, is characterised by its position and 

velocity, and a swarm is defined as the population of solutions. Aiming to minimise the objective, the particle moves through 135 

the search space, balancing between individual exploration (its own experience) and social learning from the swarm (Sharma 

and Kumar, 2022). The updated position of a particle 𝑥⃗𝑖
(𝑡+1)

 is determined by Eq. (4):  

𝑥⃗𝑖
(𝑡+1)

=  𝑥⃗𝑖
(𝑡)

+ 𝑣⃗𝑖
(𝑡+1)

 ,           (4) 

where 𝑣⃗𝑖
(𝑡+1)

 is the updated velocity which explicitly expresses the balance between personal and social learning: 

𝑣⃗𝑖
(𝑡+1)

=  𝑤𝑣⃗𝑖
(𝑡)

+ 𝑐1𝑟1 (𝑥⃗𝑝𝑖
− 𝑥⃗𝑖

(𝑡)
) + 𝑐2𝑟2 (𝑥⃗𝑔𝑖

− 𝑥⃗𝑖
(𝑡)

) ,       (5) 140 
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In Eq. (5), 𝑥⃗𝑝𝑖
 is the best position that particle 𝑖 has visited, 𝑥⃗𝑔𝑖

 is the best position that the entire swarm has visited (leader), 

𝑤 is the inertia weight controlling the influence of past velocities, 𝑟1 and 𝑟2 are random numbers drawn from the uniform 

distribution 𝑈(0, 1), and 𝑐1 and 𝑐2 are learning factors determining the relative influence of personal and global experience.  

In this study, we employed the Speed-constrained Multi-objective Particle Swarm Optimisation (SMPSO) algorithm, which is 

specifically designed for multi-objective problems (Nebro et al., 2009). Based on OMOPSO algorithm (Sierra and Coello 145 

Coello, 2005), SMPSO also uses Pareto dominance (Sect. 2.3.1) and a crowding factor to identify non-dominated solutions. 

Moreover, it includes a velocity constriction mechanism to prevent the so-called swarm explosion effect, an external archive 

to store these non-dominated solutions, and the use of polynomial mutation. As suggested by Nebro et al. (2009), the learning 

factors 𝑐1  and 𝑐2  were drawn from the distribution 𝑈(1.5, 2.5) and the mutation probability was set as the inverse of the 

problem’s dimensionality. 150 

2.3.3 Application 

The Python-based framework for MOO called jMetalPy (Benítez-Hidalgo et al., 2019) includes SMPSO algorithm and was 

used in combination with PyDaisy library. For each parameter sets (i.e. potential solution) generated by SMPSO, the parameter 

values were transcribed into Daisy setup files, and the model was executed four times, once for each growing season. The 

three objective functions (rRMSE) were then computed from these four runs and passed back to SMPSO algorithm. 155 

Throughout the optimisation process, the hypervolume indicator (referred to as the size of the dominated space) was estimated 

to evaluate the performance of SMPSO and check for convergence (Guerreiro et al., 2021; Shang et al., 2021). In total, 50000 

model simulations were performed with a swam size of 200. 

2.4 Validation 

As mentioned in Sect. 2.1, VAL growing season was not used for this multi-objective calibration but kept for validation. 160 

Parameter sets were selected from the Pareto front established with SMPSO algorithm, and cultivar-specific parameters were 

taken from SAH season as the same cultivar was sown during both seasons. In order to evaluate the performance of Daisy 

model, four criteria were estimated: (i) the RMSE expressed in the same units as the variable of interest, (ii) the rRMSE for 

comparison with the calibration results, (iii) the Normalised Mean Error (NME) revealing bias and (iv) the model efficiency 

(EF) which is easily interpreted. This last criterion is also known as Nash–Sutcliffe Efficiency coefficient (NSE) and is 165 

computed as follows: 

𝐸𝐹 = 1 −
∑ (𝑦𝑘−𝑑𝑘)2𝑛

𝑘=1

∑ (𝑑𝑘−𝑑𝑘̅̅ ̅̅ )2𝑛
𝑘=1

 ,           (6) 

In Eq. 6, 𝑦𝑘  and 𝑑𝑘 denote the modelled and observed values at time step 𝑘, and 𝑑𝑘
̅̅ ̅ is the mean observed value. If the model 

is perfect, EF = 1, and the validation results are considered acceptable if EF is greater than 0.5 (Dumont et al., 2014). 

  170 
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3 Results 

3.1 Pareto front 

Non-dominated solutions based on the three objective functions are depicted in Fig. 1a. The red point indicates the most 

balanced compromise, defined as the non-dominated solution nearest to the point representing the lowest values across all 

objectives. The trade-off between DM and NEE is the most clearly defined, as shown in the 2D projection (Fig. 1b), where the 175 

curved Pareto front extends over a large part of the objective space and most solutions lie along it. Conversely, the LE–NEE 

front appears angular and narrower, particularly along the LE axis (Figure 1c). Combined with the relatively high rRMSE, it 

highlights the difficulty in accurately simulating observed LE as well as the limited model responsiveness for this objective. 

 

Figure 1: Non-dominated solutions in the objective space: (a) 3D Pareto front according to the rRMSE of DM, LE and NEE, and 2D 180 
projection of these solutions considering (b) DM and NEE, (c) LE and NEE. Black dots indicate the Pareto front in 2D space and 

the red point highlights the most balanced compromise. 

Values of the most balanced parameter set (i.e. red point) can be found in Table B1. In Fig. 1a, the specific coordinates of this 

point are (0.27, 0.40, 0.52) which correspond to RMSE values of 0.948 𝑡 ℎ𝑎−1, 3.44 𝜇𝑚𝑜𝑙 𝑚−2𝑠−1 and 62.7 𝑊 𝑚−2 for DM, 

NEE and LE respectively, computed across all four growing seasons. In the following sections, the simulated outputs using 185 

this parameter set are compared to observed values in terms of dry matter as well as carbon and water fluxes. 
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3.2 Dry matter 

In addition to the biomass of individual simulated organs (leaf, stem, storage organs 𝑆𝑂𝑟𝑔  and root), the aboveground 

vegetative biomass (leaf+stem) was also included in Fig. 2 as distinct measurements of these two organs were not systematic 

(Table 1). Overall, the simulated dry matter aligns relatively well with observations. Nevertheless, 𝑆𝑂𝑟𝑔  biomass is 190 

consistently underestimated at the end of all growing seasons, resulting in a lower simulated crop yield. 

For SAH growing season, this underestimation may be attributed to insufficient remobilisation of stem reserves, as indicated 

by the high simulated stem biomass in July, even greater than the combined leaf and stem observations. However, this 

explanation does not hold for the other seasons, where stem biomass appears realistic. Beyond the capacity of remobilised 

reserves, parameters such as the efficiency of this remobilisation (considered fixed in Daisy) as well as contributions from 195 

stem and ear to photosynthesis (𝑆𝑂𝑟𝑔𝑃ℎ𝑜𝑡𝐸𝑓𝑓 and 𝑆𝑡𝑒𝑚𝑃ℎ𝑜𝑡𝐸𝑓𝑓) may also affect 𝑆𝑂𝑟𝑔 biomass during the reproductive 

stage (after anthesis).  

 

Figure 2: Daily evolution of predicted (solid line) and observed (dot) dry matter for each organ (t ha-1). Error bars depicted for the 

observed dry matter represent the standard deviations and the dashed vertical line indicates the anthesis. 200 
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3.3 Fluxes 

As depicted in Fig. 3, the model reproduces the daily dynamics of NEE with good overall agreement. Simulated temporal 

variations generally follow observed trends, although predictions tend to be more negative (i.e. more CO2 uptake) during the 

vegetative stage. This underestimation is particularly evident for TOB growing season, also highlighted by the scatter plot, 

where the regression slope is significantly higher than 1 ( 𝛽 = 1.14 ). This bias suggests either an overestimation of 205 

photosynthesis and/or an underestimation of respiration. Despite this discrepancy, the model accurately simulates the biomass 

of vegetative organs during this stage. On the other hand, during the reproductive stage (when 𝑆𝑂𝑟𝑔 is underestimated; Fig. 

2), NEE predictions no longer show a clear bias. This partly explains the observed trade-off between DM and NEE (Fig. 1b). 

For instance, increasing the remobilisation of stem reserves during SAH would likely result in a more accurate crop yield, but 

also in an increase in NEE as CO2 is released through this process. 210 

 

Figure 3: Daily NEE (gC m-2 day-1) for each growing season (left) with shaded area in red representing standard deviations of 

observations. Hourly predictions against observed values of NEE (μmol m-2 s-1; right) where observed values are displayed on the x-

axis. The p-value indicates if the regression slope 𝜷 (red) is significantly different from the 1:1 line (black) and 𝝆 is the Pearson 

correlation coefficient. 215 
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As expected from the rRMSE values observed in Fig. 1, LE fluxes are not well captured by the model. Observed daily fluxes 

exhibit greater variations, frequently reaching high values or dropping below 50 Wm-2 while simulated values remain relatively 

stable (Fig. 4). This is also illustrated in the scatter plots, where hourly observed data easily reach 600 Wm-2, but simulated 

fluxes never exceed 500 Wm-2, resulting in a poor linear agreement between observed and simulated fluxes as indicated by the 

low Pearson correlation coefficients 𝜌 (Fig. 4). This disagreement is particularly visible in April 2019 (SMA season), with an 220 

observed daily average around 180 Wm-2 in comparison with a prediction of only ~100 Wm-2. During this period, simulated 

evapotranspiration equals potential evapotranspiration, suggesting that the plant was not water-limited and that the 

underestimation stems from deficiencies in energy partitioning rather than water availability. 

 

Figure 4: Daily average of LE (W m-2) for each growing season (left) with shaded area in red representing standard deviations of 225 
observations. Hourly predictions against observed values of LE (right) where observed values are displayed on the x-axis. The p-

value indicates if the regression slope 𝜷 (red) is significantly different from the 1:1 line (black) and 𝝆 is the Pearson correlation 

coefficient. 
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Even though there was no apparent soil water deficit, this period (April 18 – April 22) was still characterised by elevated 

temperatures and higher vapour pressure deficit (VPD) compared to preceding days. It does not meet the formal Belgian 230 

definition of a heatwave, but the daily mean temperatures were more than 5°C above the 1981–2010 averages. During this 5-

day period, the observed stomatal conductance 𝑔𝑠  reached extremely high values (Fig. 5a), associated with an important 

increase in LE fluxes (Fig. 5c) while the magnitude of the carbon uptake (GPP) was not affected (Fig. 5b). These observations 

reveal a decrease in water use efficiency during this period, indicating that transpiration was intensified with no corresponding 

increase in carbon assimilation. This trend was not captured by the model, as simulated 𝑔𝑠 remained lower than 0.03 m s-1 235 

(Fig. 5a). The slight increase in predicted 𝑔𝑠 during the 5 days can be explained by the minor increase in carbon uptake (Fig. 

5b). 

 

Figure 5: Evolution of predicted and observed (a) stomatal conductance 𝒈𝒔, (b) Gross Primary Productivity (GPP) and (c) LE fluxes. 

Observed 𝒈𝒔  was deduced from Penman–Monteith equation, measured fluxes and weather data (Appendix C). The axis break 240 
indicates different scales but does not imply omitted observations. 
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3.4 Validation 

When using the most-balanced parameter set on VAL growing season, NEE is well reproduced by the model with an EF 

greater than 0.8, a rRMSE around 40% and a NME close to 0 for both time scales (Table 1a). Although rRMSE and EF also 245 

present acceptable results for DM, it is worth noting that there is an overall underestimation of this variable (𝑁𝑀𝐸 = −0.222). 

Table 3: Evaluation criteria for the 2010-2011 growing season using (a) the most-balanced parameter set (red point) and (b) the 

parameter set minimising 𝑭𝑳𝑬. RMSE are expressed in 𝑾 𝒎−𝟐 for LE, in 𝝁𝒎𝒐𝒍 𝒎−𝟐𝒔−𝟏 for hourly NEE, in 𝒈𝑪 𝒎−𝟐𝒅−𝟏 for daily 

NEE and in 𝒕 𝒉𝒂−𝟏 for DM. Other criteria have no units. 

  a. Most-balanced parameter set b. LE-oriented parameter set 

Variable Resolution RMSE rRMSE NME EF RMSE rRMSE NME EF 

LE Hourly 99.6 0.706 0.203 0.420 97.3 0.689 0.177 0.447 

Daily 52.3 0.901 0.551 -0.353 48.6 0.831 0.503 -0.172 

NEE Hourly 4.21 0.442 -0.00104 0.899 4.89 0.514 -0.0925 0.865 

Daily 1.78 0.383 0.0463 0.870 2.24 0.484 -0.0821 0.795 

DM Daily 2.09 0.387 -0.222 0.807 2.38 0.441 -0.271 0.749 

 250 

On the other hand, there is no good agreement between observed and predicted LE, especially when considering daily time 

scale, as shown by the four indicators. Even when using the parameter set that minimises 𝐹𝐿𝐸 (Fig. 1a), LE remains poorly 

captured by the model (Table 1b). As expected from the Pareto front, this slight improvement in LE predictions is accompanied 

with a degradation of NEE and DM predictions.   

  255 
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4 Discussion 

4.1 Pareto-based calibration 

Considering all objectives, the chosen parameter set (red point in Fig. 1) show satisfying fitting results, with a total RMSE of 

0.948 𝑡 ℎ𝑎−1, 3.44 𝜇𝑚𝑜𝑙 𝑚−2𝑠−1 and 62.7 𝑊 𝑚−2 for DM, NEE and LE respectively. As a comparison with other models, 

calibrated RMSE values for total biomass are typically between 0.5 and 1.5 𝑡 ℎ𝑎−1 (Zhang et al., 2020; Dumont et al., 2014; 260 

Casanova and Judge, 2008). Regarding NEE, reported RMSE values for daily fluxes range from 1.3 to 1.9 𝑔𝐶 𝑚−2 𝑑−1 (Revill 

et al., 2019; Senapati et al., 2018; Lehuger et al., 2010). In the present study, the RMSE computed from hourly NEE (3.44 

𝜇𝑚𝑜𝑙 𝑚−2 𝑠−1) corresponds to a RMSE of 1.49 𝑔𝐶 𝑚−2 𝑑−1 when using daily fluxes, which falls in the mentioned range. 

Casanova and Judge (2008) reported a RMSE of 62.45 𝑊 𝑚−2 for hourly LE fluxes and other studies presented values ranging 

from 24.65 to 48.5 𝑊 𝑚−2  for daily fluxes (Wang et al., 2024; Liu F. et al., 2020; Dutta et al., 2016), while we found 30.74 265 

𝑊 𝑚−2  using daily averages. 

In addition to provide reliable solutions, Pareto-based multi-objective calibration also offers insights into internal model 

limitations (Kollat et al., 2012). As related by Schoups et al. (2005), the shape of the Pareto front is an indicator of model 

structural error. Angular fronts (e.g., NEE–LE front) suggest that different objectives can be simultaneously optimised whereas 

significant trade-offs (curved or linear fronts) may indicate a wrong parameterisation of the model (Wöhling et al., 2013; 270 

Efstratiadis and Koutsoyiannis, 2010). The following sections focus on the NEE–DM and NEE–LE trade-offs and discuss 

whether the disagreements between observations and model predictions come from uncertainty due to measurement errors or 

deeper structural issues. 

4.2 Where does the carbon go? 

As shown by the major trade-off in Fig. 1b, adjusting model parameters to fit NEE fluxes inevitably compromises the 275 

simulation of organ DM. The analysis in Sect. 3.2 and 3.3 reveals that this would specifically result in an underestimation of 

biomass. Indeed, DM during vegetative stage is well reproduced when simulated NEE is overly negative, and 𝑆𝑂𝑟𝑔 DM is 

underestimated when NEE predictions show less bias (Fig. 2 and 3). This was also observed in the validation results, with a 

consistent underestimation of DM while NEE showed neither over- nor underestimation. Several factors may contribute to this 

mismatch: 280 

Underestimation of heterotrophic respiration. If so, as respiration is regarded as positive and photosynthesis as negative 

with the micro-meteorological sign convention, NEE predictions would be too negative (as observed). Improving heterotrophic 

respiration would affect NEE predictions but its influence on DM would be limited, which could weaken the trade-off between 

these variables. At this study site, Suleau et al. (2011) partitioned soil respiration into its heterotrophic and autotrophic 

components using soil chambers, from which they derived temperature functions. When comparing their fitted regression to 285 

simulated heterotrophic respiration, Daisy appears to underestimate both temperature sensitivity and baseline respiration rate 

for three growing seasons (Fig. D1), supporting this first assumption. It should be noted, however, that this regression depends 
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solely on temperature, ignoring the seasonal variation in residue and fertilisation inputs that also affect soil respiration 

dynamics. Furthermore, heterotrophic respiration is most likely to be underestimated as, during the bare soil period before 

sowing, NEE (which only consists of soil respiration at that time) is mostly underestimated (Table D2). 290 

Incorrect dry matter partitioning. Leaves are the major contributor to photosynthesis while stem reserves fuel grain filling 

during the reproductive stage. Thus, dry matter partitioning is critical for simulating accurately DM but may influence NEE 

predictions differently. For instance, if too much assimilated carbon is allocated to the roots at the expense of the stem, the 

model would underestimate stem and 𝑆𝑂𝑟𝑔 DM without altering leaf photosynthesis. For this study, the partitioning schemes 

were derived from SKY season since root measurements were only made during that season, as well as early distinction 295 

between leaf and stem. Consequently, partitioning coefficients might be inadequate for other growing seasons and partly 

contribute to this trade-off. 

Wrong structural assumptions. Modelling real-world system comes with simplifications. For instance, in this study, Specific 

Leaf Area (SLA) was assumed to be constant throughout the season, although it’s proved to vary with leaf age and other 

environmental factors (Liu Zhaogang et al., 2023; Zhou et al., 2020). Since SLA governs the conversion between leaf DM and 300 

leaf area index, using a constant value may lead to significant bias in photosynthesis and canopy development. 

Uncertainties and errors in NEE observations. Eddy covariance (EC) data are affected by multiple factors, including 

instrumental noise, frequency losses and turbulence conditions (Aubinet et al., 2012). To account for these, EC data are 

thoroughly filtered, and their uncertainty is quantified combining random errors and uncertainty related to the friction velocity, 

an indicator of turbulence strength (Pastorello et al., 2020). However, an additional source of errors has been discussed in 305 

relation to the energy balance closure problem (Gao et al., 2019). EC systems show a systematic underestimation of energy 

fluxes (sensible and latent heat) ranging from 15 to 20% which is generally attributed to sub-mesoscale organised structures, 

generated in the daytime convective layer and enhanced by underlying surface heterogeneities (Mauder et al., 2020; Aubinet 

et al., 2012). While a standard correction method exists for energy fluxes (Pastorello et al., 2020), its application to CO2 fluxes 

remains under active research (Mauder et al., 2024). Some studies suggest that CO2 fluxes may also be underestimated (Gao 310 

et al., 2019; Mauder et al., 2010), though Liu H. et al. (2024) found that the bias rather depends on soil water conditions. At 

BE-Lon, this potential underestimation of CO2 fluxes is supported by the crop carbon budget previously estimated (Buysse et 

al., 2017). When combining NEE and field (harvest, residues and inputs) measurements, they found that the study site 

continuously loses an unexpectedly large amount of carbon, depleting the soil much faster than recently observed (Dumont et 

al., 2025). This highlights that, beyond random error estimates, systematic biases in NEE measurements may propagate into 315 

model calibration and interpretation. As Beven (2019) emphasizes, observational datasets should not be treated as absolute 

truth, and acknowledging these uncertainties is important when designing calibration frameworks or interpreting model 

evaluations. 
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4.3 Structural limitations in simulating LE 320 

When there is no evaporation from free water surfaces, the surface water balance in Daisy can be summarised as: 

1. computation of potential evapotranspiration (PET) using the FAO56 equation 

2. partitioning of PET between potential soil evaporation and plant transpiration according to canopy cover 

3. computation of actual soil evaporation, depending on soil water availability 

4. numerical resolution of Farquhar–Leuning models simultaneously with the SVAT module (surface energy balance) 325 

to obtain actual transpiration, surface temperatures and carbon assimilation. 

Model limitations may arise from this workflow in two ways. First, the evapotranspiration (ET) is constrained by FAO56 PET 

which assumes a fixed stomatal conductance (Allen et al., 2006). Although it is widely used in crop modelling, this 

simplification can reduce the accuracy of ET estimations (Liu Ziwei et al., 2023; Ghiat et al., 2021). By considering a constant 

𝑔𝑠 for PET, simulated ET can be severely limited when stomata are actually wide open. Conversely, when stomata are closed, 330 

PET is overestimated and can therefore lead to higher soil evaporation than observed. This may partly explain the lack of 

temporal variation observed in Fig. 4 and the high values of rRMSE (Fig. 1c). 

Second, soil evaporation (𝐸𝑠𝑜𝑖𝑙) is computed outside the iteration loop that couples the SVAT module with the Farquhar–

Leuning models. It is constrained either by soil water availability or by the potential evaporative demand, depending on which 

is limiting. By contrast, fully coupled models such as CLM calculate resistance-based 𝐸𝑠𝑜𝑖𝑙  simultaneously with transpiration 335 

and sensible heat fluxes (Swenson and Lawrence, 2014). This ensures that 𝐸𝑠𝑜𝑖𝑙  is driven by microclimate conditions (e.g. 

canopy air vapour pressure) and reinforces the mechanistic coupling between the surface energy and water balances. However, 

the appropriate formulation of resistance-based 𝐸𝑠𝑜𝑖𝑙  remains an active research area, as recent studies continue to refine its 

parameterisation and physical basis (Schulz and Vogel, 2020; Lehmann et al., 2018).  

Beside these workflow aspects, the relatively narrow Pareto shape (Fig. 1c) suggests the presence of equifinality, that is when 340 

multiple parameter sets produce equally good results (Her and Seong, 2018). This likely reflects compensatory interactions 

between soil evaporation and plant transpiration. Since PET is partitioned by canopy cover, parameter changes that alter canopy 

development can redistribute PET between the two components while leaving total PET unaffected. Under non-stressed water 

conditions, the ecosystem would meet this evaporative demand, and total ET (i.e. LE outputs) would remain unchanged as 

well. This masking effect underscores the well-known challenge of ET partitioning in ecosystem modelling, further 345 

complicated as eddy covariance systems do not distinguish between soil evaporation and transpiration (Berg and Sheffield, 

2019; Stoy et al., 2019; Scott and Biederman, 2017). Recent methods such as flux mapping have been developed to better 

understand model internal fluxes leading to equifinality (Khatami et al., 2019). 

As depicted by Fig. 5, discrepancies in LE predictions were especially evident under elevated temperatures and high VPD. 

While these may partly stem from limitations mentioned above, they also point to deeper issues in the coupling between 350 

Farquhar and Leuning models and particularly in how it responds to atmospheric drivers. 
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4.4 Coupling of carbon and water exchanges 

Stomatal behaviour plays a central role in plant regulation of water loss and carbon uptake, and has therefore been extensively 

studied (Damour et al., 2010). While it is well established that mild edaphic drought induces a decrease in carbon assimilation 

by reducing the stomatal aperture (Beauclaire et al., 2024), plant responses to heatwaves and high atmospheric demand are 355 

less evident. Most studies report reduced 𝑔𝑠 under high VPD (Grossiord et al., 2020; Bourbia and Brodribb, 2024), aligning 

with the theoretical predictions of stomatal models (Sabot et al., 2022). On the other hand, high temperatures seem to trigger 

stomatal opening to promote transpiration cooling (Urban et al., 2017), but reported results vary greatly among species (Moore 

et al., 2021). 

Under the combined effect of high temperature and VPD, Marchin et al. (2022) observed a significant increase in 𝑔𝑠 for two 360 

well-watered species, interpreting this as a strategy to prevent leaf overheating via enhanced LE loss without any increase in 

carbon assimilation. They later confirmed that this behaviour, referred to as stomatal decoupling, is not restricted to well-

watered species (Marchin et al., 2023). 

In our results, wheat SMA variety appeared to exhibit a similar cooling strategy in April 2019 (Fig. 5), with increased 

transpiration contributing to heat dissipation as soil water was easily accessible. Plants likely opened their stomata, promoting 365 

water loss, while carbon assimilation did not increase accordingly. Inside the leaf, CO2 diffuses through air spaces and 

membranes to reach the sites of carboxylation inside chloroplasts, whereas H2O moves from the xylem network to the stomata 

(Flexas et al., 2012; Sack and Holbrook, 2006). Thus, these different pathways can be affected independently, where carbon 

assimilation can be restricted by non-stomatal factors, often dominated by mesophyll conductance (Flexas et al., 2012). 

Based on stomatal coupling, Daisy does not fully capture these dynamic responses. According to Leuning model (Eq. 1), the 370 

increase in VPD reduces the predicted slope between carbon assimilation and 𝑔𝑠 . Consequently, the model tends to 

underestimate 𝑔𝑠 and LE fluxes and overestimate sensible heat, leading to a misrepresentation of energy partitioning under 

such conditions. 

This decoupling behaviour was particularly visible in April 19, as the heatwave lasted several days, but also appeared during 

shorter warm periods for other growing seasons, suggesting that it represents a recurrent plant strategy. Future work should 375 

investigate and incorporate in crop models (i) the physiological mechanisms driving increased 𝑔𝑠 under such conditions and 

(ii) the non-stomatal limitations affecting carbon assimilation. 

5 Conclusion 

In this study, we employed a Pareto-based multi-objective calibration approach to optimise the Daisy soil–plant–atmosphere 

model, focusing on three key objectives (DM, NEE and LE). The SMPSO algorithm successfully identified parameter sets that 380 

balanced these objectives within realistic bounds. Furthermore, this methodology also offered valuable insights into model 

behaviour and inherent limitations, as particular trade-offs between the objectives were revealed. Notably, the strong 

compromise between DM and NEE suggests possible wrong parameterisations of the model and biases in observational EC 
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data. Similarly, the LE–NEE trade-off indicates issues of equifinality which underlines the challenging partitioning of 

evapotranspiration. The inaccuracy of LE predictions was also discussed, underscoring the oversimplification of FAO56 385 

Penman-Monteith method. 

Additionally, the model struggled to reproduce observed increases in transpiration during heatwave conditions, highlighting 

deficiencies in simulating stomatal responses and in the coupling between carbon and water fluxes. These limitations are 

particularly relevant given the increasing frequency and intensity of heatwaves under climate change, which can significantly 

impact ecosystem dynamics. The influence of heatwaves and underlying mechanisms of stomatal decoupling need to be further 390 

investigated in order to improve the simulation of energy fluxes. 

Overall, this work illustrates how multi-objective calibration can go beyond parameter estimation to critically assess model 

assumptions and guide future improvements. Addressing the structural limitations identified here – particularly in ET 

partitioning and (non-)stomatal regulation – could strengthen the ability of Daisy and similar crop models to capture ecosystem 

responses under changing climate conditions.  395 
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Appendices 

Appendix A: Daisy modification 

Diffuse fraction. The diffuse fraction of global radiation 𝑓𝑑 was estimated using the optical air mass and assuming a cloudless 

sky (Appendix 1 of de Pury and Farquhar, 1997). A second modelling option for estimating 𝑓𝑑, adapted for cloudy skies, was 

implemented. Based on Ridley et al. (2010), 𝑓𝑑 depends on the hourly and daily clearness index (resp. 𝑘𝑡 and 𝐾𝑡), the apparent 400 

solar time (AST) and the solar angle 𝛼: 

𝑓𝑑 =
1

1+𝑒𝛽0+𝛽1𝑘𝑡+𝛽2𝐴𝑆𝑇+𝛽3𝛼+𝛽4𝐾𝑡
 ,          (A1) 

As both diffuse and global radiation are measured at BE-Lon, the five 𝛽 parameters have been estimated with the Nelder–

Mead method, considering the RMSE metric as objective function. This method has been applied to 10 years of measurements 

(2014–2023), covering the entire duration of the case study. The resulting parameters (𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4) are respectively equal 405 

to -4.8094, 5.4735, 0.020702, 0.099970 and 1.3944 (RMSE for 𝑓𝑑 = 0.164). 

Maintenance respiration. Respiration required to maintain existing biomass is defined as maintenance respiration. In Daisy, 

the maintenance respiration of an organ 𝑅𝑚
𝑜𝑟𝑔

 is proportional to its dry weight 𝑊𝑜𝑟𝑔: 

𝑅𝑚
𝑜𝑟𝑔

= 𝑟𝑚
𝑜𝑟𝑔

⋅ 𝑓(𝑇) ⋅ 𝑊𝑜𝑟𝑔 ,          (A2) 

where 𝑟𝑚
𝑜𝑟𝑔

 is the maintenance respiration coefficient of the organ and 𝑓(𝑇)  is a temperature function. In addition to 410 

temperature dependence, it was demonstrated that mature or senescing tissues required lower maintenance than younger tissues 

(Boote et al., 2013). Maintenance respiration declines near the end of the growing season due to a significant fraction of dead 

cells and metabolically inactive long-term storage (Amthor, 2025). To account for this, a second dependency 𝑓(𝐷𝑆)  was 

added into Eq. A2 and is a user-defined function of development stage.  

Remobilisation. After anthesis, carbon reserves stored in the stem can be mobilised to support grain filling. The remobilisation 415 

equations in Daisy were modified to account for both remobilisation efficiency and the temporal dynamics of the remobilisation 

rate. This rate peaks around 20 days after anthesis before declining, resulting in a sigmoid-shaped depletion of stem reserves 

(Liu Y. et al., 2020; Ehdaie et al., 2008). 
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Appendix B: Most balanced parameter set 420 

Table B1: Most balanced parameter set among non-dominated solutions (red point in Fig. 1). 

Parameter SAH TOB SMA SKY Units 

𝑓𝑃𝑆𝐼𝐼 0.3668 0.3291 0.3645 0.4009 - 

𝑋𝑛 7.929e-4 7.550e-4 1.076e-3 6.835e-4 mol mol-1 s-1 

𝐷𝑜 3354 2820 1596 2820 Pa 

𝑔1 10.54 14.87 14.79 16.79 - 

𝑔0 0.01335 9.079e-3 0.01658 0.01324 mol m-2 s-1 

𝛿 0.3635 0.1940 0.4816 0.8232 - 

𝑆𝑝𝐿𝐴𝐼 0.01598 0.02103 0.02143 0.01522 m2 g-1 

𝑆ℎ𝑙𝑑𝑅𝑒𝑠𝐶 49.45 47.60 41.98 42.54 % 

𝑁𝑁𝐼𝑐𝑟𝑖𝑡 1.373 1.470 1.444 1.346 - 

𝑆𝑂𝑟𝑔𝑃ℎ𝑜𝑡𝐸𝑓𝑓 0.7227 0.2565 0.1808 0.6703 - 

𝑆𝑡𝑒𝑚𝑃ℎ𝑜𝑡𝐸𝑓𝑓 0.09723 0.7164 0.2039 0.7606 - 

𝑃𝑒𝑛𝑃𝑎𝑟2 4.822 °C 

𝜎𝑁𝐼𝑅 0.8926 - 

𝜀𝑙𝑒𝑎𝑓 0.9825 - 

𝑘𝑛𝑒𝑡 0.3572 - 

𝐴𝑏𝑟𝑢𝑛𝑡 0.5548 - 

𝐵𝑏𝑟𝑢𝑛𝑡 0.06806 hPa-1/2 

𝐾𝑒 0.4724 - 

𝐾𝑐 1.106 - 

𝐾𝑠𝑎𝑡,1 0.04520 cm h-1 

𝐾𝑎𝑞𝑢𝑖𝑡𝑎𝑟𝑑  0.03667 cm h-1 

𝑍𝑎𝑞𝑢𝑖𝑡𝑎𝑟𝑑 1.974 m 
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Appendix C: Determination of stomatal conductance 

According to Penman–Monteith equation, the latent heat flux (LE) can be expressed as follows: 

𝐿𝐸 =
Δ(𝑅𝑛−𝐺)+

𝜌𝑎𝑐𝑝𝑉𝑃𝐷

𝑟𝑎

Δ+𝛾(1+
𝑟𝑠
𝑟𝑎

)
 ,           (C1) 425 

where 𝑅𝑛 is the net irradiance (𝑊 𝑚−2), 𝐺 is the ground heat flux (𝑊 𝑚−2), VPD is the Vapour Pressure Deficit (𝑃𝑎), 𝜌𝑎 is 

the dry air density (equal to 1.22 𝑘𝑔 𝑚−3), 𝑐𝑝 is the specific heat capacity of air (equal to 1013 𝐽 𝑘𝑔−1 °𝐶−1) and 𝑟𝑠 is the 

stomatal resistance (𝑟𝑠 = 𝑔𝑠
−1). The slope of the saturation vapour pressure with temperature Δ can be estimated based on 

vapour pressure at saturation 𝑒∗(𝑇𝑎𝑖𝑟): 

Δ =
4098 𝑒∗(𝑇𝑎𝑖𝑟)

(𝑇𝑎𝑖𝑟+237.3)²
 ,            (C2) 430 

The psychometric constant 𝛾 is a function of atmospheric pressure 𝑃: 

𝛾 =
cp 𝑃

0.622⋅2.45⋅106 ,            (C3) 

And finally, the atmospheric resistance 𝑟𝑎 is composed of the aerodynamic and boundary layer resistances: 

𝑟𝑎 = (
𝑢

𝑢∗
)

2

+ 6.2𝑢∗
−0.67,           (C4) 

As 𝐿𝐸, 𝐺, 𝑅𝑛, 𝑉𝑃𝐷, the air temperature 𝑇𝑎𝑖𝑟 , 𝑃, the wind velocity 𝑢, the friction velocity 𝑢∗ are directly measured or at least 435 

computed within the ONEFlux pipeline (Pastorello et al., 2020), the stomatal resistance can be determined by combining 

equations C1–C4.  
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Appendix D: Heterotrophic respiration 

 440 

Figure D1: Daily evolution of heterotrophic respiration (gC m-2 day-1) – model predictions (grey) and estimations 

based on the temperature function fitted by Suleau et al. (2011; red). 

Table D2: Evaluation criteria regarding daily NEE during the bare soil period before sowing. RMSE and ME are expressed in 

𝒈𝑪 𝒎−𝟐𝒅−𝟏  and other criteria have no units. VAL growing season was simulated with the most-balanced parameter set (SAH 

cultivar). 445 

Season RMSE rRMSE ME NME 

SAH 0.320 0.308 0.0144 0.0139 

TOB 0.736 0.422 -0.0493 -0.0282 

SMA 0.228 0.190 -0.0484 -0.0403 

SKY 0.622 0.289 -0.490 -0.228 

VAL 0.484 0.376 -0.237 -0.184 
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Code and data availability 

Daisy is an open-source model developed by the Agrohydrology group at the University of Copenhagen, Denmark, and is 

available on GitHub (https://github.com/daisy-model/daisy). All Python scripts, as well as input and setup files used for 

running Daisy, are also accessible on GitHub (Delhez, 2025). Flux and meteorological data for BE-Lon can directly be 450 

downloaded on the ICOS Data Portal for the 2004–2020 period (Heinesch et al., 2022). More recent (2021–2024) data using 

the same workflow have been submitted to the Ecosystem Thematic Centre (ETC) for official publishing, but in the meantime 

can be accessed upon request. 
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