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Abstract. The use of deep learning models in hydrology is becoming an ever more prevalent application in operational flood
forecasting. Such operational systems face performance degradation when transitioning from high quality reanalysis to
10 meteorological forecast data with lower accuracy. This study investigates training strategies and Long Short-Term Memory
network architectures to mitigate forecast-induced bias in maximum daily discharge predictions using the Extended
LamaH- CE dataset and a subset of 451 basins. We systematically evaluated cross-domain generalization, transfer learning
approaches, Encoder-Decoder LSTMs, Sequential Forecast LSTMs, and the role of input embeddings and integrating past
discharge observations. The results show that domain shifts between reanalysis and forecast data lead to substantial skill loss,
15 with median Nash-Sutcliffe Efficiency decreasing from 0.58 to 0.33. Among the tested strategies, the Sequential Forecast
LSTM demonstrated the most stable improvements, achieving a median NSE of 0.63. Integrating recent discharge observations
further enhanced performance, raising median NSE to 0.71 and surpassing even the reanalysis-driven baseline. In contrast,
integrating archived forecasts or using more complex input embeddings did not yield consistent benefits and in some cases
degraded model stability. These findings highlight the value of training strategies that allow models to directly learn bias
20 correction during forecast transitions and emphasize the operational potential of combining sequential processing with near

real-time discharge observations.

1 Introduction

Accurate runoff prediction stands as one of the most critical challenges in modern hydrology, with far-reaching implications
for flood risk management, water resource planning, and the design of resilient hydraulic infrastructure (Beven, 2012; Guo et
25 al., 2021; Tran et al., 2025). While recent advances in deep learning have demonstrated that Long Short-Term Memory
Networks (LSTMs) can effectively integrate multiple meteorological datasets to improve runoff simulation accuracy by
learning complex spatial and temporal patterns (Kratzert et al., 2021), a fundamental challenge remains: operational forecasting
systems rely on biased meteorological forecasts rather than reanalysis or observational data. This dependency introduces a
cascade of uncertainties, as meteorological forecasts inherently exhibit lower accuracy and higher uncertainty than
30 observational or reanalysis datasets (Lavers et al., 2021), with forecast errors further amplifying as lead time increases (Nester
et al., 2012). The consequences of these uncertainties are particularly severe in flood forecasting applications, where timely
and magnitudinal correct runoff predictions are critical for early warning systems and risk management (Chen et al., 2016).

The biases in meteorological forecasts stem from factors such as model resolution, data assimilation techniques, or orographic
effects, and they differ depending on the numerical weather prediction model (e.g., ECMWF-HRES, DWD-ICON,
35 NOAA-GFS), the predicted variable itself and the region in question (Haiden et al., 2024). These inaccuracies can propagate
through hydrological models and lead to unreliable runoff forecasts, particularly under extreme conditions (Nester et al., 2012).
To mitigate this issue, a variety of statistical and machine learning-based bias correction methods have been developed to

adjust forecasted meteorological variables prior they are used as input in a hydrological model.
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A simple approach to reduce biases in precipitation is described by Lenderik et al. (2007), who are scaling precipitation linearly

40 based on a constant factor calculated from long term observations. To support operational warning systems, Hess (2020)
developed the Ensemble Model Output Statistics (Ensemble-MOS) system, which postprocesses ensemble forecasts from
COSMO-D2-EPS and ECMWF-ENS. The approach relies on logistic regression and stepwise multiple regression to reduce
conditional biases and produce calibrated probabilistic forecasts efficiently. Ko et al. (2020) used the XGBoost machine
learning algorithm to correct precipitation forecasts. Their method demonstrates that machine learning can improve rainfall

45 forecasting performance, especially localized heavy rainfall events, which are of special importance for flash floods in small
catchments. Zhang et al. (2020) used LSTMs to learn relationships between meteorological forecasts and observed rainfall
data. Their results indicate that LSTMs are capable of learning dynamic biases to correct the forecasts from numerical weather
predictions and increase forecast reliability, especially for heavy rainfall events. Han et al. (2021) proposed CU-net, a
convolutional neural network architecture specifically designed to address systematic biases in gridded numerical weather

50 predictions from ECMWEF-IFS. Their grid-based approach represents a methodological advancement by directly correcting
spatial forecast fields, enabling comprehensive bias mitigation across continuous meteorological domains. However, the focus
on ECMWEF-IFS data raises important questions about the correction model's transferability to other numerical weather
prediction systems, potentially limiting the generalizability of their bias correction framework and highlighting the need for
more robust approaches.

55 The studies mentioned have in common that the meteorological forecasts are compared either with meteorological station- or
reanalysis data. In this context, it is important to note that especially precipitation measurements, whether from rain gauges,
radar, or satellite sources, are inherently subject to various sources of uncertainty (Béardossy et al., 2022). These errors stem
from undercatch due to wind effects or sensor limitations (Yang et al., 1999). As a consequence, it can be assumed that even
when inputting bias corrected precipitation forecast data to a hydrological model, a source of uncertainty with potential error

60 propagation also arises here, which in turn creates a bias in runoff prediction. In contrast, discharge observations are typically
regarded as more reliable compared to precipitation observations, as they represent an integrated hydrological response over
the entire catchment and are measured continuously at fixed gauging stations (Herrnegger et al., 2015; Mao et al., 2019).
Although discharge measurements also carry uncertainty, particularly related to the use of rating curves or sensor malfunction
during extreme events, they are less affected by localized measurement errors (De Oliveira and Vrugt, 2022; Villarini et al.,

65 2008).

A method directly improving streamflow forecasts from the physically based Global Flood Awareness System (GloFAS) was
developed by Hunt et al. (2022). GIoFAS is an operational hydrological forecasting system that couples ECMWF ensemble
weather predictions with the LISFLOOD hydrological model to provide streamflow forecasts for rivers worldwide (Alfieri et
al., 2013). Instead of bias-correcting the meteorological input variables, Hunt et al. (2022) addressed systematic biases in
70 streamflow forecasts using a statistical bias correction method based on quantile mapping (QM) with spatial optimisation and
subsequently applied a damping factor to blend the corrected forecasts with the original raw output. Despite the demonstrated
improvements in forecast skill, this bias correction approach has several limitations. First, the quantile mapping correction is
dependent on GIoFAS forecasts, meaning it is not applicable for regions where no GIoFAS forecast is available. Second, the
method is lead-time independent, meaning it does not account for the evolution of forecast bias over longer lead times, which
75 can reduce its effectiveness for medium- to long-range forecasts. Third, the applied damping factor, while effective in reducing
over-correction, is empirically tuned, which may limit its robustness when applied across diverse catchments or under changing
climate conditions. A further limitation of the study is the relatively small number of catchments used (10 gauges), which

constrains the generalizability of the findings.

Building on the idea that runoff observations may be more accurate than those of meteorology, Kirchner (2009) proposed a
80 paradigm shift through the concept of "doing hydrology backward," where discharge is used as the primary constraint to infer
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the dynamics and uncertainties of upstream processes, such as precipitation or evapotranspiration. Rather than relying solely
on uncertain meteorological inputs to predict runoff, backward hydrology extracts information about catchment dynamics
directly from the discharge time series itself (Herrnegger et al., 2015; Kirchner, 2009). In this respect, the approach could also
be used to perform a dynamic bias correction of multiple meteorological forecast variables since runoff data may serve as a
85 more robust target variable in data-driven modelling frameworks than uncertain meteorological observations (e.g. rainfall).
Given the hypothesis that large-scale hydrological datasets contain more information than could be described using theoretical
or conceptual approaches (Nearing et al., 2021), a way to harness the potential of machine learning is to combine large sample
datasets with meteorological forecasts as inputs. In such a setup, the model can learn to assign weights to the forecasts and

internally correct their biases, thereby improving the overall runoff prediction accuracy.

90 In this study we investigate multiple Long Short-Term Memory (LSTM) network architectures and training strategies to reduce
meteorological forecast-induced bias in 24-hour ahead maximum daily discharge predictions. The focus on daily maxima
ensures that critical peak flows relevant to flood forecasting are not masked by temporal averaging. 24-hour lead time was
selected as an initial proof-of-concept to establish baseline performance of bias correction capabilities, as forecast uncertainty
generally increases with lead time (Nester et al., 2012), making shorter horizons an appropriate starting point for validating

95 the approach while providing a foundation for future extension to multi-day predictions. We evaluate baseline LSTM
configurations, transfer learning approaches, encoder-decoder architectures, and sequential LSTM networks across 451
catchments from the Extended LamaH-CE dataset in Central Europe. Our experiments examine the effectiveness of different
data integration scenarios, including the incorporation of past discharge observations and archived forecasts, with the goal of
developing robust neural network-based approaches for operational flood forecasting systems that can effectively compensate

100 for systematic biases inherent in numerical weather prediction models.

2 Data and Methods
2.1 Data

This study uses an extended version of the daily LArge-SaMple DAta for Hydrology and Environmental Sciences for Central
Europe (LamaH-CE; Klingler et al., 2021). LamaH consists of 859 gauged catchments including 21 catchment averaged

105 meteorological variables, with more than 60 static catchment attributes. Since the original version of LamaH only contains
meteorological ERA5-Land data and Kratzert et al. (2021) show that leveraging multiple meteorological data sources is
beneficial in large sample hydrology, we expanded the data by 15 further variables from five sources. The products used are
(i) ERA5-Land (Mufioz-Sabater et al., 2021) as in the original LamaH data, (ii) ECMWF-HRES European Center for Medium
Range Weather Forecast - High Resoultion Forecast (ECMWEF, 2025), (iii) E-OBS gridded observational data (Cornes et al.,

110 2018), (iv) MSWEP multi-source weighted ensemble precipitation (Beck et al., 2019) and (v) GLEAM global land evaporation
Amsterdam model (Miralles et al., 2011). Details of the variables used, including their definitions, units, and sources, are
summarized in Appendix A. The data products were obtained as raster data and subsequently aggregated to the LamaH basins.
All variables are daily averages (e.g. temperature) or daily sums (e.g. precipitation). For the ECMWF-HRES variables
temperature, dew point and sea level pressure, 3 hourly forecast values (8 per day) were calculated as daily averages starting

115 from 0 o'clock (UTC) issue time. A second adaption we made to the LamaH dataset concerns the gauge files. In the daily
version of LamaH-CE, there are only the mean daily discharges - we have extracted the daily minima and maxima from the
hourly LamaH data for all gauges and extended the daily version with those.



https://doi.org/10.5194/egusphere-2025-4978
Preprint. Discussion started: 27 November 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

LamaH Basins Level B
[] Country Borders

[] Selected LamaH Basins
178 547
Mean daily precipitation (mm/d)

QO Gauges

0.00 12.00
Mean daily discharge (mm/d)

Figure 1. LamaH domain with the 451 subset basins. For better illustration, LamaH subbasins (level B, blue polygons) are shown here, but
120 calculations were performed at LamaH level A (lumped for each gauge). The red points show the runoff gauges located at the catchment
outlet.

For the conducted experiments, we used a subset of 451 basins with no and low anthropogenic influence at LamaH aggregation
level A, which represents the lumped topographic catchment area of a gauge. Level A is comparable to the aggregation of the
catchment areas in the CAMELS (Newman et al., 2015) dataset. The catchments are spatially distributed across the entire

125 LamaH domain, with catchment areas including high alpine-, alpine foothill- and lowland areas.

2.2 Experimental design

To comprehensively evaluate the performance of LSTM-based flood prediction models under different data availability
scenarios and training strategies, we designed five distinct experimental groups with the primary research question: How to

reduce the meteorological forecast induced bias in runoff predictions?
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Figure 2. Workflow of the conducted experiments. The LamaH-CE dataset was extended by forecast and further reanalysis data and subset
to 451 basins with no and low anthropogenic influence. The experimental split is divided into the deep learning architectures used, followed
by a schematic representation of input embeddings for static and dynamic variables which feature space is fed to the LSTM. The last step is
the forecast of the daily maximum runoff at the gauges.

135 All experiments were, in terms of reproducibility, conducted with the NeuralHydrology (Kratzert et al., 2022) python library
and trained on different LSTM architectures to predict maximum daily discharge (Qmax). The models incorporated dynamic
meteorological inputs using a 365-day input sequence length, and static catchment attributes (33 physiographic, climatic, and
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land cover characteristics), both processed through separate embedding networks. The embedding networks are fully connected
neural network layers that transform raw input variables into learned representations, enabling the LSTM to capture non-linear
140 relationships between inputs and allowing different feature combinations to be learned during training rather than being
predefined (Ahmed et al., 2023). The experimental framework utilized a consistent temporal split with training data from 2003-
2009, validation from 2010-2013, and testing from 2014-2017. Model performance was evaluated using basin averaged Nash-
Sutcliffe Efficiency (NSE*, Kratzert et al., 2019b) as the primary loss function. A description of the loss function is attached
in Appendix C. Model hyperparameters, such as the number of hidden units, were optimized using Bayesian optimization (see
145 Snoek et al., 2012) with NSE* as the objective function. A detailed description of the performed hyperparameter tuning is
attached in Appendix D. Hereafter, we use "domain™ equivalent to distinct forcing datasets with unique statistical properties
in hydrological modelling to denote a specific data distribution characterized by its feature space and probability distribution
in its machine learning sense. Throughout the remainder of this paper, domain specifications and equations reference only
dynamic meteorological forcings for clarity, with the understanding that static catchment attributes remain unchanged across

150 all experimental setups.

2.2.1 Baseline

Three baseline experiments were conducted to establish performance benchmarks using different meteorological data sources
in a standard LSTM runoff simulation framework. LSTMs are a special form of recurrent neural networks, mainly used for
sequential (time series) data (Hochreiter and Schmidhuber, 1997). For a detailed description of the LSTM in relation to
155 hydrological modelling, we refer to Kratzert et al. (2018, 2019a, b). The core tensor equations of the LSTM model responsible
for the information flow are presented in Appendix E.
The baseline experiments were conducted using either forecasting data only (FC), reanalysis data only (RA), or a combination
of both (FCRA) as dynamic inputs. The FC experiment, forced only with archived forecasting data from ECMWF HRES,
serves as a lower benchmark. The RA experiment, exclusively driven by reanalysis (e.g., ERAS) or spatially interpolated
160 observational (e.g., E-OBS) data sources, establishes an upper benchmark for model performance under ideal hindcast
conditions (i.e. retrospective simulations using quality-controlled historical data). The FCRA experiment utilized both forecast
and reanalysis data for training and testing, representing the optimal data availability scenario.

The domains in the experiments formulate as:

DFC = {(xfcr qmax,t)}?:l (1)
165 DRA = {(fo, qmax,t)}?zl (2)
Drcra = {(xth U x4, ‘Imax,t)};;l €))

D ... Dataset used in the experiment
Xt ... Meteorological variables at timestep t

Omaxt -.. Maximum daily discharge (target variable) at timestep t

170 2.2.2 Cross-Domain Evaluation

The cross domain evaluation (CD) experiment examined model generalization by training on reanalysis data and testing on
ECMWEF-HRES forecast data while maintaining 5 identical input variables. The meteorological variables used in this
experiment are temperature, dewpoint temperature, precipitation, solar radiation and actual evapotranspiration. This
experimental design mirrors the operational framework of classic conceptual hydrological models, where models are typically
175 calibrated using high-quality reanalysis data with subsequently applied real-time forecast inputs during operational usage. By
replicating this established modelling paradigm within the LSTM framework, the experiment quantifies the performance shift
when transitioning from reanalysis to operationally available forecast data. Our hypothesis here was that if the distributions of

the two input data sets D and Dy, are too different, the model performance will decline.

5
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The domains in the experiments formulate as:

180 Train on: Dpy = {(*F4, Ginaxc )} i=1 %)

Teston: Dge = {(xf(:’ qmax,t)}?:l )

2.2.3 Encoder - Decoder LSTM

The Encoder- Decoder LSTM developed by Nearing et al. (2024) consists of two connected LSTMs: one for the hindcast phase
forced with historical meteorological reanalysis data (e.g. ERA5) and one for the forecast phase forced with weather forecast
185 data. The two LSTMs are connected by a non-linear handoff network in which the cell state and hidden state from the hindcast
are transferred to the forecast LSTM. This architectural design allows the forecast LSTM to learn hydrological states from the
hindcast, which could be understood as initial conditions in the model.
Three distinct experiments were implemented using the Encoder- Decoder LSTM architecture to investigate if this dual-LSTM
framework can learn and compensate dynamical biases inherent in meteorological forecasts. The first experiment with domain
190  Dgp_psrm1implemented the basic encoder-decoder framework where the hindcast LSTM was forced with historical reanalysis
data while the forecast LSTM processed meteorological forecast data. The second experiment with domain Dgp_;srpm 2
extended this architecture by incorporating past mean daily discharge observations alongside reanalysis data in the hindcast
LSTM. The third experiment with domain Dgp_;s7p 3 extended Dgp_psu,2 Dy additionally forcing the hindcast cell of the
model with forecast data. This emulates a setting in which archived forecasting data are used in combination with reanalysis
195 data in the hindcast phase.

The domains in the experiments formulate as:

T
Dip_rsrma = {(xf%.co1 U x{E, qmax,t)}t=s+1 ©)
T
Dep-Lstma = {(xffs:t—l U Gmaxt-sie-1 U X£ <, qmax,t)}t=5+1 Q)
T
Dep-Lstmz = {(xffs:t—l U xfeo1 U Gmaxt-si-1 U £, qmax,t)}t=s+1 ®)

200 s... Sequence length

2.2.4 Sequential Forecast LSTM

The Sequential Forecast LSTM experiment employs a two-phase sequential processing strategy to leverage both reanalysis
and operationally available forecast data within a unified framework. The architecture consists of separate embedding networks
for hindcast and forecast inputs, a shared LSTM layer and a state transfer mechanism that enables knowledge transfer between
205 processing phases (see Sequential Forecast LSTM in NeuralHydrology, Kratzert et al., 2022). In the first phase, the LSTM
processes embedded historical reanalysis data to generate hidden and cell states. The second phase continues LSTM processing
with embedded forecast data, initialized with the states from the hindcast phase, ensuring that forecast predictions are informed
by contextual information learned from historical patterns. The model generates predictions by concatenating outputs from
both phases through a prediction head, with the optimization objective to maximize NSE*. This design enables optimal
210 utilization of reanalysis data for learning hydrological patterns while maintaining operational forecasting capabilities through
the principled state transfer mechanism.
Experiment one (DsgqrsTm,1) Used the basic Sequential LSTM framework, with only using reanalysis data in the hindcast
phase and forecast data in the forecast phase. The second experiment (Dsgq.srm,2) @dded to the first domain mean daily
discharge observations alongside reanalysis data in the hindcast phase. In the third experiment (Dsgo.srm,3), We extended
215  Dggqrstm,2 by additionally forcing the hindcast phase of the model with archived forecast data.

The domains in the experiments formulate as:

Dspoustma = {(x.e-1 U (€, Qmax,c)}lsﬂ ©)
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T
DsgoLstm2z = {(xffs:tq U Qmax,t-s:it-1 Y x£€, qmax,t)}tzs_H (10)

— c c T
D5E‘QL5TM,3 - {(xngs:t—l U x{—s:t—l U qmax,t—s:t—l U xtF rqmax,t)}t=s+1 (11)

220 2.2.5 Transfer Learning

Transfer Learning (TL) is a machine learning paradigm leveraging gained knowledge from a source domain to improve
learning performance in a target domain (Goodfellow et al., 2016). Formally, TL aims to improve the predictive performance
on the target domain using knowledge from the source domain, with differences potentially existing in the feature space, data
distribution, or learning task between the two domains (Zhuang et al., 2021). TL can be categorized into two primary types

225 based on the relationship between source and target domain: The first is homogeneous transfer learning, where both domains
share the same feature space (i.e. using identical meteorological variables and catchment attributes) and have the same marginal
probability distributions (Weiss et al., 2016). The second is heterogeneous transfer learning, where the feature spaces differ
between domains (Pan and Yang, 2010). For our experiments, we used the heterogeneous transfer learning approach - while
the learning task stays the same in the conducted experiments, namely predicting maximum daily discharges at a gauge, the

230 feature spaces and its distributions between forecast (target domain) and reanalysis (source domain) data differs, as evidenced
by the violin plots in Appendix B.

In the context of forecast bias reduction, transfer learning is used to leverage knowledge from the less bias-influenced
reanalysis source data to improve prediction accuracy when applied to the more bias-prone forecast target data. This approach
is particularly relevant in contexts involving hydrometeorological data, where reanalysis data represents a post-processed

235 quality-controlled dataset with reduced systematic errors, while forecast data contains dynamical biases from numerical
weather prediction models. By pre-training the temporal encoder (LSTM) on reanalysis data, the model learns hydrological
process representations that can subsequently be fine-tuned to accommodate the bias characteristics of forecast inputs,
potentially improving the model's ability to correct for systematic forecast errors while maintaining learned temporal
dependencies.

240 The first experiment implemented full weight transfer learning, where all network weights from the baseline Dy, experiment
(embedding networks, LSTM and output layers pre-trained on reanalysis data) were used as initialization for a new training
phase on forecast data, allowing all parameters to be updated through backpropagation to adapt to the D, target domain's
characteristics. The second experiment, also based on the weights of Dg, employed selective weight transfer learning,
adapting only the embedding network weights while freezing other model parameters, thus preserving learned temporal

245 patterns while allowing adaptation to new input characteristics. The third experiment applied the same selective transfer
learning method as the second experiment, but network weights are based on the Dycz, domain.

The domains in the experiments are given below with source and target domains as well as training objective. All three
experiments are based on training either LSTM weights 6, embedding layer weights ¢, output layer weights y or all combined

with a NSE* loss function Lygz().

250 TLauweignes: source domain D, , target domain Dp With objective arg ér}bi& Lyse (Dre) (12)
TLgmpeddingnet_1- SOUrce domain Dp, , target domain Dg with objective arg m(gn Lyse (Dre) (13)
TLgmbeddingnet 2 SOUrce domain Drcgy4 , target domain Dp with objective arg qun Lyse (Dpe) (14)

2.2.6 Input Embedding

Input embedding networks serve as pre-processing layers that transform raw meteorological variables into fixed dimensional
255  representations for LSTM processing. The embedding layers enable the model to learn (non-) linear combinations and scaling
of input features, potentially capturing complex relationships between meteorological variables that may not be apparent in
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their original form (Irani et al., 2025). The embedding transformation is relevant for hydrometeorological applications where
variables such as temperature, precipitation and solar radiation may exhibit non-linear interactions that influence runoff
generation processes. To investigate the impact of embedding complexity on bias correction performance, we implemented
260 two distinct embedding architectures: a simple embedding consisting of a single fully connected layer with 16 hidden units
and tanh activation, and a complex embedding featuring a three-layer network with 30, 20, and 64 hidden units respectively,
also using tanh activation functions. The simple embedding provides a lightweight transformation with minimal parameter

overhead, while the complex embedding offers greater representational capacity through deeper non-linear transformations.

3 Results and Discussion

265 All results presented in subsequent sections are visualized as Cumulative Density Functions (CDFs) of Nash-Sutcliffe
Efficiency values computed across the 451 study basins, where each point represents the proportion of basins achieving a
specified NSE value. This visualization approach enables comprehensive assessment of model performance distribution,
revealing not only median performance but also the full range of model behaviour across diverse catchment conditions. The
light grey line denotes the forecast-only baseline (D) representing the lower performance bound, while the dark grey line

270 denotes the reanalysis-only baseline (Dg,) establishing the upper performance bound. These reference curves remain

consistent across all figures to facilitate direct comparison between experimental configurations.

3.1 Propagation of Forecast Uncertainty in the Hydrological Model Setting
A fast and straightforward way to analyse the propagation of forecast uncertainty in predicting maximum daily discharge (Qmax)
is the cross- domain evaluation (CD) experiment, depicted in Figure 3. CD reveals degradation in hydrological model
275 performance when transitioning from reanalysis to forecast meteorological forcings, despite five identical input variables. The
median Nash-Sutcliffe Efficiency (NSE) decreased from 0.58 to 0.33, representing a 0.25 reduction in model skill. This
performance deterioration is accompanied by increased uncertainty, with the NSE standard deviation rising from 0.87 to 1.1,
indicating that forecast uncertainty propagates through the hydrological model shifting and broadening the NSE distribution.
The mean NSE exhibits an even more pronounced decline (0.44 to 0.19), suggesting increased negative skewness due to
280 extreme poor-performing outliers.
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Figure 3. Cumulative Density Function of Nash Sutcliffe Efficiency values for the Cross Domain Evaluation Experiment. The comparison
includes the Pre trained model on five meteorological reanalysis variables (dark blue), the One Shot (direct application without fine-tuning)
based on the weights of the Pre trained model with equal five meteorological forecasting variables and the baselines (grey). The vertical

8
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285 dashed lines depict the median NSE for each experiment. The blue arrow shows the performance decrease at median NSE when applying
cross domain evaluation.

The underlying cause of this performance decrease can be attributed to the difference in data distributions between reanalysis
and forecast datasets (see Appendix B), effectively representing a domain shift problem. Domain shift occurs when the
statistical properties of the training data (reanalysis) differ from those of the target data (forecast), violating the fundamental

290 assumption of independent and identically distributed data that underlies machine learning model generalization (Goodfellow
et al., 2016; Hosna et al., 2022). Neural networks are particularly susceptible to domain shift as they learn to map input-output
relationships based on the specific distributional characteristics of their training data, leading to degraded performance when
deployed on data from a different distribution. These results demonstrate that it is not feasible to simply substitute reanalysis
data with forecast data in neural network-based hydrological modeling applications, as meteorological forecast uncertainty

295 propagates through the model chain, degrading the representation of catchment processes and creating performance risks for
operational hydrological forecasting systems.

3.2 Performance Analysis Across Unmodified Architectures

To address the domain shift challenges identified in Section 3.1, we evaluated different neural network architectures and

training techniques, presenting here the optimal configurations from each experimental setup.

Unmodified Architectures

Cumulative Density
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Figure 4. Cumulative Density Function of Nash Sutcliffe Efficiency values for the Unmodified Architectures Experiment. The experiments

include the baselines (grey), comprehensive transfer learning with a finetuning of the embedding and LSTM weights (TL AllWeights),

selective transfer learning with only finetuning the embedding weights while the LSTM was freezed (TL EmbeddingNet), Encoder- Decoder

LSTM (purple) and the Sequential Forecast LSTM (orange). The vertical dashed lines depict the median NSE for each experiment. The
305 arrows indicate the median ANSE values relative to the baseline forecast experiment.

Transfer learning was implemented through two contrasting approaches: comprehensive parameter updating, where the entire
network was retrained on forecast data (TL AllWeights), and selective embedding retraining, where only the input embedding
layers were fine-tuned while maintaining the pre-trained weights of the deeper network components (TL EmbeddingNet). Both
experiments utilized the reanalysis baseline with a complex embedding layer as the starting point. The selective embedding
310 approach (TL EmbeddingNet) achieved higher performance, with a median NSE of 0.44, representing a 0.11 improvement
over the cross-domain baseline (0.33). The advantage of selective retraining becomes evident when comparing the two transfer
learning strategies: TL EmbeddingNet shows an improvement in the 10th percentile (0.15) compared to TL AllWeights (0.05),
indicating that the retraining approach is especially effective for poorly performing basins. The enhanced performance stems
from the model's ability to leverage robust hydrometeorological relationships learned from reanalysis data while adapting the
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315 input representation to forecast data characteristics. Reanalysis products provide more complete and physically consistent
atmospheric descriptions through data assimilation, enabling the model to learn generalized process representations that are
subsequently refined during fine-tuning on forecast data.

The Encoder-Decoder LSTM architecture demonstrated performance improvements over the transfer learning approaches,
achieving a median NSE of 0.57. This architecture showed particular strength in the upper performance range, with the 75™

320 and 90" percentiles reaching 0.65 and 0.73, respectively.

The Sequential Forecast LSTM achieved the highest overall performance among the unmodified forecast-based configurations,
with a median NSE of 0.63 and notably consistent results across all percentiles. The model demonstrated higher stability
compared to other approaches, evidenced by the low standard deviation (0.52). Among the unmodified architectures, the
Sequential LSTM is best able to efficiently reduce forecasting bias. We attribute this to the sequential data processing

325 architecture of this special LSTM type, which processes meteorological forecast inputs in temporal order and allows for the
gradual correction of forecast biases through the propagation of both hidden states and cell states. The cell state serves as long-
term memory that can selectively retain or forget information across time steps, while the hidden state captures current relevant
information, enabling the model to maintain both short-term adaptations to recent forecast patterns and long-term memory of
systematic biases. Unlike the Encoder- Decoder architecture transforming hindcast states through a fixed handoff network

330 before initiating forecast processing, the Sequential LSTM maintains continuous state evolution from hindcast to forecast,
preserving temporal patterns without disruption and potentially enabling better compensation for systematic errors that emerge

at the forecast transition.

3.3 The role of integrating archived forecasts in the hindcast phase

Given the performance degradation observed when transitioning from reanalysis to forecast data, we investigated whether
335 training models with a combination of reanalysis and archived forecast data could improve forecast performance. In short, the
integration of archived forecasts in the hindcast phase demonstrates limited effectiveness across all tested architectures.

Integrating archived forecasts in hindcast phase
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Figure 5. Cumulative Density Function of Nash Sutcliffe Efficiency values for experiments integrating archived forecasts in the hindcast
phase. The experiments include the baselines (grey), selective transfer learning with only finetuning the embedding weights while the LSTM

340 was freezed (TL EmbeddingNet), Encoder- Decoder LSTM (purple) and the Sequential Forecast LSTM (orange). Solid lines indicate the
experiments with solely reanalysis data in the hindcast phase, while dashed lines display the combination of archived forecasts and reanalysis
in the hindcast phase.

In Figure 4 it is evident that in transfer learning only fine-tuning the embedding net led to higher forecast skill, leading us to
only focus in this experimental setup on the selective transfer learning method. As previously discussed, the TL EmbeddingNet

10
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345 approach pretrained exclusively on reanalysis data achieved a median NSE of 0.44. In contrast, when the same transfer learning
architecture is pretrained on combined forecast and reanalysis data, the results show deteriorated performance compared to the
reanalysis-only pretraining, with a median NSE dropping to 0.41. This configuration exhibits increased variability (standard
deviation of 2.29) while the 10™ percentile performance remains poor at 0.02, failing to achieve the improvement (0.15)
observed with reanalysis-only pretraining. The mean performance also deteriorates significantly (0.21 vs 0.35 for reanalysis-

350 only), indicating the introduction of more negative outliers.

For the Encoder-Decoder LSTM, incorporating archived forecasts yields marginal improvements in the upper performance
percentiles, with the 75th and 90th percentiles increasing from 0.65 to 0.69 and 0.73 to 0.77, respectively, while the 10"
percentile improves slightly from 0.21 to 0.24. However, these modest gains are accompanied by increased variability
(standard deviation increases from 8.03 to 9.33) while the median NSE remains unchanged at 0.57.

355 The Sequential Forecast LSTM shows no meaningful benefit from archived forecast integration, with the median NSE
decreasing marginally from 0.63 to 0.62. More critically, this architecture experiences an increase in variability (standard
deviation from 0.52 to 6.28) and the mean performance drops from 0.57 to 0.19, indicating the introduction of numerous
extreme negative outliers that significantly compromise model reliability.

The results demonstrate that integrating archived forecasts during the hindcast phase does not provide meaningful performance

360 improvements for either architecture. The approach either yields negligible benefits while increasing instability (Encoder-
Decoder LSTM) or actively degrades performance (Transfer learning, Sequential LSTM), indicating that this strategy is not

effective for addressing domain shift challenges in hydrological forecasting applications.

3.4 The role of integrating past discharge in the training domain

Previous studies have consistently focused on modeling ungauged basins (Kratzert et al., 2019a; Nearing et al., 2024).
365 However, we argue that when near real-time discharge data are available, as is the case for most gauging stations across the
LamaH catchments in Central Europe, the incorporation of discharge observations positively influences forecast accuracy. For
example, in the Austrian LamaH basins, discharge data from the eHYD platform (https://ehyd.gv.at) are available with a time
delay of only two hours, making the integration of recent discharge observations operationally feasible for real-time forecasting

applications.

Integrated Discharge
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Figure 6. Cumulative Density Function of Nash Sutcliffe Efficiency values for experiments integrating past discharge in the hindcast phase.
The experiments include the baselines (grey), Encoder- Decoder LSTM (purple) and Sequential Forecast LSTM (orange). Solid lines depict
the experiments without discharge, while the dashed lines show experiments with discharge in the hindcast phase. The arrows represent the
prediction accuracy increase as median ANSE when integrating discharge in the hindcast phase of the models.
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375 The integration of past discharge observations demonstrates performance improvements across both tested architectures. For
the Encoder-Decoder LSTM, incorporating discharge data yields significant gains, with the median NSE increasing from 0.57
to 0.66. The improvement is particularly pronounced in the lower percentiles, with the 10th percentile rising from 0.21 to 0.37,
indicating considerably better performance for poorly performing basins. The 75th and 90th percentiles also show notable
improvements (0.65 to 0.77 and 0.73 to 0.83, respectively), while the variability decreases slightly (standard deviation from
380 8.03106.68).
The Sequential Forecast LSTM exhibits even more impressive improvements when discharge is integrated, achieving a median
NSE of 0.71 compared to 0.63 without discharge. This represents the highest performance among all forecast-based
configurations and even exceeds the reanalysis baseline performance (0.69). The 10th percentile shows substantial
improvement (0.35 to 0.42), while the upper percentiles reach 0.81 and 0.88 for the 75th and 90th percentiles, also exceeding
385 the reanalysis baseline performance in these ranges.
Additional transfer learning experiments were conducted to investigate whether discharge information learned during pre-
training could be effectively transferred to discharge-free operational scenarios. These experiments included domain adaption
configurations where discharge was incorporated during the pre-training phase but excluded during fine-tuning, as well as
setups using the Sequential Forecast LSTM with discharge in the source domain and without discharge in the target domain.
390 All transfer learning approaches consistently resulted in performance deterioration and failed to yield improvements that would
justify the computational overhead of the transfer learning process. While these experiments demonstrated that information
extraction from LSTM cell states is feasible, the learned discharge-related representations could not adequately compensate
for the absence of direct discharge observations during operational forecasting. The experiments with discharge incorporated
directly into the training data consistently outperformed all transfer learning alternatives, indicating that real-time discharge

395 integration provides irreplaceable benefits that cannot be effectively substituted through knowledge transfer mechanisms.

3.5 The role of embedding complexity

During experimenting we experienced that the embedding complexity plays an important role in reducing the forecast induced
bias in runoff predictions. This circumstance has led us to create this experimental setup, in which a simple (linear) and a
complex (non-linear) embedding were generated for all architectures used in the previous experimental settings. In brief, a
400 similar pattern can be observed for all architectures except transfer learning: the more complex the input embedding, the lower

the prediction performance.
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Different Embedding Complexities
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Figure 7. Cumulative Density Function of Nash Sutcliffe Efficiency values for experiments with different embedding complexities. The
experiments include the baselines (grey), selective transfer learning with only finetuning the embedding weights while the LSTM was freezed

405 (TL EmbeddingNet), Encoder- Decoder LSTM without discharge (purple), Encoder- Decoder LSTM with discharge (pink), Sequential
Forecast LSTM without discharge (orange) and Sequential Forecast LSTM with discharge (yellow). Solid lines depict the experiments
without simple linear embedding, while the dashed lines show experiments with complex non- linear embedding networks.

While the transfer learning experiments did not achieve the high NSE values of the best-performing forecasting approach
(Sequential LSTM), notable relationships emerged between embedding complexity and prediction accuracy. In the baseline,

410 encoder-decoder and sequential LSTM experiments, simple linear embedding networks produced slightly higher simulation
performance compared to more complex embedding architectures. This pattern reversed in transfer learning experiments,
where increased embedding complexity led to improved prediction results. The transfer learning procedure consisted of
transferring weights from an LSTM model pre-trained on reanalysis data to a new network architecture with modified input
embeddings, where only the embedding weights underwent retraining while the remaining LSTM parameters remained frozen.

415  The minimal better performance of simple embeddings in non-transfer learning experiments can be attributed to the tendency
of complex embedding networks to overfit when trained on the available data. The number of trainable parameters in complex
embeddings exceeds the optimal ratio relative to available training data, causing the model to learn specific noise patterns in
the training data rather than generalizable hydrological patterns. This means simpler embeddings capture the relevant input
patterns more effectively without introducing unnecessary model complexity comprising generalization.

420 The improved results with increased embedding complexity in transfer learning can be explained by the requirement for
flexible, non-linear transformations necessary for effective domain adaptation. Since only the embedding weights are trained
while the all other network parameters remain frozen, the embedding layer must perform all adaptation work between the
target domain and the representations pre-trained on reanalysis data. More complex architectures can perform richer and more
domain-specific feature extraction, compensating for the discrepancy between source and target domains through more

425  expressive input transformations. The contrasting performance patterns between transfer learning and standard training suggest
that the optimal embedding complexity depends on whether the model parameters are trained from scratch or adapted from

pre-trained weights, though the precise mechanisms underlying this relationship warrant further investigation.

3.6 Limitations and Future Directions

This study is subject to several limitations. The experiments were conducted on the Extended LamaH-CE dataset, which is
430 restricted to Central Europe; the transferability of the results to other hydroclimatic regions remains to be tested. While
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discharge observations were shown to substantially improve performance, they are not error-free, and their availability cannot

be guaranteed in ungauged or poorly monitored catchments.

In addition, we only evaluated existing LSTM-based architectures and a modeling setup with spatially lumped data and daily

maximum discharges. Applying these approaches in fully distributed settings with higher temporal resolution forecasts may
435  yield different, potentially more pronounced results. The integration of reanalysis data in the hindcast phase, while useful for

training, is also constrained by data latency, which is often critical for operational use, although future improvements in near—

real-time reanalysis may alleviate this.

Addressing these challenges—testing transferability, reducing dependence on delayed or unavailable inputs, and extending

both the spatial and temporal resolution of experiments—will be essential to further investigate and advance robust,

440 operationally viable solutions for flood forecasting.

4 Conclusion and Outlook

The operational deployment of deep learning based flood forecasting models faces fundamental challenges when transitioning
from high-quality reanalysis to meteorological forecast data, with domain shift between these data sources leading to model
performance degradation. While previous approaches have focused on bias-correcting meteorological inputs through statistical
445  methods (Lenderink et al., 2007) or machine learning techniques applied to precipitation forecasts (Ko et al., 2020; Zhang et
al., 2020), these methods rely on comparing forecasts with meteorological observations that themselves contain uncertainties
(Béardossy et al., 2022). This study addressed the challenge through systematic evaluation of Long Short-Term Memory
architectures and training techniques that learn bias correction directly from the more reliable discharge observations,
following the paradigm suggested by Kirchner (2009) of using river discharge as the primary constraint. Our experiments
450 across 451 Central European catchments demonstrated that appropriate neural network designs can transform the domain shift
problem from a major obstacle into a learnable pattern correction task. Sequential Forecast LSTM architectures, when
combining meteorological hindcast data with past discharge observations, provided the most effective framework for
mitigating forecast-induced biases. This configuration achieved a median NSE of 0.71, surpassing even the reanalysis baseline
simulation and establishing discharge integration, if data are available in near real time as in the LamaH domain, as a critical
455 component for operational forecast accuracy.
To quantify the bias propagation caused by the domain shift, we conducted cross-domain evaluation revealing performance
deterioration when reanalysis-trained models were applied to forecast inputs. In this setting, the median Nash-Sutcliffe
Efficiency decreased from 0.58 to 0.33, representing a 0.25 reduction in model skill. This performance degradation stems from
fundamental differences in data distributions between reanalysis and forecast datasets, violating the assumption of identically
460 distributed training and testing data that underlies machine learning model generalization (Goodfellow et al., 2016). Among
the tested neural network architectures, the Sequential Forecast LSTM demonstrated superior performance for operational
forecasting applications. This architecture achieved a median NSE of 0.63 with notable stability (standard deviation of 0.52)
and maintained reasonable performance across all percentiles. The sequential processing approach enables gradual correction
of forecast biases through continuous state evolution from hindcast to forecast phases, preserving temporal patterns without
465  the disruption introduced by fixed handoff networks in Encoder-Decoder architectures. Transfer learning approaches, despite
theoretical advantages for domain adaptation, achieved only modest improvements (NSE 0.44), while the incorporation of
archived forecasts in training failed to provide consistent benefits and often increased model instability. The relationship
between embedding complexity and performance varied systematically: simpler embeddings performed better in standard
training contexts, while complex embeddings showed advantages only in transfer learning scenarios where flexible input
470 transformations were required for domain adaptation.
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These findings carry important implications for operational flood forecasting system design. The high performance of
Sequential Forecast LSTM architectures indicates that operational systems should prioritize continuous state transfer
mechanisms maintaining temporal dependencies across the hindcast-forecast phases rather than treating these phases as
disconnected processes. The substantial improvements from discharge integration align with operational capabilities in many

475  monitored systems, such as in hydro power plants or the Austrian eHYD platform where observations are available with two-
hour latency, making real-time integration feasible. The ability to learn bias correction patterns directly from the combined
meteorological-hydrological data space eliminates the need for separate pre-processing steps, whether meteorological bias
correction (Hess, 2020; Han et al., 2021) or streamflow post-processing methods like the GloFAS-specific approach of Hunt
et al. (2022), reducing computational overhead and possibly potential error propagation.

480 Future developments should focus on adaptive architectures that can dynamically leverage discharge observations when
available while maintaining robust performance in ungauged settings through reanalysis-only hindcast processing. Such
unified frameworks would enable seamless deployment across both gauged and ungauged basins within the same operational
system, automatically adjusting to data availability in real-time. However, sensor failures should also be taken into account
here, and the training methods proposed by Gauch et al. (2025) should be applied. While our experiments were limited to

485 ECMWEF HRES archived forecasts due to data availability, combining multiple forecasts from different sources could also be
promising as it could capture forecast uncertainty more comprehensively and enable the model to learn source-specific bias
patterns, as with the integration of multiple meteorological data in a simulation setting (Kratzert et al., 2021). The Sequential
Forecast LSTM's bias correction capabilities at 24-hour lead times provide a strong foundation for multi-day forecasting
applications, where learning lead-time dependent bias patterns could improve medium-range flood predictions that are crucial

490 for early warning systems and emergency preparedness. The demonstrated ability of LSTM architectures and training
techniques to transform the domain shift challenge into a learnable bias correction problem, combined with increasing
availability of real-time hydrological observations, establishes a pathway toward operational flood forecasting systems that

can maintain predictive skill despite the inherent uncertainties coming from numerical weather predictions.

495 Code and data availability. All experiments have been conducted with a forked version of the NeuralHydrology library
(Kratzert et al., 2022), available at github.com/conestone/neuralhydrology. The Extended LamaH-CE dataset is available at
zenodo.org/records/17119635 (Konold et al., 2025b). The code to create the analysis and figures is available at
github.com/conestone/biascast. All trained models with its configuration files and saved weights are available at
10.5281/zen0do.17241922 (Konold et al., 2025a).

500
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Appendix A. Dynamic and Static Forcings of the Models

EGUsphere\

evapotranspiration

Variable Description Unit | Source Product | Source
2m above earth surface max air o -
ERAS5L_2m_temp_max temperature C ERAS5Land Mufoz-Sabater et al., 2021
2m above earth surface mean air o 5
ERAS5L_2m_temp_mean temperature C ERAS5Land Mufoz-Sabater et al., 2021
ERASL_2m_temp_min 2m above earth surface min air °C | ERAS5Land Mufioz-Sabater et al., 2021
temperature
ERAS5L_2m_dp_temp_max 2m above earth surface max dewpoint °C ERA5Land Mufoz-Sabater et al., 2021
temperature
ERAS5L_2m_dp_temp_mean im abqve earth surface mean °C ERA5Land Mufioz-Sabater et al., 2021
ewpoint temperature
ERAS5L_2m_dp_temp_min 2m above earth surface min dewpoint °C ERA5Land Mufioz-Sabater et al., 2021
temperature
ERAS5L_10m_wind_u Eastwards wind speed 10m above m/s ERA5Land Mufioz-Sabater et al., 2021
earth surface
ERASL_10m_wind_v Northwards wind speed 10m above | | ERASLand Mufioz-Sabater et al., 2021
earth surface
ERAG5L fcst alb Forecast albedo - ERA5Land Mufioz-Sabater et al., 2021
ERAGSL _lai_high_veg b%ag Area Index for high vegetation m?m? | ERASLand Mufoz-Sabater et al., 2021
ERASL_lai_low_veg b%ag Area Index for low vegetation | 2 | ERASLand Mufioz-Sabater et al., 2021
ERAS5L swe Snow Water Equivalent mm ERA5Land Mufioz-Sabater et al., 2021
Max amount of solar radiation
ERASL _surf_net_solar_rad_max reaching the Farth’s surface oinus the W/m? | ERAS5Land Mufioz-Sabater et al., 2021
= = - = amount reflected by the Earth’s
surface
Mean amount of solar radiation
reaching the Earth’s surface minus the ~
ERAGSL _surf_net_solar_rad_mean s W/m2 | ERA5Land Mufioz-Sabater et al., 2021
amount reflected by the Earth’s
surface
ERASL _surf_net_therm_rad_max Maxn’num net thermal radiation at the W/m? | ERA5Land Mufioz-Sabater et al., 2021
- == - = Earth’s surface;
ERAGSL _surf net_therm_rad_mean Mean’ net thermal radiation at the W/m2 | ERA5Land Mufioz-Sabater et al., 2021
- == - - Earth’s surface;
ERASL _surf_press Surface pressure Pa ERA5Land Mufioz-Sabater et al., 2021
ERAGSL total et Total evapotranspiration mm ERA5Land Mufioz-Sabater et al., 2021
ERAS5L _prec Total precipitation mm ERAS5Land Mufoz-Sabater et al., 2021
ERAS5L_volsw_123 Fraction of water from 0 to 100 cm m¥/me | ERA5Land Mufioz-Sabater et al., 2021
depth (topsoil)
ERASL_volsw_4 Fraction of water from 10010 289 M | s | ERAS| and Mufioz-Sabater et al., 2021
- - depth (subsoil)
2m above earth surface mean daily air | ,
EOBS_tg temperature C E-OBS Cornes et al., 2018
EOBS tn 2m above earth surface min daily air oc E-OBS Comes et al., 2018
— temperature
EOBS tx 2m above earth surface max daily air oc E-OBS Cornes et al., 2018
- temperature
EOBS _rr Total precipitation mm E-OBS Cornes et al., 2018
EOBS_pp Mean sea level pressure hPa E-OBS Cornes et al., 2018
EOBS fg Mean wind speed at 10m height m/s E-OBS Cornes et al., 2018
EOBS_qq Solar radiation at earth's surface W/m2 | E-OBS Cornes et al., 2018
MSWEP_RR Total precipitation mm MSWEP Beck et al., 2019
GLEAM_ETA Actual evapotranspiration mm GLEAM Miralles et al., 2011
GLEAM_ETP Potential evapotranspiration mm GLEAM Miralles et al., 2011
Forecasted 2m above earth surface o
ECMWF_t2m mean air temperature C ECMWF-HRES | ECMWEF, 2025
ECMWF_d2m Forecasted 2m above earth surface °c ECMWF-HRES | ECMWF, 2025
mean dewpoint temperature
ECMWF_ssrd Forscasted solar radiation at eartfs | yime | ECMWF-HRES | ECMWF, 2025
ECMWEF _tp Forecasted total precipitation mm ECMWF-HRES | ECMWF, 2025
ECMWF e Forecasted total actual mm | ECMWF-HRES | ECMWF, 2025

Table Al. Meteorological Variables in the Extended LamaH-CE data set used for the conducted experiments
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Attribute Description Unit
area_calc Calculated basin area km?
elev_mean | Mean catchment elevation ma.s.l
elev_med Median catchment elevation ma.s.l
elev_std Standard deviation of elevation in catchment ma.s.l
elev_ran Range of catchment elevation (max — min elev.) ma.s.l
slope_mean | Mean catchment slope m/km
mvert_dist | Horizontal distance from the farthest point of the catchment to the corresponding gauge (length axis) km?
mvert_ang Angle between the north direction and connection from farthest point of catchment to the corresponding degree
gauge (length axis)
) Elongation ratio between the diameter D of an equicalent circle and the area of the catchment area to ist
elon_ratio -
- length L
strm_dens Stream density km/km?
p_mean Mean daily precipitation mm/day
et0_mean Mean daily reference evapotranspiration mm/day
eta_mean Mean daily total evapotranspiration mm/day
arid_1 Aridity, computed as the ratio of mean et0_mean and p_pean -
arid_2 Reciprocal value of aridity index -
p_season Sealsonality and timing of precipitation (estimated using sine curves) to represent the annual precipitation B
= cycles
frac_snow | Fraction of precipitation falling as snow -
hi_prec_fr Frequency of high-precipitation days day/year
hi_prec_du | Mean duration of high-precipitation events day
lo_prec_fr Frequency of dry days day/year
lo_prec_du | Mean duration of dry periods day
Ic_dom Three-digit short code of dominant land cover class -
agr_fra Fraction of agricultural areas -
bare_fra Fraction of bare areas -
forest_fra Fraction of forest areas -
lake_fra Fraction of natural or artificial water bodies with all-season water filling -
urban_fra Fraction of areas mainly occupied by buildings including their connected areas -
lai_max Maximum monthly mean of one-sided leaf area index m2/m?2
lai_diff Difference between maximum and minimum monthly mean of one-sided leaf area index m?/m?
ndvi_max Maximum monthly mean of NDVI -
ndvi_min Minimum monthly mean of NDVI -
gvf_max Maximum monthly mean of the green vegetation fraction -
gvf_diff Difference between the maximum and minimum monthly mean of the green vegetation fraction -

505 Table A2. Static catchment attributes from the Extended LamaH-CE data set used for the conducted experiments
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510

Appendix B. Variability across input data sets
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Figure B1. Variability across input data sets displayed as violin plots for annually aggregated meteorological variables Temperature,
Precipitation, Actual Evapotranspiration, Solar Radiation and Dewpoint Temperature. The violin colours belong always to a certain data
product: red- ERA5Land, blue: E-OBS, green: ECMWF-HRES, purple: MSWEP. The dark grey box in the violin shows a boxplot with the
bold part depicting the interquartile range and the white line indicating the median.
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Appendix C. Evaluation Metrics

515 The model performance was evaluated by using the non basin specific NSE* of Kratzert et al. (2019b) which is based on the
Nash and Sutcliffe Efficiency (NSE; Nash and Sutcliffe, 1970). In comparison to former studies (Kratzert et al., 2019a, b,
2021; Nearing et al., 2024), we conducted no cross validation across spatial units, since we did not focus on ungauged basins.
Instead, we employed a temporal split validation approach, where the available time series data for each catchment was divided

into training, validation, and testing periods to ensure robust model evaluation.

n o 2
520 NSE =1— ZiziUobsi-Vsimi) “
i (YobsiYobs)

—~ _ 2
NSE »= £ 25, DY, (C2)

"=1 (s(b)+e)?

Appendix D. Hyperparameter Optimization

Hyperparameter tuning is a critical component in the bias correction of meteorological forecasting data using Long Short-
Term Memory (LSTM) networks, as it directly influences the model’s ability to learn complex temporal patterns and correct

525  systematic biases in forecast inputs. Given the nonlinear and dynamic nature of meteorological variables, appropriate selection
of hyperparameters such as learning rate, sequence length, number of hidden units, dropout rate, and batch size, is essential to
ensure that the LSTM model generalizes well without overfitting to noise or underfitting relevant signals. In the context of
bias correction, the model must not only capture historical dependencies in the forecast errors but also effectively differentiate
between genuine atmospheric variability and persistent model biases. Without careful tuning, the LSTM may fail to correct

530 biases accurately, particularly under extreme events or seasonal transitions.

To this end, we used Bayesian optimization as described by Peter I. Frazier (2018). This search algorithm fits a Gaussian
process to the observed hyperparameter-performance pairs to estimate performance on yet-untested parameter settings. We
use the expected improvement as acquisition function, which is used for selecting the next set of hyperparameters to test. This
approach efficiently identifies good hyperparameters, especially in large search spaces.

535 For our models, we spanned the search space over the hidden layer sizes (64, 128, 256 units), output dropout rates (0.1, 0.2,
0.3), variance of Gaussian noise applied to the discharge values (0.001, 0.01, 0.1), and batch sizes (64, 128, 256) and limited
the number of iterations to 100. To obtain the result for each setting, we trained a model for 30 epochs, an initial learning rate
0f 0.001 and a cosine annealing schedule (T_max=30, n_min=1e-5), stopping early if the model did not improve the evaluation
metric by more than 0.005 in the last 5 epochs. To estimate the performance of the model we used the basin averaged Nash-

540 Sutcliffe efficiency (NSE*) metric and evaluated it on the validation period.

NSE* with hyperparameter optimization:

A =arg m)?x NSEmedian (Dyar; ) (D1)
where
A= {dp, Paropouts Onoises bize} (D2)

545  represents the optimal output.
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Appendix E. Long-Short Term Memory Network

Long term information is stored in the cell state (c:), short term information in the hidden state (h;) and the information flow is
controlled by the so- called gating mechanisms (Hochreiter and Schmidhuber, 1997). The input gate (i;) determines how much
550 of the current input and previous hidden state contributes to updating the cell state. The forget gate (f;) regulates which parts
of the previous cell state should be retained or discarded, allowing the model to reset its memory when necessary. The output
gate (o) defines how much of the updated cell state is exposed to the next time step via the hidden state (Gers et al., 1999).

This architecture allows LSTMs to retain relevant information over longer time periods and capture temporal dependencies in

input data.
555
. fi = o(Wpx, + Ushy_y + by) (E1)
¢, = tanh (Wex, + Ughy_q + bg) (E2)
ir = o(Wix; + Uihey + b;) (E3)
=f0ca1+tiiO& (E4)
hes 0, = c(W,x; + Ughy_y + by) (E5)
h, = tanh (¢;) O o, (ES6)

Figure E1. LSTM cell

Appendix F. Computational Resources

All conducted experiments were trained on a NVIDIA RTX4090 graphics processing unit, with wall times varying between

several minutes to approximately one hour for one model run, depending on the size of the input vector in the model and the

model architecture itself. Although it is common practice in hyperparameter optimisation to run the same settings three times
560 with different seedings, we have only run the tuning with one seed at a time due to computational constraints.
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