
1 

 

BiasCast: Learning and adjusting real time biases from 

meteorological forecasts to enhance runoff predictions 

Oliver Konold1, Moritz Feigl2, Patrick Podest3, Christoph Klingler2, Karsten Schulz1 

1Institute of Hydrology and Water Management, BOKU University, Vienna, Austria 
2baseflow AI solutions, Vienna, Austria 5 
3ELLIS Unit, LIT AI Lab, Institute for Machine Learning, Johannes Kepler University (JKU), Linz, Austria 

Correspondence to: Oliver Konold (oliver.konold@boku.ac.at) 

Abstract. The use of deep learning models in hydrology is becoming an ever more prevalent application in operational flood 

forecasting. Such operational systems face performance degradation when transitioning from high quality reanalysis to 

meteorological forecast data with lower accuracy. This study investigates training strategies and Long Short-Term Memory 10 

network architectures to mitigate forecast-induced bias in maximum daily discharge predictions using the Extended 

LamaH- CE dataset and a subset of 451 basins. We systematically evaluated cross-domain generalization, transfer learning 

approaches, Encoder–Decoder LSTMs, Sequential Forecast LSTMs, and the role of input embeddings and integrating past 

discharge observations. The results show that domain shifts between reanalysis and forecast data lead to substantial skill loss, 

with median Nash–Sutcliffe Efficiency decreasing from 0.58 to 0.33. Among the tested strategies, the Sequential Forecast 15 

LSTM demonstrated the most stable improvements, achieving a median NSE of 0.63. Integrating recent discharge observations 

further enhanced performance, raising median NSE to 0.71 and surpassing even the reanalysis-driven baseline. In contrast, 

integrating archived forecasts or using more complex input embeddings did not yield consistent benefits and in some cases 

degraded model stability. These findings highlight the value of training strategies that allow models to directly learn bias 

correction during forecast transitions and emphasize the operational potential of combining sequential processing with near 20 

real-time discharge observations. 

1 Introduction 

Accurate runoff prediction stands as one of the most critical challenges in modern hydrology, with far-reaching implications 

for flood risk management, water resource planning, and the design of resilient hydraulic infrastructure (Beven, 2012; Guo et 

al., 2021; Tran et al., 2025). While recent advances in deep learning have demonstrated that Long Short-Term Memory 25 

Networks (LSTMs) can effectively integrate multiple meteorological datasets to improve runoff simulation accuracy by 

learning complex spatial and temporal patterns (Kratzert et al., 2021), a fundamental challenge remains: operational forecasting 

systems rely on biased meteorological forecasts rather than reanalysis or observational data. This dependency introduces a 

cascade of uncertainties, as meteorological forecasts inherently exhibit lower accuracy and higher uncertainty than 

observational or reanalysis datasets (Lavers et al., 2021), with forecast errors further amplifying as lead time increases (Nester 30 

et al., 2012). The consequences of these uncertainties are particularly severe in flood forecasting applications, where timely 

and magnitudinal correct runoff predictions are critical for early warning systems and risk management (Chen et al., 2016).  

The biases in meteorological forecasts stem from factors such as model resolution, data assimilation techniques, or orographic 

effects, and they differ depending on the numerical weather prediction model (e.g., ECMWF-HRES, DWD-ICON, 

NOAA-GFS), the predicted variable itself and the region in question (Haiden et al., 2024). These inaccuracies can propagate 35 

through hydrological models and lead to unreliable runoff forecasts, particularly under extreme conditions (Nester et al., 2012). 

To mitigate this issue, a variety of statistical and machine learning-based bias correction methods have been developed to 

adjust forecasted meteorological variables prior they are used as input in a hydrological model. 
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A simple approach to reduce biases in precipitation is described by Lenderik et al. (2007), who are scaling precipitation linearly 

based on a constant factor calculated from long term observations. To support operational warning systems, Hess (2020) 40 

developed the Ensemble Model Output Statistics (Ensemble-MOS) system, which postprocesses ensemble forecasts from 

COSMO-D2-EPS and ECMWF-ENS. The approach relies on logistic regression and stepwise multiple regression to reduce 

conditional biases and produce calibrated probabilistic forecasts efficiently. Ko et al. (2020) used the XGBoost machine 

learning algorithm to correct precipitation forecasts. Their method demonstrates that machine learning can improve rainfall 

forecasting performance, especially localized heavy rainfall events, which are of special importance for flash floods in small 45 

catchments. Zhang et al. (2020) used LSTMs to learn relationships between meteorological forecasts and observed rainfall 

data. Their results indicate that LSTMs are capable of learning dynamic biases to correct the forecasts from numerical weather 

predictions and increase forecast reliability, especially for heavy rainfall events. Han et al. (2021) proposed CU-net, a 

convolutional neural network architecture specifically designed to address systematic biases in gridded numerical weather 

predictions from ECMWF-IFS. Their grid-based approach represents a methodological advancement by directly correcting 50 

spatial forecast fields, enabling comprehensive bias mitigation across continuous meteorological domains. However, the focus 

on ECMWF-IFS data raises important questions about the correction model's transferability to other numerical weather 

prediction systems, potentially limiting the generalizability of their bias correction framework and highlighting the need for 

more robust approaches.  

The studies mentioned have in common that the meteorological forecasts are compared either with meteorological station- or 55 

reanalysis data. In this context, it is important to note that especially precipitation measurements, whether from rain gauges, 

radar, or satellite sources, are inherently subject to various sources of uncertainty (Bárdossy et al., 2022). These errors stem 

from undercatch due to wind effects or sensor limitations (Yang et al., 1999). As a consequence, it can be assumed that even 

when inputting bias corrected precipitation forecast data to a hydrological model, a source of uncertainty with potential error 

propagation also arises here, which in turn creates a bias in runoff prediction. In contrast, discharge observations are typically 60 

regarded as more reliable compared to precipitation observations, as they represent an integrated hydrological response over 

the entire catchment and are measured continuously at fixed gauging stations (Herrnegger et al., 2015; Mao et al., 2019). 

Although discharge measurements also carry uncertainty, particularly related to the use of rating curves or sensor malfunction 

during extreme events, they are less affected by localized measurement errors (De Oliveira and Vrugt, 2022; Villarini et al., 

2008). 65 

A method directly improving streamflow forecasts from the physically based Global Flood Awareness System (GloFAS) was 

developed by Hunt et al. (2022). GloFAS is an operational hydrological forecasting system that couples ECMWF ensemble 

weather predictions with the LISFLOOD hydrological model to provide streamflow forecasts for rivers worldwide (Alfieri et 

al., 2013). Instead of bias-correcting the meteorological input variables, Hunt et al. (2022) addressed systematic biases in 

streamflow forecasts using a statistical bias correction method based on quantile mapping (QM) with spatial optimisation and 70 

subsequently applied a damping factor to blend the corrected forecasts with the original raw output. Despite the demonstrated 

improvements in forecast skill, this bias correction approach has several limitations. First, the quantile mapping correction is 

dependent on GloFAS forecasts, meaning it is not applicable for regions where no GloFAS forecast is available. Second, the 

method is lead-time independent, meaning it does not account for the evolution of forecast bias over longer lead times, which 

can reduce its effectiveness for medium- to long-range forecasts. Third, the applied damping factor, while effective in reducing 75 

over-correction, is empirically tuned, which may limit its robustness when applied across diverse catchments or under changing 

climate conditions. A further limitation of the study is the relatively small number of catchments used (10 gauges), which 

constrains the generalizability of the findings.  

Building on the idea that runoff observations may be more accurate than those of meteorology, Kirchner (2009) proposed a 

paradigm shift through the concept of "doing hydrology backward," where discharge is used as the primary constraint to infer 80 
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the dynamics and uncertainties of upstream processes, such as precipitation or evapotranspiration. Rather than relying solely 

on uncertain meteorological inputs to predict runoff, backward hydrology extracts information about catchment dynamics 

directly from the discharge time series itself (Herrnegger et al., 2015; Kirchner, 2009). In this respect, the approach could also 

be used to perform a dynamic bias correction of multiple meteorological forecast variables since runoff data may serve as a 

more robust target variable in data-driven modelling frameworks than uncertain meteorological observations (e.g. rainfall). 85 

Given the hypothesis that large-scale hydrological datasets contain more information than could be described using theoretical 

or conceptual approaches (Nearing et al., 2021), a way to harness the potential of machine learning is to combine large sample 

datasets with meteorological forecasts as inputs. In such a setup, the model can learn to assign weights to the forecasts and 

internally correct their biases, thereby improving the overall runoff prediction accuracy.  

In this study we investigate multiple Long Short-Term Memory (LSTM) network architectures and training strategies to reduce 90 

meteorological forecast-induced bias in 24-hour ahead maximum daily discharge predictions. The focus on daily maxima 

ensures that critical peak flows relevant to flood forecasting are not masked by temporal averaging. 24-hour lead time was 

selected as an initial proof-of-concept to establish baseline performance of bias correction capabilities, as forecast uncertainty 

generally increases with lead time (Nester et al., 2012), making shorter horizons an appropriate starting point for validating 

the approach while providing a foundation for future extension to multi-day predictions. We evaluate baseline LSTM 95 

configurations, transfer learning approaches, encoder-decoder architectures, and sequential LSTM networks across 451 

catchments from the Extended LamaH-CE dataset in Central Europe. Our experiments examine the effectiveness of different 

data integration scenarios, including the incorporation of past discharge observations and archived forecasts, with the goal of 

developing robust neural network-based approaches for operational flood forecasting systems that can effectively compensate 

for systematic biases inherent in numerical weather prediction models. 100 

2 Data and Methods 

2.1 Data 

This study uses an extended version of the daily LArge-SaMple DAta for Hydrology and Environmental Sciences for Central 

Europe (LamaH-CE; Klingler et al., 2021). LamaH consists of 859 gauged catchments including 21 catchment averaged 

meteorological variables, with more than 60 static catchment attributes. Since the original version of LamaH only contains 105 

meteorological ERA5-Land data and Kratzert et al. (2021) show that leveraging multiple meteorological data sources is 

beneficial in large sample hydrology, we expanded the data by 15 further variables from five sources. The products used are 

(i) ERA5-Land (Muñoz-Sabater et al., 2021) as in the original LamaH data, (ii) ECMWF-HRES European Center for Medium 

Range Weather Forecast - High Resoultion Forecast (ECMWF, 2025), (iii) E-OBS gridded observational data (Cornes et al., 

2018), (iv) MSWEP multi-source weighted ensemble precipitation (Beck et al., 2019) and (v) GLEAM global land evaporation 110 

Amsterdam model (Miralles et al., 2011).  Details of the variables used, including their definitions, units, and sources, are 

summarized in Appendix A. The data products were obtained as raster data and subsequently aggregated to the LamaH basins. 

All variables are daily averages (e.g. temperature) or daily sums (e.g. precipitation). For the ECMWF-HRES variables 

temperature, dew point and sea level pressure, 3 hourly forecast values (8 per day) were calculated as daily averages starting 

from 0 o'clock (UTC) issue time. A second adaption we made to the LamaH dataset concerns the gauge files. In the daily 115 

version of LamaH-CE, there are only the mean daily discharges - we have extracted the daily minima and maxima from the 

hourly LamaH data for all gauges and extended the daily version with those.  
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Figure 1. LamaH domain with the 451 subset basins. For better illustration, LamaH subbasins (level B, blue polygons) are shown here, but 

calculations were performed at LamaH level A (lumped for each gauge).  The red points show the runoff gauges located at the catchment 120 
outlet. 

For the conducted experiments, we used a subset of 451 basins with no and low anthropogenic influence at LamaH aggregation 

level A, which represents the lumped topographic catchment area of a gauge. Level A is comparable to the aggregation of the 

catchment areas in the CAMELS (Newman et al., 2015) dataset. The catchments are spatially distributed across the entire 

LamaH domain, with catchment areas including high alpine-, alpine foothill- and lowland areas. 125 

2.2 Experimental design 

To comprehensively evaluate the performance of LSTM-based flood prediction models under different data availability 

scenarios and training strategies, we designed five distinct experimental groups with the primary research question: How to 

reduce the meteorological forecast induced bias in runoff predictions? 

 130 

Figure 2. Workflow of the conducted experiments. The LamaH-CE dataset was extended by forecast and further reanalysis data and subset 

to 451 basins with no and low anthropogenic influence. The experimental split is divided into the deep learning architectures used, followed 

by a schematic representation of input embeddings for static and dynamic variables which feature space is fed to the LSTM. The last step is 

the forecast of the daily maximum runoff at the gauges. 

All experiments were, in terms of reproducibility, conducted with the NeuralHydrology (Kratzert et al., 2022) python library 135 

and trained on different LSTM architectures to predict maximum daily discharge (qmax). The models incorporated dynamic 

meteorological inputs using a 365-day input sequence length, and static catchment attributes (33 physiographic, climatic, and 
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land cover characteristics), both processed through separate embedding networks. The embedding networks are fully connected 

neural network layers that transform raw input variables into learned representations, enabling the LSTM to capture non-linear 

relationships between inputs and allowing different feature combinations to be learned during training rather than being 140 

predefined (Ahmed et al., 2023). The experimental framework utilized a consistent temporal split with training data from 2003-

2009, validation from 2010-2013, and testing from 2014-2017. Model performance was evaluated using basin averaged Nash-

Sutcliffe Efficiency  (NSE*, Kratzert et al., 2019b) as the primary loss function. A description of the loss function is attached 

in Appendix C. Model hyperparameters, such as the number of hidden units, were optimized using Bayesian optimization (see 

Snoek et al., 2012) with NSE* as the objective function. A detailed description of the performed hyperparameter tuning is 145 

attached in Appendix D. Hereafter, we use "domain" equivalent to distinct forcing datasets with unique statistical properties 

in hydrological modelling to denote a specific data distribution characterized by its feature space and probability distribution 

in its machine learning sense. Throughout the remainder of this paper, domain specifications and equations reference only 

dynamic meteorological forcings for clarity, with the understanding that static catchment attributes remain unchanged across 

all experimental setups. 150 

2.2.1 Baseline 

Three baseline experiments were conducted to establish performance benchmarks using different meteorological data sources 

in a standard LSTM runoff simulation framework. LSTMs are a special form of recurrent neural networks, mainly used for 

sequential (time series) data (Hochreiter and Schmidhuber, 1997). For a detailed description of the LSTM in relation to 

hydrological modelling, we refer to Kratzert et al. (2018, 2019a, b). The core tensor equations of the LSTM model responsible 155 

for the information flow are presented in Appendix E. 

The baseline experiments were conducted using either forecasting data only (FC), reanalysis data only (RA), or a combination 

of both (FCRA) as dynamic inputs. The FC experiment, forced only with archived forecasting data from ECMWF HRES, 

serves as a lower benchmark. The RA experiment, exclusively driven by reanalysis (e.g., ERA5) or spatially interpolated 

observational (e.g., E-OBS) data sources, establishes an upper benchmark for model performance under ideal hindcast 160 

conditions (i.e. retrospective simulations using quality-controlled historical data). The FCRA experiment utilized both forecast 

and reanalysis data for training and testing, representing the optimal data availability scenario.  

The domains in the experiments formulate as: 

𝒟𝐹𝐶 = {(𝑥𝑡
𝐹𝐶 , 𝑞𝑚𝑎𝑥,𝑡)}𝑡=1

𝑇                  (1) 

𝒟𝑅𝐴 = {(𝑥𝑡
𝑅𝐴, 𝑞𝑚𝑎𝑥,𝑡)}𝑡=1

𝑇                   (2) 165 

𝒟𝐹𝐶𝑅𝐴 = {(𝑥𝑡
𝐹𝐶 ∪ 𝑥𝑡

𝑅𝐴, 𝑞𝑚𝑎𝑥,𝑡)}𝑡=1
𝑇                 (3) 

𝒟 … Dataset used in the experiment 

xt … Meteorological variables at timestep t 

qmax,t … Maximum daily discharge (target variable) at timestep t 

2.2.2 Cross-Domain Evaluation 170 

The cross domain evaluation (CD) experiment examined model generalization by training on reanalysis data and testing on 

ECMWF-HRES forecast data while maintaining 5 identical input variables. The meteorological variables used in this 

experiment are temperature, dewpoint temperature, precipitation, solar radiation and actual evapotranspiration. This 

experimental design mirrors the operational framework of classic conceptual hydrological models, where models are typically 

calibrated using high-quality reanalysis data with subsequently applied real-time forecast inputs during operational usage. By 175 

replicating this established modelling paradigm within the LSTM framework, the experiment quantifies the performance shift 

when transitioning from reanalysis to operationally available forecast data. Our hypothesis here was that if the distributions of 

the two input data sets 𝒟𝐹𝐶  and 𝒟𝑅𝐴 are too different, the model performance will decline. 
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The domains in the experiments formulate as: 

Train on: 𝒟𝑅𝐴 = {(𝑥𝑡
𝑅𝐴, 𝑞𝑚𝑎𝑥,𝑡)}𝑡=1

𝑇                 (4) 180 

Test on: 𝒟𝐹𝐶 = {(𝑥𝑡
𝐹𝐶 , 𝑞𝑚𝑎𝑥,𝑡)}𝑡=1

𝑇                 (5) 

2.2.3 Encoder - Decoder LSTM 

The Encoder- Decoder LSTM developed by Nearing et al. (2024) consists of two connected LSTMs: one for the hindcast phase 

forced with historical meteorological reanalysis data (e.g. ERA5) and one for the forecast phase forced with weather forecast 

data. The two LSTMs are connected by a non-linear handoff network in which the cell state and hidden state from the hindcast 185 

are transferred to the forecast LSTM. This architectural design allows the forecast LSTM to learn hydrological states from the 

hindcast, which could be understood as initial conditions in the model.  

Three distinct experiments were implemented using the Encoder- Decoder LSTM architecture to investigate if this dual-LSTM 

framework can learn and compensate dynamical biases inherent in meteorological forecasts. The first experiment with domain 

𝒟𝐸𝐷−𝐿𝑆𝑇𝑀,1implemented the basic encoder-decoder framework where the hindcast LSTM was forced with historical reanalysis 190 

data while the forecast LSTM processed meteorological forecast data. The second experiment with domain 𝒟𝐸𝐷−𝐿𝑆𝑇𝑀,2 

extended this architecture by incorporating past mean daily discharge observations alongside reanalysis data in the hindcast 

LSTM. The third experiment with domain 𝒟𝐸𝐷−𝐿𝑆𝑇𝑀,3 extended 𝒟𝐸𝐷−𝐿𝑆𝑇𝑀,2 by additionally forcing the hindcast cell of the 

model with forecast data. This emulates a setting in which archived forecasting data are used in combination with reanalysis 

data in the hindcast phase. 195 

The domains in the experiments formulate as: 

𝒟𝐸𝐷−𝐿𝑆𝑇𝑀,1 = {(𝑥𝑡−𝑠:𝑡−1
𝑅𝐴 ∪ 𝑥𝑡

𝐹𝐶 , 𝑞𝑚𝑎𝑥,𝑡)}
𝑡=𝑠+1

𝑇
               (6) 

𝒟𝐸𝐷−𝐿𝑆𝑇𝑀,2 = {(𝑥𝑡−𝑠:𝑡−1
𝑅𝐴 ∪ 𝑞𝑚𝑎𝑥,𝑡−𝑠:𝑡−1 ∪  𝑥𝑡

𝐹𝐶 , 𝑞𝑚𝑎𝑥,𝑡)}
𝑡=𝑠+1

𝑇
              (7) 

𝒟𝐸𝐷−𝐿𝑆𝑇𝑀,3 = {(𝑥𝑡−𝑠:𝑡−1
𝑅𝐴 ∪ 𝑥𝑡−𝑠:𝑡−1

𝐹𝐶 ∪ 𝑞𝑚𝑎𝑥,𝑡−𝑠:𝑡−1 ∪  𝑥𝑡
𝐹𝐶 , 𝑞𝑚𝑎𝑥,𝑡)}

𝑡=𝑠+1

𝑇
           (8) 

s … Sequence length 200 

2.2.4 Sequential Forecast LSTM 

The Sequential Forecast LSTM experiment employs a two-phase sequential processing strategy to leverage both reanalysis 

and operationally available forecast data within a unified framework. The architecture consists of separate embedding networks 

for hindcast and forecast inputs, a shared LSTM layer and a state transfer mechanism that enables knowledge transfer between 

processing phases (see Sequential Forecast LSTM in NeuralHydrology, Kratzert et al., 2022). In the first phase, the LSTM 205 

processes embedded historical reanalysis data to generate hidden and cell states. The second phase continues LSTM processing 

with embedded forecast data, initialized with the states from the hindcast phase, ensuring that forecast predictions are informed 

by contextual information learned from historical patterns. The model generates predictions by concatenating outputs from 

both phases through a prediction head, with the optimization objective to maximize NSE*. This design enables optimal 

utilization of reanalysis data for learning hydrological patterns while maintaining operational forecasting capabilities through 210 

the principled state transfer mechanism.  

Experiment one (𝒟𝑆𝐸𝑄𝐿𝑆𝑇𝑀,1) used the basic Sequential LSTM framework, with only using reanalysis data in the hindcast 

phase and forecast data in the forecast phase. The second experiment (𝒟𝑆𝐸𝑄𝐿𝑆𝑇𝑀,2) added to the first domain mean daily 

discharge observations alongside reanalysis data in the hindcast phase. In the third experiment (𝒟𝑆𝐸𝑄𝐿𝑆𝑇𝑀,3), we extended 

𝒟𝑆𝐸𝑄𝐿𝑆𝑇𝑀,2 by additionally forcing the hindcast phase of the model with archived forecast data. 215 

The domains in the experiments formulate as: 

𝒟𝑆𝐸𝑄𝐿𝑆𝑇𝑀,1 = {(𝑥𝑡−𝑠:𝑡−1
𝑅𝐴 ∪ 𝑥𝑡

𝐹𝐶 , 𝑞𝑚𝑎𝑥,𝑡)}
𝑡=𝑠+1

𝑇
                (9) 
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𝒟𝑆𝐸𝑄𝐿𝑆𝑇𝑀,2 = {(𝑥𝑡−𝑠:𝑡−1
𝑅𝐴 ∪ 𝑞𝑚𝑎𝑥,𝑡−𝑠:𝑡−1 ∪  𝑥𝑡

𝐹𝐶 , 𝑞𝑚𝑎𝑥,𝑡)}
𝑡=𝑠+1

𝑇
              (10) 

𝒟𝑆𝐸𝑄𝐿𝑆𝑇𝑀,3 = {(𝑥𝑡−𝑠:𝑡−1
𝑅𝐴 ∪ 𝑥𝑡−𝑠:𝑡−1

𝐹𝐶 ∪ 𝑞𝑚𝑎𝑥,𝑡−𝑠:𝑡−1 ∪  𝑥𝑡
𝐹𝐶 , 𝑞𝑚𝑎𝑥,𝑡)}

𝑡=𝑠+1

𝑇
           (11) 

2.2.5 Transfer Learning 220 

Transfer Learning (TL) is a machine learning paradigm leveraging gained knowledge from a source domain to improve 

learning performance in a target domain (Goodfellow et al., 2016). Formally, TL aims to improve the predictive performance 

on the target domain using knowledge from the source domain, with differences potentially existing in the feature space, data 

distribution, or learning task between the two domains (Zhuang et al., 2021). TL can be categorized into two primary types 

based on the relationship between source and target domain: The first is homogeneous transfer learning, where both domains 225 

share the same feature space (i.e. using identical meteorological variables and catchment attributes) and have the same marginal 

probability distributions (Weiss et al., 2016). The second is heterogeneous transfer learning, where the feature spaces differ 

between domains (Pan and Yang, 2010). For our experiments, we used the heterogeneous transfer learning approach - while 

the learning task stays the same in the conducted experiments, namely predicting maximum daily discharges at a gauge, the 

feature spaces and its distributions between forecast (target domain) and reanalysis (source domain) data differs, as evidenced 230 

by the violin plots in Appendix B.  

In the context of forecast bias reduction, transfer learning is used to leverage knowledge from the less bias-influenced 

reanalysis source data to improve prediction accuracy when applied to the more bias-prone forecast target data. This approach 

is particularly relevant in contexts involving hydrometeorological data, where reanalysis data represents a post-processed 

quality-controlled dataset with reduced systematic errors, while forecast data contains dynamical biases from numerical 235 

weather prediction models. By pre-training the temporal encoder (LSTM) on reanalysis data, the model learns hydrological 

process representations that can subsequently be fine-tuned to accommodate the bias characteristics of forecast inputs, 

potentially improving the model's ability to correct for systematic forecast errors while maintaining learned temporal 

dependencies. 

The first experiment implemented full weight transfer learning, where all network weights from the baseline 𝒟𝑅𝐴 experiment 240 

(embedding networks, LSTM and output layers pre-trained on reanalysis data) were used as initialization for a new training 

phase on forecast data, allowing all parameters to be updated through backpropagation to adapt to the 𝒟𝐹𝐶  target domain's 

characteristics. The second experiment, also based on the weights of  𝒟𝑅𝐴  employed selective weight transfer learning, 

adapting only the embedding network weights while freezing other model parameters, thus preserving learned temporal 

patterns while allowing adaptation to new input characteristics. The third experiment applied the same selective transfer 245 

learning method as the second experiment, but network weights are based on the 𝒟𝐹𝐶𝑅𝐴 domain.  

The domains in the experiments are given below with source and target domains as well as training objective. All three 

experiments are based on training either LSTM weights θ, embedding layer weights ϕ, output layer weights ψ or all combined 

with a NSE* loss function ℒ𝑁𝑆𝐸().  

𝑇𝐿𝐴𝑙𝑙𝑊𝑒𝑖𝑔ℎ𝑡𝑠: source domain 𝒟𝑅𝐴 , target domain 𝒟𝐹𝐶  with objective arg min
θ,ϕ,ψ

ℒ𝒩𝒮ℰ (𝒟𝐹𝐶 )          (12) 250 

𝑇𝐿𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑁𝑒𝑡_1: source domain 𝒟𝑅𝐴 , target domain 𝒟𝐹𝐶  with objective arg min
ϕ

ℒ𝒩𝒮ℰ (𝒟𝐹𝐶 )         (13) 

𝑇𝐿𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑁𝑒𝑡_2: source domain 𝒟𝐹𝐶𝑅𝐴 , target domain 𝒟𝐹𝐶  with objective arg min
ϕ

ℒ𝒩𝒮ℰ (𝒟𝐹𝐶)         (14) 

2.2.6 Input Embedding 

Input embedding networks serve as pre-processing layers that transform raw meteorological variables into fixed dimensional 

representations for LSTM processing. The embedding layers enable the model to learn (non-) linear combinations and scaling 255 

of input features, potentially capturing complex relationships between meteorological variables that may not be apparent in 
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their original form (Irani et al., 2025). The embedding transformation is relevant for hydrometeorological applications where 

variables such as temperature, precipitation and solar radiation may exhibit non-linear interactions that influence runoff 

generation processes. To investigate the impact of embedding complexity on bias correction performance, we implemented 

two distinct embedding architectures: a simple embedding consisting of a single fully connected layer with 16 hidden units 260 

and tanh activation, and a complex embedding featuring a three-layer network with 30, 20, and 64 hidden units respectively, 

also using tanh activation functions. The simple embedding provides a lightweight transformation with minimal parameter 

overhead, while the complex embedding offers greater representational capacity through deeper non-linear transformations. 

3 Results and Discussion 

All results presented in subsequent sections are visualized as Cumulative Density Functions (CDFs) of Nash-Sutcliffe 265 

Efficiency values computed across the 451 study basins, where each point represents the proportion of basins achieving a 

specified NSE value. This visualization approach enables comprehensive assessment of model performance distribution, 

revealing not only median performance but also the full range of model behaviour across diverse catchment conditions. The 

light grey line denotes the forecast-only baseline (𝒟𝐹𝐶) representing the lower performance bound, while the dark grey line 

denotes the reanalysis-only baseline (𝒟𝑅𝐴)  establishing the upper performance bound. These reference curves remain 270 

consistent across all figures to facilitate direct comparison between experimental configurations. 

3.1 Propagation of Forecast Uncertainty in the Hydrological Model Setting 

A fast and straightforward way to analyse the propagation of forecast uncertainty in predicting maximum daily discharge (qmax) 

is the cross- domain evaluation (CD) experiment, depicted in Figure 3. CD reveals degradation in hydrological model 

performance when transitioning from reanalysis to forecast meteorological forcings, despite five identical input variables. The 275 

median Nash-Sutcliffe Efficiency (NSE) decreased from 0.58 to 0.33, representing a 0.25 reduction in model skill. This 

performance deterioration is accompanied by increased uncertainty, with the NSE standard deviation rising from 0.87 to 1.1, 

indicating that forecast uncertainty propagates through the hydrological model shifting and broadening the NSE distribution. 

The mean NSE exhibits an even more pronounced decline (0.44 to 0.19), suggesting increased negative skewness due to 

extreme poor-performing outliers. 280 

 
Figure 3. Cumulative Density Function of Nash Sutcliffe Efficiency values for the Cross Domain Evaluation Experiment. The comparison 

includes the Pre trained model on five meteorological reanalysis variables (dark blue), the One Shot (direct application without fine-tuning) 

based on the weights of the Pre trained model with equal five meteorological forecasting variables and the baselines (grey). The vertical 
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dashed lines depict the median NSE for each experiment. The blue arrow shows the performance decrease at median NSE when applying 285 
cross domain evaluation.   

The underlying cause of this performance decrease can be attributed to the difference in data distributions between reanalysis 

and forecast datasets (see Appendix B), effectively representing a domain shift problem. Domain shift occurs when the 

statistical properties of the training data (reanalysis) differ from those of the target data (forecast), violating the fundamental 

assumption of independent and identically distributed data that underlies machine learning model generalization (Goodfellow 290 

et al., 2016; Hosna et al., 2022). Neural networks are particularly susceptible to domain shift as they learn to map input-output 

relationships based on the specific distributional characteristics of their training data, leading to degraded performance when 

deployed on data from a different distribution. These results demonstrate that it is not feasible to simply substitute reanalysis 

data with forecast data in neural network-based hydrological modeling applications, as meteorological forecast uncertainty 

propagates through the model chain, degrading the representation of catchment processes and creating performance risks for 295 

operational hydrological forecasting systems. 

3.2 Performance Analysis Across Unmodified Architectures 

To address the domain shift challenges identified in Section 3.1, we evaluated different neural network architectures and 

training techniques, presenting here the optimal configurations from each experimental setup.  

 300 

Figure 4. Cumulative Density Function of Nash Sutcliffe Efficiency values for the Unmodified Architectures Experiment. The experiments 

include the baselines (grey), comprehensive transfer learning with a finetuning of the embedding and LSTM weights (TL AllWeights), 

selective transfer learning with only finetuning the embedding weights while the LSTM was freezed (TL EmbeddingNet), Encoder- Decoder 

LSTM (purple) and the Sequential Forecast LSTM (orange). The vertical dashed lines depict the median NSE for each experiment. The 

arrows indicate the median ΔNSE values relative to the baseline forecast experiment.  305 

Transfer learning was implemented through two contrasting approaches: comprehensive parameter updating, where the entire 

network was retrained on forecast data (TL AllWeights), and selective embedding retraining, where only the input embedding 

layers were fine-tuned while maintaining the pre-trained weights of the deeper network components (TL EmbeddingNet). Both 

experiments utilized the reanalysis baseline with a complex embedding layer as the starting point. The selective embedding 

approach (TL EmbeddingNet) achieved higher performance, with a median NSE of 0.44, representing a 0.11 improvement 310 

over the cross-domain baseline (0.33). The advantage of selective retraining becomes evident when comparing the two transfer 

learning strategies: TL EmbeddingNet shows an improvement in the 10th percentile (0.15) compared to TL AllWeights (0.05), 

indicating that the retraining approach is especially effective for poorly performing basins. The enhanced performance stems 

from the model's ability to leverage robust hydrometeorological relationships learned from reanalysis data while adapting the 
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input representation to forecast data characteristics. Reanalysis products provide more complete and physically consistent 315 

atmospheric descriptions through data assimilation, enabling the model to learn generalized process representations that are 

subsequently refined during fine-tuning on forecast data.  

The Encoder-Decoder LSTM architecture demonstrated performance improvements over the transfer learning approaches, 

achieving a median NSE of 0.57. This architecture showed particular strength in the upper performance range, with the 75 th 

and 90th percentiles reaching 0.65 and 0.73, respectively.  320 

The Sequential Forecast LSTM achieved the highest overall performance among the unmodified forecast-based configurations, 

with a median NSE of 0.63 and notably consistent results across all percentiles. The model demonstrated higher stability 

compared to other approaches, evidenced by the low standard deviation (0.52). Among the unmodified architectures, the 

Sequential LSTM is best able to efficiently reduce forecasting bias. We attribute this to the sequential data processing 

architecture of this special LSTM type, which processes meteorological forecast inputs in temporal order and allows for the 325 

gradual correction of forecast biases through the propagation of both hidden states and cell states. The cell state serves as long-

term memory that can selectively retain or forget information across time steps, while the hidden state captures current relevant 

information, enabling the model to maintain both short-term adaptations to recent forecast patterns and long-term memory of 

systematic biases. Unlike the Encoder- Decoder architecture transforming hindcast states through a fixed handoff network 

before initiating forecast processing, the Sequential LSTM maintains continuous state evolution from hindcast to forecast, 330 

preserving temporal patterns without disruption and potentially enabling better compensation for systematic errors that emerge 

at the forecast transition. 

3.3 The role of integrating archived forecasts in the hindcast phase 

Given the performance degradation observed when transitioning from reanalysis to forecast data, we investigated whether 

training models with a combination of reanalysis and archived forecast data could improve forecast performance. In short, the 335 

integration of archived forecasts in the hindcast phase demonstrates limited effectiveness across all tested architectures.  

  

Figure 5. Cumulative Density Function of Nash Sutcliffe Efficiency values for experiments integrating archived forecasts in the hindcast 

phase. The experiments include the baselines (grey), selective transfer learning with only finetuning the embedding weights while the LSTM 

was freezed (TL EmbeddingNet), Encoder- Decoder LSTM (purple) and the Sequential Forecast LSTM (orange). Solid lines indicate the 340 
experiments with solely reanalysis data in the hindcast phase, while dashed lines display the combination of archived forecasts and reanalysis 

in the hindcast phase. 

In Figure 4 it is evident that in transfer learning only fine-tuning the embedding net led to higher forecast skill, leading us to 

only focus in this experimental setup on the selective transfer learning method. As previously discussed, the TL EmbeddingNet 
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approach pretrained exclusively on reanalysis data achieved a median NSE of 0.44. In contrast, when the same transfer learning 345 

architecture is pretrained on combined forecast and reanalysis data, the results show deteriorated performance compared to the 

reanalysis-only pretraining, with a median NSE dropping to 0.41. This configuration exhibits increased variability (standard 

deviation of 2.29) while the 10th percentile performance remains poor at 0.02, failing to achieve the improvement (0.15) 

observed with reanalysis-only pretraining. The mean performance also deteriorates significantly (0.21 vs 0.35 for reanalysis-

only), indicating the introduction of more negative outliers. 350 

For the Encoder-Decoder LSTM, incorporating archived forecasts yields marginal improvements in the upper performance 

percentiles, with the 75th and 90th percentiles increasing from 0.65 to 0.69 and 0.73 to 0.77, respectively, while the 10th 

percentile improves slightly from 0.21 to 0.24. However, these modest gains are accompanied by increased variability 

(standard deviation increases from 8.03 to 9.33) while the median NSE remains unchanged at 0.57. 

The Sequential Forecast LSTM shows no meaningful benefit from archived forecast integration, with the median NSE 355 

decreasing marginally from 0.63 to 0.62. More critically, this architecture experiences an increase in variability (standard 

deviation from 0.52 to 6.28) and the mean performance drops from 0.57 to 0.19, indicating the introduction of numerous 

extreme negative outliers that significantly compromise model reliability. 

The results demonstrate that integrating archived forecasts during the hindcast phase does not provide meaningful performance 

improvements for either architecture. The approach either yields negligible benefits while increasing instability (Encoder-360 

Decoder LSTM) or actively degrades performance (Transfer learning, Sequential LSTM), indicating that this strategy is not 

effective for addressing domain shift challenges in hydrological forecasting applications. 

3.4 The role of integrating past discharge in the training domain 

Previous studies have consistently focused on modeling ungauged basins (Kratzert et al., 2019a; Nearing et al., 2024). 

However, we argue that when near real-time discharge data are available, as is the case for most gauging stations across the 365 

LamaH catchments in Central Europe, the incorporation of discharge observations positively influences forecast accuracy. For 

example, in the Austrian LamaH basins, discharge data from the eHYD platform (https://ehyd.gv.at) are available with a time 

delay of only two hours, making the integration of recent discharge observations operationally feasible for real-time forecasting 

applications. 

 370 

Figure 6. Cumulative Density Function of Nash Sutcliffe Efficiency values for experiments integrating past discharge in the hindcast phase. 

The experiments include the baselines (grey), Encoder- Decoder LSTM (purple) and Sequential Forecast LSTM (orange). Solid lines depict 

the experiments without discharge, while the dashed lines show experiments with discharge in the hindcast phase. The arrows represent the 

prediction accuracy increase as median ΔNSE when integrating discharge in the hindcast phase of the models.  
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The integration of past discharge observations demonstrates performance improvements across both tested architectures. For 375 

the Encoder-Decoder LSTM, incorporating discharge data yields significant gains, with the median NSE increasing from 0.57 

to 0.66. The improvement is particularly pronounced in the lower percentiles, with the 10th percentile rising from 0.21 to 0.37, 

indicating considerably better performance for poorly performing basins. The 75th and 90th percentiles also show notable 

improvements (0.65 to 0.77 and 0.73 to 0.83, respectively), while the variability decreases slightly (standard deviation from 

8.03 to 6.68).  380 

The Sequential Forecast LSTM exhibits even more impressive improvements when discharge is integrated, achieving a median 

NSE of 0.71 compared to 0.63 without discharge. This represents the highest performance among all forecast-based 

configurations and even exceeds the reanalysis baseline performance (0.69). The 10th percentile shows substantial 

improvement (0.35 to 0.42), while the upper percentiles reach 0.81 and 0.88 for the 75th and 90th percentiles, also exceeding 

the reanalysis baseline performance in these ranges.  385 

Additional transfer learning experiments were conducted to investigate whether discharge information learned during pre-

training could be effectively transferred to discharge-free operational scenarios. These experiments included domain adaption 

configurations where discharge was incorporated during the pre-training phase but excluded during fine-tuning, as well as 

setups using the Sequential Forecast LSTM with discharge in the source domain and without discharge in the target domain. 

All transfer learning approaches consistently resulted in performance deterioration and failed to yield improvements that would 390 

justify the computational overhead of the transfer learning process. While these experiments demonstrated that information 

extraction from LSTM cell states is feasible, the learned discharge-related representations could not adequately compensate 

for the absence of direct discharge observations during operational forecasting. The experiments with discharge incorporated 

directly into the training data consistently outperformed all transfer learning alternatives, indicating that real-time discharge 

integration provides irreplaceable benefits that cannot be effectively substituted through knowledge transfer mechanisms. 395 

3.5 The role of embedding complexity 

During experimenting we experienced that the embedding complexity plays an important role in reducing the forecast induced 

bias in runoff predictions. This circumstance has led us to create this experimental setup, in which a simple (linear) and a 

complex (non-linear) embedding were generated for all architectures used in the previous experimental settings. In brief, a 

similar pattern can be observed for all architectures except transfer learning: the more complex the input embedding, the lower 400 

the prediction performance. 
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Figure 7. Cumulative Density Function of Nash Sutcliffe Efficiency values for experiments with different embedding complexities. The 

experiments include the baselines (grey), selective transfer learning with only finetuning the embedding weights while the LSTM was freezed 

(TL EmbeddingNet), Encoder- Decoder LSTM without discharge (purple), Encoder- Decoder LSTM with discharge (pink), Sequential 405 
Forecast LSTM without discharge (orange) and Sequential Forecast LSTM with discharge (yellow). Solid lines depict the experiments 

without simple linear embedding, while the dashed lines show experiments with complex non- linear embedding networks.  

While the transfer learning experiments did not achieve the high NSE values of the best-performing forecasting approach 

(Sequential LSTM), notable relationships emerged between embedding complexity and prediction accuracy. In the baseline, 

encoder-decoder and sequential LSTM experiments, simple linear embedding networks produced slightly higher simulation 410 

performance compared to more complex embedding architectures. This pattern reversed in transfer learning experiments, 

where increased embedding complexity led to improved prediction results. The transfer learning procedure consisted of 

transferring weights from an LSTM model pre-trained on reanalysis data to a new network architecture with modified input 

embeddings, where only the embedding weights underwent retraining while the remaining LSTM parameters remained frozen. 

The minimal better performance of simple embeddings in non-transfer learning experiments can be attributed to the tendency 415 

of complex embedding networks to overfit when trained on the available data. The number of trainable parameters in complex 

embeddings exceeds the optimal ratio relative to available training data, causing the model to learn specific noise patterns in 

the training data rather than generalizable hydrological patterns. This means simpler embeddings capture the relevant input 

patterns more effectively without introducing unnecessary model complexity comprising generalization.  

The improved results with increased embedding complexity in transfer learning can be explained by the requirement for 420 

flexible, non-linear transformations necessary for effective domain adaptation. Since only the embedding weights are trained 

while the all other network parameters remain frozen, the embedding layer must perform all adaptation work between the 

target domain and the representations pre-trained on reanalysis data. More complex architectures can perform richer and more 

domain-specific feature extraction, compensating for the discrepancy between source and target domains through more 

expressive input transformations. The contrasting performance patterns between transfer learning and standard training suggest 425 

that the optimal embedding complexity depends on whether the model parameters are trained from scratch or adapted from 

pre-trained weights, though the precise mechanisms underlying this relationship warrant further investigation. 

3.6 Limitations and Future Directions 

This study is subject to several limitations. The experiments were conducted on the Extended LamaH-CE dataset, which is 

restricted to Central Europe; the transferability of the results to other hydroclimatic regions remains to be tested. While 430 
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discharge observations were shown to substantially improve performance, they are not error-free, and their availability cannot 

be guaranteed in ungauged or poorly monitored catchments. 

In addition, we only evaluated existing LSTM-based architectures and a modeling setup with spatially lumped data and daily 

maximum discharges. Applying these approaches in fully distributed settings with higher temporal resolution forecasts may 

yield different, potentially more pronounced results. The integration of reanalysis data in the hindcast phase, while useful for 435 

training, is also constrained by data latency, which is often critical for operational use, although future improvements in near–

real-time reanalysis may alleviate this. 

Addressing these challenges—testing transferability, reducing dependence on delayed or unavailable inputs, and extending 

both the spatial and temporal resolution of experiments—will be essential to further investigate and advance robust, 

operationally viable solutions for flood forecasting. 440 

4 Conclusion and Outlook 

The operational deployment of deep learning based flood forecasting models faces fundamental challenges when transitioning 

from high-quality reanalysis to meteorological forecast data, with domain shift between these data sources leading to model 

performance degradation. While previous approaches have focused on bias-correcting meteorological inputs through statistical 

methods (Lenderink et al., 2007) or machine learning techniques applied to precipitation forecasts (Ko et al., 2020; Zhang et 445 

al., 2020), these methods rely on comparing forecasts with meteorological observations that themselves contain uncertainties 

(Bárdossy et al., 2022). This study addressed the challenge through systematic evaluation of Long Short-Term Memory 

architectures and training techniques that learn bias correction directly from the more reliable discharge observations, 

following the paradigm suggested by Kirchner (2009) of using river discharge as the primary constraint. Our experiments 

across 451 Central European catchments demonstrated that appropriate neural network designs can transform the domain shift 450 

problem from a major obstacle into a learnable pattern correction task. Sequential Forecast LSTM architectures, when 

combining meteorological hindcast data with past discharge observations, provided the most effective framework for 

mitigating forecast-induced biases. This configuration achieved a median NSE of 0.71, surpassing even the reanalysis baseline 

simulation and establishing discharge integration, if data are available in near real time as in the LamaH domain, as a critical 

component for operational forecast accuracy. 455 

To quantify the bias propagation caused by the domain shift, we conducted cross-domain evaluation revealing performance 

deterioration when reanalysis-trained models were applied to forecast inputs. In this setting, the median Nash-Sutcliffe 

Efficiency decreased from 0.58 to 0.33, representing a 0.25 reduction in model skill. This performance degradation stems from 

fundamental differences in data distributions between reanalysis and forecast datasets, violating the assumption of identically 

distributed training and testing data that underlies machine learning model generalization (Goodfellow et al., 2016). Among 460 

the tested neural network architectures, the Sequential Forecast LSTM demonstrated superior performance for operational 

forecasting applications. This architecture achieved a median NSE of 0.63 with notable stability (standard deviation of 0.52) 

and maintained reasonable performance across all percentiles. The sequential processing approach enables gradual correction 

of forecast biases through continuous state evolution from hindcast to forecast phases, preserving temporal patterns without 

the disruption introduced by fixed handoff networks in Encoder-Decoder architectures. Transfer learning approaches, despite 465 

theoretical advantages for domain adaptation, achieved only modest improvements (NSE 0.44), while the incorporation of 

archived forecasts in training failed to provide consistent benefits and often increased model instability. The relationship 

between embedding complexity and performance varied systematically: simpler embeddings performed better in standard 

training contexts, while complex embeddings showed advantages only in transfer learning scenarios where flexible input 

transformations were required for domain adaptation. 470 
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These findings carry important implications for operational flood forecasting system design. The high performance of 

Sequential Forecast LSTM architectures indicates that operational systems should prioritize continuous state transfer 

mechanisms maintaining temporal dependencies across the hindcast-forecast phases rather than treating these phases as 

disconnected processes. The substantial improvements from discharge integration align with operational capabilities in many 

monitored systems, such as in hydro power plants or the Austrian eHYD platform where observations are available with two-475 

hour latency, making real-time integration feasible. The ability to learn bias correction patterns directly from the combined 

meteorological-hydrological data space eliminates the need for separate pre-processing steps, whether meteorological bias 

correction (Hess, 2020; Han et al., 2021) or streamflow post-processing methods like the GloFAS-specific approach of Hunt 

et al. (2022), reducing computational overhead and possibly potential error propagation.  

Future developments should focus on adaptive architectures that can dynamically leverage discharge observations when 480 

available while maintaining robust performance in ungauged settings through reanalysis-only hindcast processing. Such 

unified frameworks would enable seamless deployment across both gauged and ungauged basins within the same operational 

system, automatically adjusting to data availability in real-time. However, sensor failures should also be taken into account 

here, and the training methods proposed by Gauch et al. (2025) should be applied. While our experiments were limited to 

ECMWF HRES archived forecasts due to data availability, combining multiple forecasts from different sources could also be 485 

promising as it could capture forecast uncertainty more comprehensively and enable the model to learn source-specific bias 

patterns, as with the integration of multiple meteorological data in a simulation setting (Kratzert et al., 2021).  The Sequential 

Forecast LSTM's bias correction capabilities at 24-hour lead times provide a strong foundation for multi-day forecasting 

applications, where learning lead-time dependent bias patterns could improve medium-range flood predictions that are crucial 

for early warning systems and emergency preparedness. The demonstrated ability of LSTM architectures and training 490 

techniques to transform the domain shift challenge into a learnable bias correction problem, combined with increasing 

availability of real-time hydrological observations, establishes a pathway toward operational flood forecasting systems that 

can maintain predictive skill despite the inherent uncertainties coming from numerical weather predictions.  

 

Code and data availability. All experiments have been conducted with a forked version of the NeuralHydrology library 495 

(Kratzert et al., 2022), available at github.com/conestone/neuralhydrology. The Extended LamaH-CE dataset is available at 

zenodo.org/records/17119635 (Konold et al., 2025b). The code to create the analysis and figures is available at 

github.com/conestone/biascast. All trained models with its configuration files and saved weights are available at 

10.5281/zenodo.17241922 (Konold et al., 2025a).  

  500 
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Appendix A. Dynamic and Static Forcings of the Models 

 
Variable Description Unit Source Product Source 

ERA5L_2m_temp_max 
2m above earth surface max air 

temperature 
°C ERA5Land Muñoz-Sabater et al., 2021 

ERA5L_2m_temp_mean 
2m above earth surface mean air 

temperature 
°C ERA5Land Muñoz-Sabater et al., 2021 

ERA5L_2m_temp_min 
2m above earth surface min air 

temperature 
°C ERA5Land Muñoz-Sabater et al., 2021 

ERA5L_2m_dp_temp_max 
2m above earth surface max dewpoint 

temperature 
°C ERA5Land Muñoz-Sabater et al., 2021 

ERA5L_2m_dp_temp_mean 
2m above earth surface mean 

dewpoint temperature 
°C ERA5Land Muñoz-Sabater et al., 2021 

ERA5L_2m_dp_temp_min 
2m above earth surface min dewpoint 

temperature 
°C ERA5Land Muñoz-Sabater et al., 2021 

ERA5L_10m_wind_u 
Eastwards wind speed 10m above 

earth surface 
m/s ERA5Land Muñoz-Sabater et al., 2021 

ERA5L_10m_wind_v 
Northwards wind speed 10m above 

earth surface 
m/s ERA5Land Muñoz-Sabater et al., 2021 

ERA5L_fcst_alb Forecast albedo - ERA5Land Muñoz-Sabater et al., 2021 

ERA5L_lai_high_veg 
Leaf Area Index for high vegetation 

type 
m²/m² ERA5Land Muñoz-Sabater et al., 2021 

ERA5L_lai_low_veg 
Leaf Area Index for low vegetation 

type 
m²/m² ERA5Land Muñoz-Sabater et al., 2021 

ERA5L_swe Snow Water Equivalent mm ERA5Land Muñoz-Sabater et al., 2021 

ERA5L_surf_net_solar_rad_max 

Max amount of solar radiation  

reaching the Earth’s surface minus the 

amount reflected by the Earth’s 

surface 

W/m² ERA5Land Muñoz-Sabater et al., 2021 

ERA5L_surf_net_solar_rad_mean 

Mean amount of solar radiation  

reaching the Earth’s surface minus the 

amount reflected by the Earth’s 

surface 

W/m² ERA5Land Muñoz-Sabater et al., 2021 

ERA5L_surf_net_therm_rad_max 
Maximum net thermal radiation at the 

Earth’s surface; 
W/m² ERA5Land Muñoz-Sabater et al., 2021 

ERA5L_surf_net_therm_rad_mean 
Mean net thermal radiation at the 

Earth’s surface; 
W/m² ERA5Land Muñoz-Sabater et al., 2021 

ERA5L_surf_press Surface pressure Pa ERA5Land Muñoz-Sabater et al., 2021 

ERA5L_total_et Total evapotranspiration mm ERA5Land Muñoz-Sabater et al., 2021 

ERA5L_prec Total precipitation mm ERA5Land Muñoz-Sabater et al., 2021 

ERA5L_volsw_123 
Fraction of water from 0 to 100 cm 

depth (topsoil) 
m³/m³ ERA5Land Muñoz-Sabater et al., 2021 

ERA5L_volsw_4 
Fraction of water from 100 to 289 cm 

depth (subsoil) 
m³/m³ ERA5Land Muñoz-Sabater et al., 2021 

EOBS_tg 
2m above earth surface mean daily air 

temperature 
°C E-OBS Cornes et al., 2018 

EOBS_tn 
2m above earth surface min daily air 

temperature 
°C E-OBS Cornes et al., 2018 

EOBS_tx 
2m above earth surface max daily air 

temperature 
°C E-OBS Cornes et al., 2018 

EOBS_rr Total precipitation mm E-OBS Cornes et al., 2018 

EOBS_pp Mean sea level pressure hPa E-OBS Cornes et al., 2018 

EOBS_fg Mean wind speed at 10m height m/s E-OBS Cornes et al., 2018 

EOBS_qq Solar radiation at earth's surface W/m² E-OBS Cornes et al., 2018 

MSWEP_RR Total precipitation mm MSWEP Beck et al., 2019 

GLEAM_ETA Actual evapotranspiration mm GLEAM Miralles et al., 2011 

GLEAM_ETP Potential evapotranspiration mm GLEAM Miralles et al., 2011 

ECMWF_t2m 
Forecasted 2m above earth surface 

mean air temperature 
°C ECMWF-HRES ECMWF, 2025 

ECMWF_d2m 
Forecasted 2m above earth surface 

mean dewpoint temperature 
°C ECMWF-HRES ECMWF, 2025 

ECMWF_ssrd 
Forecasted solar radiation at earth's 

surface 
J/m² ECMWF-HRES ECMWF, 2025 

ECMWF_tp Forecasted total precipitation mm ECMWF-HRES ECMWF, 2025 

ECMWF_e 
Forecasted total actual 

evapotranspiration 
mm ECMWF-HRES ECMWF, 2025 

Table A1. Meteorological Variables in the Extended LamaH-CE data set used for the conducted experiments  
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Attribute Description Unit 

area_calc Calculated basin area km² 

elev_mean Mean catchment elevation m a.s.l 

elev_med Median catchment elevation m a.s.l 

elev_std Standard deviation of elevation in catchment m a.s.l 

elev_ran Range of catchment elevation (max − min elev.) m a.s.l 

slope_mean Mean catchment slope m/km 

mvert_dist Horizontal distance from the farthest point of the catchment to the corresponding gauge (length axis) km² 

mvert_ang 
Angle between the north direction and connection from farthest point of catchment to the corresponding 

gauge (length axis) 
degree 

elon_ratio 
Elongation ratio between the diameter D of an equicalent circle and the area of the catchment area to ist 

length L 
- 

strm_dens Stream density km/km² 

p_mean Mean daily precipitation mm/day 

et0_mean Mean daily reference evapotranspiration mm/day 

eta_mean Mean daily total evapotranspiration mm/day 

arid_1 Aridity, computed as the ratio of mean et0_mean and p_pean - 

arid_2 Reciprocal value of aridity index - 

p_season 
Seasonality and timing of precipitation (estimated using sine curves) to represent the annual precipitation 

cycles 
- 

frac_snow Fraction of precipitation falling as snow - 

hi_prec_fr Frequency of high-precipitation days day/year 

hi_prec_du Mean duration of high-precipitation events day 

lo_prec_fr Frequency of dry days day/year 

lo_prec_du Mean duration of dry periods day 

lc_dom Three-digit short code of dominant land cover class - 

agr_fra Fraction of agricultural areas - 

bare_fra Fraction of bare areas - 

forest_fra Fraction of forest areas - 

lake_fra Fraction of natural or artificial water bodies with all-season water filling - 

urban_fra Fraction of areas mainly occupied by buildings including their connected areas - 

lai_max Maximum monthly mean of one-sided leaf area index m²/m² 

lai_diff Difference between maximum and minimum monthly mean of one-sided leaf area index m²/m² 

ndvi_max Maximum monthly mean of NDVI - 

ndvi_min Minimum monthly mean of NDVI - 

gvf_max Maximum monthly mean of the green vegetation fraction - 

gvf_diff Difference between the maximum and minimum monthly mean of the green vegetation fraction - 

Table A2. Static catchment attributes from the Extended LamaH-CE data set used for the conducted experiments 505 
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Appendix B. Variability across input data sets 

 
Figure B1. Variability across input data sets displayed as violin plots for annually aggregated meteorological variables Temperature, 

Precipitation, Actual Evapotranspiration, Solar Radiation and Dewpoint Temperature. The violin colours belong always to a certain data 510 
product: red- ERA5Land, blue: E-OBS, green: ECMWF-HRES, purple: MSWEP. The dark grey box in the violin shows a boxplot with the 

bold part depicting the interquartile range and the white line indicating the median.   
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Appendix C. Evaluation Metrics 

The model performance was evaluated by using the non basin specific NSE* of Kratzert et al. (2019b) which is based on the 515 

Nash and Sutcliffe Efficiency (NSE; Nash and Sutcliffe, 1970). In comparison to former studies (Kratzert et al., 2019a, b, 

2021; Nearing et al., 2024), we conducted no cross validation across spatial units, since we did not focus on ungauged basins. 

Instead, we employed a temporal split validation approach, where the available time series data for each catchment was divided 

into training, validation, and testing periods to ensure robust model evaluation.  

NSE = 1 −  
∑ (yobs,i−ysim,i)

2n
i=1

∑ (yobs,i−yobs)
2n

i=1

                       (C1) 520 

NSE ∗=
1

𝐵
∑ ∑

(𝑦𝑛̂ − 𝑦𝑛)2

(𝑠(𝑏)+∈)2
𝑁
𝑛=1

𝐵
𝑏=1                        (C2) 

Appendix D. Hyperparameter Optimization 

Hyperparameter tuning is a critical component in the bias correction of meteorological forecasting data using Long Short-

Term Memory (LSTM) networks, as it directly influences the model’s ability to learn complex temporal patterns and correct 

systematic biases in forecast inputs. Given the nonlinear and dynamic nature of meteorological variables, appropriate selection 525 

of hyperparameters such as learning rate, sequence length, number of hidden units, dropout rate, and batch size, is essential to 

ensure that the LSTM model generalizes well without overfitting to noise or underfitting relevant signals. In the context of 

bias correction, the model must not only capture historical dependencies in the forecast errors but also effectively differentiate 

between genuine atmospheric variability and persistent model biases. Without careful tuning, the LSTM may fail to correct 

biases accurately, particularly under extreme events or seasonal transitions. 530 

To this end, we used Bayesian optimization as described by Peter I. Frazier (2018). This search algorithm fits a Gaussian 

process to the observed hyperparameter-performance pairs to estimate performance on yet-untested parameter settings. We 

use the expected improvement as acquisition function, which is used for selecting the next set of hyperparameters to test. This 

approach efficiently identifies good hyperparameters, especially in large search spaces.  

For our models, we spanned the search space over the hidden layer sizes (64, 128, 256 units), output dropout rates (0.1, 0.2, 535 

0.3), variance of Gaussian noise applied to the discharge values (0.001, 0.01, 0.1), and batch sizes (64, 128, 256) and limited 

the number of iterations to 100. To obtain the result for each setting, we trained a model for 30 epochs, an initial learning rate 

of 0.001 and a cosine annealing schedule (T_max=30, η_min=1e-5), stopping early if the model did not improve the evaluation 

metric by more than 0.005 in the last 5 epochs. To estimate the performance of the model we used the basin averaged Nash-

Sutcliffe efficiency (NSE*) metric and evaluated it on the validation period.  540 

NSE* with hyperparameter optimization:  

 λ = arg max
λ

NSE𝑚𝑒𝑑𝑖𝑎𝑛 (𝒟𝓋𝒶ℓ; λ)                      (D1) 

where  

λ = {𝑑ℎ , 𝑝𝑑𝑟𝑜𝑝𝑜𝑢𝑡 , σ𝑛𝑜𝑖𝑠𝑒 , 𝑏𝑠𝑖𝑧𝑒}                      (D2) 

represents the optimal output.  545 
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Appendix E. Long-Short Term Memory Network 

Long term information is stored in the cell state (ct), short term information in the hidden state (ht) and the information flow is 

controlled by the so- called gating mechanisms (Hochreiter and Schmidhuber, 1997). The input gate (it) determines how much 

of the current input and previous hidden state contributes to updating the cell state. The forget gate (ft) regulates which parts 550 

of the previous cell state should be retained or discarded, allowing the model to reset its memory when necessary. The output 

gate (ot) defines how much of the updated cell state is exposed to the next time step via the hidden state (Gers et al., 1999). 

This architecture allows LSTMs to retain relevant information over longer time periods and capture temporal dependencies in 

input data.  

 555 

 

Figure E1. LSTM cell 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓)                                   (E1) 

𝑐𝑡̃ = tanh (𝑊𝑐̃𝑥𝑡 + 𝑈𝑐̃ℎ𝑡−1 + 𝑏𝑐̃)                             (E2) 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖)                                     (E3) 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐𝑡̃                                          (E4) 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)                                   (E5) 

ℎ𝑡 = tanh (𝑐𝑡) ⊙ 𝑜𝑡                                                   (E6) 

Appendix F. Computational Resources 

All conducted experiments were trained on a NVIDIA RTX4090 graphics processing unit, with wall times varying between 

several minutes to approximately one hour for one model run, depending on the size of the input vector in the model and the 

model architecture itself. Although it is common practice in hyperparameter optimisation to run the same settings three times 

with different seedings, we have only run the tuning with one seed at a time due to computational constraints.  560 
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