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Abstract.

Climate change is expected to increase the frequency and severity of Multi-Year Droughts (MYDs), but their impacts on

vegetation remain poorly understood. While satellite records offer valuable insights, they cover only recent decades, limiting the

number of MYDs available for analysis. Dynamic global vegetation models (DGVMs), such as LPJmL-5, can help overcome

this limitation by simulating vegetation dynamics over longer timescales. However, their ability to capture drought impacts has5

not yet been systematically evaluated. In this study, we benchmark LPJmL-5 against MODIS-derived gross primary production

(GPP) to assess how well it captures vegetation responses to drought. We find that LPJmL-5 reproduces GPP reasonably

well in some regions, but improvements can still be made in the Southern Hemisphere and for croplands. During MYDs,

LPJmL-5 captures the key temporal and spatial GPP drought dynamics observed in MODIS. However, the model tends to

overestimate vegetation response at the onset of MYDs and shows some rapid recovery behaviour, resulting in muted overall10

drought impacts. Vegetation responses also vary by type: croplands show relatively good agreement, while boreal and temperate

vegetation underestimate positive and negative impacts, respectively. These discrepancies appear to be linked to simplified

model representations of vegetation stress and mortality, which limit long-term vegetation loss. Our results highlight the need

to improve how LPJmL-5 simulates vegetation stress and recovery, especially under prolonged drought conditions, in order to

better capture ecosystem vulnerability in a changing climate.15
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1 Introduction

Multi-Year Droughts (MYDs) can have severe impacts on natural vegetation and croplands, ranging from reduced vegetation

health to diminished ecosystem resilience and increased tree mortality (Choat et al., 2018; DeSoto et al., 2020; Gessler et al.,

2020; Allen et al., 2010; Cooley et al., 2015; Dong et al., 2019; Moravec et al., 2021; Jiao et al., 2020; Wittwer and Waschik,

2021; Hughes et al., 2019). Although less frequent than shorter droughts, MYDs have already been observed worldwide (van20

Mourik et al., 2025) and are projected to increase in both frequency and severity (van der Wiel et al., 2023).

However, ecosystem responses to drought are not universally negative (Ruijsch et al., 2025). Recent studies reveal a more

nuanced picture, with some regions showing weak or even positive feedbacks between drought and vegetation (Ruijsch et al.,

2025; van Hateren et al., 2021; Dong et al., 2019; Yang et al., 2021). These findings indicate that vegetation responses to

(multi-year) droughts are not uniform, but rather that they vary with local water and energy availability (Ruijsch et al., 2025;25

van Hateren et al., 2021). Understanding this variability is crucial for assessing ecosystem vulnerability to MYDs in a changing

climate and for developing effective adaptation strategies.

To investigate drought responses and to monitor vegetation status, previous studies have made use of satellite remote sensing

datasets such as MODIS (Ruijsch et al., 2025; van Hateren et al., 2021; Dong et al., 2019; Yang et al., 2021). These datasets

offer global coverage with high spatial and temporal resolution, making them valuable tools for analysing vegetation dynamics30

during droughts. However, MODIS records generally only extend back to 2000 (Didan, 2015a, b), limiting the number of

MYDs available for analysis and reducing the statistical robustness of drought impact assessments based solely on remotely

sensed data.

To address this limitation, process-based modelling approaches such as Dynamic Global Vegetation Models (DGVM) can

complement satellite observations by simulating vegetation responses over longer timeframes. Among these models, LPJmL-535

(Schaphoff et al., 2018b, a; von Bloh et al., 2018) is widely used and extensively validated to represent establishment, growth

and mortality of both natural ecosystems and managed croplands. By integrating carbon, water, nitrogen, and energy fluxes,

LPJmL-5 simulates vegetation dynamics under changing climate and land-use conditions, enabling the extension of vegetation

records beyond the satellite era and the analysis of a broader range of drought events.

However, the ability of models like LPJmL-5 to study MYD impacts is largely unknown. Therefore it is essential to evaluate40

how well it captures vegetation responses to MYDs and normal droughts (NDs; droughts lasting less than a year), and if

it can differentiate the impact of these different droughts on vegetation. In this study, we assess the spatial and temporal

agreement between modelled and satellite-observed vegetation responses to both drought types, and investigate differences

and similarities in vegetation drought response. Ultimately, it provides a foundation for using LPJmL-5 to study vegetation

responses to droughts over extended historical periods and under future climate scenarios.45
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2 Materials and Methods

This section outlines the definitions, vegetation model, data, and methods used to evaluate vegetation responses to (multi-

year) droughts (Figure 1). Section 2.1 defines MYDs and NDs, Section 2.2 describes the LPJmL-5 model, followed by model

validation against observational data in Section 2.3. Sections 2.4 and 2.5 explain how vegetation responses to (multi-year)

droughts are defined. Finally, Section 2.6 introduces the focus regions analysed in this study.50

Figure 1. Schematic overview of the methodological workflow used in this study. The processes include drought classification, LPJmL-5

model simulations, comparison with MODIS-derived GPP observations, and the analysis of vegetation responses to both MYDs and NDs

across selected focus regions. Blue elements represent observational data, while pink elements indicate model outputs.

2.1 Drought identification

Drought indices are essential for studying drought events, as they allow for consistent comparison of drought characteristics

across space and time. In this study, we used the Standardized Precipitation Evapotranspiration Index (SPEI), which accounts

for both water supply (precipitation, P) and atmospheric water demand (potential evapotranspiration, PET) (Vicente-Serrano

et al., 2010). SPEI is particularly suitable for assessing drought impacts on vegetation as vegetation is not only impacted by55

lack of water supply via P, but also the increase in atmospheric water demand via PET.

SPEI was computed at multiple timescales (1–24 months) using P and PET derived from W5E5 reanalysis data (see Table 1,

(Lange et al., 2022)). Both P and PET were aggregated to monthly values to generate monthly SPEI outputs. A detailed

description of the SPEI calculation is provided in Section S1.

To define MYDs and NDs, we focused on SPEI calculated at a 12-month timescale (SPEI-12), as it captures multi-year60

drought conditions while minimizing seasonal variability. Following Wiel et al. (2022), MYDs are defined as periods where
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SPEI-12 remains below -1 for at least 12 consecutive months. The threshold of -1 was chosen to represent moderate to extreme

droughts (McKee et al., 1993). While the start date of the drought is only identified as the first month where SPEI-12 dips

below -1, this definition already takes into account the accumulated P and PET over the 12 months leading up to the start of

the drought. Ruijsch et al. (2025) evaluated the impact of different SPEI aggregation periods and concluded that the SPEI-1265

is suitable for capturing multi-year drought dynamics.

To distinguish MYDs from shorter drought events, we define NDs as periods where SPEI-12 remains below –1 for less than

12 consecutive months. This definition ensures that each drought event is consistently categorized as either an MYD or ND,

allowing us to systematically compare their respective impacts on vegetation.

Table 1. Overview of datasets and variables used in this study. W5E5 climate variables are grouped by their application in either SPEI

calculation or LPJmL-5 simulations.

Dataset / Variable Temporal range Temporal resolution Spatial resolution Use / Reference

W5E5 Climate Forcing Data

Used for SPEI calculation Lange et al. (2022)

Precipitation [mm/day] 1901–2019 Daily 0.5° (∼55 km) SPEI input

Temperature [°C] 1901–2019 Daily 0.5° PET calc. for SPEI

Relative humidity [%] 1901–2019 Daily 0.5° PET calc. for SPEI

Wind speed [m s−1] 1901–2019 Daily 0.5° PET calc. for SPEI

Surface pressure [Pa] 1901–2019 Daily 0.5° PET calc. for SPEI

Downward shortwave radiation [W m−2] 1901–2019 Daily 0.5° PET calc. for SPEI

Used in LPJmL-5 simulations Lange et al. (2022)

Precipitation [mm/day] 1901–2019 Daily 0.5° LPJmL-5 input

Temperature [°C] 1901–2019 Daily 0.5° LPJmL-5 input

Wind speed [m s−1] 1901–2019 Daily 0.5° LPJmL-5 input

Downward longwave radiation [W m−2] 1901–2019 Daily 0.5° LPJmL-5 input

Downward shortwave radiation [W m−2] 1901–2019 Daily 0.5° LPJmL-5 input

Additional LPJmL-5 Inputs

CO2 concentration [ppm] 1901–2019 Annual Global Büchner and Reyer (2022)

NHx deposition [g/m2/month] 1901–2019 Monthly 0.5° Yang and Tian (2023)

NOy deposition [g/m2/month] 1901–2019 Monthly 0.5° Yang and Tian (2023)

Soil pH - - 0.5° Volkholz and Müller (2020)

Soil type - - 250 m (0.25 km) Knoben (2021)

Land use 2020 - 5 min (∼9.25 km) International Food Policy Research Institute (IFPRI) (2024)

Land cover 2019 - 300 m (0.3 km) Harper et al. (2023)

Remote Sensing Datasets

MODIS GPP 2000–2019 16-day 1 km Didan (2015a, b)

2.2 Dynamic global vegetation modelling using LPJmL-570

In this study, the DGVM LPJmL-5 (v5.7.9, von Bloh et al. (2018)) was used to simulate vegetation responses to MYDs. LPJmL-

5 builds on LPJmL-4 and simulates both natural and agricultural vegetation, linking their growth and productivity through

consistent water, carbon, and energy fluxes (Schaphoff et al., 2018b). LPJmL-5 makes use of the big-leaf representation for
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different Plant Functional Types (PFTs) that can coexist within a grid cell and compete for resources such as light, water, and

nitrogen (von Bloh et al., 2018). Land cover can either be simulated dynamically or be prescribed, both of which are used in this75

study. In contrast, Crop Functional Types (CFTs) are always prescribed, with a distinction between irrigated and rainfed crops.

Each grid cell can contain both managed and natural vegetation fractions, allowing for a realistic subgrid representation of land-

use. CFTs only appear when crops are sown and grow on soil areas separate from natural vegetation (von Bloh et al., 2018).

The model also includes key physiological processes such as photosynthesis, gross primary production, evapotranspiration,

and plant responses to soil moisture and drought stress (Schaphoff et al., 2018b). The terrestrial nitrogen cycle is incorporated80

to account for nutrient limitations to plant growth (von Bloh et al., 2018). This makes that LPJmL-5 contains all necessary

processes to study vegetation responses to drought, though its performance may still vary across regions and vegetation types.

2.2.1 LPJmL-5 input and output

In this study, LPJmL-5 was used to simulate vegetation dynamics at a 0.1° spatial resolution (∼ 11 km) and a daily temporal

resolution. The model was forced with meteorological forcing, soil properties, land use, and land cover derived from observa-85

tional datasets (Table 1). Daily meteorological forcings are taken from the W5E5 dataset and include temperature, precipitation,

downward longwave and shortwave radiation, and wind speed (Lange et al., 2022). Soil inputs include static variables such as

soil pH (Volkholz and Müller, 2020) and soil type (Knoben, 2021), as well as dynamic inputs like monthly nitrogen deposition

(NH4 and NO3) (Yang and Tian, 2023). Annual atmospheric CO2 concentrations were taken from Büchner and Reyer (2022).

Land use and country code data are provided at a 5-minute (∼9.25 km) spatial resolution, and soil type data at 250 m. All three90

were regridded to a 0.1° spatial resolution, whereas soil pH and climate forcing data are downscaled using a nearest neighbour

interpolation from their original 0.5° (∼55 km) resolution.

The land use map was primarily derived from International Food Policy Research Institute (IFPRI) (2024), which provides

information on crop areas. However, the crop types in this dataset did not directly match the CFTs used in LPJmL-5, so they

were reclassified accordingly. Additionally, pasture areas are a land-use type in LPJmL-5 but were not included in the IFPRI95

dataset. These were obtained from the ESA land cover maps (Harper et al., 2023) and incorporated into the land-use input. For

the land cover input, we used the ESA PFT maps (Harper et al., 2023), which provide fractional cover of tree, shrub, and grass

types. Because LPJmL-5 separates PFTs by climate zone (tropical, temperate, and boreal), we reclassified the ESA PFT maps

to match the PFTs in LPJmL-5 using the Köppen-Geiger classification (Beck et al., 2023), following the approach of Forkel

et al. (2019)(see Section S5). Shrubs were merged with the corresponding tree PFTs because LPJmL-5 does not distinguish100

between these growth forms. This procedure ensured that land-use and land-cover inputs were compatible with the vegetation

types represented in LPJmL-5.

LPJmL-5 provides a multitude of vegetation-related outputs on ecological, hydrological, and agricultural components (such

as leaf area index, soil moisture, runoff, and crop yields). To study vegetation response to drought, this study used the monthly

Gross Primary Production (GPP), which is the amount of carbon captured from the atmosphere through vegetation photosyn-105

thesis (Beer et al., 2010). The GPP output used in this study was produced at a 0.1° spatial and monthly temporal resolution.
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2.3 Model validation

Before using the simulated GPP to analyse the response of vegetation to MYDs, we first assessed how well the model repro-

duces observed GPP dynamics in general. To do this, we compared modeled LPJmL-5 GPP to satellite based MODIS GPP

(see Table 1). The MODIS observations are regridded to a spatial resolution of 0.1° and a monthly temporal resolution.110

Since LPJmL-5 provides a single GPP value per grid cell, each cell was assigned to its dominant vegetation type. Cropland

fractions (CFTs) were aggregated into one cropland category, while natural PFTs were grouped into broader classes: tropical

trees, temperate trees, boreal trees, tropical C4 grass, temperate C3 grass, and polar C3 grass (Appendix A).

To quantify model performance, we used the Kling-Gupta Efficiency (Gupta et al., 2009), which combines correlation, bias,

and variability into a single metric:115

KGE = 1−
√

(r− 1)2 + (α− 1)2 + (β− 1)2, (1)

where r is the linear correlation between observations and simulations, α = σsim

σobs
a measure of the variability error, and β =

µsim

µobs
a bias term. Here, σobs and σsim are the standard deviations of the observations and simulations, respectively, while

µsim and µobs are the corresponding means. KGE values greater than -0.41 indicate that the model performs better than the

mean benchmark, while a value of 1 indicates perfect agreement between simulations and observations (Knoben et al., 2019).120

This allows us to assess how well LPJmL-5 simulates GPP for different PFTs compared to MODIS, and to identify structural

patterns in performance across the globe.

2.4 Vegetation sensitivity to varying drought timescales

After evaluating how well LPJmL-5 simulates general patterns of GPP compared to MODIS GPP, we examined how well

LPJmL-5 can model vegetation responses to drought. Here, we aim to understand modelled vegetation sensitivity to drought125

without differentiating between "normal" and "multi-year" droughts. To ensure a fair comparison of vegetation responses

across regions and to remove seasonal variation, the GPP data was normalized and standardized using z-score normalization

resulting in a standardized GPP anomaly (GPPSA). The reference normalization period was chosen to match the MODIS

dataset (2000-2019) to avoid errors resulting from GPP trend differences between modelled and observed data.

Vegetation can respond differently to drought events of different durations. To capture this, we used the extreme-based130

method developed by Deng et al. (2022). This method examines how different drought durations affect vegetation across

various SPEI timescales (ranging from 1 to 24 months). Specifically, we calculated the average GPPSA response for each

timescale and identified which one has the strongest negative impact during drought periods. This timescale is referred to as

the dominant drought timescale and reflects how quickly vegetation responds to drought stress. Shorter timescales indicate

faster, more sensitive responses, while longer timescales suggest a slower response and less drought-sensitive vegetation. For135

this analysis, a SPEI threshold of -1 was chosen to define atmospheric drought conditions, as suggested by McKee et al. (1993).
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2.5 Vegetation response to MYDs

After determining how sensitive vegetation is to drought at different timescales, we further investigated how vegetation in

LPJmL-5 responds to MYDs specifically. We compared MODIS observations and LPJmL-5 simulations by analysing global

spatial patterns together with temporal dynamics in selected focus regions. Vegetation responses during MYDs were quantified140

by using the mean GPPSA during MYD events.

2.6 Selection of Focus Regions

While this study primarily examines global drought patterns, it also focuses on selected focus regions to better understand local

drought dynamics and how regional differences affect vegetation responses. The focus regions used in this study are: California

(CAL), the Rhine-Meuse delta in western Europe (WEU), the Brahmaputra River basin spanning Bangladesh, India, Bhutan,145

and China (BRA), central Argentina (ARG), the Orange River basin in southern Africa (SA), and the Murray-Darling basin in

Australia (AUS) (Appendix B). These regions correspond to the focus regions used by Ruijsch et al. (2025) examining MYD

patterns. The focus regions were selected based on the number of MYDs that have occurred between 2000-2019, geographic

and climatic diversity, and variation in vegetation types, ensuring a broad representation of both water- and energy-limited

regions across different climate zones.150
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3 Results

The following sections describe different aspects of the analysis on the potential of LPJmL-5 to simulate vegetation response

to (multi-year) droughts. Section 3.1 examines LPJmL’s ability to reproduce observed GPP, while Sections 3.2 and 3.3 focus

on its ability to reproduce (multi-year) droughts.

3.1 General performance of LPJmL-5155

To evaluate LPJmL-5’s ability to simulate GPP, we compared modelled GPP to MODIS-derived GPP using two simulation

setups: dynamic and prescribed land cover. The dynamic land cover setup allows vegetation fractions to shift in response to

climate and includes background mortality, capturing potential vegetation loss (Schaphoff et al., 2018b). However, dynamic

vegetation does not necessarily match observed vegetation types, which can lead to differences in GPP due to mismatched

vegetation types. The prescribed land cover simulation maintains fixed vegetation fractions based on observed maps. This160

approach ensures that variations in GPP result from the model’s ability to simulate vegetation productivity. However, this

setup does not include background mortality, potentially causing an underestimation of vegetation loss. By comparing both

setups, we can determine which one provides a better representation of observed GPP and choose the setup to be used in later

analyses. Model performance is evaluated by comparing LPJmL-5 and MODIS GPP using the KGE metric (Section 3.1.1) and

time series analysis (Section 3.1.2).165

3.1.1 Evaluating Model Performance with the KGE metric

Figure 2 shows the spatial distribution of the KGE and its components (correlation, bias, and variability) for both dynamic and

prescribed land cover simulations. Overall, the prescribed land cover demonstrates a clear performance improvement over the

dynamic simulation (Figures 2a and b).

The dynamic land cover consistently shows low agreement with MODIS across all KGE components (Figures 2c, e and170

g). The agreement is particularly poor in the Southern Hemisphere, with KGE values often falling below -0.41, which is the

threshold for a skilful performance. In contrast, the Northern Hemisphere generally shows a better performance. Switching to

prescribed land cover results in improved KGE scores globally. However, the performance difference between the Northern

and Southern hemispheres remains.

When examining the individual KGE components, the correlation between modelled and observed GPP is relatively high for175

both simulations, except in the tropical and semi-arid regions (Figures 2c and d). This suggests that the intra-annual response

to changing meteorological conditions is similar between the model and observations.

Both the bias (Figure 2e) and variability (Figure 2g) components are overestimated in the dynamic land cover simulation. The

bias frequently exceeds 2, except in the tropical regions, suggesting that the model’s mean GPP is approximately double that of

the observed value. The prescribed land cover simulation (Figure 2f) significantly reduces this bias, particularly in tropical and180

temperate regions, bringing modelled GPP closer to observations. A similar trend is observed for the GPP variability, where
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the dynamic land cover shows overestimated variability (greater than 2) in Figure 2g, while prescribed land cover reduces this

variability (Figure 2h).

These differences in model performance can be attributed to discrepancies between the modeled and observed vegetation

types when using dynamic land cover. For example, we observe that LPJmL-5 simulates tree cover in regions where the185

ESA land cover map shows predominantly grasslands, such as Western Europe and parts of South Africa (see Appendix C

and Supplements S4). These discrepancies in vegetation types lead to differences in GPP that are not related to the model’s

capability to simulate GPP responses to changing meteorological conditions, but rather to inconsistencies in vegetation cover.

By using prescribed land cover fractions based on the ESA land cover map, we observe an improvement in model performance,

with remaining errors linked to LPJmL-5’s inability to accurately simulate the GPP response to changes in meteorological190

conditions.
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Figure 2. Spatial comparison of LPJmL-5 model performance using the Kling-Gupta Efficiency (KGE) metric and its components for

dynamic (left column) and prescribed (right column) land cover simulations. The rows show (a–b) overall KGE, followed by its components:

(c–d) correlation, (e-f) bias, and (g-h) variability.
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To further assess model performance in the prescribed land cover simulation, we analyse the KGE distribution for each PFT,

as shown in Figure 3. This cumulative distribution function (CDF) displays the proportion of grid cells for each dominant

vegetation type (Appendix A) that exceed the KGE threshold of –0.41, which represents the mean benchmark (Knoben et al.,

2019).195

The performance of LPJmL-5 varies significantly across PFTs. Croplands show the lowest agreement with observations,

with over 60% of grid cells falling below the KGE = –0.41 line. In contrast, temperate trees show the best agreement with

observed GPP, with 90% showing skilful GPP simulations. Approximately 80% of areas dominated by boreal trees show good

agreement with MODIS data. Polar and temperate C3 grasses are the dominant PFTs and exhibit intermediate performance,

with around 75% of their area showing significant skill. Tropical trees show moderate KGE values, indicating a moderate200

performance in simulating the GPP. The corresponding analysis for the dynamic land-cover simulation (Figure C2) shows

consistently lower agreement across most PFTs than for prescribed land cover.

Overall, the KGE map and the CDF analysis (Figures 2, 3, and C2) indicate that simulating with prescribed land cover

outperforms dynamic land cover in LPJmL-5. However, significant improvements in modelled GPP response can still be made

in the Southern Hemisphere and for croplands. Based on these results, all subsequent simulations will be done using prescribed205

land cover to ensure a more robust comparison with observational data.

3.1.2 Evaluating Model Performance with the GPP Time Series

Figure 4 shows the monthly GPP for LPJmL-5 (with prescribed land cover) and MODIS satellite observations across the six

focus regions between 2000 and 2019. The background shading represents the SPEI-12, highlighting dry periods in red and

wet periods in blue. Additionally, the figure includes the correlation between MODIS and LPJmL-5.210

Three general patterns can be identified in the timeseries: (1) A temporal shift in the LPJmL-5 GPP time series, with peaks

occurring earlier in the season compared to MODIS observations; (2) Overestimation of summer GPP peaks, and in some cases

underestimation of winter values; (3) Lower model performance during dry periods.

These patterns are reflected to varying degrees across the focus regions. CAL and BRA show the temporal shift, which may

be the cause of the lower correlation with MODIS. BRA and WEU exhibit overestimation of summer GPP peaks, with SA also215

showing the underestimation of winter values. ARG performs relatively well, although it also shows slightly increased summer

peaks. In AUS, the contrast between wet and dry periods is largest, with GPP simulated accurately during wet periods, while

the model does not capture dry periods well. Despite these issues, WEU, ARG, SA, and AUS show relatively high correlation

values, indicating that LPJmL-5 generally captures the seasonal and interannual patterns of GPP in these regions. Overall,

based on the KGE values and the time series analysis, we can conclude that LPJmL-5 simulates GPP reasonably well, although220

notable regional differences remain.
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Figure 3. Cumulative distribution function (CDF) of the KGE of the prescribed land cover GPP for the different vegetation types in LPJmL-

5. Percentages show the percentage of grid cells with that dominant land cover. Black dashed line indicates KGE = -0.41. Values greater than

-0.41 indicate that the model improved upon the mean benchmark.
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Figure 4. Timeseries of the GPP for LPJmL-5 with prescribed land cover (green) and MODIS (black) for the focus regions: California (CAL),

western Europe (WEU), Brahmaputra (BRA), middle Argentina (ARG), southern Africa (SA) and the Murray Darling Basin in Australia

(AUS). SPEI-12 is shaded in the background, where red areas indicate drier periods and blue areas wetter periods. Additionally, the figure

includes the correlation between MODIS and LPJmL-5 per region. Note that WEU uses a different y-axis range from the other regions.
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3.2 General drought response

To evaluate the ability of LPJmL-5 to capture vegetation drought response, we applied the extreme-based method (Section 2.4).

This method identifies the dominant drought timescale, defined as the SPEI timescale (ranging from 1 to 24 months) that has225

the most negative impact on vegetation during drought periods.

The spatial distribution of dominant drought timescales, shown in Figure 5, shows a clear difference between MODIS ob-

servations (a) and the LPJmL-5 model simulations (b). Compared to MODIS, LPJmL-5 shows shorter drought timescales,

indicating a faster vegetation response to drought. This difference is most pronounced in the Southern Hemisphere. LPJmL-5

also shows a skewed distribution with a clear peak around 2 months (panel c), while the MODIS response is more evenly dis-230

tributed. In summary, LPJmL-5 tends to underestimate drought resistance by simulating shorter response times than observed

in MODIS, especially in the tropical regions and the Southern Hemisphere.

Figure 5. Spatial patterns of the dominant drought timescale of GPPSA for a) MODIS observations and b) the LPJML-5 model. The dominant

timescale is defined as the shortest SPEI timescale (between 1 and 24 months) that shows the most negative GPPSA during drought periods

(with a SPEI threshold of -1). Bare areas and sparse vegetation are filtered out. c) Violin plot comparing the distribution of dominant drought

timescales between MODIS and LPJmL-5.
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3.3 MYD and ND response

After evaluating LPJmL-5’s response to droughts in general, this study now shifts its focus to MYDs and NDs.

3.3.1 Temporal patterns235

Firstly, we examine how well LPJmL-5 captures the timing and magnitude of GPPSA during MYDs and NDs across the focus

regions. Figure 6 shows the timeseries of GPPSA for MODIS and LPJmL-5, with MYDs and NDs indicated by red and orange

shaded areas, respectively.

Overall, LPJmL-5 captures the timing and magnitude of GPPSA anomalies reasonably well, showing relatively high corre-

lations with MODIS in most regions. The model aligns particularly well in CAL, WEU, ARG, and AUS, while performance240

is somewhat lower in SA and BRA. Correlations during MYDs are higher than those for the entire time series in all regions

except BRA, and generally higher than those during NDs, except in ARG and BRA. This suggests that LPJmL-5 simulates

MYD dynamics more accurately than ND dynamics.

Nonetheless, some systematic differences remain during MYDs: (1) the model tends to simulate a too fast and severe decline

in GPPSA at the onset of MYDs, and (2) it exhibits unrealistic variability during MYD periods, especially in the form of abrupt245

recovery spikes not supported by observations.

These biases are reflected across the focus regions to varying degrees. In WEU, the model simulates an early GPPSA drop

that precedes the observed onset. CAL shows a similar offset, likely linked to the timing mismatch seen in Figure 4. In BRA,

the first MYD minimum occurs too early in the model, while the second MYD ends with a sudden increase in GPPSA not

seen in observations, again pointing to an early response and unrealistic recovery. ARG captures drought severity relatively250

well but still shows some unrealistic recovery spikes during MYDs. SA also shows the rapid onset and overestimated recovery

rate, despite persistently low SPEI-12 values. AUS shows the best overall agreement, with most MYDs being captured well.

However, the second MYD still shows the unrealistic variability mid-drought, though less severely.

Overall, while LPJmL-5 tends to overestimate vegetation response at the onset of MYDs and shows some rapid recovery

behaviour, it successfully captures the key temporal dynamics of MYDs.255
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Figure 6. Timeseries of GPPSA for LPJmL-5 and MODIS. MYDs and NDs are shaded in red and orange, respectively. Correlation coeffi-

cients between model and observations are shown for the full time series, MYDs, and NDs. The grey line indicates the SPEI-12. The red and

blue dashed lines mark -1 and +1, respectively.
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3.3.2 Spatial patterns

In addition to the regional time series analysis, we now examine global spatial patterns of vegetation response to MYDs.

Figure 7 shows the spatial distribution of the mean GPPSA during MYDs, as derived from (a) MODIS observations and (b)

the LPJmL-5 model. Negative values (red) indicate below-average GPP during MYD periods, while positive values (green)260

indicate GPP being higher than average.

Figure 7. Spatial pattern of the mean GPPSA during MYDs for a) MODIS and b) LPJmL-5. Positive values indicate higher GPP than normal

during MYDs, while negative values indicate reduced GPP values. Bare areas and sparse vegetation are filtered out. c) shows a violin plot

comparing the distributions of the mean GPPSA during MYDs from MODIS and LPJmL-5.
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Overall, LPJmL-5 simulates less severe GPPSA during MYDs compared to MODIS observations. However, the Spearman

rank correlation (0.326, p <0.001) still indicates a similarity in the overall spatial patterns between the model and the observa-

tions. This means that the model captures some important hotspot areas, but there are still noticeable differences. We attribute

these differences largely to unrealistic recovery events in the model, as seen in Figure 6. The violin plot (Figure 7c) shows265

that MODIS has a slightly lower median. However, LPJmL-5 displays more extreme values at both ends of the distribution,

indicating greater variability in the modelled MYD responses.

To further highlight these differences, Figure 8 shows the spatial difference in mean GPPSA during MYDs between MODIS

and LPJmL-5 and two-dimensional Kernel Density Estimate (KDE) plots for the different PFTs. Purple shades indicate under-

estimation of negative drought impacts, while orange shades indicate underestimation of positive impacts or overestimation of270

negative impacts. Black, grey and white areas indicate close agreement between model and observations.

LPJmL-5 shows a reasonable agreement with MODIS in most regions, as indicated by the black, grey and white areas. These

areas include Central North America, Europe, and parts of East and West Asia. However, there are several regions that emerge

as hotspots of LPJmL-5 underestimation of GPP anomalies (visible as dark purple areas), including Australia, Northwest India,

Pakistan, Southern Africa, Central Argentina, Eastern Brazil, and Northern Mexico. In these regions, LPJmL-5 shows weaker275

or absent negative responses, suggesting that the model does not fully capture drought severity in these areas. This finding is

consistent with the temporal patterns shown in Figure 4. Additionally, LPJmL-5 tends to underestimate the observed positive

GPP responses in the arctic boreal zone (visible as orange areas). Here, the model fails to capture the increased GPP during

MYDs found in observations (Figure 7 and Ruijsch et al. (2025)).

Beyond spatial patterns, differences between LPJmL-5 and MODIS also vary by PFT (Figure 8). Tropical trees show the280

widest spread in MYD GPP responses, while temperate trees align more closely with MODIS but still occasionally underes-

timate negative impacts (lower right quadrant). Grasslands show good agreement, with LPJmL-5 capturing most directions of

the MYD response correctly. Croplands, although displaying the weakest agreement in absolute GPP (Figure 3), show the best

modelled drought response. This indicates that while simulating total productivity remains challenging, LPJmL-5 can capture

how croplands respond to drought events.285

Overall, LPJmL-5 successfully captures the key dynamics of MYDs observed in MODIS, but still shows some model bias

in both time and space. Temporally, LPJmL-5 often overestimates the speed and severity of vegetation decline at the onset of

the MYD and shows a fast recovery during the drought period compared to MODIS. Spatially, LPJmL-5 shows a reasonable

agreement with MODIS in most regions and for most PFTs, but also shows some underestimation of both strong negative

and strong positive vegetation responses. These biases may be caused by short-term overreactions and rapid recoveries in the290

model’s time series, which reduces the average drought response.
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Figure 8. Spatial differences in mean GPPSA during MYDs between MODIS observations and LPJmL-5 simulations. The map highlights

regions where LPJmL-5 under- or overestimates vegetation responses compared to observations. Purple shades indicate underestimated

negative impacts, while orange shades indicate underestimated positive or overestimated negative impacts. White, grey and black shades

represent regions where the model and observations agree closely on vegetation response during MYDs. Insets display two-dimensional

kernel density estimates (KDEs) for seven vegetation types, illustrating the distribution of differences in mean MYD responses. KDE levels

are set to [0.05, 0.15, 0.25, 0.5, 0.75, 0.9, 1.0].
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4 Discussion

Overall, this study assesses LPJmL-5’s ability to simulate global vegetation responses to (multi-year) droughts. First, com-

paring dynamic and prescribed land cover settings in LPJmL-5 revealed that prescribed land cover improves agreement with

MODIS GPP. The lowest agreement is generally found in the Southern Hemisphere and in cropland-dominated regions. Sec-295

ond, LPJmL-5 and MODIS show similar broad seasonal and interannual patterns of GPP. There is however a tendency to over-

estimate GPP dynamics and to introduce temporal shifts compared to observations. Third, using the extreme-based method,

which identifies the timescale at which drought has the strongest impact on vegetation, we found that LPJmL-5 underesti-

mates drought resistance by simulating shorter dominant drought timescales, particularly in tropical regions and the Southern

Hemisphere. Fourth, the analysis of MYDs revealed a consistent pattern of model bias across both time and space. Tempo-300

rally, LPJmL-5 overestimates vegetation decline at the onset of MYDs and shows a fast recovery during the drought period.

Spatially, the model underestimates both strong negative and strong positive vegetation responses. In general, LPJmL-5 tends

to simulate vegetation that is too responsive in both the drought onset and the recovery. This points to limitations in how the

model represents vegetation resistance and resilience to water induced stress and mortality.

4.1 Uncertainties in the model choices and setup305

Different choices in model parametrisation and setup can lead to significant differences in modelled GPP. For example, both

the choice of meteorological forcing dataset (ERA5 (Hersbach et al., 2023) vs. W5E5 (Lange et al., 2022)) and the temporal

resolution (monthly vs. daily) have an significant impact on simulated GPP patterns (Supplements S3). This indicates that it is

important for future drought oriented studies to make clear choices with regard to the modelling setup. In this study we selected

the daily W5E5 dataset (Lange et al., 2022), as it is bias-corrected and offers a high temporal resolution and the total global310

GPP was closest to that found in observational datasets.

Our analyses also showed that GPP output is highly sensitive to the radiation inputs (Supplements S3). GPP values varied

substantially depending on whether the model calculated radiation internally or used observed radiation data. We found that

errors in GPP are higher from internal estimation, compared to directly providing longwave and shortwave radiation from

observations.315

Using dynamic land cover in LPJmL-5 resulted in systematically overestimated GPP values across most regions (Figure 2

and Supplements S4), also noted in Schaphoff et al. (2018a). We argue that this difference is the results of a mismatch between

modelled and observed vegetation distributions (Appendix C and Supplements S4), which is to be expected as the land cover

is not constrained to the observed land cover. For example, LPJmL-5 simulates tree cover in parts of Western Europe where

forests could exist naturally, but are absent today due to long-term human management. To better match observed GPP and320

reduce these discrepancies, we prescribed land cover fractions, rather than letting the model simulate land cover dynamically.
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4.2 Evaluation of GPP simulations and vegetation drought response in LPJmL-5

Prescribing land cover in LPJmL-5 improved the agreement with MODIS GPP, as indicated by higher KGE values in Figure 2.

This is consistent with studies showing that accurate land cover representation is essential for reproducing observed productiv-

ity patterns (Krause et al., 2022), and that constraining DGVM simulations with satellite-derived observations (including land325

cover) enhances their ability to capture observed spatial patterns of vegetation and carbon dynamics (Forkel et al., 2019).

Breaking down the differences between LPJmL-5 and MODIS GPP during MYDs by vegetation type further highlights

varying model performance (Figure 8). Tropical trees show the largest variability in drought response, showing both under- and

overestimations of impacts. Similar results were found by Powell et al. (2013), who showed that terrestrial biosphere models

underestimate drought impacts on tropical forest biomass. Temperate trees generally align more closely with observations but330

still underestimate negative drought impacts. This is consistent with Kolus et al. (2019), who found that land carbon models

underestimate the severity and duration of drought effects on productivity across temperate forests in the US and Europe.

Similarly, Schaefer et al. (2012) observed that models frequently overpredict GPP under dry conditions, further pointing to

an underestimation of drought stress. Boreal trees and grasses are more prone to underestimated positive responses, while

croplands, despite poorer overall productivity agreement, show relatively better modelled drought responses.335

A key limitation underlying these issues appears to be how vegetation mortality is represented in LPJmL-5. In the model,

mortality is only driven by low productivity and heat stress, and can not be directly induced by prolonged water deficits.

Drought-induced mortality occurs only if plants fail to produce enough biomass to sustain themselves. However, this natural

mortality is capped by a maximum annual rate (Schaphoff et al., 2018b), which restricts how much vegetation can be lost due

to die-off each year. Moreover, this mortality mechanism is only active in the dynamic land cover setting, and is not applied340

when land cover is prescribed. Since the simulations in this study use the prescribed land cover setting, no vegetation is lost

due to this background mortality. This means that while GPP may decline sharply during droughts, vegetation does not die,

causing unrealistically rapid recovery periods when precipitation (temporarily) returns. Although LPJmL-5 includes a heat-

stress mortality mechanism, it only applies to boreal trees (Schaphoff et al., 2018b). As a result, vegetation decline during

MYDs is not directly driven by water shortages, which prevents large-scale die-off and causes the model to underestimate345

total vegetation loss. These limitations reduce the model’s ability to simulate the full severity of vegetation decline, especially

during MYDs. This issue has been noted by Schaphoff et al. (2018a), who reported that the lack of realistic mortality processes

leads to an overestimation of simulated biomass and contributes to biases in GPP. Similarly, McDowell et al. (2013) found that

models which combine carbon starvation with hydraulic failure mechanisms are better able to reproduce observed drought-

induced tree mortality, and Zhou et al. (2013) highlighted the need to account for both stomatal and non-stomatal limitations350

to realistically capture plant responses to water stress. Meyer et al. (2025) further showed that including hydraulic processes in

LPJ-GUESS improves simulations of drought responses. Together, these findings suggest that LPJmL-5 likely underestimates

the true impact of drought on vegetation.

Despite underestimating long-term vegetation loss, LPJmL-5 tends to overestimate vegetation decline at the start of droughts,

as shown in Figures 5 and 6. LPJmL-5 does include a water stress factor that influence the growth, which results in a rapid355
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decline in GPP. This stress is determined by soil moisture availability and fixed rooting depths for each PFT, without accounting

for dynamic rooting strategies, capillary rise or explicit groundwater processes (Schaphoff et al., 2018b). However, in reality,

vegetation often withstands short-term stress periods through drought survival strategies (Santiago et al., 2016; Pivovaroff et al.,

2016). At the same time, LPJmL-5 also simulates unrealistic recoveries during the drought period. Since there is no mortality,

vegetation can survive during a drought period, resulting in no loss of biomass. When conditions improve temporarily, for360

example due to brief rainfall, the model quickly simulates regrowth. This leads to an unrealistic drought recovery effect. This

is in contrast with real vegetation, which often suffers from long-term impacts (Wu et al., 2018). Both the quick decline and

recovery are consistent with findings by Kolus et al. (2019), who show that land carbon models underestimate the severity and

duration of drought impact on plant productivity.

Together, the combination of overly sensitive short-term GPP decline, limited representation of long-term vegetation loss,365

and unrealistically fast recovery during drought periods results in a mismatch in LPJmL-5’s simulated vegetation drought

response. While prescribing land cover improves the overall GPP performance, these structural issues in the mortality repre-

sentation limit the model’s ability to simulate realistic vegetation dynamics during drought events. This is especially limiting

when the analysis is focussed on multi-year drought events, which have been shown to cause higher vegetation mortality rates

(Češljar et al., 2025) and are expected to become more frequent under climate change (Wiel et al., 2022).370

4.3 Uncertainties in methodological choices

To improve the overall quality and reliability of our simulations, we used the state-of-the-art dynamic vegetation model LPJmL-

5. This model is publicly available with an extensive model description and evaluation (Schaphoff et al., 2018b, a; von Bloh

et al., 2018). LPJmL-5 provides a multitude of vegetation-related outputs on ecological, hydrological, and agricultural compo-

nents, making it suitable for studying vegetation responses at the global scale.375

Drought events were identified using the Standardized Precipitation Evapotranspiration Index (SPEI), which incorporates

both precipitation (P) and potential evapotranspiration (PET), allowing it to better reflect the impact of temperature on drought

severity (Vicente-Serrano et al., 2010). As a standardized index, SPEI also enables consistent spatial comparisons of drought

conditions at the global scale. By using a 12 month aggregation period for the SPEI, we also remove seasonal variations and

focus on capturing MYDs.380

While there is currently no universally agreed-upon definition of MYDs, we follow the approach of Wiel et al. (2022)

(see Section 2.1), which was also adopted in Ruijsch et al. (2025) and van Mourik et al. (2025). SPEI values are sensitive to

the method and input data used for calculating PET. We compared results using ERA5 and W5E5 and found differences in

the number of MYDs identified for the period 2000–2019 (Supplements S3). Nonetheless, the MYDs identified in our focus

regions are broadly consistent with those reported in other studies (van Mourik et al., 2025; Wiel et al., 2022; Luo et al., 2017;385

Liu et al., 2022; Chikoore and Jury, 2021; Naumann et al., 2023; van Dijk et al., 2013), despite minor differences in timing.

To evaluate vegetation responses, we used the monthly GPP as a proxy, which quantifies the amount of carbon captured from

the atmosphere through photosynthesis (Beer et al., 2010). Although the Enhanced Vegetation Index (EVI) has been used in

previous studies (Ruijsch et al., 2025; Huang and Xia, 2019; Yang et al., 2024), it is derived from satellite observations and not
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directly available as a model output. GPP has been shown to correlate well with EVI (Rahman et al. (2005); Sims et al. (2006)390

and Supplements S2), even during MYDs (Ruijsch et al., 2025). Although other sources of GPP data exist, such as site-level

flux tower measurements, we choose to use satellite derived MODIS GPP because it provides consistent, observation-based

estimates at the global scale. To maintain observational consistency and avoid mixing in other models, we did not include GPP

estimates derived from other land surface models as they are likely based on similar assumptions and equations as the LPJmL-5

model.395
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5 Conclusion

This study evaluated LPJmL-5’s ability to simulate global vegetation responses to drought, using MODIS GPP as a benchmark.

Prescribing land cover (instead of simulating it dynamically) improves the model’s ability to reproduce global GPP dynamics.

Overall, LPJmL-5 simulates GPP reasonably well, but improvements can still be made in the Southern Hemisphere and for

croplands.400

Our analysis shows that LPJmL-5 simulates an accelerated vegetation response to drought onset, especially in tropical

regions and the Southern Hemisphere. During MYDs, LPJmL-5 captures the key temporal and spatial dynamics observed in

MODIS. However, the model tends to overestimate vegetation response at the onset of MYDs and shows some rapid recovery

behaviour. This leads to a muted overall vegetation drought response and spatial underrepresentation of both strong negative

and strong positive GPP anomalies. Among PFTs, croplands show the best agreement with observed MYD responses. In405

contrast, boreal vegetation shows underestimated positive drought responses and temperate vegetation underestimated negative

ones. Tropical vegetation displays more mixed results, with both over- and underestimation.

These differences between model and observations may be partly attributed to how LPJmL-5 represents vegetation stress

and drought induced mortality. The model responds strongly to short-term productivity losses but limits long-term vegetation

decline, resulting in rapid recovery and limited vegetation die-off during (multi-year) drought periods.410

In general, LPJmL-5 is able to reproduce the general impacts of MYDs on vegetation but tends to simulate vegetation

that is too responsive in both the drought onset and the recovery. This points to limitations in how the model represents

vegetation resistance and resilience to water induced stress and mortality. Given the increasing frequency and intensity of

MYDs, accurately representing vegetation stress and mortality is critical for reliably assessing MYD impacts on vegetation.
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Appendix A: Dominant land cover types415

Figure A1 shows the dominant land cover types at a 0.1° spatial resolution, based on LPJmL-5’s land cover and land use dataset

(see Table 1). Cropland fractions were combined into a single “cropland” category, while natural PFTs were grouped into

broader vegetation classes: tropical trees (tropical broadleaved evergreen and raingreen trees), temperate trees (needleleaved

evergreen, broadleaved evergreen, and broadleaved summergreen trees), boreal trees (needleleaved evergreen, broadleaved

summergreen, and needleleaved summergreen trees), tropical C4 grass, temperate C3 grass, and polar C3 grass.420

Figure A1. Dominant land cover types at a 0.1° resolution for 2019. Vegetation categories include tropical trees (TTr), temperate trees (TTe),

boreal trees (TBo), cropland (Cr), tropical C4 grass (GTr), temperate C3 grass (GTe), and polar C3 grass (GBo).
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Appendix B: Number of MYDs and chosen focus regions

Figure B1 shows the number of MYDs (2000-2019) at a 0.5 ° spatial resolution from W5E5 data (Lange et al., 2022)(See

Section 2.1 and S1). Black outlines indicate the chosen focus regions: California (CAL), the Rhine-Meuse delta in western

Europe (WEU), the Brahmaputra River basin in Bangladesh/India/Bhutan/China (BRA), central Argentina (ARG), the Orange

River basin in southern Africa (SA), and the Murray-Darling basin in Australia (AUS) (See Section 2.6).

Figure B1. Number of MYDs between 2000–2019 at 0.5 ° spatial resolution. Bare areas and regions with sparse vegetation are excluded.

Black contours indicate the six chosen focus regions: CAL, WEU, BRA, ARG, SA, and AUS.

425
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Appendix C: LPJmL dynamic vs ESA prescribed land cover

Figure C1 shows the difference in vegetation cover fractions between LPJmL-5 and ESA. Globally, the ESA dataset shows

greater coverage of temperate and polar C3 grasses, as well as boreal needleleaved summergreen forests. In contrast, LPJmL-

5’s dynamic vegetation simulates more temperate needleleaved evergreen trees, boreal needleleaved evergreen trees, boreal

broadleaved summergreen trees, and tropical C4 grasses.430

Figure C1. Difference in vegetation cover fractions between LPJmL-5 and ESA. Blue areas indicate where ESA has a higher vegetation

fraction; red areas indicate where LPJmL-5 simulates a higher vegetation fraction.

The CDFs in Figure C2 further show the impact of land cover on model performance. Across all vegetation types, the

prescribed land cover shows higher KGE values. The difference between prescibed and dynamic land cover is particularly
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pronounced for temperate C3 grasses, which perform poorly with the the dynamic land cover. LPJmL-5 substantially under-

represents the spatial extent of temperate C3 grasses, assigning them to only 2.7% of grid cells, compared to 22.2% under the

ESA-based classification. This mismatch likely contributes to the poor performance, as misclassified vegetation types lead to435

unrealistic GPP estimates. Tree-dominated grid cells also show better performance with prescribed land cover, however, the

difference is less severe than for grasses.

Figure C2. Cumulative distribution function (CDF) of the KGE of the a) prescribed land cover GPP and b) dynamic land cover for the

different vegetation types in LPJmL-5. Percentages show the percentage of grid cells with that land cover. Black dashed line indicates KGE

= -0.41. Values greater than -0.41 indicate that the model improved upon the mean benchmark.
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Code and data availability. The LPJmL-5 source code is openly available at https://github.com/PIK-LPJmL/LPJmL. This study uses version

v5.7.9 (released on May 2 2024).

All processed data required to reproduce the analyses are available at: ().440

The raw datasets are publicly available from their respective sources (see Table 1).

All scripts used for postprocessing and analysis in this study are available at https://doi.org/10.5281/zenodo.17085725 (Ruijsch, 2025).
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