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Abstract.

Climate change is expected to increase the frequency and severity of Multi-Year Droughts (MYDs), but their impacts on
vegetation remain poorly understood. While satellite records offer valuable insights, they cover only recent decades, limiting the
number of MYDs available for analysis. Dynamic global vegetation models (DGVMs), such as LPJmL-5, can help overcome
this limitation by simulating vegetation dynamics over longer timescales. However, their ability to capture drought impacts has
not yet been systematically evaluated. In this study, we benchmark LPJmL-5 against MODIS-derived gross primary production
(GPP) to assess how well it captures vegetation responses to drought. We find that LPJmL-5 reproduces GPP reasonably
well in some regions, but improvements can still be made in the Southern Hemisphere and for croplands. During MYDs,
LPJmL-5 captures the key temporal and spatial GPP drought dynamics observed in MODIS. However, the model tends to
overestimate vegetation response at the onset of MYDs and shows some rapid recovery behaviour, resulting in muted overall
drought impacts. Vegetation responses also vary by type: croplands show relatively good agreement, while boreal and temperate
vegetation underestimate positive and negative impacts, respectively. These discrepancies appear to be linked to simplified
model representations of vegetation stress and mortality, which limit long-term vegetation loss. Our results highlight the need
to improve how LPJmL-5 simulates vegetation stress and recovery, especially under prolonged drought conditions, in order to

better capture ecosystem vulnerability in a changing climate.
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1 Introduction

Multi-Year Droughts (MYDs) can have severe impacts on natural vegetation and croplands, ranging from reduced vegetation
health to diminished ecosystem resilience and increased tree mortality (Choat et al., 2018; DeSoto et al., 2020; Gessler et al.,
2020; Allen et al., 2010; Cooley et al., 2015; Dong et al., 2019; Moravec et al., 2021; Jiao et al., 2020; Wittwer and Waschik,
2021; Hughes et al., 2019). Although less frequent than shorter droughts, MYDs have already been observed worldwide (van
Mourik et al., 2025) and are projected to increase in both frequency and severity (van der Wiel et al., 2023).

However, ecosystem responses to drought are not universally negative (Ruijsch et al., 2025). Recent studies reveal a more
nuanced picture, with some regions showing weak or even positive feedbacks between drought and vegetation (Ruijsch et al.,
2025; van Hateren et al., 2021; Dong et al., 2019; Yang et al., 2021). These findings indicate that vegetation responses to
(multi-year) droughts are not uniform, but rather that they vary with local water and energy availability (Ruijsch et al., 2025;
van Hateren et al., 2021). Understanding this variability is crucial for assessing ecosystem vulnerability to MYDs in a changing
climate and for developing effective adaptation strategies.

To investigate drought responses and to monitor vegetation status, previous studies have made use of satellite remote sensing
datasets such as MODIS (Ruijsch et al., 2025; van Hateren et al., 2021; Dong et al., 2019; Yang et al., 2021). These datasets
offer global coverage with high spatial and temporal resolution, making them valuable tools for analysing vegetation dynamics
during droughts. However, MODIS records generally only extend back to 2000 (Didan, 2015a, b), limiting the number of
MYDs available for analysis and reducing the statistical robustness of drought impact assessments based solely on remotely
sensed data.

To address this limitation, process-based modelling approaches such as Dynamic Global Vegetation Models (DGVM) can
complement satellite observations by simulating vegetation responses over longer timeframes. Among these models, LPJmL-5
(Schaphoff et al., 2018b, a; von Bloh et al., 2018) is widely used and extensively validated to represent establishment, growth
and mortality of both natural ecosystems and managed croplands. By integrating carbon, water, nitrogen, and energy fluxes,
LPJmL-5 simulates vegetation dynamics under changing climate and land-use conditions, enabling the extension of vegetation
records beyond the satellite era and the analysis of a broader range of drought events.

However, the ability of models like LPJmL-5 to study MYD impacts is largely unknown. Therefore it is essential to evaluate
how well it captures vegetation responses to MYDs and normal droughts (NDs; droughts lasting less than a year), and if
it can differentiate the impact of these different droughts on vegetation. In this study, we assess the spatial and temporal
agreement between modelled and satellite-observed vegetation responses to both drought types, and investigate differences
and similarities in vegetation drought response. Ultimately, it provides a foundation for using LPJmL-5 to study vegetation

responses to droughts over extended historical periods and under future climate scenarios.
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2 Materials and Methods

This section outlines the definitions, vegetation model, data, and methods used to evaluate vegetation responses to (multi-
year) droughts (Figure 1). Section 2.1 defines MYDs and NDs, Section 2.2 describes the LPJmL-5 model, followed by model
validation against observational data in Section 2.3. Sections 2.4 and 2.5 explain how vegetation responses to (multi-year)

droughts are defined. Finally, Section 2.6 introduces the focus regions analysed in this study.

Analyse vegetation
response to MYDs
and NDs
Section 2.5

Define MYDs and
NDs based on SPEI-12
Section 2.1

Normalize
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Section 2.4
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Run LPJmL-5 sensitivity to drought
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ectionie Section 2.3
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Figure 1. Schematic overview of the methodological workflow used in this study. The processes include drought classification, LPJmL-5
model simulations, comparison with MODIS-derived GPP observations, and the analysis of vegetation responses to both MYDs and NDs

across selected focus regions. Blue elements represent observational data, while pink elements indicate model outputs.

2.1 Drought identification

Drought indices are essential for studying drought events, as they allow for consistent comparison of drought characteristics
across space and time. In this study, we used the Standardized Precipitation Evapotranspiration Index (SPEI), which accounts
for both water supply (precipitation, P) and atmospheric water demand (potential evapotranspiration, PET) (Vicente-Serrano
et al., 2010). SPEI is particularly suitable for assessing drought impacts on vegetation as vegetation is not only impacted by
lack of water supply via P, but also the increase in atmospheric water demand via PET.

SPEI was computed at multiple timescales (1-24 months) using P and PET derived from W5ES reanalysis data (see Table 1,
(Lange et al., 2022)). Both P and PET were aggregated to monthly values to generate monthly SPEI outputs. A detailed
description of the SPEI calculation is provided in Section S1.

To define MYDs and NDs, we focused on SPEI calculated at a 12-month timescale (SPEI-12), as it captures multi-year

drought conditions while minimizing seasonal variability. Following Wiel et al. (2022), MYDs are defined as periods where
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SPEI-12 remains below -1 for at least 12 consecutive months. The threshold of -1 was chosen to represent moderate to extreme
droughts (McKee et al., 1993). While the start date of the drought is only identified as the first month where SPEI-12 dips
below -1, this definition already takes into account the accumulated P and PET over the 12 months leading up to the start of
the drought. Ruijsch et al. (2025) evaluated the impact of different SPEI aggregation periods and concluded that the SPEI-12
is suitable for capturing multi-year drought dynamics.

To distinguish MYDs from shorter drought events, we define NDs as periods where SPEI-12 remains below —1 for less than
12 consecutive months. This definition ensures that each drought event is consistently categorized as either an MYD or ND,

allowing us to systematically compare their respective impacts on vegetation.

Table 1. Overview of datasets and variables used in this study. W5ES5 climate variables are grouped by their application in either SPEI

calculation or LPJmL-5 simulations.

Dataset / Variable Temporal range | Temporal resolution | Spatial resolution | Use / Reference
WS5ES Climate Forcing Data
Used for SPEI calculation Lange et al. (2022)
Precipitation [mm/day] 1901-2019 Daily 0.5° (~55 km) SPEI input
Temperature [°C] 1901-2019 Daily 0.5° PET calc. for SPEI
Relative humidity [%] 1901-2019 Daily 0.5° PET calc. for SPEI
Wind speed [m s 1901-2019 Daily 0.5° PET calc. for SPEI
Surface pressure [Pa] 1901-2019 Daily 0.5° PET calc. for SPEL
Downward shortwave radiation [W m~2] | 1901-2019 Daily 0.5° PET calc. for SPEI
Used in LPJmL-5 simulations Lange et al. (2022)
Precipitation [mm/day] 1901-2019 Daily 0.5° LPJmL-5 input
Temperature [°C] 1901-2019 Daily 0.5° LPJmL-5 input
Wind speed [ms™'] 1901-2019 Daily 0.5° LPJmL-5 input
Downward longwave radiation [W m~2] 1901-2019 Daily 0.5° LPJmL-5 input
Downward shortwave radiation [W m~2] | 1901-2019 Daily 0.5° LPJmL-5 input
Additional LPJmL-5 Inputs
CO; concentration [ppm] 1901-2019 Annual Global Biichner and Reyer (2022)
NH,, deposition [g/m?/month] 1901-2019 Monthly 0.5° Yang and Tian (2023)
NO, deposition [g/m?/month] 1901-2019 Monthly 0.5° Yang and Tian (2023)
Soil pH - - 0.5° Volkholz and Miiller (2020)
Soil type - - 250 m (0.25 km) Knoben (2021)
Land use 2020 - 5 min (~9.25 km) | International Food Policy Research Institute (IFPRI) (2024)
Land cover 2019 - 300 m (0.3 km) Harper et al. (2023)

Remote Sensing Datasets
MODIS GPP ‘ 2000-2019

16-day \ 1 km Didan (20152, b)

2.2 Dynamic global vegetation modelling using LPJmL-5

In this study, the DGVM LPJmL-5 (v5.7.9, von Bloh et al. (2018)) was used to simulate vegetation responses to MYDs. LPJmL-
5 builds on LPJmL-4 and simulates both natural and agricultural vegetation, linking their growth and productivity through

consistent water, carbon, and energy fluxes (Schaphoff et al., 2018b). LPJmL-5 makes use of the big-leaf representation for
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different Plant Functional Types (PFTs) that can coexist within a grid cell and compete for resources such as light, water, and
nitrogen (von Bloh et al., 2018). Land cover can either be simulated dynamically or be prescribed, both of which are used in this
study. In contrast, Crop Functional Types (CFTs) are always prescribed, with a distinction between irrigated and rainfed crops.
Each grid cell can contain both managed and natural vegetation fractions, allowing for a realistic subgrid representation of land-
use. CFTs only appear when crops are sown and grow on soil areas separate from natural vegetation (von Bloh et al., 2018).
The model also includes key physiological processes such as photosynthesis, gross primary production, evapotranspiration,
and plant responses to soil moisture and drought stress (Schaphoff et al., 2018b). The terrestrial nitrogen cycle is incorporated
to account for nutrient limitations to plant growth (von Bloh et al., 2018). This makes that LPJmL-5 contains all necessary

processes to study vegetation responses to drought, though its performance may still vary across regions and vegetation types.
2.2.1 LPJmL-5 input and output

In this study, LPJmL-5 was used to simulate vegetation dynamics at a 0.1° spatial resolution (~ 11 km) and a daily temporal
resolution. The model was forced with meteorological forcing, soil properties, land use, and land cover derived from observa-
tional datasets (Table 1). Daily meteorological forcings are taken from the WSES dataset and include temperature, precipitation,
downward longwave and shortwave radiation, and wind speed (Lange et al., 2022). Soil inputs include static variables such as
soil pH (Volkholz and Miiller, 2020) and soil type (Knoben, 2021), as well as dynamic inputs like monthly nitrogen deposition
(NHy4 and NOg) (Yang and Tian, 2023). Annual atmospheric CO, concentrations were taken from Biichner and Reyer (2022).
Land use and country code data are provided at a 5-minute (~9.25 km) spatial resolution, and soil type data at 250 m. All three
were regridded to a 0.1° spatial resolution, whereas soil pH and climate forcing data are downscaled using a nearest neighbour
interpolation from their original 0.5° (~55 km) resolution.

The land use map was primarily derived from International Food Policy Research Institute (IFPRI) (2024), which provides
information on crop areas. However, the crop types in this dataset did not directly match the CFTs used in LPJmL-5, so they
were reclassified accordingly. Additionally, pasture areas are a land-use type in LPJmL-5 but were not included in the IFPRI
dataset. These were obtained from the ESA land cover maps (Harper et al., 2023) and incorporated into the land-use input. For
the land cover input, we used the ESA PFT maps (Harper et al., 2023), which provide fractional cover of tree, shrub, and grass
types. Because LPJmL-5 separates PFTs by climate zone (tropical, temperate, and boreal), we reclassified the ESA PFT maps
to match the PFTs in LPJmL-5 using the Koppen-Geiger classification (Beck et al., 2023), following the approach of Forkel
et al. (2019)(see Section S5). Shrubs were merged with the corresponding tree PFTs because LPJmL-5 does not distinguish
between these growth forms. This procedure ensured that land-use and land-cover inputs were compatible with the vegetation
types represented in LPJmL-5.

LPJmL-5 provides a multitude of vegetation-related outputs on ecological, hydrological, and agricultural components (such
as leaf area index, soil moisture, runoff, and crop yields). To study vegetation response to drought, this study used the monthly
Gross Primary Production (GPP), which is the amount of carbon captured from the atmosphere through vegetation photosyn-

thesis (Beer et al., 2010). The GPP output used in this study was produced at a 0.1° spatial and monthly temporal resolution.
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2.3 Model validation

Before using the simulated GPP to analyse the response of vegetation to MYDs, we first assessed how well the model repro-
duces observed GPP dynamics in general. To do this, we compared modeled LPJmL-5 GPP to satellite based MODIS GPP
(see Table 1). The MODIS observations are regridded to a spatial resolution of 0.1° and a monthly temporal resolution.

Since LPJmL-5 provides a single GPP value per grid cell, each cell was assigned to its dominant vegetation type. Cropland
fractions (CFTs) were aggregated into one cropland category, while natural PFTs were grouped into broader classes: tropical
trees, temperate trees, boreal trees, tropical C4 grass, temperate C3 grass, and polar C3 grass (Appendix A).

To quantify model performance, we used the Kling-Gupta Efficiency (Gupta et al., 2009), which combines correlation, bias,

and variability into a single metric:

KGE=1—/(r—12+4(a—1)2+(3-1)2, €))

where 7 is the linear correlation between observations and simulations, oo = f;o—b" a measure of the variability error, and 5 =
’;O—b:‘ a bias term. Here, 0,55 and og;,, are the standard deviations of the observations and simulations, respectively, while
Lsim and fips are the corresponding means. KGE values greater than -0.41 indicate that the model performs better than the
mean benchmark, while a value of 1 indicates perfect agreement between simulations and observations (Knoben et al., 2019).
This allows us to assess how well LPJmL-5 simulates GPP for different PFTs compared to MODIS, and to identify structural

patterns in performance across the globe.
2.4 Vegetation sensitivity to varying drought timescales

After evaluating how well LPJmL-5 simulates general patterns of GPP compared to MODIS GPP, we examined how well
LPJmL-5 can model vegetation responses to drought. Here, we aim to understand modelled vegetation sensitivity to drought
without differentiating between "normal" and "multi-year" droughts. To ensure a fair comparison of vegetation responses
across regions and to remove seasonal variation, the GPP data was normalized and standardized using z-score normalization
resulting in a standardized GPP anomaly (GPPg4). The reference normalization period was chosen to match the MODIS
dataset (2000-2019) to avoid errors resulting from GPP trend differences between modelled and observed data.

Vegetation can respond differently to drought events of different durations. To capture this, we used the extreme-based
method developed by Deng et al. (2022). This method examines how different drought durations affect vegetation across
various SPEI timescales (ranging from 1 to 24 months). Specifically, we calculated the average GPPg4 response for each
timescale and identified which one has the strongest negative impact during drought periods. This timescale is referred to as
the dominant drought timescale and reflects how quickly vegetation responds to drought stress. Shorter timescales indicate
faster, more sensitive responses, while longer timescales suggest a slower response and less drought-sensitive vegetation. For

this analysis, a SPEI threshold of -1 was chosen to define atmospheric drought conditions, as suggested by McKee et al. (1993).
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2.5 Vegetation response to MYDs

After determining how sensitive vegetation is to drought at different timescales, we further investigated how vegetation in
LPJmL-5 responds to MYDs specifically. We compared MODIS observations and LPJmL-5 simulations by analysing global
spatial patterns together with temporal dynamics in selected focus regions. Vegetation responses during MYDs were quantified

by using the mean GPPg 4 during MYD events.
2.6 Selection of Focus Regions

While this study primarily examines global drought patterns, it also focuses on selected focus regions to better understand local
drought dynamics and how regional differences affect vegetation responses. The focus regions used in this study are: California
(CAL), the Rhine-Meuse delta in western Europe (WEU), the Brahmaputra River basin spanning Bangladesh, India, Bhutan,
and China (BRA), central Argentina (ARG), the Orange River basin in southern Africa (SA), and the Murray-Darling basin in
Australia (AUS) (Appendix B). These regions correspond to the focus regions used by Ruijsch et al. (2025) examining MYD
patterns. The focus regions were selected based on the number of MYDs that have occurred between 2000-2019, geographic
and climatic diversity, and variation in vegetation types, ensuring a broad representation of both water- and energy-limited

regions across different climate zones.
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3 Results

The following sections describe different aspects of the analysis on the potential of LPJmL-5 to simulate vegetation response
to (multi-year) droughts. Section 3.1 examines LPJmL’s ability to reproduce observed GPP, while Sections 3.2 and 3.3 focus

on its ability to reproduce (multi-year) droughts.
3.1 General performance of LPJmL-5

To evaluate LPJmL-5’s ability to simulate GPP, we compared modelled GPP to MODIS-derived GPP using two simulation
setups: dynamic and prescribed land cover. The dynamic land cover setup allows vegetation fractions to shift in response to
climate and includes background mortality, capturing potential vegetation loss (Schaphoff et al., 2018b). However, dynamic
vegetation does not necessarily match observed vegetation types, which can lead to differences in GPP due to mismatched
vegetation types. The prescribed land cover simulation maintains fixed vegetation fractions based on observed maps. This
approach ensures that variations in GPP result from the model’s ability to simulate vegetation productivity. However, this
setup does not include background mortality, potentially causing an underestimation of vegetation loss. By comparing both
setups, we can determine which one provides a better representation of observed GPP and choose the setup to be used in later
analyses. Model performance is evaluated by comparing LPJmL-5 and MODIS GPP using the KGE metric (Section 3.1.1) and

time series analysis (Section 3.1.2).
3.1.1 Evaluating Model Performance with the KGE metric

Figure 2 shows the spatial distribution of the KGE and its components (correlation, bias, and variability) for both dynamic and
prescribed land cover simulations. Overall, the prescribed land cover demonstrates a clear performance improvement over the
dynamic simulation (Figures 2a and b).

The dynamic land cover consistently shows low agreement with MODIS across all KGE components (Figures 2c, e and
g). The agreement is particularly poor in the Southern Hemisphere, with KGE values often falling below -0.41, which is the
threshold for a skilful performance. In contrast, the Northern Hemisphere generally shows a better performance. Switching to
prescribed land cover results in improved KGE scores globally. However, the performance difference between the Northern
and Southern hemispheres remains.

When examining the individual KGE components, the correlation between modelled and observed GPP is relatively high for
both simulations, except in the tropical and semi-arid regions (Figures 2¢ and d). This suggests that the intra-annual response
to changing meteorological conditions is similar between the model and observations.

Both the bias (Figure 2e) and variability (Figure 2g) components are overestimated in the dynamic land cover simulation. The
bias frequently exceeds 2, except in the tropical regions, suggesting that the model’s mean GPP is approximately double that of
the observed value. The prescribed land cover simulation (Figure 2f) significantly reduces this bias, particularly in tropical and

temperate regions, bringing modelled GPP closer to observations. A similar trend is observed for the GPP variability, where
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the dynamic land cover shows overestimated variability (greater than 2) in Figure 2g, while prescribed land cover reduces this
variability (Figure 2h).

These differences in model performance can be attributed to discrepancies between the modeled and observed vegetation
types when using dynamic land cover. For example, we observe that LPJmL-5 simulates tree cover in regions where the
ESA land cover map shows predominantly grasslands, such as Western Europe and parts of South Africa (see Appendix C
and Supplements S4). These discrepancies in vegetation types lead to differences in GPP that are not related to the model’s
capability to simulate GPP responses to changing meteorological conditions, but rather to inconsistencies in vegetation cover.
By using prescribed land cover fractions based on the ESA land cover map, we observe an improvement in model performance,
with remaining errors linked to LPJmL-5’s inability to accurately simulate the GPP response to changes in meteorological

conditions.
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Figure 2. Spatial comparison of LPJmL-5 model performance using the Kling-Gupta Efficiency (KGE) metric and its components for
dynamic (left column) and prescribed (right column) land cover simulations. The rows show (a—b) overall KGE, followed by its components:

(c—d) correlation, (e-f) bias, and (g-h) variability.
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To further assess model performance in the prescribed land cover simulation, we analyse the KGE distribution for each PFT,
as shown in Figure 3. This cumulative distribution function (CDF) displays the proportion of grid cells for each dominant
vegetation type (Appendix A) that exceed the KGE threshold of —0.41, which represents the mean benchmark (Knoben et al.,
2019).

The performance of LPJmL-5 varies significantly across PFTs. Croplands show the lowest agreement with observations,
with over 60% of grid cells falling below the KGE = —0.41 line. In contrast, temperate trees show the best agreement with
observed GPP, with 90% showing skilful GPP simulations. Approximately 80% of areas dominated by boreal trees show good
agreement with MODIS data. Polar and temperate C3 grasses are the dominant PFTs and exhibit intermediate performance,
with around 75% of their area showing significant skill. Tropical trees show moderate KGE values, indicating a moderate
performance in simulating the GPP. The corresponding analysis for the dynamic land-cover simulation (Figure C2) shows
consistently lower agreement across most PFTs than for prescribed land cover.

Overall, the KGE map and the CDF analysis (Figures 2, 3, and C2) indicate that simulating with prescribed land cover
outperforms dynamic land cover in LPJmL-5. However, significant improvements in modelled GPP response can still be made
in the Southern Hemisphere and for croplands. Based on these results, all subsequent simulations will be done using prescribed

land cover to ensure a more robust comparison with observational data.
3.1.2 Evaluating Model Performance with the GPP Time Series

Figure 4 shows the monthly GPP for LPJmL-5 (with prescribed land cover) and MODIS satellite observations across the six
focus regions between 2000 and 2019. The background shading represents the SPEI-12, highlighting dry periods in red and
wet periods in blue. Additionally, the figure includes the correlation between MODIS and LPJmL-5.

Three general patterns can be identified in the timeseries: (1) A temporal shift in the LPJmL-5 GPP time series, with peaks
occurring earlier in the season compared to MODIS observations; (2) Overestimation of summer GPP peaks, and in some cases
underestimation of winter values; (3) Lower model performance during dry periods.

These patterns are reflected to varying degrees across the focus regions. CAL and BRA show the temporal shift, which may
be the cause of the lower correlation with MODIS. BRA and WEU exhibit overestimation of summer GPP peaks, with SA also
showing the underestimation of winter values. ARG performs relatively well, although it also shows slightly increased summer
peaks. In AUS, the contrast between wet and dry periods is largest, with GPP simulated accurately during wet periods, while
the model does not capture dry periods well. Despite these issues, WEU, ARG, SA, and AUS show relatively high correlation
values, indicating that LPJmL-5 generally captures the seasonal and interannual patterns of GPP in these regions. Overall,
based on the KGE values and the time series analysis, we can conclude that LPJmL-5 simulates GPP reasonably well, although

notable regional differences remain.

11
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Figure 3. Cumulative distribution function (CDF) of the KGE of the prescribed land cover GPP for the different vegetation types in LPJmL-

5. Percentages show the percentage of grid cells with that dominant land cover. Black dashed line indicates KGE = -0.41. Values greater than

-0.41 indicate that the model improved upon the mean benchmark.
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Figure 4. Timeseries of the GPP for LPJmL-5 with prescribed land cover (green) and MODIS (black) for the focus regions: California (CAL),
western Europe (WEU), Brahmaputra (BRA), middle Argentina (ARG), southern Africa (SA) and the Murray Darling Basin in Australia
(AUS). SPEI-12 is shaded in the background, where red areas indicate drier periods and blue areas wetter periods. Additionally, the figure

includes the correlation between MODIS and LPJmL-5 per region. Note that WEU uses a different y-axis range from the other regions.
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3.2 General drought response

To evaluate the ability of LPJmL-5 to capture vegetation drought response, we applied the extreme-based method (Section 2.4).
225 This method identifies the dominant drought timescale, defined as the SPEI timescale (ranging from 1 to 24 months) that has
the most negative impact on vegetation during drought periods.

The spatial distribution of dominant drought timescales, shown in Figure 5, shows a clear difference between MODIS ob-
servations (a) and the LPJmL-5 model simulations (b). Compared to MODIS, LPJmL-5 shows shorter drought timescales,
indicating a faster vegetation response to drought. This difference is most pronounced in the Southern Hemisphere. LPJmL-5

230 also shows a skewed distribution with a clear peak around 2 months (panel c), while the MODIS response is more evenly dis-
tributed. In summary, LPJmL-5 tends to underestimate drought resistance by simulating shorter response times than observed

in MODIS, especially in the tropical regions and the Southern Hemisphere.

a) Observations (MODIS)

w

Dominant drought timescale (months)

=}

MODIS  LPJML-5 13

b) Model (LPJmL-5) 11

Dominant drought timescale (months)

Figure 5. Spatial patterns of the dominant drought timescale of GPPs 4 for a) MODIS observations and b) the LPJML-5 model. The dominant
timescale is defined as the shortest SPEI timescale (between 1 and 24 months) that shows the most negative GPPs 4 during drought periods
(with a SPEI threshold of -1). Bare areas and sparse vegetation are filtered out. ¢) Violin plot comparing the distribution of dominant drought

timescales between MODIS and LPJmL-5.
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3.3 MYD and ND response
After evaluating LPJmL-5’s response to droughts in general, this study now shifts its focus to MYDs and NDs.
3.3.1 Temporal patterns

Firstly, we examine how well LPJmL-5 captures the timing and magnitude of GPPg4 during MYDs and NDs across the focus
regions. Figure 6 shows the timeseries of GPPg 4 for MODIS and LPJmL-5, with MYDs and NDs indicated by red and orange
shaded areas, respectively.

Overall, LPImL-5 captures the timing and magnitude of GPPg 4 anomalies reasonably well, showing relatively high corre-
lations with MODIS in most regions. The model aligns particularly well in CAL, WEU, ARG, and AUS, while performance
is somewhat lower in SA and BRA. Correlations during MYDs are higher than those for the entire time series in all regions
except BRA, and generally higher than those during NDs, except in ARG and BRA. This suggests that LPJmL-5 simulates
MYD dynamics more accurately than ND dynamics.

Nonetheless, some systematic differences remain during MYDs: (1) the model tends to simulate a too fast and severe decline
in GPPg 4 at the onset of MYDs, and (2) it exhibits unrealistic variability during MYD periods, especially in the form of abrupt
recovery spikes not supported by observations.

These biases are reflected across the focus regions to varying degrees. In WEU, the model simulates an early GPPg 4 drop
that precedes the observed onset. CAL shows a similar offset, likely linked to the timing mismatch seen in Figure 4. In BRA,
the first MYD minimum occurs too early in the model, while the second MYD ends with a sudden increase in GPPg 4 not
seen in observations, again pointing to an early response and unrealistic recovery. ARG captures drought severity relatively
well but still shows some unrealistic recovery spikes during MYDs. SA also shows the rapid onset and overestimated recovery
rate, despite persistently low SPEI-12 values. AUS shows the best overall agreement, with most MYDs being captured well.
However, the second MYD still shows the unrealistic variability mid-drought, though less severely.

Overall, while LPJmL-5 tends to overestimate vegetation response at the onset of MYDs and shows some rapid recovery

behaviour, it successfully captures the key temporal dynamics of MYDs.
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Figure 6. Timeseries of GPPs4 for LPJmL-5 and MODIS. MYDs and NDs are shaded in red and orange, respectively. Correlation coeffi-
cients between model and observations are shown for the full time series, MYDs, and NDs. The grey line indicates the SPEI-12. The red and

blue dashed lines mark -1 and +1, respectively.

16



https://doi.org/10.5194/egusphere-2025-4966
Preprint. Discussion started: 3 November 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

3.3.2 Spatial patterns

In addition to the regional time series analysis, we now examine global spatial patterns of vegetation response to MYDs.
Figure 7 shows the spatial distribution of the mean GPPg 4 during MYDs, as derived from (a) MODIS observations and (b)

260 the LPJmL-5 model. Negative values (red) indicate below-average GPP during MYD periods, while positive values (green)
indicate GPP being higher than average.
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Figure 7. Spatial pattern of the mean GPPs 4 during MYDs for a) MODIS and b) LPJmL-5. Positive values indicate higher GPP than normal
during MYDs, while negative values indicate reduced GPP values. Bare areas and sparse vegetation are filtered out. c) shows a violin plot

comparing the distributions of the mean GPPs 4 during MYDs from MODIS and LPJmL-5.
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Overall, LPJmL-5 simulates less severe GPPg 4 during MYDs compared to MODIS observations. However, the Spearman
rank correlation (0.326, p <0.001) still indicates a similarity in the overall spatial patterns between the model and the observa-
tions. This means that the model captures some important hotspot areas, but there are still noticeable differences. We attribute
these differences largely to unrealistic recovery events in the model, as seen in Figure 6. The violin plot (Figure 7c) shows
that MODIS has a slightly lower median. However, LPJmL-5 displays more extreme values at both ends of the distribution,
indicating greater variability in the modelled MYD responses.

To further highlight these differences, Figure 8 shows the spatial difference in mean GPPg 4 during MYDs between MODIS
and LPJmL-5 and two-dimensional Kernel Density Estimate (KDE) plots for the different PFTs. Purple shades indicate under-
estimation of negative drought impacts, while orange shades indicate underestimation of positive impacts or overestimation of
negative impacts. Black, grey and white areas indicate close agreement between model and observations.

LPJmL-5 shows a reasonable agreement with MODIS in most regions, as indicated by the black, grey and white areas. These
areas include Central North America, Europe, and parts of East and West Asia. However, there are several regions that emerge
as hotspots of LPJmL-5 underestimation of GPP anomalies (visible as dark purple areas), including Australia, Northwest India,
Pakistan, Southern Africa, Central Argentina, Eastern Brazil, and Northern Mexico. In these regions, LPJmL-5 shows weaker
or absent negative responses, suggesting that the model does not fully capture drought severity in these areas. This finding is
consistent with the temporal patterns shown in Figure 4. Additionally, LPJmL-5 tends to underestimate the observed positive
GPP responses in the arctic boreal zone (visible as orange areas). Here, the model fails to capture the increased GPP during
MYDs found in observations (Figure 7 and Ruijsch et al. (2025)).

Beyond spatial patterns, differences between LPJmL-5 and MODIS also vary by PFT (Figure 8). Tropical trees show the
widest spread in MYD GPP responses, while temperate trees align more closely with MODIS but still occasionally underes-
timate negative impacts (lower right quadrant). Grasslands show good agreement, with LPJmL-5 capturing most directions of
the MYD response correctly. Croplands, although displaying the weakest agreement in absolute GPP (Figure 3), show the best
modelled drought response. This indicates that while simulating total productivity remains challenging, LPJmL-5 can capture
how croplands respond to drought events.

Overall, LPJmL-5 successfully captures the key dynamics of MYDs observed in MODIS, but still shows some model bias
in both time and space. Temporally, LPJmL-5 often overestimates the speed and severity of vegetation decline at the onset of
the MYD and shows a fast recovery during the drought period compared to MODIS. Spatially, LPJmL-5 shows a reasonable
agreement with MODIS in most regions and for most PFTs, but also shows some underestimation of both strong negative
and strong positive vegetation responses. These biases may be caused by short-term overreactions and rapid recoveries in the

model’s time series, which reduces the average drought response.
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Figure 8. Spatial differences in mean GPPs4 during MYDs between MODIS observations and LPJmL-5 simulations. The map highlights
regions where LPJmL-5 under- or overestimates vegetation responses compared to observations. Purple shades indicate underestimated
negative impacts, while orange shades indicate underestimated positive or overestimated negative impacts. White, grey and black shades
represent regions where the model and observations agree closely on vegetation response during MYDs. Insets display two-dimensional
kernel density estimates (KDEs) for seven vegetation types, illustrating the distribution of differences in mean MYD responses. KDE levels

are set to [0.05, 0.15, 0.25, 0.5, 0.75, 0.9, 1.0].
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4 Discussion

Overall, this study assesses LPJmL-5’s ability to simulate global vegetation responses to (multi-year) droughts. First, com-
paring dynamic and prescribed land cover settings in LPJmL-5 revealed that prescribed land cover improves agreement with
MODIS GPP. The lowest agreement is generally found in the Southern Hemisphere and in cropland-dominated regions. Sec-
ond, LPJmL-5 and MODIS show similar broad seasonal and interannual patterns of GPP. There is however a tendency to over-
estimate GPP dynamics and to introduce temporal shifts compared to observations. Third, using the extreme-based method,
which identifies the timescale at which drought has the strongest impact on vegetation, we found that LPJmL-5 underesti-
mates drought resistance by simulating shorter dominant drought timescales, particularly in tropical regions and the Southern
Hemisphere. Fourth, the analysis of MYDs revealed a consistent pattern of model bias across both time and space. Tempo-
rally, LPJmL-5 overestimates vegetation decline at the onset of MYDs and shows a fast recovery during the drought period.
Spatially, the model underestimates both strong negative and strong positive vegetation responses. In general, LPJmL-5 tends
to simulate vegetation that is too responsive in both the drought onset and the recovery. This points to limitations in how the

model represents vegetation resistance and resilience to water induced stress and mortality.
4.1 Uncertainties in the model choices and setup

Different choices in model parametrisation and setup can lead to significant differences in modelled GPP. For example, both
the choice of meteorological forcing dataset (ERAS (Hersbach et al., 2023) vs. W5ES (Lange et al., 2022)) and the temporal
resolution (monthly vs. daily) have an significant impact on simulated GPP patterns (Supplements S3). This indicates that it is
important for future drought oriented studies to make clear choices with regard to the modelling setup. In this study we selected
the daily W5ES dataset (Lange et al., 2022), as it is bias-corrected and offers a high temporal resolution and the total global
GPP was closest to that found in observational datasets.

Our analyses also showed that GPP output is highly sensitive to the radiation inputs (Supplements S3). GPP values varied
substantially depending on whether the model calculated radiation internally or used observed radiation data. We found that
errors in GPP are higher from internal estimation, compared to directly providing longwave and shortwave radiation from
observations.

Using dynamic land cover in LPJmL-5 resulted in systematically overestimated GPP values across most regions (Figure 2
and Supplements S4), also noted in Schaphoff et al. (2018a). We argue that this difference is the results of a mismatch between
modelled and observed vegetation distributions (Appendix C and Supplements S4), which is to be expected as the land cover
is not constrained to the observed land cover. For example, LPImL-5 simulates tree cover in parts of Western Europe where
forests could exist naturally, but are absent today due to long-term human management. To better match observed GPP and

reduce these discrepancies, we prescribed land cover fractions, rather than letting the model simulate land cover dynamically.
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4.2 Evaluation of GPP simulations and vegetation drought response in LPJmL-5

Prescribing land cover in LPJmL-5 improved the agreement with MODIS GPP, as indicated by higher KGE values in Figure 2.
This is consistent with studies showing that accurate land cover representation is essential for reproducing observed productiv-
ity patterns (Krause et al., 2022), and that constraining DGVM simulations with satellite-derived observations (including land
cover) enhances their ability to capture observed spatial patterns of vegetation and carbon dynamics (Forkel et al., 2019).

Breaking down the differences between LPJmL-5 and MODIS GPP during MYDs by vegetation type further highlights
varying model performance (Figure 8). Tropical trees show the largest variability in drought response, showing both under- and
overestimations of impacts. Similar results were found by Powell et al. (2013), who showed that terrestrial biosphere models
underestimate drought impacts on tropical forest biomass. Temperate trees generally align more closely with observations but
still underestimate negative drought impacts. This is consistent with Kolus et al. (2019), who found that land carbon models
underestimate the severity and duration of drought effects on productivity across temperate forests in the US and Europe.
Similarly, Schaefer et al. (2012) observed that models frequently overpredict GPP under dry conditions, further pointing to
an underestimation of drought stress. Boreal trees and grasses are more prone to underestimated positive responses, while
croplands, despite poorer overall productivity agreement, show relatively better modelled drought responses.

A key limitation underlying these issues appears to be how vegetation mortality is represented in LPJmL-5. In the model,
mortality is only driven by low productivity and heat stress, and can not be directly induced by prolonged water deficits.
Drought-induced mortality occurs only if plants fail to produce enough biomass to sustain themselves. However, this natural
mortality is capped by a maximum annual rate (Schaphoff et al., 2018b), which restricts how much vegetation can be lost due
to die-off each year. Moreover, this mortality mechanism is only active in the dynamic land cover setting, and is not applied
when land cover is prescribed. Since the simulations in this study use the prescribed land cover setting, no vegetation is lost
due to this background mortality. This means that while GPP may decline sharply during droughts, vegetation does not die,
causing unrealistically rapid recovery periods when precipitation (temporarily) returns. Although LPJmL-5 includes a heat-
stress mortality mechanism, it only applies to boreal trees (Schaphoff et al., 2018b). As a result, vegetation decline during
MYDs is not directly driven by water shortages, which prevents large-scale die-off and causes the model to underestimate
total vegetation loss. These limitations reduce the model’s ability to simulate the full severity of vegetation decline, especially
during MYDs. This issue has been noted by Schaphoff et al. (2018a), who reported that the lack of realistic mortality processes
leads to an overestimation of simulated biomass and contributes to biases in GPP. Similarly, McDowell et al. (2013) found that
models which combine carbon starvation with hydraulic failure mechanisms are better able to reproduce observed drought-
induced tree mortality, and Zhou et al. (2013) highlighted the need to account for both stomatal and non-stomatal limitations
to realistically capture plant responses to water stress. Meyer et al. (2025) further showed that including hydraulic processes in
LPJ-GUESS improves simulations of drought responses. Together, these findings suggest that LPJmL-5 likely underestimates
the true impact of drought on vegetation.

Despite underestimating long-term vegetation loss, LPJmL-5 tends to overestimate vegetation decline at the start of droughts,

as shown in Figures 5 and 6. LPJmL-5 does include a water stress factor that influence the growth, which results in a rapid
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decline in GPP. This stress is determined by soil moisture availability and fixed rooting depths for each PFT, without accounting
for dynamic rooting strategies, capillary rise or explicit groundwater processes (Schaphoff et al., 2018b). However, in reality,
vegetation often withstands short-term stress periods through drought survival strategies (Santiago et al., 2016; Pivovaroff et al.,
2016). At the same time, LPJmL-5 also simulates unrealistic recoveries during the drought period. Since there is no mortality,
vegetation can survive during a drought period, resulting in no loss of biomass. When conditions improve temporarily, for
example due to brief rainfall, the model quickly simulates regrowth. This leads to an unrealistic drought recovery effect. This
is in contrast with real vegetation, which often suffers from long-term impacts (Wu et al., 2018). Both the quick decline and
recovery are consistent with findings by Kolus et al. (2019), who show that land carbon models underestimate the severity and
duration of drought impact on plant productivity.

Together, the combination of overly sensitive short-term GPP decline, limited representation of long-term vegetation loss,
and unrealistically fast recovery during drought periods results in a mismatch in LPJmL-5’s simulated vegetation drought
response. While prescribing land cover improves the overall GPP performance, these structural issues in the mortality repre-
sentation limit the model’s ability to simulate realistic vegetation dynamics during drought events. This is especially limiting
when the analysis is focussed on multi-year drought events, which have been shown to cause higher vegetation mortality rates

(Cesljar et al., 2025) and are expected to become more frequent under climate change (Wiel et al., 2022).
4.3 Uncertainties in methodological choices

To improve the overall quality and reliability of our simulations, we used the state-of-the-art dynamic vegetation model LPJmL-
5. This model is publicly available with an extensive model description and evaluation (Schaphoff et al., 2018b, a; von Bloh
et al., 2018). LPIJmL-5 provides a multitude of vegetation-related outputs on ecological, hydrological, and agricultural compo-
nents, making it suitable for studying vegetation responses at the global scale.

Drought events were identified using the Standardized Precipitation Evapotranspiration Index (SPEI), which incorporates
both precipitation (P) and potential evapotranspiration (PET), allowing it to better reflect the impact of temperature on drought
severity (Vicente-Serrano et al., 2010). As a standardized index, SPEI also enables consistent spatial comparisons of drought
conditions at the global scale. By using a 12 month aggregation period for the SPEI, we also remove seasonal variations and
focus on capturing MYDs.

While there is currently no universally agreed-upon definition of MYDs, we follow the approach of Wiel et al. (2022)
(see Section 2.1), which was also adopted in Ruijsch et al. (2025) and van Mourik et al. (2025). SPEI values are sensitive to
the method and input data used for calculating PET. We compared results using ERA5 and W5ES and found differences in
the number of MYDs identified for the period 2000-2019 (Supplements S3). Nonetheless, the MYDs identified in our focus
regions are broadly consistent with those reported in other studies (van Mourik et al., 2025; Wiel et al., 2022; Luo et al., 2017;
Liu et al., 2022; Chikoore and Jury, 2021; Naumann et al., 2023; van Dijk et al., 2013), despite minor differences in timing.

To evaluate vegetation responses, we used the monthly GPP as a proxy, which quantifies the amount of carbon captured from
the atmosphere through photosynthesis (Beer et al., 2010). Although the Enhanced Vegetation Index (EVI) has been used in

previous studies (Ruijsch et al., 2025; Huang and Xia, 2019; Yang et al., 2024), it is derived from satellite observations and not
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390 directly available as a model output. GPP has been shown to correlate well with EVI (Rahman et al. (2005); Sims et al. (2006)
and Supplements S2), even during MYDs (Ruijsch et al., 2025). Although other sources of GPP data exist, such as site-level
flux tower measurements, we choose to use satellite derived MODIS GPP because it provides consistent, observation-based
estimates at the global scale. To maintain observational consistency and avoid mixing in other models, we did not include GPP
estimates derived from other land surface models as they are likely based on similar assumptions and equations as the LPJmL-5

395 model.
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5 Conclusion

This study evaluated LPJmL-5’s ability to simulate global vegetation responses to drought, using MODIS GPP as a benchmark.
Prescribing land cover (instead of simulating it dynamically) improves the model’s ability to reproduce global GPP dynamics.
Overall, LPImL-5 simulates GPP reasonably well, but improvements can still be made in the Southern Hemisphere and for
croplands.

Our analysis shows that LPJmL-5 simulates an accelerated vegetation response to drought onset, especially in tropical
regions and the Southern Hemisphere. During MYDs, LPJmL-5 captures the key temporal and spatial dynamics observed in
MODIS. However, the model tends to overestimate vegetation response at the onset of MYDs and shows some rapid recovery
behaviour. This leads to a muted overall vegetation drought response and spatial underrepresentation of both strong negative
and strong positive GPP anomalies. Among PFTs, croplands show the best agreement with observed MYD responses. In
contrast, boreal vegetation shows underestimated positive drought responses and temperate vegetation underestimated negative
ones. Tropical vegetation displays more mixed results, with both over- and underestimation.

These differences between model and observations may be partly attributed to how LPImL-5 represents vegetation stress
and drought induced mortality. The model responds strongly to short-term productivity losses but limits long-term vegetation
decline, resulting in rapid recovery and limited vegetation die-off during (multi-year) drought periods.

In general, LPJmL-5 is able to reproduce the general impacts of MYDs on vegetation but tends to simulate vegetation
that is too responsive in both the drought onset and the recovery. This points to limitations in how the model represents
vegetation resistance and resilience to water induced stress and mortality. Given the increasing frequency and intensity of

MYDs, accurately representing vegetation stress and mortality is critical for reliably assessing MYD impacts on vegetation.
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415 Appendix A: Dominant land cover types

Figure A1 shows the dominant land cover types at a 0.1° spatial resolution, based on LPJmL-5’s land cover and land use dataset
(see Table 1). Cropland fractions were combined into a single “cropland” category, while natural PFTs were grouped into
broader vegetation classes: tropical trees (tropical broadleaved evergreen and raingreen trees), temperate trees (needleleaved
evergreen, broadleaved evergreen, and broadleaved summergreen trees), boreal trees (needleleaved evergreen, broadleaved

420 summergreen, and needleleaved summergreen trees), tropical C4 grass, temperate C3 grass, and polar C3 grass.

Bl Tropical trees (TTr) . Temperate trees (TTe) Boreal trees (TBo) [ Cropland (Cr)
mm Tropical C4 grass (GTr) [ Temperate C3 grass (GTe) Polar C3 grass (GBo)

Figure A1. Dominant land cover types at a 0.1° resolution for 2019. Vegetation categories include tropical trees (TTr), temperate trees (TTe),

boreal trees (TBo), cropland (Cr), tropical C4 grass (GTr), temperate C3 grass (GTe), and polar C3 grass (GBo).
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Appendix B: Number of MYDs and chosen focus regions

Figure B1 shows the number of MYDs (2000-2019) at a 0.5 ° spatial resolution from W5ES data (Lange et al., 2022)(See
Section 2.1 and S1). Black outlines indicate the chosen focus regions: California (CAL), the Rhine-Meuse delta in western
Europe (WEU), the Brahmaputra River basin in Bangladesh/India/Bhutan/China (BRA), central Argentina (ARG), the Orange
River basin in southern Africa (SA), and the Murray-Darling basin in Australia (AUS) (See Section 2.6).

0 1 2 3 4 5 6 7 8

Number of multiyear droughts
Figure B1. Number of MYDs between 2000-2019 at 0.5 ° spatial resolution. Bare areas and regions with sparse vegetation are excluded.

Black contours indicate the six chosen focus regions: CAL, WEU, BRA, ARG, SA, and AUS.
425
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Appendix C: LPJmL dynamic vs ESA prescribed land cover

Figure C1 shows the difference in vegetation cover fractions between LPImL-5 and ESA. Globally, the ESA dataset shows
greater coverage of temperate and polar C3 grasses, as well as boreal needleleaved summergreen forests. In contrast, LPJmL-
5’s dynamic vegetation simulates more temperate needleleaved evergreen trees, boreal needleleaved evergreen trees, boreal

430 broadleaved summergreen trees, and tropical C4 grasses.
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Figure C1. Difference in vegetation cover fractions between LPJmL-5 and ESA. Blue areas indicate where ESA has a higher vegetation

fraction; red areas indicate where LPJmL-5 simulates a higher vegetation fraction.

The CDFs in Figure C2 further show the impact of land cover on model performance. Across all vegetation types, the

prescribed land cover shows higher KGE values. The difference between prescibed and dynamic land cover is particularly
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pronounced for temperate C3 grasses, which perform poorly with the the dynamic land cover. LPJmL-5 substantially under-

represents the spatial extent of temperate C3 grasses, assigning them to only 2.7% of grid cells, compared to 22.2% under the

ESA-based classification. This mismatch likely contributes to the poor performance, as misclassified vegetation types lead to

unrealistic GPP estimates. Tree-dominated grid cells also show better performance with prescribed land cover, however, the

difference is less severe than for grasses.

Dominant Cover
— | grid cells
—— Tropical trees {9.5%)
Temperate trees (9.5%)
Boreal trees (11.5%)
Cropland (22.4%)
08 = Tropical C4 grass (5.7%)
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o
o
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Figure C2. Cumulative distribution function (CDF) of the KGE of the a) prescribed land cover GPP and b) dynamic land cover for the

different vegetation types in LPJmL-5. Percentages show the percentage of grid cells with that land cover. Black dashed line indicates KGE

=-0.41. Values greater than -0.41 indicate that the model improved upon the mean benchmark.
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Code and data availability. The LPJmL-5 source code is openly available at https://github.com/PIK-LPJmL/LPJmL. This study uses version
v5.7.9 (released on May 2 2024).

All processed data required to reproduce the analyses are available at: ().

The raw datasets are publicly available from their respective sources (see Table 1).

All scripts used for postprocessing and analysis in this study are available at https://doi.org/10.5281/zenodo.17085725 (Ruijsch, 2025).
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