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S1 PET and SPEI calculation

The calculation of the Standardized Precipitation Evapotranspiration Index (SPEI) requires both precipitation (P) and potential

evapotranspiration (PET) data. Precipitation data were obtained directly from the W5E5 dataset, while PET was computed

separately using several W5E5 climate variables, including total precipitation (tp), surface temperature (tas), sea level pressure

(ps), surface wind speed (sfcwind), daily mean relative humidity (hurs), and surface downwelling shortwave radiation (rsds).10

The W5E5 dataset provides these variables at a daily temporal resolution and a spatial resolution of 0.5° (Lange et al., 2022).

PET was calculated using the Penman-Monteith (FAO56) method (Monteith, 1965; Zotarelli et al., 2024), implemented via

the pyet package in Python (Vremec et al., 2023):

PET =
0.408∆(Rn−G)+ γ 900

T+273u2(es − ea)

∆+ γ(1+0.34u2)
(1)

The SPEI is derived from the climatic water balance (D), defined as the difference between monthly precipitation and PET15

(measured in mm/month) (Vicente-Serrano et al., 2010):

D = P −PET (2)

Climatic water balance values were aggregated over timescales from 1 to 24 months. A log-logistic distribution was then

fitted to the aggregated water balance time series over a calibration period spanning 1950 to 2019. This enabled the computation

of SPEI values for different timescales (SPEI-1 through SPEI-24). For each focus region, the spatial averages of precipitation20

and PET were calculated prior to calculating the climatic water balance and deriving the SPEI-12 time series for that region.
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S2 EVI vs GPP

Because LPJmL only provides Gross Primary Production (GPP), whereas previous research used the Enhanced Vegetation

Index (EVI) (Ruijsch et al., 2025), it is important to assess their comparability. To evaluate this, we analyzed the relationship

between MODIS EVI and GPP products from February 2000 to February 2023.25

Figure S1 shows the Spearman correlation between EVI and GPP, demonstrating a strong relationship between the two

variables, particularly in the Northern Hemisphere. This suggests that GPP can serve as a viable alternative to EVI in these

regions. However, the correlation is lower in the tropics and the Southern Hemisphere, where GPP is a less reliable proxy for

EVI. Despite this, Ruijsch et al. (2025) showed that MODIS GPP and EVI yield similar results in terms of responses to MYDs,

particularly when analyzing standardized anomalies. This indicates that GPP can still be used for our purposes.30

Figure S1. Spearman correlation between MODIS EVI and GPP products (2000-02 until 2023-02).
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S3 Differences in input and setup in LPJmL-5

Modelled GPP in LPJmL-5 is influenced by choices in input data and setup. In this study, we examine two key aspects: (i)

the effect of different radiation input configurations, and (ii) the impact of using ERA5 (Hersbach et al., 2023) versus W5E5

(Lange et al., 2022) meteorological forcing. Both factors can significantly alter simulated GPP and affect the magnitude and

spatial patterns of vegetation responses to drought.35

S3.1 Radiation input

To assess the impact of radiation input on model performance, LPJmL-5 simulations were conducted at a 0.5° spatial resolution

using ERA5 climate data (Hersbach et al., 2023). In this study we tested the three radiation configurations of LPJmL-5: (1)

cloudiness-based radiation, (2) shortwave downward radiation only, and (3) combined shortwave and longwave downward

radiation. Figures S2 and S3 indicate that simulations using cloudiness-based radiation consistently produce lower GPP values40

compared to longwave and shortwave combined, with the largest differences observed in tropical regions. Using only shortwave

radiation, rather than both longwave and shortwave, also results in lower GPP globally than shortwave and longwave combined.

This suggests that the choice of radiation input can significantly influence modeled vegetation productivity, particularly in

areas with high solar radiation. Based on these results, we use the combined longwave and shortwave radiation setting in all

subsequent simulations to ensure more consistent and accurate estimates of GPP.45

Figure S2. Comparison of mean annual GPP (2000–2019) simulated with LPJmL-5 using cloudiness-based, shortwave-only, and combined

longwave + shortwave radiation inputs.
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Figure S3. Difference in mean annual GPP (2000–2019) simulated with LPJmL-5 across cloudiness-based, shortwave-only, and combined

longwave + shortwave radiation inputs.

S3.2 ERA5 vs W5E5 as input for LPJmL-5

In this study, both ERA5 (Hersbach et al., 2023) and W5E5 (Lange et al., 2022) were used for the calculation of SPEI and as

input for LPJmL-5. ERA5 provides hourly reanalysis data from 1940 to the present, while W5E5 is a bias-corrected version

of ERA5 available at daily resolution from 1901–2019. The earlier study by Ruijsch et al. (2025) relied on ERA5, which is

convenient with the shorter MODIS time range (2000-present). In contrast, this study aims to extend the analysis further back50

in time, making W5E5 the more suitable choice. To allow for a direct comparison between the two studies, however, we first

evaluate whether ERA5 and W5E5 produce consistent MYD periods.

Figure S4 shows the number of MYDs between 2000–2019 based on SPEI-12 calculated from monthly W5E5 and ERA5.

Using W5E5 generally results in fewer MYDs, particularly in the tropics, reflecting regional biases in ERA5 that are partially

corrected in W5E5. Fewer MYDs are also found in Argentina, northern Europe, and parts of Asia when using W5E5. However,55

in this study we mostly focus on the effect of MYDs in our six defined focus regions. Looking at the SPEI-12 timeseries in

those regions (Figure S5), we can see that all ERA5 MYD periods are also present in the W5E5 dataset, with the exception

of the 2004 MYD in WEU. This leads us to believe that changing from ERA5 in previous research to W5E5 now will not

significantly affect the identified MYD periods in the focus regions.
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Figure S4. Comparison of the number of MYDs (2000-2019) calculated from ERA5 and W5E5 SPEI-12. c) shows violin plots of both.

Figure S6 presents the mean annual GPP (2000–2019) simulated by LPJmL-5 using ERA5 (monthly) and W5E5 (monthly60

and daily) climate inputs. Figure S7 shows the differences between these simulations.

Some notable differences appear between the ERA5 monthly and W5E5 daily simulations, which can be attributed to both

dataset differences and temporal resolution effects. To disentangle these factors, we first compare W5E5 monthly versus ERA5

monthly inputs (shown in the first plot). This comparison primarily reflects the impact of bias correction, with some regions

showing GPP differences of up to 1000 gC/m2/year.65
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Figure S5. Comparison of SPEI-12 calculated from ERA5 and W5E5 for the six selected focus regions (2000-2019). Blue line is ERA5 and

orange line is W5E5. Shaded areas are the MYDs.
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Next, we compare W5E5 monthly versus daily inputs within LPJmL-5 simulations to isolate the effect of temporal resolution

(shown in the third plot). This comparison reveals that GPP tends to be higher with monthly input in energy-limited regions,

while daily input produces higher GPP in water-limited regions. These differences arise because temporal resolution influences

how variability affects water availability and energy constraints. In water-limited regions, daily rainfall events reduce stress and

boost GPP, whereas monthly averages smooth out this variability, lowering GPP. In energy-limited regions, monthly averages70

provide more stable conditions that support higher GPP, while daily inputs capture short-term fluctuations that can temporarily

reduce GPP.

For this study, we chose W5E5 over ERA5 due to its bias corrections, which provide more accurate climate forcing data.

We specifically selected the daily W5E5 input because the higher temporal resolution better captures precipitation variability,

especially in water-limited regions. This enables LPJmL-5 to simulate vegetation responses more realistically by representing75

intermittent rainfall events and short-term drought relief that monthly averages tend to smooth out.

Figure S6. Comparison of mean annual GPP (2000-2019) calculated with LPJmL-5 with ERA5 (monthly) and W5E5 (monthly and daily)

input.

S4 LPJmL-5 dynamic landcover vs ESA landcover

In LPJmL-5, vegetation can either be simulated dynamically or prescribed based on observed land cover. Using dynamic land

cover can lead to mismatches between modelled and actual vegetation distributions, which may influence the accuracy of GPP

simulations. To address this and ensure that the vegetation input aligns more closely with observed land cover, we created a80

prescribed land cover map based on the 2019 ESA dataset.
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Figure S7. Difference in mean annual GPP (2000-2019) calculated with LPJmL-5 with ERA5 (monthly) and W5E5 (monthly and daily)

input.

S4.1 Creating the ESA-Based Landcover Fraction Map

For the land cover input, we used PFT maps from Harper et al. (2023), which provide fractional cover of tree, shrub, and grass

types. Because LPJmL classifies Plant Functional Types (PFTs) according to climate zones (tropical, temperate, boreal), we

reclassified the ESA PFTs into LPJmL-compatible PFTs using the Köppen–Geiger climate classification (Beck et al., 2023),85

following the methodology of Forkel et al. (2019) (Table S1). Shrubs were merged with the corresponding tree PFTs since

LPJmL does not distinguish between these growth forms.

S4.2 Comparison Between dynamic LPJmL-5 landcover and prescribed ESA Landcover

To assess potential mismatches in vegetation distribution, we compared landcover outputs from LPJmL-5 with observed veg-

etation cover from the ESA dataset. Notable differences are evident in regions such as Western Europe and parts of South90

Africa, where LPJmL-5 simulates temperate needleleaved evergreen forests, while ESA data indicates predominantly temper-

ate grasslands.

Globally, the ESA dataset shows greater coverage of temperate and polar C3 grasses, as well as boreal needleleaved sum-

mergreen forests. In contrast, LPJmL-5’s dynamic vegetation simulates more temperate needleleaved evergreen trees, boreal

needleleaved evergreen trees, boreal broadleaved summergreen trees, and tropical C4 grasses.95

These discrepancies highlight the importance of aligning vegetation distributions when validating model output against

observations. Therefore, we decided to use prescribed ESA-based landcover fractions in the main analysis to ensure consistency

between modeled and observed vegetation patterns.
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Table S1. Mapping of ESA land cover types to LPJmL Plant Functional Types (PFTs), based on Köppen climate zones following Forkel

et al. (2019).

LPJmL PFT Mapped ESA Land Cover Types Climate Zone (Köppen Codes)

Tropical broadleaved evergreen tree TREES-BE, SHRUBS-BE Tropical (1–3)

Tropical broadleaved raingreen tree TREES-BD, SHRUBS-BD Tropical (1–3)

Temperate needleleaved evergreen tree TREES-NE, SHRUBS-NE Temperate (4–18, 21, 22, 25, 26)

Temperate broadleaved evergreen tree TREES-BE, SHRUBS-BE Temperate (4–18, 21, 22, 25, 26)

Temperate broadleaved summergreen tree TREES-BD, SHRUBS-BD Temperate (4–18, 21, 22, 25, 26)

Boreal needleleaved evergreen tree TREES-NE, SHRUBS-NE Boreal (19–20, 23–24, 27–30)

Boreal broadleaved summergreen tree TREES-BD, SHRUBS-BD Boreal (19–20, 23–24, 27–30)

Boreal needleleaved summergreen tree TREES-ND, SHRUBS-ND Boreal (19–20, 23–24, 27–30)

Tropical C4 grass GRASS-NAT Tropical (1–3)

Temperate C3 grass GRASS-NAT Temperate (4–18, 21, 22, 25, 26)

Polar C3 grass GRASS-NAT Boreal (19–20, 23–24, 27–30)

S4.3 Differences in GPP Due to Landcover Settings

To assess the impact of different landcover settings on simulated GPP, we compared LPJmL-5 simulations using dynamic100

versus prescribed (ESA-based) landcover settings. Figure S11 shows the mean annual GPP (2000–2019) for both configura-

tions. The results highlight clear spatial differences in GPP, particularly in regions where LPJmL-5 dynamic vegetation differs

substantially from observed landcover (e.g., parts of Europe and southern Africa). This demonstrates how mismatches in veg-

etation type can directly influence modelled GPP and highlights the importance of using observed landcover when evaluating

model performance.105
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Figure S8. Vegetation cover fractions from the ESA Land Cover dataset (2019) for each PFT and the total PFT sum.
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Figure S9. Vegetation cover fractions simulated by LPJmL-5 using dynamic vegetation for each PFT and the total PFT sum..

12



Figure S10. Difference in vegetation cover fractions between LPJmL-5 and ESA. Blue areas indicate where ESA has a higher vegetation

fraction; red areas indicate where LPJmL-5 simulates a higher vegetation fraction.
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Figure S11. Comparison of mean annual GPP (2000–2019) simulated by LPJmL-5 using dynamic versus prescribed (ESA) landcover.
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