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Abstract. This study presents a comprehensive phenomenological analysis of cloud condensation nuclei (CCN) and aerosol

properties — including activation properties, microphysical characteristics, chemical composition, and optical properties —

across ten surface sites in different environments. Aerosol properties vary widely, reflecting the diverse environments, and con-

trolling the CCN activation characteristics. Despite their critical role in aerosol–cloud interactions, CCN observations remain

sparse and unevenly distributed, limiting global assessments of activation behavior. To address this gap, this study presents5

CCN predictive methods based on chemical composition combined with particle number size distribution (PNSD) data, and

aerosol optical properties (AOPs). The chemical composition driven predictions are tested using three hygroscopicity schemes.

All schemes overpredict the CCN concentrations (median relative bias; MRB=13-15%), although the two composition-derived

CCN concentrations are markedly better predictors than the fixed-κchem assumption (MRB=24%). The AOPs-derived CCN

prediction is based on two approaches: an extended empirical parameterization of Shen et al. (2019) (hereafter S2019) to 1310

stations, which reduces bias from - 27% to - 8% and improves CCN agreement; and second, a random forest model that infers

Twomey activation parameters (C and k) using both the S2019 variables and all the available AOPs. Including all AOPs re-

duces MRB from 19% to 15% and highlights the role of absorption in predicting CCN activation. These findings demonstrate

that both chemical and optical measurements can provide a reasonable estimate of CCN concentrations when direct measure-

ments are unavailable. These results enable retrospective analyses of long-term aerosol time series to investigate aerosol–cloud15

interactions.

1 Introduction

Aerosol-cloud interactions (ACI) represent the largest source of uncertainty in quantifying the effective radiative forcing of

anthropogenic aerosols, as highlighted in the IPCC (2021) report. Within the total aerosol-induced effective radiative forcing

of –1.3(±0.7) Wm2, ACI contributes approximately –1.0(±0.7) Wm2. This substantial uncertainty in ACI related processes20
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arises primarily from an incomplete understanding of how changes in cloud droplet number concentration and size affect cloud

water content and cloud spatial extent. These changes are driven mainly by variations in the abundance of cloud condensation

nuclei (CCN) — aerosol particles that act as seeds for cloud droplet activation. Therefore, improving our understanding of

CCN variability across spatial and temporal scales is essential to reduce uncertainties in global aerosol–cloud interactions and,

by extension, climate projections (Seinfeld et al., 2016).25

Reducing these uncertainties requires an improved understanding of aerosol properties across both long-term/large-scale and

short-term/regional contexts. Key properties to reduce these uncertainties include aerosol number concentration, size distri-

bution, chemical composition, and the ability of these particles to act as CCN. Over the past few decades, numerous studies

have investigated the spatial and temporal variability of CCN and the factors controlling their concentrations in diverse (urban,

continental, high-altitude, marine, and polar regions) environments (e.g., Ansmann et al., 2023; Deng et al., 2018; Gallo et al.,30

2023; Jurányi et al., 2011; Patel and Jiang, 2021; Rejano et al., 2021; Rose et al., 2010). However, most of these observa-

tions are based on short-term field campaigns and their comparability is limited due to differences in instrumentation and data

processing, complicating efforts to quantify CCN impacts at the global scale. Thus, improving our understanding of aerosol-

cloud interactions relies heavily on consistent and long-term measurements of particle number size distributions (PNSD), CCN

number concentrations (NCCN ), aerosol chemical composition and hygroscopicity (Fanourgakis et al., 2019). A significant35

contribution to addressing this limitation was made by Schmale et al. (2017, 2018), who conducted a phenomenological study

of collocated PNSD, chemical composition, and CCN measurements at 11 observatories - eight in Europe, two in Asia, and

one in the USA. However, expanding this analysis to a global scale requires a more extensive dataset with measurements in

regions not previously studied. To address this, Andrews et al. (2025a) recently compiled a dataset of PNSD, aerosol optical

properties (AOPs), chemical composition and CCN at 10 observatories - three in the continental USA, two in South America,40

two in the Arctic and two in the middle of the Atlantic Ocean.

Even with the recent improvement in spatial coverage of CCN measurements and harmonized datasets (e.g., Andrews et al.,

2025a and others), the limited current availability of direct measurements of NCCN is still not adequate for climate research

due to the high spatio-temporal heterogeneity of atmospheric aerosol. To overcome this limitation of regional/short-term mea-

surements, several studies have investigated the use of more widely available aerosol parameters, particularly AOPs, for CCN45

estimation (e.g., Ghan et al., 2006; Shinozuka et al., 2009; Andreae, 2009; Shinozuka et al., 2015; Jefferson, 2010; Liu and

Li, 2014; Tao et al., 2018). These include properties such as the scattering coefficient (σsp), back-scattered fraction (BSF), and

aerosol optical depth (AOD), which are routinely measured by ground-based networks (e.g., AERONET, GAW) and satellites.

For example, Jefferson (2010) used σsp, BSF and single scattering albedo (SSA) to parameterize Twomey’s empirical CCN

activation parametrization (Twomey, 1959), estimating the coefficients C and k. Previous studies have shown that C and k50

parameterizations are site-dependent and are affected by the loading and chemical composition of aerosol particles, respec-

tively (e.g., Rejano et al., 2021). To address this site dependency, Shen et al. (2019) developed a CCN prediction equation

based on in-situ aerosol optical properties and showed that correlations between the fit parameters could be used to reduce site

dependency and improve generalization across regions.
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The combination of aerosol chemical composition and PNSD within the framework of κ-Köhler theory has been widely applied55

to estimate CCN concentrations (e.g., Cai et al., 2022; Rejano et al., 2024). These estimates rely on different assumptions

regarding the reconstruction of bulk aerosol hygroscopicity from individual chemical components (Schmale et al., 2018; Rejano

et al., 2024). Reported closure agreement varies across studies, with aerosol mixing state identified as a key factor influencing

CCN prediction accuracy (Cubison et al., 2008). The relationship between CCN spectral parameters and aerosol properties is

often highly nonlinear because CCN activation depends not only on particle composition but also on size, with particles of60

different diameters activating at different supersaturation (SS) levels (e.g., Liang et al., 2022; Ervens et al., 2007; Nair and Yu,

2020). These nonlinearities limit the effectiveness of traditional linear analyses in fully capturing the complexity of aerosol

CCN activity.

In recent years, machine learning (ML) has emerged as a powerful tool in atmospheric science, capable of capturing complex

nonlinear relationships. To the best of our knowledge, the first application of ML to CCN prediction was introduced by Nair65

and Yu (2020) and later expanded by Nair et al. (2020), who developed a model using aerosol chemical composition and me-

teorological parameters under specific SS conditions. Rejano et al. (2024) applied a neural network at a high-altitude site with

four inputs: N80 (concentration of particles larger than 80 nm), the OA/PM1 ratio (organic aerosol to PM1 mass concentration),

the oxidation proxy f44 (fraction of organic signal at m/z 44), and global solar irradiance. Liang et al. (2022) and Lenhardt

et al. (2025) both applied random forest (RF) models, the former achieving robust CCN estimates from AOPs without chemical70

data and the latter identifying aerosol size as the main predictor of CCN–lidar backscatter relationships. More recently, Wang

et al. (2025b) applied an ensemble of ML methods to six sites to determine the most important AOPs for CCN prediction.

Collectively, these studies highlight the potential of ML to improve spatial and temporal characterization of CCN, with im-

plications for satellite retrievals and climate models. However, applications remain largely site-specific, and generalizability

across diverse environments is still uncertain, although Wang et al. (2025b) observed consistent patterns within similar site75

types.

In this study, observations from 10 observatories comprising collocated measurements of PNSDs, CCN number concentrations,

CCN activation properties, and, in some cases, aerosol chemical composition and AOPs are analyzed. The stations cover a

range of environmental conditions (continental, mountain, marine and polar). In what follows, first, the CCN phenomenology

in terms of CCN concentration and activation parameters related to size distribution information is presented. Next, an overview80

of the chemical composition and in-situ AOPs, where available, is presented in connection with the observed CCN properties.

CCN predictions based on aerosol chemical composition are evaluated and two additional approaches using aerosol optical

properties, parameterizations and machine learning, are explored. Finally, the different prediction methods are systematically

compared in the discussion section.
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2 Methodology85

This section first describes the location, environment type and the measurements available for each site. Then a brief descrip-

tion of the data quality control process is given. Next, we describe the CCN activation parameters and AOPs. Several CCN

prediction schemes using the chemical composition and AOPs are presented. Finally, the random forest model methodology

for CCN prediction is described.

2.1 Sites and measurement availability90

This study considers 10 sites distributed across various environmental settings. All data presented here are described in An-

drews et al. (2025a) and accessible at Andrews et al. (2025b). Figure 1 shows the location, environment and measurement

availability of each site, and Tables S2 and S3 in the Supplement present an overview of the characteristics of each station.

Three observatories — MAO, COR and SGP — are located in continental environments, with MAO also occasionally influ-

enced by urban emissions from the nearby municipality of Manacapuru (Brazil). Two stations — ASI and ENA — are situated95

in marine regions (north and south Atlantic Ocean, respectively). Additionally, ANX and MOS are located in the Arctic, where

they sample both polar and marine aerosols. The MOS site corresponds to the MOSAiC (Multidisciplinary drifting Obser-

vatory for the Study of ArctIc Climate) expedition, where the instruments were deployed on an icebreaker frozen into and

moving with the ice (Shupe et al., 2022). The remaining three observatories — GUC, SBS-CP and SBS-SPL — are situated in

mountainous terrain in Colorado (USA), although these mountain sites are also subject to continental influences. The SBS-CP100

and SBS-SPL observations occurred during the STORMVEX (Storm Peak Laboratory Cloud Property Validation Experiment)

field campaign (Mace et al., 2010), at the Steamboat Springs Ski Resort, separated by 5 km horizontally and 782 m vertically.

The database includes both short-term campaigns with only a few months of measurements and long-term stations with several

years of data, such as ENA and SGP. Further details on all sites and campaigns are provided in Andrews et al. (2025a).

From the available dataset developed by Andrews et al. (2025a), the data considered in this study include hourly-averaged105

measurements of NCCN , aerosol activation properties, PNSD, total particle number concentration, chemical composition and

AOPs. All data considered have been previously processed, harmonized and quality assured and are freely available (Andrews

et al., 2025b). All data are reported at standard pressure and temperature conditions (Tstd=0 ºC and Pstd=1013 hPa) and at

low relative humidity (<40%) to ensure better comparability of results among collocated instruments at each site and across

all 10 stations. The complete processing is described in detail in the data descriptor paper by Andrews et al. (2025a). A brief110

description of the instruments is provided below.

CCN concentrations were obtained with a CCN counter (CCNC), either the single-column (DMT1C) or the dual-column

(DMT2C) version. Both models of CCNC had a column scanning across different SS with time, referred to as column A,

and the DMT2C had an additional column measuring at a fixed SS, referred to as column B. Hourly-averaged PNSD data

were derived from measurements made with a scanning mobility particle sizer (SMPS). The PNSD files also include the total115

particle number concentration measured by an independent condensation particle counter (CPC) over the same period. An
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integrating nephelometer and a particle soot absorption photometer (PSAP) provided aerosol optical data at most sites. The

nephelometer measured aerosol scattering and backscattering coefficients at three wavelengths (450, 550 and 700 nm) and the

PSAP measured absorption coefficients at 564, 529, and 648 nm. Optical measurements were made downstream of a switched

impactor system so that both PM10 and PM1 values of the optical properties are available. Our analysis primarily relies on120

hourly PM10 optical data, while PM1 absorption data is used to complement the composition data. The chemical composition

data sets used in this study consist of hourly measurements from the quadrupole aerosol chemical speciation monitor (Q-

ACSM, hereafter referred to as ACSM) and include the sub-micrometer mass concentration of particulate organics, sulfate,

ammonium, nitrate, and chloride. Included with the ACSM data is the black carbon mass concentration derived from the PM1

PSAP absorption coefficient at 529 nm.125

Tables S2 and S3 provide an overview of the instrument models, available measurements, and site-dependent settings. Note

that three (ASI, SBS-CP, and SBS-SPL) and five (ANX, MAO, MOS, SBS-CP, and SBS-SPL) of the 10 sites do not have

optical and chemical composition measurements, respectively (Fig. 1).

Figure 1. Map of sites considered in this study. Site type is indicated with different colors; if the outline is different than the fill color the site
could be described by more than one type (e.g., polar and marine). MOS is a mobile deployment so the location represents the midpoint of
shiptrack. Symbols indicate measurements availability.

2.2 Data quality control

To ensure confidence in the measurements, the datasets used in this study rely on multiple instrument intercomparison qual-130

ity checks (closure studies) previously described in Andrews et al. (2025a). These checks identify potential inconsistencies

between collocated instruments and ensure correct instrument functioning. In this study, we make use of two of these quality

checks.
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The first quality check applies to DMT2C instruments. CCN concentrations at 0.4% supersaturation measured by column B

are compared with those at the same SS from column A to ensure internal consistency. Data are excluded if the concentration135

difference exceeds 50% (quality flag Qc_column_AB in the harmonized files). As shown in Figure S4 of Andrews et al.

(2025a), data from all sites with 2-column CCNC generally show excellent agreement.

The second quality check compares the total particle number concentration (Ntot) derived from the SMPS PNSD with that

measured by a stand-alone CPC. In this study, SMPS–CPC concentrations are excluded if the relative difference exceeds 50%

(quality check Qc_CPC_SMPS described in Andrews et al. (2025a)), but only when the contribution of particles smaller than140

30 nm (N<30) to Ntot is less than 20% (condition applied in this study). This additional condition avoids removing data due to

discrepancies related to the CPC’s lower size cutoff and counting efficiency, especially during new particle formation events,

when CPC counts can substantially exceed those inferred from the SMPS. Overall, the SMPS–CPC comparison across sites

shows good agreement, as illustrated in Figure S1 of Andrews et al. (2025a).

After applying these two quality checks, less than 2% of the CCN column A data and a similarly small fraction of SMPS data145

were excluded across all sites. Figure S1 shows the instrument operating periods at each site after these quality checks are

applied. Gaps may also exist due to periods when instruments were offline or not functioning properly, and for optical data,

when sample RH inside the nephelometer exceeded 40%.

For MOS, additional post-processing prior to applying the quality checks was required to remove periods affected by ship

emissions (Boyer et al., 2023), using a pollution detection algorithm previously developed by Beck et al. (2022). The post-150

processing pollution detection algorithm was applied to the 5-minute resolution CPC data (MOS_smps_5min in Andrews et al.

(2025b)). As all instruments in this campaign measured from the same inlet, periods identified as polluted using the CPC are

considered polluted for all instruments. The algorithm applies several filters: a power law filter (a = 0.95, m = 0.6), a threshold

filter (10–104 cm−3), a neighboring point filter, a median filter (30, 1.4), and a sparse data filter (30, 24). Only measurements

classified as clean (66% of the original data) are retained. After this filtering, minor additional removal of flagged SMPS155

(0.1%) and CCN column A (0.07%) data was applied. Figure S1 shows the available measurement periods at MOS after

applying quality checks and the pollution detection algorithm.

2.3 CCN-derived properties

The Andrews et al. (2025a) data sets used in this study also include calculated parameters that can be used to characterize

the CCN activation properties of the aerosol. These parameters are the activated fraction (AF), the critical diameter (Dcrit),160

and the hygroscopicity parameter (κCCN ).The activated fraction (AF) represents the fraction of particles that activate as CCN

at a given SS, calculated as the ratio of CCN concentration to the total particle number concentration. In this study, AF

values derived from CPC measurements were used at all sites except MAO, where SMPS data were used due to the lack

of CPC measurements. The critical diameter (Dcrit) represents the particle size above which all particles are activated into

cloud droplets at a given SS. It can be derived by integrating the PNSD from the largest to the smallest diameters until the165

integrated number matches the measured CCN concentration at a given SS (Vogelmann et al., 2012; Jurányi et al., 2011).
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Alternatively, if Dcrit is assumed and size distribution measurements are available but CCN data are not, CCN concentrations

can be estimated as the number of particles larger than Dcrit (Bougiatioti et al., 2009; Kulkarni et al., 2023; Rejano et al., 2024).

The hygroscopicity parameter (κCCN ) quantifies the ability of an aerosol population to absorb water from the environment and

activate as cloud droplets (Petters and Kreidenweis, 2007). κCCN values derived from CCN measurements provide an estimate170

of the effective hygroscopicity of activated particles in the CCNC and exhibit a dependence on SS. Detailed derivations and

equations for these parameters are provided in Andrews et al. (2025a).

2.4 ACSM-derived properties

Another approach to estimate the hygroscopicity parameter involves using chemical composition measurements. Since it is

not feasible to determine the properties of each individual particle in the sample, an effective κchem for the entire population175

is estimated. Petters and Kreidenweis (2007) proposed a simple approximation (Eq. 1) to calculate κchem based on the hy-

groscopicity parameter (κ) and the corresponding volume fraction (ϵ) of each species (i) in the sample. This approximation

follows the Zdanovskii-Stokes-Robinson (ZSR) approach, assuming a multi-component solution (i.e., a mixture of n different

solutes) in equilibrium.

κchem =
n∑

i=1

ϵiκi, ϵi =
Mi/ρi∑n

j=1 Mj/ρj
(1)180

Here, Mi is the mass of species i and ρi its corresponding density. The index i refers to each individual species in the aerosol

mixture. The summation in the denominator runs through all species (from 1 to n) each time. Further details on the κchem

calculation under different assumptions, as well as its use in conjunction with measured size distributions used for CCN

prediction, are explained in Sect. 2.6.1.

2.5 Optical parameters185

The aerosol optical properties can provide insight into the size and chemical composition of aerosol particles. In-situ mea-

surements of multi-wavelength aerosol scattering (σsp), back-scattering (σbsp), and absorption (σap) coefficients are available

at most sites (Tables S2 and S3). From these measurements, several optical parameters were calculated, including the back-

scattered fraction (BSF), scattering Ångström exponent (SAE), absorption Ångström exponent (AAE), and single scattering

albedo (SSA) following standard formulations (see Sherman et al., 2015; Shen et al., 2019).190

The BSF indicates the relative abundance of smaller particles (D<0.3 µm) (Collaud Coen et al., 2007), while the SAE describes

the wavelength dependence of σsp and serves as an additional proxy for particle size (Seinfeld and Pandis, 1998). BSF and

SAE are sensitive to different segments of the aerosol size distribution (Collaud Coen et al., 2007); BSF is more responsive

to particles in the lower part of the accumulation mode, whereas SAE is more influenced by particles in the upper part of

the accumulation mode and the coarse mode. The AAE is calculated analogously to SAE and provides insight into aerosol195

composition, with values near 1 indicating the influence of dust or organic carbon (e.g., from biomass burning) (Bergstrom
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et al., 2007; Kirchstetter et al., 2004). The SSA quantifies the relative contribution of σsp and σap and is also related to particle

composition. All optical parameters were calculated at the native instrument wavelengths, except SSA where the absorption

was adjusted to 550 nm to match the scattering wavelength: BSF at 550 nm, SAE using 450 and 700 nm wavelengths, AAE

with 464 and 648 nm wavelengths, and SSA at 550 nm.200

2.6 CCN prediction methods

Although CCN concentration measurements are crucial for accurate representation of the CCN availability and variability

across sites, these observations are not always available. As noted in the introduction, various methods have been developed

to overcome this observational limitation and predict CCN concentrations (e.g. Gysel et al., 2007; Jefferson, 2010; Shen et al.,

2019). In this section, we describe the three methods we apply to predict CCN concentration.205

2.6.1 CCN prediction using chemical composition

CCN concentrations can be predicted using κ-Köhler theory together with PNSD measurements (Eqs. 3 and 4 in Andrews

et al. (2025a)), once the bulk hygroscopicity parameter (κchem) has been derived. Below we describe the three schemes used

to calculate κchem:

Scheme 1: Chemical composition measurements from the ACSM and the BC mass concentration are considered, so Eq. (1)210

can be expressed in terms of three main components: organics (OA), inorganics (IA), and black carbon (BC) (Eq. 2). This

approximation has been shown to provide a reliable estimate of the effective aerosol hygroscopicity (e.g., Bougiatioti et al.,

2009; Rejano et al., 2024).

κchem = κOAϵOA +
∑

i

(κIAiϵIAi) +κBCϵBC (2)

The contribution of inorganic aerosols to κchem includes several inorganic salts present in the atmosphere, such as ammonium215

nitrate, ammonium sulfate, ammonium bisulfate and sulfuric acid. The volume fractions of these salts are determined using the

simplified ion pairing scheme from Gysel et al. (2007). The densities and κ values used for each component are summarized

in Table S4 in the Supplement.

Scheme 2: To better understand the influence of black carbon on aerosol hygroscopicity, Scheme 2 excludes BC from the κchem

calculation, focusing only on the hygroscopic components (inorganic salts, acids, and organics), which aligns with approaches220

commonly used in previous literature (e.g., Almeida et al., 2014; Schmale et al., 2018; Rejano et al., 2024). Comparison of both

schemes allows for a clearer evaluation of the extent to which BC modulates the overall hygroscopic behavior of the aerosol

population.

Scheme 3: To complement these two approaches, Scheme 3 is introduced, in which a constant value of κchem = 0.3 is assumed.

This scheme aims to serve as a simplified reference, independent of aerosol chemical composition. The value of 0.3 is com-225
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monly used in the literature as representative of average aerosol hygroscopicity under diverse atmospheric conditions (e.g.,

Schmale et al., 2018; Pringle et al., 2010). Pringle et al. (2010) report global mean κchem values of 0.27 for continental regions

at the Earth’s surface, supporting the use of 0.3 as a reasonable approximation for bulk aerosol hygroscopicity.

2.6.2 CCN prediction using optical properties

The prediction of CCN concentrations from aerosol optical properties has been explored in several studies (e.g., Ghan et al.,230

2006; Jefferson, 2010; Shinozuka et al., 2009, 2015; Liu and Li, 2014; Rejano et al., 2021). In addition to exploring the ability

of AOPs to estimate CCN concentrations, the main application of this approach is for improving satellite retrievals (e.g.,

Shinozuka et al., 2015). In Shen et al. (2019) (hereafter referred to as S2019), a new empirical parameterization was developed

by analyzing in situ measurements at six stations representing different environments. S2019 investigated the relationships

between CCN concentrations at different SS and AOPs, and derived the following parameterization that explicitly depends on235

the SAE, BSF, BSFmin (1st percentile of BSF data) and σsp of PM10 particles:

NCCN,S2019(SS)≈
[
(286± 46)SAE · ln

(
SS

0.093± 0.006

)
(BSF−BSFmin) + (5.2± 3.3)

]
·σsp. (3)

This parameterization is designed to be applicable to any site, regardless of its environmental conditions, and for any SS <

1.1% and provides a basis for estimating NCCN directly from optical measurements (Shen et al., 2019).

In this study, we first test the generality of Equation 3 and assess whether its performance holds across a wider range of aerosol240

types. Then we apply the S2019 methodology to our 7 sites plus the 6 sites utilized by S2019 to develop a new equation based

on 13 sites to see if it improves the predictions of NCCN . The derivation is detailed in the Appendix and leads to the following

equation:

NCCN,new(SS)≈
[
(320± 78)SAE · ln

(
SS

0.089± 0.011

)
(BSF−BSFmin) + (8.7± 9.3)

]
·σsp. (4)

For the seven sites with available AOPs included in this study, the BSFmin is estimated as 0.11± 0.01. Accounting for the245

uncertainties in the regression coefficients, the propagated relative uncertainties in the predicted CCN concentrations are 81%,

34%, 27%, 26%, 25% and 25% at supersaturations 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0%, respectively. Applying the original S2019

parameterization (Eq. 3) to the same dataset yields uncertainties from 16% to 52%. The wider error range in the new fit is driven

primarily by the larger standard deviation of Rmin, defined as the first percentile of NCCN/σsp (see Appendix for details),

which is±9.3 cm−3 Mm compared to±3.3 cm−3 Mm in S2019. It is important to highlight several methodological differences250

between our approach and that of Shen et al. (2019). Although both studies include measurements from the MAO site, in our

analysis this site is treated as independent from that in S2019 due to differences in time periods and data constraints: we used

data from 2014–2015 and applied a relative humidity (RH) filter (RH < 40%), while S2019 only used 2014 data without RH

restrictions. Similarly, for the ASI site, S2019 included optical measurements acquired at ambient RH > 40%, whereas we
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limited our analysis to dry conditions (RH < 40%) and thus did not include ASI data. Furthermore, instead of applying a255

threshold of σsp>10 Mm−1 as in S2019, our study used a less restrictive filtering approach by excluding only data (σsp, BSF

and SAE) when σsp values were below 0.5 Mm−1 and above the 99.5th percentile, allowing a broader range of scattering

conditions to be considered. Differences in the treatment of CCN data may also contribute to the variability between the

resulting parameterizations.

2.6.3 CCN prediction based on AOPs using the Twomey equation and a random forest model260

The Twomey equation (Twomey, 1959) describes the relationship between supersaturation (SS) and CCN concentration (NCCN )

via a power law with parameters C and k:

NCCN (SS) = C ·SSk. (5)

This relationship is depicted graphically in Fig. S2 (solid lines) for some of the sites considered here. While Figure S2 shows

the overall fits to the data for each site, C and k can also be found for each individual SS scan at each site. Previous studies have265

found strong correlations between C, k and various aerosol properties (Jefferson, 2010; Rejano et al., 2021). Here, machine-

learning is applied to predict these parameters from AOPs.

Random forest (RF) is a machine learning method that relates target variables (here, C and k) to predictors or “features”

(Breiman, 2001; Cutler et al., 2012; Grange et al., 2018). Its main tuning parameters are (a) the number of trees, (b) the number

of features considered at each decision node, and (c) the minimum number of observations required in a terminal or “leaf”270

node (also known as minimum leaf size), which controls the depth and complexity of each tree. The RF model might give

better predictions with more trees and more explanatory variables considered, but that also increases the computational cost.

Here, we use combinations of AOP variables (σsp, σap, BSF, SAE, SSA, and AAE) as predictors to train the model. The RF

algorithm is trained on one portion of the data and then the results of the training are applied to the non-training or test data

to validate the prediction. In this work, two different validation strategies are considered. First, our primary validation uses a275

stratified 70 / 30 split: for each site, 70% of scans are randomly chosen for training and the remaining 30% for testing. These

per-site subsets are then pooled across all sites to form single training and test sets. Second, as an additional check, we perform

leave-one-site-out (LOSO) cross-validation—iteratively holding out one site for testing and training on the others—to assess

how including or excluding any given station affects model performance and to verify that the 70 / 30 approach yields valid

results across all locations. The predictors are not scaled or normalized before processing.280

We implemented RF in MATLAB with TreeBagger function considering 500 trees, using the default minimum leaf size value

(1) and sampling all predictors at each split. Performance was assessed via out-of-bag (OOB) error, and feature importance via

OOB-permutation (Breiman, 2001). The model was run once to find the features relevant for C and then again, on the same

data, to find the features relevant for k. Normalized importance scores reveal the variables that most consistently predict C and
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k. These predicted C and k values are then plugged into the Twomey power-law (Eq. 5) to estimate CCN concentrations at any285

given SS.

3 Results

In this section, we present the results showing the phenomenology of aerosol and CCN activation properties for all the sta-

tions considered in this study and the CCN prediction outcomes. We first provide a general overview of aerosol microphysical

and CCN activation properties to demonstrate the range and variability of these characteristics at the 10 sites. Next, we sum-290

marize the aerosol chemical composition and use them to predict NCCN for the sites where ACSM data are available using

κchem. Similarly, we summarize the observed AOPs, where available, and use them to predict NCCN , using the S2019 and

RF methods. Finally, we evaluate the various CCN prediction methods we have applied and make recommendations for future

studies.

3.1 Overview of aerosol and CCN activation properties at 10 sites295

A summary of aerosol and CCN parameters at 0.4% supersaturation for each site is presented in Figure 2 as normalized

frequency distributions. To facilitate a direct comparison with the results of Schmale et al. (2018), the distributions were

computed using the same or comparable binning methods and normalized to the total number of data points at each station.

However, we focus our analysis on 0.4% SS - rather than 0.2% SS used by Schmale et al. (2018) - because the measurements

at 0.4% SS undergo an additional quality check (see Sect. 2.2), ensuring greater reliability of the data. The leftmost column300

(Fig. 2a) shows NCCN (colored solid line) overlaid with total particle number concentration (Ntot, black dashed line). The

center column (Fig. 2b) shows Dcrit (colored solid line) overlaid with the geometric diameter (Dgeo, black dashed line) of the

PNSD. The rightmost column (Fig. 2c) depicts the CCN hygroscopicity parameter (κCCN ). Table 1 provides the median values

together with the 25th and 75th percentiles (P25–P75) for the five parameters shown in Fig. 2 and for the activated fraction.

All variables referred to 0.4% SS.305

Stations located in polar environments (MOS and ANX) tend to have the lowest Ntot and NCCN (Fig. 2a), which is char-

acteristic of the Arctic maritime environment (Barrie, 1986; Schmale et al., 2018). These sites are representative of pristine

environments with minimal local sources of aerosols, dominated by natural processes and occasional long-range transport from

distant regions. A similar trend was observed in other Arctic sites such as Barrow (Alaska) by Schmale et al. (2018). Slightly

higher Ntot and NCCN are observed at the ENA and ASI marine sites compared to the Arctic sites, consistent with these two310

sites being remote marine locations where aerosols are primarily influenced by natural sources such as sea salt and biogenic

emissions (Quinn et al., 2023; Wilson et al., 2015). ENA shows higher concentration of particles, likely associated with local

sources due to the proximity of the station to an airport (Gallo et al., 2020). However, CCN concentrations are lower at ENA

than at ASI, leading to a smaller activated fraction at ENA (0.26) compared to ASI (0.85). This indicates a lower activation

ability of aerosol particles at ENA. In contrast, the high activated fraction observed at ASI are consistent with Zuidema et al.315

(2016), who reported that nearly all aerosol particles at this site could activate as CCN even at low SS.
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The three mountain sites (GUC, SBS-CP, SBS-SPL) exhibit higher Ntot and NCCN at 0.4% SS than the polar and marine sites.

SBS-SPL shows the lowest Ntot and NCCN of the three mountain sites. SBS-CP is a site where the difference between Ntot

and NCCN is particularly pronounced, with Ntot up to six times larger than NCCN . Both distributions are relatively narrow,

suggesting that limited aerosol sources influence the site. The region where SBS-CP is located experiences springtime dust320

transport from both local and remote sources, which affects overall hygroscopicity (Hallar et al., 2015). Although the SBS-

SPL site is very close to the SBS-CP site (SBS-SPL is 5 km east of SBS-CP), the altitude difference (∼2500 m for SBS-CP and

∼3200 m for SBS-SPL) makes SBS-CP more susceptible to influence from the atmospheric boundary layer, while SBS-SPL

is more likely to measure free troposphere aerosol in the cooler months when these measurements were made. SBS-SPL is

frequently in-cloud which may also lower aerosol loading via wet scavenging (Hallar et al., 2025). The NCCN distribution at325

GUC is broader and shows higher concentrations than SBS-SPL despite their similar altitude. This is related to the influence

of biomass burning intrusions during June and September 2022 (Gibson et al., 2025) affecting GUC. The three mountain sites

show low activated fractions at 0.4% SS (0.11, 0.24 and 0.19, at SBS-CP, GUC and SBS-SPL, respectively) compared to other

high-mountain sites (Schmale et al., 2018; Rejano et al., 2021; Jurányi et al., 2011).

Frequency distributions of Ntot and NCCN for the continental sites are shifted to higher particle and CCN concentrations.330

These sites represent regions with a mix of natural and anthropogenic influences, where long-range transport of pollution and

local emissions contribute to the aerosol burden. The highest concentration of particles is observed at COR (median value

of 3017 cm-3, with concentrations above 10000 cm-3), which is frequently affected by biomass burning from the Amazon

and anthropogenic emissions from Chile and Argentina (Fast et al., 2024). MAO exhibits a broad NCCN and Ntot frequency

distribution with an extended tail at the upper end of the distribution. The high NCCN (and Ntot) values at MAO are asso-335

ciated with the station being affected by the regional transport of biomass burning pollutants (especially in the dry season,

July–December) and to the Manaus (city located located 70 km upwind) urban plume (Rizzo et al., 2013). COR and MAO

show similar activated fraction of 0.29 and 0.25, respectively. Slightly higher AF is observed at SGP (0.38) associated with

higher CCN concentrations.

The center column of Fig. 2 allows us to compare Dcrit and the size distribution Dgeo at different sites. Dgeo serves as a340

proxy for the aerosol size distribution. Notable differences are observed in both the position and amplitude of the frequency

distributions, suggesting variations in aerosol composition and activation processes across locations. Overall, Dcrit is generally

shifted to higher values compared to Dgeo, indicating that a substantial fraction of particles do not reach the CCN activation

threshold at 0.4% SS. A similar trend between Dcrit and Dgeo was observed at most of the sites analyzed in Schmale et al.

(2018). However, at ASI and MOS, Dcrit is lower than Dgeo, meaning that at 0.4% SS, most particles activate as CCN. This345

difference is particularly pronounced at ASI, which is consistent with its high κCCN values (median of 0.75; Fig. 2c, Table

1) and activated fraction (0.85), indicating a predominance of highly soluble aerosols, such as sea salt. Dedrick et al. (2024)

showed high hygroscopicity values during clean conditions (κchem > 0.7) and lower values during smoke dominated periods

(κchem ∼ 0.3-0.4). Despite also being a marine station, ENA exhibits broader frequency distributions centered on larger values,

with overlapping Dcrit and Dgeo, suggesting that only a fraction of the particles activate at 0.4% SS (AF median value of 0.26).350
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This aligns with the wide range of hygroscopicity values observed at ENA, reflecting a mixture of marine aerosols and other

sources, likely local emissions such as the nearby airport.

Of the two polar stations, ANX exhibits a lower median Dcrit (55 nm), indicative of relatively hygroscopic aerosols, whereas

MOS shows a higher median value (85 nm). The Dcrit at MOS is broadly consistent with previous short-term, episodic obser-

vations (Dada et al., 2022), which report ≈ 80 nm at SS = 0.29% and ≈ 50 nm at SS = 0.78% under background conditions.355

At mountain stations, SBS-SPL stands out with the lowest Dcrit (59 nm) and the highest value of κCCN (0.35), indicating

a significant fraction of hygroscopic aerosols. This high hygroscopicity value could be attributed to the influence of anthro-

pogenic SO2 plumes from nearby coal-fired power plants, which have been shown to enhance particle growth from NPF to

CCN-relevant sizes and thus facilitate CCN activation at SPL (Hirshorn et al., 2022).

In contrast, SBS-CP exhibits broader distributions and higher Dcrit values, suggesting a more diverse aerosol mixture influ-360

ences this site than SBS-SPL. The GUC mountain site exhibits frequency distributions similar to those of continental stations,

characterized by Dcrit distributions shifted toward intermediate-to-high values. The bimodal distribution of Dgeo observed at

GUC suggests the coexistence of different aerosol types, potentially with distinct hygroscopic properties. The first mode, with

values lower than Dcrit, likely corresponds to highly soluble particles such as sulfates. In contrast, the second mode, at larger

diameters, may be associated with less hygroscopic aerosols, such as organic compounds related to biomass burning. Among365

continental stations, SGP has the lowest median Dcrit (76 nm), indicating a higher fraction of CCN-active aerosols compared

to COR (82 nm) and MAO (98 nm). This is consistent with the higher κCCN and activated fraction observed at SGP.
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Figure 2. Normalized frequency distributions of (a) CCN number concentration (NCCN ) and total particle concentration (Ntot) in black,
(b) critical diameter (Dcrit) and geometric diameter (Dgeo) in black and (c) hygroscopicity parameter (κCCN). All parameters related to CCN
measurements are at 0.4% SS.

Table 1. Median values and percentiles 25th and 75th (P25–P75) of the total aerosol concentration (NTot), CCN concentration (NCCN),
geometric diameter (Dgeo), critical diameter (Dcrit), hygroscopicity parameter (κCCN) and activated fraction (AF) for each measurement
location grouped by site type. All parameters related to CCN measurements are at 0.4% SS.

Site location Ntot (cm−3) NCCN (cm−3) Dgeo (nm) Dcrit (nm) κCCN(-) AF (-)
Continental
COR 3017 (1940-4660) 927 (589-1222) 49 (38-64) 82 (74-91) 0.15 (0.11-0.20) 0.29 (0.17-0.43)
SGP 2806 (1790-4035) 1061 (637-1564) 61 (44-82) 76 (66-85) 0.18 (0.13-0.28) 0.38 (0.23-0.54)
MAO 2030 (1106-3636) 659 (325-1253) 59 (43-85) 98 (82-113) 0.08 (0.06-0.12) 0.25 (0.15-0.42)
Mountain
SBS-CP 2011 (1246-3500) 310 (213-485) 32 (25-41) 88 (64-113) 0.12 (0.06-0.25) 0.11 (0.05-0.21)
GUC 1195 (780-1698) 348 (184-637) 46 (35-66) 82 (76-88) 0.15 (0.12-0.18) 0.24 (0.13-0.40)
SBS-SPL 712 (421-1198) 193 (115-306) 33 (27-41) 59 (51-68) 0.35 (0.25-0.54) 0.19 (0.10-0.35)
Marine
ENA 398 (259-609) 160 (101-249) 61 (44-85) 74 (55-95) 0.20 (0.09-0.39) 0.26 (0.17-0.35)
ASI 271 (205-363) 255 (178-375) 126 (95-146) 41 (35-48) 0.75 (0.48-1.04) 0.85 (0.73-0.94)
Polar
MOS 156 (94-230) 103 (48-158) 140 (98-157) 85 (66-98) 0.13 (0.08-0.25) 0.78 (0.61-0.87)
ANX 138 (86-238) 100 (58-172) 57 (41-82) 55 (43-68) 0.35 (0.23-0.60) 0.36 (0.18-0.60)
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3.2 Aerosol chemical composition and CCN prediction

3.2.1 Overview of aerosol composition

The aerosol sub-micrometer chemical composition measured with the ACSM is available at five of the ten stations (see Tables370

S2 and S3 for details). The operating temperature of the ACSM (600°C) is not high enough to vaporize refractory components

of the aerosol particles, thus only the non-refractory components can be analyzed. As a result, components such as elemental

carbon, crustal material, and sea salt cannot be detected (Wu et al., 2016). To complement the ACSM chemistry, BC concentra-

tions are derived from the PSAP absorption coefficient measurements at all sites except ASI, where BC data are not available in

the Andrews et al. (2025b) dataset. Figure 3 presents pie charts that illustrate the relative contribution of the species considered375

(organics, SO2−
4 , NO−3 , NH+

4 , Cl−, BC) to PM1 at each site, along with the total mean mass concentration.

The mean concentration of PM1 in the five sites ranges from 0.54 to 5.56 µg/m3, with varying contributions of the different

components, reflecting the distinct aerosol characteristics of each location during the measurement period. Continental sites,

COR and SGP, exhibit the highest concentrations (4.01 and 5.56 µg/m3, respectively). The mean value measured at SGP is

slightly lower than that measured during 2010-2011 at the site (7 µg/m3) (Parworth et al., 2015) while for COR, the same380

value is reported in Fast et al. (2024) for the same campaign. In contrast, the lowest mass concentrations are observed at marine

sites, ASI and ENA, with mean values of 0.96 and 0.54 µg/m3, respectively. The mountain site GUC exhibits an intermediate

concentration of 1.57 µg/m3. These mean values are consistent with previous studies reporting PM1 levels below 1 µg/m3

in remote and pristine marine environments over the Pacific, Atlantic, and polar oceans (Zhou et al., 2023), as well as with

observations from high-altitude mountain sites where lower aerosol mass concentrations are typically found due to reduced385

anthropogenic influence (e.g., Fröhlich et al., 2015; Jimenez et al., 2009). It is important to note that the aerosol chemical

composition exhibits strong seasonal variability, and the values presented here reflect specific measurement periods rather than

long-term, annual averages, except at SGP, where long-term measurements are available.

Figure 3. Pie chart of PM1 mass concentration (OA, SO−2
4 , NO−3 , NH+

4 , Cl− and BC) averaged for all the sites. Total mean PM1 mass
concentration for each site included.

For non-marine sites, the most abundant aerosol component is organic aerosol (OA) while at marine locations (ASI and ENA)

sulfate dominates. Among non-marine sites, the relative contribution of OA ranges from 50% at COR to 73% at GUC. The390

OA concentration is highest at SGP (2.30 µg/m3) followed by COR (2 µg/m3), while the OA concentration at marine sites
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is less than 0.5 µg/m3. Sulfate is the main contributor to aerosol mass in ASI, accounting for 52% of PM1 (0.5 µg/m3). At

ENA, sulfate and organic have the same concentration values (0.19 µg/m3), representing 35% each of the total PM1 mass. The

presence of sulfate at these two sites is likely mainly associated with sea salt particles (Lin et al., 2022), consistent with their

location in the marine environment. For COR, SGP, and GUC, sulfate is the primary inorganic component, with contributions395

of 31% at COR, 17% in SGP, and 12% in GUC. The high contribution of SO2−
4 in COR has been linked to SO2 emissions

from small fires occurring outside Patagonia and the Atacama Desert (Fast et al., 2024).

The ammonium contribution ranges from 6% at the GUC mountain site (0.10 µg/m3) to 16% at the ENA marine site (0.009

µg/m3). At the continental sites, COR and SGP, ammonium accounts for 9% of the PM1 mass concentration (0.36 and 0.50

µg/m3, respectively). Marine sites exhibit slightly higher variability, with contributions of 16% at ENA and 10% at ASI. These400

differences reflect both emission sources and total aerosol load. In continental environments, higher ammonium concentrations

are driven by local and regional anthropogenic sources, including agriculture (especially livestock and fertilizer use), road

traffic, industrial activities, landfills, coal combustion, and biomass burning (Anderson et al., 2003; Sutton et al., 2000). In

contrast, the lower total PM1 mass concentration observed for marine environments leads to a higher relative contribution

of ammonium, despite low absolute concentrations. The ocean is one source for this ammonium (e.g., Quinn et al., 1988).405

Regional transport and secondary formation processes further enhance ammonium levels through the production of compounds

such as ammonium sulfate and nitrate (Kang et al., 2018).

At most stations, nitrate plays a minor role (contribution less than 5%) except for the continental stations (SGP; 11% and COR;

7%). SGP shows the higher mean NO−3 concentration (0.6 µg/m3), followed by COR (0.3 µg/m3). The higher contribu-

tion of nitrate at continental sites is associated with anthropogenic emission sources such as fossil fuel combustion, biofuel410

combustion, and agricultural fertilization (Jaegle et al., 2005).

Among BC concentrations, the highest contributions are observed at ENA (9%; 0.05 µg/m3), likely influenced by local human

activity near the station, which is located within half a kilometer of the local airport (Wilbourn et al., 2024). At the mountain site

GUC, BC concentrations remain low (0.42 µg/m3), yet it accounts for 5% of PM1 mass. At continental sites, BC contributes

less than 2% with concentrations of 0.11 µg/m3 at SGP and 0.08 µg/m3 at COR.415

3.2.2 Composition-derived hygroscopicity, κchem

The bulk chemical composition is used to estimate the overall κchem for each site, as explained in Section 2.4. In this study,

κchem is derived based on three variations of Equation 1: (i) including BC (Scheme 1); (ii) excluding BC (Scheme 2); and

(iii) assuming a fixed κchem of 0.3 for all aerosols (Scheme 3). Figure 4a shows the resulting κchem values for each scheme at

sites with available chemical composition measurements. Scheme 1 could not be applied at ASI due to the dataset RH<40%420

constraint resulting in no harmonized absorption data at the site (Andrews et al., 2025a). Scheme 3, which assumes a constant

value κchem regardless of site characteristics, is represented as a horizontal line at all stations. Among all sites and for both

Schemes 1 and 2, the marine stations (ENA and ASI) have the highest κchem values (around 0.45), followed by the continental

sites (COR and SGP, approximately 0.3), and the mountain site (GUC, around 0.23). In this context, applying a fixed value
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of κchem = 0.3 (Scheme 3) tends to underestimate aerosol hygroscopicity in marine environments and overestimate it at the425

mountain site, while for the continental stations it provides a reasonably accurate approximation. The inclusion of BC in

Scheme 1 results in slightly lower κchem values compared to Scheme 2 across all sites, since BC is assumed to be completely

hydrophobic (κBC = 0), thereby reducing the volume-weighted contribution of hygroscopic species. It is also worth noting

that at marine sites, κchem may be underestimated due to the inability of the ACSM to detect refractory sea salt, which can

significantly contribute to aerosol hygroscopicity in those regions (Deshmukh et al., 2025).430

In general, κCCN is lower than κchem for all sites except ASI. Note that these two parameters cannot be directly compared

since κCCN only accounts for activated particles in the CCNC and its calculation depends primarily on the dry aerosol size

distribution and CCN concentrations as a function of SS, while κchem is based on chemical composition and its calculation

here represents the aerosol particles in the size range sampled by the ACSM (40-1000 nm) (Watson, 2017). Depending on

the SS, the CCNC and ACSM may be measuring particles in different size ranges and with different compositions. Despite435

the methodological differences, the general trend is similar: continental and mountain sites show lower hygroscopicity values,

while marine sites are characterized by higher hygroscopicity parameters. The higher κCCN compared to κchem obtained for

ASI could be explained by the low Dcrit value observed at this site, which is near the lower end of the sampling interval of the

ACSM.

Figure 4. (a) Boxplots of κchem values for Schemes 1 and 2 at all sites with available chemical composition measurements.The line inside
each box indicates the median, the bottom and top edges of the box represent the 25th and 75th percentiles, and the whiskers extend from
the ends of the interquartile range (IQR) to the most extreme data points within 1.5 times the IQR. Scheme 1 could not be applied at ASI
due to the absence of harmonized BC measurements. Scheme 3, which assumes a constant κchem = 0.3, is represented as a horizontal line
across all sites.(b) Relationship of the composition-derived κchem from Scheme 2 to the binned and averaged ratio of organic (OA) to total
(OA+IA) aerosol components. The vertical bars denote the standard deviation.

Figure 4b shows the variation in the chemical composition derived hygroscopicity parameter (κchem) from Scheme 2 as a440

function of the binned and averaged ratio of organic to total aerosol mass concentration (OA / [OA + IA]) for the five locations
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with ACSM measurements. The data were binned into 30 logarithmically spaced intervals between 0.01 and 10. The standard

deviation is represented for each averaged value. Figure S3 in the Supplement provides the corresponding analysis using

Scheme 1 (ASI can not be included in this case due to the lack of harmonized BC measurements). For both schemes, a

clear decreasing trend in κchem with increasing organic fraction is observed at all sites, reflecting that a higher contribution of445

organic aerosols reduces the overall hygroscopicity of the aerosol population. This behavior is consistent with the typically

lower hygroscopicity of organic compounds relative to inorganic salts (Pöhlker et al., 2023). At low (OA / [OA + IA]) ratios

(<0.1) κchem becomes more noisy due to the lower number of data points, but appears to plateau between 0.5 and 0.7. When

OA / [OA + IA] < 0.1, the volume fractions ϵi of sulfate, ammonium, and nitrate dominate, as these are the main inorganic

species at all sites (as shown in Fig. 3). Consequently, these species govern the sum in Eq. 1, and κchem plateaus at their450

volume-fraction-weighted average value (approximately 0.5–0.7; see Table S4).

This pattern is further supported by the results presented in Figures 3 and 4a. GUC, the site with the highest organic fraction

(73%), exhibits the lowest κchem,Sch2 value among all the sites (∼ 0.2). Similarly, the other two continental sites, SGP and COR,

have intermediate OA fractions (61% and 50%, respectively) and correspondingly low κchem,Sch2 values (∼ 0.25 and ∼ 30). In

contrast, the marine site ENA, with a lower organic fraction of 35%, presents a more balanced chemical composition—35%455

organics, 35% sulfate, and 16% ammonium—and a higher κchem,Sch2 (∼ 0.47). ASI, characterized by a dominant sulfate contri-

bution (52%) and the lowest organic fraction among the sites (33%), exhibits a similar κchem,Sch2 to ENA (∼ 0.45). These results

suggest that the organic fraction is a key driver of particle hygroscopicity, modulating the ability of the aerosol to take up water,

thereby impacting the overall particle hygroscopicity (Aklilu et al., 2006; Dusek et al., 2010). In general, increasing organic

fraction leads to a reduction in κchem, while a higher contribution of inorganic species - particularly sulfate and ammonium -460

increases overall hygroscopicity (Petters and Kreidenweis, 2007).

3.2.3 CCN prediction using κchem

Using the calculated κchem values, NCCN is estimated using κ-Köhler theory (Section 2.6.1). The predictions are made consid-

ering the three κchem schemes. Figure 5 compares the predicted and measured CCN concentrations at all SS for the four sites

where all three schemes can be applied to allow fair evaluation of the performance of each approach. Note that ASI is excluded465

due to the lack of harmonized BC measurements at that station.
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Figure 5. Log-log scatter plot of predicted CCN concentrations (NCCN pred) with respect to the observed CCN concentrations (NCCN

meas) for all SS for all the sites except ASI using the three prediction schemes. A boxplot showing the relative bias is included- the central line
represents the median, the box edges correspond to the 25th and 75th percentiles, and the whiskers extend from the ends of the interquartile
range (IQR) to the most extreme data points within 1.5 times the IQR. Plots correspond to (a) Scheme 1 (κchem,Sch1), (b) Scheme 2 (κchem,Sch2)
and (c) Scheme 3 (fixed κchem). The solid black line represents the 1:1 line and the dashed lines are the +/-50%.

Among the three schemes, the coefficient of determination (R2) is virtually identical (0.82 or 0.83), indicating a similarly

strong correlation between predicted and observed CCN concentrations for all schemes. Scheme 1 (Fig. 5a) shows the best

overall agreement with observations, with a slope of 1.09 and the lowest median relative bias (13%), indicating a slight overall

overprediction. Scheme 2 (Fig. 5b) shows a slightly higher slope of 1.15 and a median relative bias of 15%, reflecting a slightly470

higher overprediction compared to observations. However, the overall performance remains comparable to Scheme 1, with

similar predictive capability despite not considering BC. Scheme 3 (Fig. 5c), which uses a fixed κchem, exhibits the highest

slope (1.22) and the highest median relative bias (24%), pointing to a consistent tendency to overpredict NCCN . We must

consider the effect of the differences in the size ranges of the CCNC and the ACSM. While the CCNC has no lower size cutoff,

the ACSM measures particles in the 40–1000 nm size range (Watson et al., 2018), which could lead to an underestimation of475

the predicted CCN concentrations if Dcrit is smaller than the ACSM lower size cutoff. However, such small Dcrit values are

rare: the 10th percentile drops below 40 nm only at ENA (32–33 nm for SS ≥ 0.8%) and at ASI (18–28 nm for SS ≥ 0.4%).

Therefore, the ACSM lower size cutoff may cause a slight underestimation of CCN at ASI and, to a lesser extent, at ENA, but

provides comparable estimates at the other sites.

Figure S4 in the Supplemental provides further insight into the performance of each scheme across different stations by showing480

the R2 and median relative bias (MRB) values per site—here, all available measurements for each scheme are included, and

ASI is also considered for Schemes 2 and 3. Table S5 lists the number of data points available per site for each scheme.

Continental stations (SGP, COR, GUC) show a slight overestimation of CCN concentration in all three schemes (MRB>0).

This may be due to the presence of lower activity particles not fully accounted for by a bulk κchem value. Nevertheless, the

R2 values remain high (between 0.77 and 0.82), indicating generally good predictive skill. At the marine station ENA, CCN485

concentrations are slightly overestimated, by a bit more (10-15%) than at continental sites. Still, R2 values remain above 0.78

across all schemes, indicating robust predictive performance despite some variability in chemical composition. In contrast, an

underestimation of CCN concentration is observed at the marine station ASI in Schemes 2 and 3 (MRB<0) (Scheme 1 cannot
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be applied at this site). Although ASI exhibits high sulfate levels (52%) and relatively low organics (33%), as shown in Fig. 3,

sea salt — typically abundant and highly hygroscopic in marine environments — cannot be detected due to the limitations of490

the ACSM. Consequently, the predictions calculated using Scheme 2 may underestimate the actual aerosol hygroscopicity at

this site. Similarly, in Scheme 3, the use of a fixed κchem=0.3 may underestimate the actual bulk aerosol hygroscopicity at ASI,

which likely exceeds this value due to the dominance of sulfate and the potential presence of unmeasured sea salt. Despite these

limitations, ASI shows the best agreement between predicted and measured CCN, with R2 values of 0.97 and MRB<25% for

both schemes, suggesting the prediction framework performs well, possibly due to the relatively stable atmospheric conditions495

and the less variable aerosol composition typical of remote marine environments (Saliba et al. (2020); Zuidema et al. (2015)).

An additional factor contributing to the NCCN underestimation at ASI could be that the median Dcrit at 0.8 and 1% SS is below

the ACSM detection limit (40 nm). Consequently, some particles activated as CCN are not captured in the chemically derived

predictions, leading to measured CCN concentrations exceeding the predicted values. Although ENA is also a marine station,

its higher organic fraction (35%) likely reduces the influence of unmeasured sea-salt particles — which are more hygroscopic500

— on κchem, resulting in an overestimation of NCCN . Schmale et al. (2018) reported a consistent overestimation of predicted

CCN concentrations using different κchem schemes at 6 measurement sites (only one of the seven sites studied in Schmale et al.

(2018) underestimated CCN measurements, and it was also a marine site). Although the use of composition-derived values

κchem consistently reduces bias and tightens the fit to measured CCN, our results are consistent with those of Schmale et al.

(2018) suggesting that even a constant bulk κchem = 0.3 provides a realistic first-order estimate of CCN number concentrations505

in diverse environments.

3.3 Aerosol optical properties and CCN prediction

3.3.1 Overview of aerosol optical properties

Aerosol optical measurements are available at 7 of the 10 sites (not available for SBS-CP, SBS-SPL and ASI). Figure 6 provides

an overview of key aerosol optical parameters for all sites, including σsp and σap, and four derived parameters: BSF, SAE,510

AAE and SSA. All measurements used in this analysis correspond to PM10 aerosol size cut hourly data and are reported at 550

nm, or for the blue/red wavelength pair for SAE and AAE. As filtering criteria, for the calculation of the derived parameters,

measurements with σsp < 0.5 Mm–1 were not considered and unphysical values were also excluded, i.e., SSA and BSF outside

0–1. In addition, negative SAE and AAE values were also excluded. On average, the combined constraints eliminated about

4% of the data across all stations, although at MOS up to 17% of the measurements were discarded. The filter responsible for515

most exclusions varied depending on the station, while the SSA constraint was generally the least restrictive, removing the

fewest data points. It is important to note that the values presented here correspond to specific measurement periods rather than

year-round averages, except for SGP and GUC, where more than 1 year of AOP observations are available and allow for a

more representative characterization.
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Figure 6. Boxplots of the distribution of aerosol optical properties at all sites. (a) σsp, (b) σabs, (c) BSF ,(d) SAE, (e) AAE and (f) SSA.
Median values (black lines), 25th–75th percentiles (black boxes) and the whiskers extend from the ends of the interquartile range (IQR) to
the most extreme data points within 1.5 times the IQR.

The scattering coefficient (Fig. 6a) shows notable variability across sites, reflecting differences in aerosol loading. The highest520

median σsp is observed at the marine site ENA (e.g., 20.7 Mm–1), which contrasts with the low PM1 concentration at this site.

This is likely due to high concentrations of supermicron sea salt particles commonly found in marine-influenced environments

(Vaishya et al., 2011). This site is followed by MAO, SGP, and COR continental stations, with median values of 15.9, 13.9,

and 8.9 Mm–1, respectively. In contrast, the mountain site GUC and the polar locations (MOS and ANX) show the lowest

median scattering coefficients (e.g., 4.7, 5.2, and 5.7 Mm–1, respectively), consistent with their remote and cleaner atmospheric525
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conditions. These findings align with those reported by Laj et al. (2020), where values below 10 Mm–1 were observed for polar

environments and mountain sites.

The absorption coefficient (Fig. 6b) has a different pattern at the sites than the scattering coefficient. The highest median σap

is observed at the continental site MAO (1.63 Mm–1), suggesting a strong presence of absorbing particles, likely from biomass

burning and anthropogenic emissions (Rizzo et al., 2013). This is followed by the other continental stations, COR and SGP,530

with median values of 0.55 and 0.65 Mm–1, respectively. Marine and polar sites exhibit significantly lower values, with ENA,

MOS and ANX showing median concentrations of 0.17, 0.27, and 0.09 Mm–1. The mountain site GUC reports a moderate

absorption level of 0.28 Mm–1, in line with previous findings for high-altitude, remote locations, where aerosol absorption

tends to be limited due to the absence of nearby combustion sources (Collaud Coen et al., 2018).

The back-scattered fraction (Fig. 6c), which is a proxy for particle size in the aerosol population, shows the highest median535

values at continental and mountain sites. The highest BSF is observed at COR (0.16), followed by SGP, GUC, and MAO, all

with median values of 0.14. These elevated BSF values indicate a greater contribution from smaller particles. Marine and polar

sites (ENA, ANX, and MOS) show smaller median BSF values in the range 0.10–0.13. This highlights the different source

regimes - sea spray and remote transport in the marine boundary layer, and aged background aerosol in polar regions.

The scattering Ångström exponent (Fig. 6d) provides complementary information to BSF, as it is more sensitive to particles540

in the upper accumulation and coarse modes (Collaud Coen et al., 2007). The highest SAE values are observed at continental

and mountain sites such as SGP (2.01), GUC (1.67), and COR (1.37), consistent with the prevalence of fine-mode aerosols

from anthropogenic and biomass burning sources. At COR, frequent dust transport during the austral spring may explain its

relatively lower SAE compared to other continental sites (Varble et al., 2019). In contrast, lower SAE values at marine and

polar sites—ENA (0.36), ANX (0.62), and MOS (1.27) — suggest a stronger influence of coarse-mode particles such as sea545

spray or aged background aerosol.

The absorption Ångström exponent (Fig. 6e), which describes the wavelength dependence of aerosol light absorption and

provides insight into aerosol composition, shows relatively consistent median values across most sites, ranging between 1.1

and 1.3, but with the higher percentiles ranging up to 2 - 2.5. The median values reflect locations with absorption primarily

due to BC based on the Cappa et al. (2016) AAE/SAE matrix, while the higher AAE values indicate occasional incursions550

of absorbing aerosols related to dust or biomass burning organics (Cazorla et al., 2013; Kirchstetter et al., 2004). In contrast,

the polar site MOS exhibits a notably lower median AAE of 0.67. AAE values below 1 have been previously reported at

remote Arctic and marine sites (Schmeisser et al., 2018), although such low AAE values may also be partially influenced by

measurement artifacts in the presence of coarse-mode aerosols (Bond et al., 1999).

Finally, the single scattering albedo (Fig. 6f), which indicates the relative contribution of absorbing particles to aerosol extinc-555

tion coefficient, shows high values across most sites (>0.9), suggesting the dominance of scattering aerosols. ANX, MOS, and

ENA, which are all marine influenced, have median SSA > 0.95, while GUC, SGP and COR have median SSA values closer
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to 0.9. The lowest median SSA is found at MAO (0.80), indicating a relatively more absorbing aerosol mixture at this site

consistent with anthropogenic and biomass sources.

3.3.2 CCN predictions using aerosol optical properties (S2019)560

Following the S2019 methodology described in Section 2.6.2, Figure 7 compares predicted CCN concentrations using (a)

the original S2019 equation (NCCN,S2019) and (b) the new version of the S2019 equation derived using the original data

of S2019 and the data from the stations in this study (NCCN,new), against measured CCN concentrations (NCCN meas)

for the seven sites with optical properties in this study and for all SS. The number of data points for each site used in the

comparison—identical for both equations—is provided in Table S5 in the Supplemental. The comparison shows an increase565

in the regression slope from 0.72 in plot (a) to 0.86 in plot (b), indicating a better agreement between predicted and measured

NCCN when using the new equation. The coefficient of determination (R2) remains unchanged (0.61), suggesting that the

overall model performance is comparable in terms of explained variance. The median relative bias decreases in absolute value

from –27% in (a) to –8% in (b) as the number of sites increases, indicating a reduced underestimation in the predictions.

Meanwhile, the similar length of the MRB whiskers in both cases suggests that the variability remains comparable, even when570

a broader range of stations and aerosol conditions are included. However, the interquartile range decreases from 81 to 69,

indicating reduced variability in errors. This reduction in MRB, together with the smaller IQR, reflects an improvement in

prediction accuracy, with fewer extreme deviations and a more balanced distribution of errors. Consequently, the new equation

provides CCN predictions that are more reliable and closely aligned with the measured CCN concentrations across the full

range of conditions.575

Figure S5 in the Supplemental provides additional insight into the performance of both equations across different stations by

displaying the site-specific R2 and MRB (median relative bias) values. As observed in Fig. 7, the coefficients of determination

remain largely unchanged between the two equations. For continental (COR, SGP, MAO) and mountain (GUC) sites, CCN

concentrations tend to be slightly underpredicted with MRB<0 (Fig. S5a), whereas overpredictions are more common at marine

(ENA) and polar (MOS, ANX) sites (MRB>0; Fig. S5a). The new equation (Fig. S5b) generally increases the predicted NCCN580

values, leading to an overall improvement in prediction accuracy. Figure S6 shows the slope and relative bias for each measured

SS between the predicted and the measured CCN concentrations considering the new equation. Excluding the lowest SS (0.1%),

both the slope and the median relative bias remain relatively stable across all SS values, indicating that the predictive equation

performs consistently well regardless of SS. The larger deviation observed at 0.1% SS may be attributed to the logarithmic

function used to capture the dependence of NCCN on SS. These results confirm that the original S2019 equation performs well585

across a wide range of conditions, even when evaluated with an extended dataset. However, the new equation proposed in this

work provides a more accurate and balanced estimation of NCCN , particularly by reducing systematic underestimation and

improving agreement across the full concentration range.
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Figure 7. Log-log scatter plot of predicted CCN concentrations with respect to the observed CCN concentrations (NCCN meas) considering
(a) equation in S2019 (NCCN,S2019) and (b) new equation (NCCN,new; based on 13 sites). The data plotted is only for the seven sites with
optical data in this study (i.e., sites shown in Fig. 6). The solid black line represents the 1:1 line and the dashed lines are the +/-50%. A
boxplot showing the relative bias is included. The boxes represent the interquartile range (25th–75th percentiles), with black lines indicating
the median values and whiskers extending from the ends of the interquartile range (IQR) to the most extreme data points within 1.5 times the
IQR.

3.3.3 CCN prediction with random forest model using optical properties

To further explore the potential of aerosol optical properties to predict CCN concentrations, a random forest model was im-590

plemented to estimate the C and k parameters of the Twomey equation. As input variables for the RF model, the same set

of AOPs as in the S2019 equation (Section 3.3.2) is considered: σsp, BSF and SAE. Once the model is run, the predicted

parameters are used to compute CCN concentrations across a range of SS. The performance of the model is evaluated by com-

paring these predictions based on RF with measured CCN values, allowing a direct comparison with the results of the S2019

parameterizations.595

Figures 8 and S7 present the results of the RF model. Figures 8 (a) and (b) display the relative importance of each input

variable in predicting the C and k parameters, respectively, while Figure S7 compares the observed and RF-predicted C and

k parameters. For the C parameter, σsp contributes the most, followed by BSF and SAE, highlighting the dominant role of

the total particle loading in determining the potential CCN concentration. In contrast, BSF is the most important variable in k

prediction, followed by SAE and σsp, suggesting that the physicochemical properties of the particles, more strongly reflected600

by BSF and SAE, are more relevant to capture the chemical sensitivity embedded in k. These results are consistent with

previous studies that have shown that C is primarily influenced by aerosol number concentration and total mass loading, while

k reflects aerosol hygroscopicity and size distribution (Cohard et al., 1998; Jefferson, 2010; Vié et al., 2016; Rejano et al.,

2021). Typically, high C values are found under polluted conditions with high particle number concentrations, whereas low k

values are associated with particles exhibiting higher hygroscopicity and larger sizes (Martins et al., 2009; Pöhlker et al., 2016;605
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Jayachandran et al., 2020). Thus, independent prediction of these two parameters offers valuable information on the abundance

and physicochemical properties of aerosols that influence CCN activation.

Figure 8(c) shows the comparison of the predicted CCN concentrations, calculated using the RF-derived C and k values, and

measured CCN concentrations across all supersaturations. The result shows a slope of 0.90 and a R2 of 0.62, indicating good

agreement between predictions and measurements. The inset boxplot shows the distribution of relative bias, with a median610

value of approximately 19%, indicating a overall overestimation.

Figure 8. Importance of input variables in the random forest model considering AOPs used in S2019 (σsp, BSF, and SAE) for (a) C and (b)
k parameters. (c) Log-log scatter plot of predicted CCN concentrations (NCCN pred) versus observed concentrations (NCCN meas) using
a RF model to estimate the parameters of the Twomey equation. The solid black line represents the 1:1 line and the dashed lines are the
+/-50%. A boxplot showing the relative bias is included. Boxes show the interquartile range (IQR, 25th–75th percentiles), with black lines
indicating median values, and whiskers extending from the ends of the IQR to the most extreme data points within 1.5 times the IQR.

RF models can take advantage of additional informative features without a significant loss in predictive performance (Breiman,

2001) so, as the next step, the RF model is extended by including the full set of AOPs as predictors: σsp, BSF, SAE, σap,

AAE and SSA. Although some of these variables are strongly correlated (see Fig. S8), RF models are known to be robust to

multicollinearity (Gregorutti et al., 2017). Figure 9c compares the predicted CCN concentrations—calculated using RF-derived615

C and k values from the full AOP set—with the observed values. The extended model achieves a slope of 0.91 and an R2 of

0.69, slightly improving upon the performance of the RF model using only the three Shen-based variables (slope = 0.90, R2 =

0.62). The median relative bias also decreases slightly from 19% (three-variable case) to 15% (full AOP set), with comparable

interquartile ranges (–92 to 180 vs. –88 to 145). To assess the RF models’ performance across different SS levels, Figure S9

presents the slope and median relative bias for both schemes. Results are consistent across the SS range, with slopes ranging620

from 0.80 to 0.99 and median relative biases between 8% and 32%, indicating that the predictive capability of the RF models

is independent of SS. Finally, Figure S10 in the Supplemental Material shows site-specific R2 values comparing predicted and
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measured CCN concentrations for both RF schemes-the S2019 AOPs (Fig. S10a) and the full AOP set (Fig. S10b). While the

overall performance is similar, the inclusion of all AOPs—despite some strong inter-variable correlations (Fig. S8)—slightly

improves both the coefficient of determination and the bias across all sites, supporting a more accurate prediction of CCN625

concentrations.

To better understand the source of these improvements in CCN prediction, we next analyze the relative importance of the input

variables used to estimate the C and k parameters when using the full AOPs set. Figures 9 (a) and (b) display the relative

importance of each input variable in predicting the C and k parameters, respectively, while plots in Fig. S11 compare the

observed and RF-predicted C and k parameters. AAE is identified as the most important input for the prediction of k (Fig.630

9b), followed by SAE and BSF, suggesting that the chemical sensitivity embedded in k is better captured when accounting for

absorption-related properties. For the prediction of the C parameter, BSF is the most important variable (Fig. 9a), followed

by SAE and AAE, while σsp is of relatively lower importance. This result contrasts with the previous model (Fig. 8a), where

σsp dominated, highlighting that including absorption-related parameters redistribute the contribution across variables. As

previously mentioned, some of these variables are strongly correlated (Fig. S8) and the model tends to distribute the importance635

among correlated variables affecting overall predictive performance (Genuer et al., 2010).

Figure 9. Importance of input variables in the random forest model considering all AOPs (σsp, BSF, and SAE, σap, AAE, and SSA) for
(a) C and (b) k parameters. (c) Log-log scatter plot of predicted CCN concentrations (NCCN pred) versus observed concentrations (NCCN

meas) using a RF model to estimate the parameters of the Twomey equation. The solid black line represents the 1:1 line and the dashed lines
are the +/-50%. A boxplot of the relative bias is included. Boxes show the interquartile range (IQR, 25th–75th percentiles), with black lines
indicating median values, and whiskers extending from the ends of the IQR to the most extreme data points within 1.5 times the IQR.

To further analyze how different AOPs contribute to the prediction of the C and k parameters, Figure 10 presents heatmaps of

variable importance for models using different combinations of AOP inputs for C (Figure 10a) and k (Figure 10b). In these

heatmaps, each row corresponds to a model run (the first row includes all AOPs; subsequent rows exclude one AOP at a time),
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and each column represents one of the six AOPs. Analyzing these heatmaps reveals that BSF remains the most important640

predictor of C, except when σsp, σap, or BSF itself are excluded from the model. In these cases, the model shifts its reliance to

a closely related variable: AAE becomes the dominant predictor when BSF is removed, while σap and σsp substitute each other

when one is absent. This behavior likely reflects the partial redundancy and strong interdependence among BSF, AAE, σsp, and

σap. Indeed, their relationships are supported by the Spearman correlation coefficients (Fig. S8 in the Supplemental): BSF and

σsp are negatively correlated (ρs =−0.41), σsp and σap show a strong positive correlation (ρs = 0.68), and BSF and AAE are645

moderately correlated (ρs = 0.36). While these correlations help explain why certain variables gain importance when others are

removed, it is important to note that RF variable importance also depends on how much each variable contributes to reducing

prediction error across the ensemble, not solely on pairwise correlations (Breiman, 2001). For the prediction of k (Figure 10b),

the AAE is the most important predictor under the full model. Removing AAE shifts the top rank to BSF, again reflecting

their correlation. This result highlights the RF model’s ability to reallocate predictive importance among partially redundant650

features, relying on combinations of variables that together best capture the relevant information rather than depending on any

single one.

Figure 10. Heatmap of input variable importance in the Random Forest model for (a) C and (b) k parameters. Each row corresponds to a
RF model in which one AOP has been removed, while each column represents the importance assigned to each available AOP in that model.
The variable with the highest importance in each prediction is shown in red; importance values ≥0.20 are shown in orange; values between
0.15 and 0.19 in dark yellow; and values <0.15 in light yellow.

RF model results could be influenced by the differences in the availability of data at each measurement site, providing better

results for those sites where datasets are longer. Therefore, to evaluate the influence of each location on model generalization

when considering all AOPs, a LOSO cross-validation approach is applied as explained in section 2.6.3. Figure S12 in the655

Supplement shows the variable importance for each site in the LOSO iteration. In each subplot, the name of the site excluded is

indicated. The importance of predictors remains consistent across sites: AAE and SAE typically dominate the prediction of k,

while BSF, SAE and AAE are more important for predicting C. This consistency confirms that no single site influences feature

selection within the model. Notably, when SGP — the site with the largest number of observations — is excluded, some shifts

in variable importance are observed. However, these changes are not large enough to affect the overall importance, suggesting660

that the 70/30 approach used in the main analysis is not biased by the dominance of SGP data. Figure S13 in the Supplement

shows the comparison between predicted and observed CCN concentrations at each excluded site. Slopes range from 0.38 in
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ENA to 1.87 in MOS, and R2 values from 0.03 to 0.56. Although predictive performance remains good for most sites, the

model shows reduced accuracy at marine and polar locations (e.g., ENA, MOS, ANX). This is likely due to the fact that the

training data are dominated by continental stations, limiting the model’s ability to capture the distinct AOP characteristics of665

marine and polar environments.

A recently published study by Wang et al. (2025a) used an ensemble of multiple machine learning tools to investigate the

ability of AOPs to predict CCN concentrations at 5 sites which are common to this study (SGP, GUC, ENA, ASI and MOS).

As input variables, Wang et al. (2025a) uses σsp, BSF, SAE and SSA at the different wavelengths. The R2 values obtained

ranged between 0.2 to 0.63, depending on the predictive model construction. Their ensemble model was trained specifically for670

each site and for SS=0.4%, aiming at optimizing their predictive potential to the unique atmospheric conditions of each site.

In our case, we decided to apply the RF model to the whole range of SS and to all sites together in order to provide a general

model that performs reasonably well at most atmospheric conditions.

4 Discussion of CCN prediction methods

Direct measurements of CCN concentration are less common than other aerosol properties measurements. Multisite harmo-675

nization efforts combining CCN and other collocated aerosol measurements (e.g., Schmale et al., 2017; Andrews et al., 2025a)

can strengthen global prediction frameworks. Reliable CCN predictions from commonly measured aerosol properties would

offer a cost-effective and scalable alternative to direct measurements, expanding the scope of aerosol–cloud interaction studies.

Several methodologies for the prediction of CCN concentrations have been reported in the literature. Approaches based on

aerosol chemical composition, as considered in this work, apply κ-Köhler theory to derive CCN activity from bulk or size-680

resolved chemical measurements (Gunthe et al., 2009; Jurányi et al., 2010; Wang et al., 2010), providing a physically grounded

estimate that captures the influence of composition on particle activation. Optical property–based approaches use measured

aerosol optical characteristics as empirical proxies for CCN concentrations (Ghan et al., 2006; Shinozuka et al., 2009; Liu

and Li, 2014), offering a simple and cost-effective method, particularly when long-term observational datasets are available.

Other methods rely on particle number size distributions (PNSD) combined with either a critical activation diameter or the685

aerosol hygroscopicity parameter κ derived from hygroscopic growth measurements (Ervens et al., 2007; Cai et al., 2018),

providing predictions that directly account for particle size and activation behavior. Parameterization schemes based on aerosol

activation properties, such as size-resolved activation ratios and inferred critical diameters, have been evaluated in several field

campaigns, demonstrating robust performance across diverse environments (Deng et al., 2013).

Among PNSD-based methods, the simplest assumes a single activation diameter from which all particles are activated, typically690

50–150 nm depending on SS (Lihavainen et al., 2003). This approach has been used in other studies (Asmi et al., 2011;

Kerminen et al., 2012; Rose et al., 2017; Rejano et al., 2024) providing satisfactory CCN estimations. This simple approach to

estimate CCN from PNSD and Dcrit is included here to enhance the discussion. The Dcrit values assumed in this work—150,

110, 80, 65, 53, and 49 nm for SS=0.1, 0.2, 0.4, 0.6, 0.8, and 1.0%, respectively — correspond to the median Dcrit for each
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SS, obtained from the median values across stations, and are in line with previous studies (Bougiatioti et al., 2011; Jurányi695

et al., 2011; Schmale et al., 2018). Figure S14 presents the results of the PNSD prediction method, showing predicted versus

measured CCN concentrations across the 10 sites.

Figure 11 shows the MRB between predicted and measured CCN concentrations across all SS for all the methods tested in this

study. Positive MRB values indicate overprediction and negative values underprediction. The simple Dcrit approach yields a

MRB of –5% (shown in green) indicating an excellent agreement with observations. We next compare the aerosol optical and700

chemical predictions to each other and to this Dcrit approach.

In this study we evaluated three chemistry-based prediction schemes: including BC (scheme 1), excluding BC (scheme 2), and

assuming constant κchem = 0.3. The first two performed similarly (MRB < 15%), while scheme 3 exhibits higher overprediction

(24%). Comparable correlations to the other two methods suggest that even a bulk κchem value can provide a first-order CCN

estimate across diverse environments. The overprediction observed with this method is consistent with previous applications of705

this approach. Schmale et al. (2017) reported a general overprediction of different κchem schemes at 7 sites, and similar results

were found at a high-mountain site by Rejano et al. (2024). Two main limitations of the chemical prediction method contribute

to this bias. First, it is based on bulk chemical composition measurements (size-resolved chemical composition measurements

are rare) which assumes that particles are internally mixed and chemically homogeneous regardless of size (Wang et al., 2010;

Ren et al., 2018). Second, it requires assumptions about the chemical species present (e.g., sulfate forms, organic types) in the710

atmosphere, which can introduce large variability in the predictions (Schmale et al., 2018; Rejano et al., 2024).

Figure 11. Median relative bias (MRB,%) between predicted and measured NCCN across all SS for different prediction methods. Each
box represents a different predictive method (applied for the sites with available data as described in each section). Positive values indicate
overprediction, while negative values indicate underprediction.

AOPs provide indirect information on particle size and composition and have been extensively measured for decades (Laj et al.,

2020; Collaud Coen et al., 2020). Shen et al. (2019) developed an empirical parameterization to estimate CCN concentrations

from three AOPs: σsp, BSF and SAE. In this study, we applied their method with additional sites, deriving new coefficients for
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their empirical parameterization. As shown in Fig. 11, the original S2019 equation performs well across diverse conditions, but715

the updated version reduces underestimation (MRB) from –27% to –8% and achieves tighter agreement across the full NCCN

range (blue bars labeled S2019 and New eq.). The new Shen-based parameters perform comparably to the Dcrit approach

in terms of MRB and other metrics (e.g., slope and R2). This S2019 approach is simple to apply and suitable where only

nephelometer data are available, enhancing its applicability to global datasets. The historical availability of AOP data can

potentially facilitate broader spatial and temporal coverage of CCN estimates, albeit with more uncertainty than direct CCN720

observations or predictions based on aerosol size distributions.

Finally, we introduced a new approach based on the Twomey equation parameters, using a RF model to predict C and k. Inputs

included both the three AOPs from the S2019 equation (σsp, BSF, SAE) and the full set of available AOPs (σsp, BSF, SAE,

σap, AAE, SSA). As shown in Fig. 11, incorporating all AOPs reduced the MRB between predicted and measured NCCN from

19% (S2019 variables) to 15%, demonstrating the benefit of additional optical predictors. The MRB values are comparable725

to to scheme 1 and 2 of the chemical prediction, though not as low as those from the updated S2019 or Dcrit approaches.

However, the RF analysis of AOP importance provides insights into the prediction of C and k that cannot be obtained with

other prediction methods based on optical properties.

There are still many ways in which the CCN prediction schemes based on aerosol optical or chemical properties can be ex-

panded. In particular, a recent study (Wang et al., 2025b) shows that using dry scattering measurements instead of ambient-RH730

conditions results in a significant improvement of CCN concentration estimations—an error that increases with RH. This high-

lights a potential systematic bias in approaches relying solely on dry optical observations. Observational datasets such as those

compiled by Burgos et al. (2019), with co-located scattering-related hygroscopicity, f(RH), at multiple sites, represent a key re-

source for future work. Leveraging such datasets could help refine CCN prediction models under ambient humidity and reduce

associated uncertainties.735

Also, although this study combines information from 10 measurement sites, there are similar datasets at additional sites, that

would be interesting to combine to have those additional co-located measurements harmonized. A potential application of the

RF model and the new S2019 equation developed in this study is to look at long-term aerosol optical measurements to estimate

CCN concentrations and expand the global and temporal coverage of CCN estimates. Additionally, those results could be used

to evaluate global models performance (Fanourgakis et al., 2019).740

5 Conclusions

This work presents a comprehensive phenomenological study of in-situ aerosol microphysical, CCN activation, chemical com-

position, and optical properties at ten surface sites across diverse environments. Several CCN prediction methods using the

chemical composition and aerosol optical properties were evaluated.

Analysis of aerosol microphysical properties and CCN activation at 0.4% SS reveals a wide variability between environments.745

The polar and marine sites exhibited the lowest concentrations of Ntot and NCCN, with values below 400 cm−3 and 255
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cm−3, respectively. Despite similar particle concentrations at these remote sites, the significant variability in Dcrit and AF

underscores the importance of size distribution and chemistry in CCN activation. In contrast, continental sites exhibited the

highest Ntot and NCCN (>2000 cm−3 and 659 cm−3, respectively) with fairly similar AF values (0.25-0.38) and a relatively

narrow range in Dcrit (76-98 nm). The mountain sites were more similar to the continental sites than the remote sites in terms750

of aerosol concentrations, but generally exhibited lower AF (<0.24).

The chemical composition analysis of the sites with ACSM measurements shows that organics dominate in continental and

mountain sites (50–73% of PM1), while marine stations are sulfate-rich (35–52% of PM1). Total PM1 mass ranges from 0.54

to 5.5 µg/m3 across sites. Ammonium and nitrate reflect local emissions at the sites and BC is a minor fraction (<9%) of the

aerosol mass. A κchem analysis was performed using three different schemes to represent hygroscopcity (κchem calculated from755

ACSM composition + BC, κchem calculated from ACSM composition only and fixed κchem=0.3). The median hygroscopicity

across sites ranged from approximately 0.2 to 0.5 and increased systematically as the organic fraction decreased.

Aerosol optical properties across the seven sites reveal clear environmental differences. Both σsp and σap vary with aerosol

loading and sources, with continental sites having the highest absorption due to biomass burning and anthropogenic emissions.

At the marine site ENA, high σsp reflects the presence of marine aerosols with high scattering efficiency. BSF and SAE indicate760

a predominance of fine particles at continental and mountain sites, whereas marine and polar sites are dominated by coarser

particles. AAE values remain generally consistent across sites with median values of approximately 1.2, indicating that BC is

the primary absorbing component. Most sites are dominated by scattering aerosols (SSA > 0.9), with lower SSA observed at

the site with the most urban influence.

The joint dataset of CCN, aerosol chemical composition and optical properties have been used to evaluate the ability of765

different prediction methods to estimate CCN concentrations, using either chemical composition or aerosol optical properties

as inputs. Comparing these prediction methods across site types provides a better understanding of biases and uncertainty

in CCN concentration estimates when direct CCN measurements are unavailable. When PNSD measurements are available,

assuming a fixed Dcrit for each SS and counting particles larger than this diameter yields a simple estimate with only a slight

underprediction (MRB = –5%). Similarly, assuming a fixed hygroscopicity (κchem = 0.3) provides a straightforward estimate,770

but it tends to overpredict CCN concentrations (MRB = 24%). When chemical composition measurements are combined with

PNSD, or when only AOPs are available, prediction accuracy is similar, particularly when using κchem values derived from

measured species or AOP-based models incorporating multiple variables. Both approaches perform similarly well (8 < |MRB|

< 27 %). In stations with limited instrumentation, measuring AOPs — especially σsp, BSF, and SAE — allows the application

of S2019 parameterization presented here, which performs robustly (MRB = -8%) across environments and SS, and involves775

fewer assumptions than chemically-based methods.

The random forest model approach allowed investigation of a wider range of AOPs than included in the S2019 parameterization.

Our RF analysis also represents, to the best of our knowledge, the first time the absorption Ångström exponent (AAE) has been

explicitly considered as a predictor in CCN estimation based on aerosol optical properties. The random forest model indicated
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the importance of AAE in the prediction of the Twomey exponent k, highlighting the potential of including absorbing aerosol780

characteristics in future parametrizations.

Both the empirical (Shen-based) and machine learning (random forest) approaches presented here offer a pathway to estimate

long-term trends in CCN concentrations at stations with extensive archives of aerosol optical data. Applying these methods

retrospectively could provide insights into the evolution of aerosol-cloud interactions over recent decades. However, a key

requirement for such analyses is a robust quantification of the associated prediction uncertainties, which will be essential to785

ensure the reliability of inferred trends.

Finally, while this study adds to the accumulated knowledge and previous synthesis of data (e.g., Schmale et al., 2018) relevant

for CCN analysis, there are still gaps in spatial coverage. Other observational sites making PNSD and CCN measurements do

exist. A truly global CCN climatology, similar in spirit to the effort of Rose et al. (2021) for Ntot and PNSD, would require an

extensive harmonization of disparate datasets - it would be a monumental but valuable undertaking.790

Appendix A: Overview of S2019 methodology

The first step in the approach of S2019 demonstrates that a logarithmic function more accurately captures the dependence of

NCCN on SS than other commonly used fits (see Fig. 1 in S2019). Figure S2 in the Supplementary Material shows the same

result for the stations considered here. The second step explores the relationship between NCCN and σsp, highlighting the

role of BSF in modulating this dependence. S2019 introduce the ratio RCCN/σ = NCCN/σsp and show that there is a linear795

relationship between RCCN/σ and BSF:

RCCN/σ =
NCCN

σsp
= a ·BSF + b (A1)

Equation A1 provides the starting point for the parameterization of CCN using aerosol optical properties. Fit coefficients at

each SS for the sites analyzed in S2019 are listed in their Table 3, while those for the sites in this study are shown in Table S1.

This relationship clearly differs among sites and for different SS. To eliminate the SS dependence, the slopes (aSS) and offsets800

(bSS) from the linear regressions are plotted against the SS, following the S2019 methodology. As shown in Figure A1, the data

follow a logarithmic fit, leading to the reformulation of equation A1 as:

NCCN = (aSS ·BSF + bSS) ·σsp = ((a1 ln(SS)+ a0) ·BSF + b1 ln(SS)+ b0) ·σsp (A2)

The coefficients a1, a0, b1 and b0 with their respective errors from both this study and Shen et al. (2019) are shown in Table

A1. Next, to obtain a site-independent parametrization, the different coefficients from all sites are combined. Figure A2 shows805

the relationships of the coefficients a0 vs. a1, b0 vs. b1, a1 vs. b1, and a0 vs. b0. Linear regressions yield a0 = (2.41 ± 0.13)a1,

b0 = (2.42 ± 0.12)b1 and b1 = (-0.095 ± 0.011)a1+(5.7± 11.0). Considering these relationships and, after the development
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shown in Section ”Derivation of equation A3 ” in the Supplement, equation A2 can be expressed as:

NCCN ≈ ln
(

SS
0.089± 0.011

)
[a1 (BSF− (0.095± 0.011)) + (5.7± 11.0)] σsp (A3)

Figure A1. Slopes (a) and offsets (b) of the linear regressions RCCN/σ = a.BSF +b of each site (Table S1) as a function of SS. Logarithmic
fitting applied to data.
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Table A1. Coefficients a1, a0, b1 and b0 from the logarithmic fitting of coefficients in Table S1 to SS. Shen et al. values are given in Table 4
of Shen et al. (2019). SE: standard error of the respective coefficient obtained from the linear regressions.

Sh
en

et
al

.

Site a1± SE a0± SE b1± SE b0± SE
SMEAR II 464± 11 1170± 16 −49± 1.5 −118± 0.67
SORPES 331± 12 817± 18 −26± 0.9 −62± 1.4
PGH 205± 30 385± 41 −6.3± 1.5 −9.1± 2.0
PVC 810± 17 1933± 21 −70± 1.7 −160± 2.1
MAO 393± 45 858± 40 −25± 6.6 −60± 5.8
ASI 52± 17 164± 26 −2.9± 1.6 −6.3± 2.3

T
hi

s
w

or
k

ANX 124± 18 303± 14 −11± 2.9 −25± 2
GUC 384± 20 994± 17 −17± 5 −49± 4
COR 730± 96 1834± 77 −51± 6 −141± 5
ENA 122± 30 385± 23 −13± 4 −40± 3
MAO 207± 16 467± 13 −3± 4 −2± 3
MOS 222± 23 889± 18 −23± 2 −86± 2
SGP 783± 140 2003± 106 −85± 16 −206± 12

Figure A2. Relationship between the coefficients a0, a1, b0, and b1 of Eq. A2 for each site shown in Table A1. The coefficients units are
cm−3 Mm.

It was shown in Shen et al. (2019) that when the number of hourly samples exceeds approximately 1000 — a condition also810

met at all our sites — the uncertainty in the minimum BSF (BSFmin) becomes sufficiently low. Therefore, instead of subtracting
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a fixed offset of (0.095± 0.025) from the BSF, we use the observed minimum BSF value (BSFmin; 1st percentile of BSF). In

addition, as shown in the derivation presented in Supplementary Section S4 of Shen et al. (2019), the final term (5.7±11.0) is

treated as a constant C, which depends on Rmin, defined as the minimum (first percentile) of NCCN/σsp. Taking all this into

account, Eq. A3 can be reformulated by incorporating these terms, and is written as follows.815

NCCN ≈
(

a1 ln
(

SS
0.089± 0.011

)
(BSF−BSFmin) +Rmin

)
·σsp. (A4)

The final step consists of relating the coefficient a1 in Eq. A4 to the scattering Ångström exponent (SAE), which is the only

parameter among optical properties found to be positively correlated with a1. Based on the median values from Shen et al.

(2019) and from this study, linear regression yields a1 ≈ (320±78)·SAE cm3 Mm (Fig. A3). Additionally, the minimum value

of R in Eq. A4, Rmin, was estimated as the 1st percentile of RCCN/σ at each site and supersaturation, resulting in an average820

value of Rmin = 8.7± 9.3 cm−3 Mm. Consequently, the parameterization becomes

NCCN ≈
[
(320± 78)SAE · ln

(
SS

0.089± 0.011

)
(BSF−BSFmin) + (8.7± 9.3)

]
·σsp. (A5)

Figure A3. Relationship of the a1 coefficient in Eq. A3 with the average PM10 scattering Ångström exponent (SAE).

Code availability. Code will be made available on request.
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