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Abstract. This study presents a comprehensive phenomenological analysis of cloud condensation nuclei (CCN) and aerosol
properties — including activation properties, microphysical characteristics, chemical composition, and optical properties —
across ten surface sites in different environments. Aerosol properties vary widely, reflecting the diverse environments, and con-
trolling the CCN activation characteristics. Despite their critical role in aerosol—cloud interactions, CCN observations remain

5 sparse and unevenly distributed, limiting global assessments of activation behavior. To address this gap, this study presents
CCN predictive methods based on chemical composition combined with particle number size distribution (PNSD) data, and
aerosol optical properties (AOPs). The chemical composition driven predictions are tested using three hygroscopicity schemes.

All schemes overpredict the CCN concentrations (median relative bias; MRB=13-15%), although the two composition-derived
CCN concentrations are markedly better predictors than the fixed-£cper, assumption (MRB=24%). The AOPs-derived CCN

10 prediction is based on two approaches: an extended empirical parameterization of Shen et al. (2019) (hereafter S2019) to 13
stations, which reduces bias from - 27% to - 8% and improves CCN agreement; and second, a random forest model that infers
Twomey activation parameters (C' and k) using both the S2019 variables and all the available AOPs. Including all AOPs re-
duces MRB from 19% to 15% and highlights the role of absorption in predicting CCN activation. These findings demonstrate

that both chemical and optical measurements can provide a reasonable estimate of CCN concentrations when direct measure-

15 ments are unavailable. These results enable retrospective analyses of long-term aerosol time series to investigate aerosol—cloud

interactions.

1 Introduction

Aerosol-cloud interactions (ACI) represent the largest source of uncertainty in quantifying the effective radiative forcing of
anthropogenic aerosols, as highlighted in the IPCC (2021) report. Within the total aerosol-induced effective radiative forcing
20 of —1.3(40.7) Wm?2, ACI contributes approximately —1.0(0.7) Wm?2. This substantial uncertainty in ACI related processes
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arises primarily from an incomplete understanding of how changes in cloud droplet number concentration and size affect cloud
water content and cloud spatial extent. These changes are driven mainly by variations in the abundance of cloud condensation
nuclei (CCN) — aerosol particles that act as seeds for cloud droplet activation. Therefore, improving our understanding of
CCN variability across spatial and temporal scales is essential to reduce uncertainties in global aerosol—cloud interactions and,

by extension, climate projections (Seinfeld et al., 2016).

Reducing these uncertainties requires an improved understanding of aerosol properties across both long-term/large-scale and
short-term/regional contexts. Key properties to reduce these uncertainties include aerosol number concentration, size distri-
bution, chemical composition, and the ability of these particles to act as CCN. Over the past few decades, numerous studies
have investigated the spatial and temporal variability of CCN and the factors controlling their concentrations in diverse (urban,
continental, high-altitude, marine, and polar regions) environments (e.g., Ansmann et al., 2023; Deng et al., 2018; Gallo et al.,
2023; Juranyi et al., 2011; Patel and Jiang, 2021; Rejano et al., 2021; Rose et al., 2010). However, most of these observa-
tions are based on short-term field campaigns and their comparability is limited due to differences in instrumentation and data
processing, complicating efforts to quantify CCN impacts at the global scale. Thus, improving our understanding of aerosol-
cloud interactions relies heavily on consistent and long-term measurements of particle number size distributions (PNSD), CCN
number concentrations (Nccn), aerosol chemical composition and hygroscopicity (Fanourgakis et al., 2019). A significant
contribution to addressing this limitation was made by Schmale et al. (2017, 2018), who conducted a phenomenological study
of collocated PNSD, chemical composition, and CCN measurements at 11 observatories - eight in Europe, two in Asia, and
one in the USA. However, expanding this analysis to a global scale requires a more extensive dataset with measurements in
regions not previously studied. To address this, Andrews et al. (2025a) recently compiled a dataset of PNSD, aerosol optical
properties (AOPs), chemical composition and CCN at 10 observatories - three in the continental USA, two in South America,

two in the Arctic and two in the middle of the Atlantic Ocean.

Even with the recent improvement in spatial coverage of CCN measurements and harmonized datasets (e.g., Andrews et al.,
2025a and others), the limited current availability of direct measurements of No¢ v is still not adequate for climate research
due to the high spatio-temporal heterogeneity of atmospheric aerosol. To overcome this limitation of regional/short-term mea-
surements, several studies have investigated the use of more widely available aerosol parameters, particularly AOPs, for CCN
estimation (e.g., Ghan et al., 2006; Shinozuka et al., 2009; Andreae, 2009; Shinozuka et al., 2015; Jefferson, 2010; Liu and
Li, 2014; Tao et al., 2018). These include properties such as the scattering coefficient (os,), back-scattered fraction (BSF), and
aerosol optical depth (AOD), which are routinely measured by ground-based networks (e.g., AERONET, GAW) and satellites.
For example, Jefferson (2010) used o,;,, BSF and single scattering albedo (SSA) to parameterize Twomey’s empirical CCN
activation parametrization (Twomey, 1959), estimating the coefficients C' and k. Previous studies have shown that C' and k
parameterizations are site-dependent and are affected by the loading and chemical composition of aerosol particles, respec-
tively (e.g., Rejano et al., 2021). To address this site dependency, Shen et al. (2019) developed a CCN prediction equation
based on in-situ aerosol optical properties and showed that correlations between the fit parameters could be used to reduce site

dependency and improve generalization across regions.
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The combination of aerosol chemical composition and PNSD within the framework of x-Kohler theory has been widely applied
to estimate CCN concentrations (e.g., Cai et al., 2022; Rejano et al., 2024). These estimates rely on different assumptions
regarding the reconstruction of bulk aerosol hygroscopicity from individual chemical components (Schmale et al., 2018; Rejano
et al., 2024). Reported closure agreement varies across studies, with aerosol mixing state identified as a key factor influencing
CCN prediction accuracy (Cubison et al., 2008). The relationship between CCN spectral parameters and aerosol properties is
often highly nonlinear because CCN activation depends not only on particle composition but also on size, with particles of
different diameters activating at different supersaturation (SS) levels (e.g., Liang et al., 2022; Ervens et al., 2007; Nair and Yu,
2020). These nonlinearities limit the effectiveness of traditional linear analyses in fully capturing the complexity of aerosol

CCN activity.

In recent years, machine learning (ML) has emerged as a powerful tool in atmospheric science, capable of capturing complex
nonlinear relationships. To the best of our knowledge, the first application of ML to CCN prediction was introduced by Nair
and Yu (2020) and later expanded by Nair et al. (2020), who developed a model using aerosol chemical composition and me-
teorological parameters under specific SS conditions. Rejano et al. (2024) applied a neural network at a high-altitude site with
four inputs: Ngg (concentration of particles larger than 80 nm), the OA/PM; ratio (organic aerosol to PM; mass concentration),
the oxidation proxy f44 (fraction of organic signal at m/z 44), and global solar irradiance. Liang et al. (2022) and Lenhardt
et al. (2025) both applied random forest (RF) models, the former achieving robust CCN estimates from AOPs without chemical
data and the latter identifying aerosol size as the main predictor of CCN-lidar backscatter relationships. More recently, Wang
et al. (2025b) applied an ensemble of ML methods to six sites to determine the most important AOPs for CCN prediction.
Collectively, these studies highlight the potential of ML to improve spatial and temporal characterization of CCN, with im-
plications for satellite retrievals and climate models. However, applications remain largely site-specific, and generalizability

across diverse environments is still uncertain, although Wang et al. (2025b) observed consistent patterns within similar site

types.

In this study, observations from 10 observatories comprising collocated measurements of PNSDs, CCN number concentrations,
CCN activation properties, and, in some cases, aerosol chemical composition and AOPs are analyzed. The stations cover a
range of environmental conditions (continental, mountain, marine and polar). In what follows, first, the CCN phenomenology
in terms of CCN concentration and activation parameters related to size distribution information is presented. Next, an overview
of the chemical composition and in-situ AOPs, where available, is presented in connection with the observed CCN properties.
CCN predictions based on aerosol chemical composition are evaluated and two additional approaches using aerosol optical
properties, parameterizations and machine learning, are explored. Finally, the different prediction methods are systematically

compared in the discussion section.
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2 Methodology

This section first describes the location, environment type and the measurements available for each site. Then a brief descrip-
tion of the data quality control process is given. Next, we describe the CCN activation parameters and AOPs. Several CCN
prediction schemes using the chemical composition and AOPs are presented. Finally, the random forest model methodology

for CCN prediction is described.
2.1 Sites and measurement availability

This study considers 10 sites distributed across various environmental settings. All data presented here are described in An-
drews et al. (2025a) and accessible at Andrews et al. (2025b). Figure 1 shows the location, environment and measurement
availability of each site, and Tables S2 and S3 in the Supplement present an overview of the characteristics of each station.
Three observatories — MAQO, COR and SGP — are located in continental environments, with MAO also occasionally influ-
enced by urban emissions from the nearby municipality of Manacapuru (Brazil). Two stations — ASI and ENA — are situated
in marine regions (north and south Atlantic Ocean, respectively). Additionally, ANX and MOS are located in the Arctic, where
they sample both polar and marine aerosols. The MOS site corresponds to the MOSAIC (Multidisciplinary drifting Obser-
vatory for the Study of Arctlc Climate) expedition, where the instruments were deployed on an icebreaker frozen into and
moving with the ice (Shupe et al., 2022). The remaining three observatories — GUC, SBS-CP and SBS-SPL — are situated in
mountainous terrain in Colorado (USA), although these mountain sites are also subject to continental influences. The SBS-CP
and SBS-SPL observations occurred during the STORMVEX (Storm Peak Laboratory Cloud Property Validation Experiment)
field campaign (Mace et al., 2010), at the Steamboat Springs Ski Resort, separated by 5 km horizontally and 782 m vertically.
The database includes both short-term campaigns with only a few months of measurements and long-term stations with several

years of data, such as ENA and SGP. Further details on all sites and campaigns are provided in Andrews et al. (2025a).

From the available dataset developed by Andrews et al. (2025a), the data considered in this study include hourly-averaged
measurements of Noc v, aerosol activation properties, PNSD, total particle number concentration, chemical composition and
AOQOPs. All data considered have been previously processed, harmonized and quality assured and are freely available (Andrews
et al., 2025b). All data are reported at standard pressure and temperature conditions (75:4=0 °C and P,;q=1013 hPa) and at
low relative humidity (<40%) to ensure better comparability of results among collocated instruments at each site and across
all 10 stations. The complete processing is described in detail in the data descriptor paper by Andrews et al. (2025a). A brief

description of the instruments is provided below.

CCN concentrations were obtained with a CCN counter (CCNC), either the single-column (DMT1C) or the dual-column
(DMT2C) version. Both models of CCNC had a column scanning across different SS with time, referred to as column A,
and the DMT2C had an additional column measuring at a fixed SS, referred to as column B. Hourly-averaged PNSD data
were derived from measurements made with a scanning mobility particle sizer (SMPS). The PNSD files also include the total

particle number concentration measured by an independent condensation particle counter (CPC) over the same period. An
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integrating nephelometer and a particle soot absorption photometer (PSAP) provided aerosol optical data at most sites. The
nephelometer measured aerosol scattering and backscattering coefficients at three wavelengths (450, 550 and 700 nm) and the
PSAP measured absorption coefficients at 564, 529, and 648 nm. Optical measurements were made downstream of a switched
impactor system so that both PM;y and PM; values of the optical properties are available. Our analysis primarily relies on
hourly PM; optical data, while PM; absorption data is used to complement the composition data. The chemical composition
data sets used in this study consist of hourly measurements from the quadrupole aerosol chemical speciation monitor (Q-
ACSM, hereafter referred to as ACSM) and include the sub-micrometer mass concentration of particulate organics, sulfate,
ammonium, nitrate, and chloride. Included with the ACSM data is the black carbon mass concentration derived from the PM;

PSAP absorption coefficient at 529 nm.

Tables S2 and S3 provide an overview of the instrument models, available measurements, and site-dependent settings. Note
that three (ASI, SBS-CP, and SBS-SPL) and five (ANX, MAO, MOS, SBS-CP, and SBS-SPL) of the 10 sites do not have

optical and chemical composition measurements, respectively (Fig. 1).
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Figure 1. Map of sites considered in this study. Site type is indicated with different colors; if the outline is different than the fill color the site
could be described by more than one type (e.g., polar and marine). MOS is a mobile deployment so the location represents the midpoint of
shiptrack. Symbols indicate measurements availability.

2.2 Data quality control

To ensure confidence in the measurements, the datasets used in this study rely on multiple instrument intercomparison qual-
ity checks (closure studies) previously described in Andrews et al. (2025a). These checks identify potential inconsistencies
between collocated instruments and ensure correct instrument functioning. In this study, we make use of two of these quality

checks.
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The first quality check applies to DMT2C instruments. CCN concentrations at 0.4% supersaturation measured by column B
are compared with those at the same SS from column A to ensure internal consistency. Data are excluded if the concentration
difference exceeds 50% (quality flag Qc_column_AB in the harmonized files). As shown in Figure S4 of Andrews et al.

(2025a), data from all sites with 2-column CCNC generally show excellent agreement.

The second quality check compares the total particle number concentration (/NVy,;) derived from the SMPS PNSD with that
measured by a stand-alone CPC. In this study, SMPS—CPC concentrations are excluded if the relative difference exceeds 50%
(quality check Qc_CPC_SMPS described in Andrews et al. (2025a)), but only when the contribution of particles smaller than
30 nm (N<3p) to Ny is less than 20% (condition applied in this study). This additional condition avoids removing data due to
discrepancies related to the CPC’s lower size cutoff and counting efficiency, especially during new particle formation events,
when CPC counts can substantially exceed those inferred from the SMPS. Overall, the SMPS—CPC comparison across sites

shows good agreement, as illustrated in Figure S1 of Andrews et al. (2025a).

After applying these two quality checks, less than 2% of the CCN column A data and a similarly small fraction of SMPS data
were excluded across all sites. Figure S1 shows the instrument operating periods at each site after these quality checks are
applied. Gaps may also exist due to periods when instruments were offline or not functioning properly, and for optical data,

when sample RH inside the nephelometer exceeded 40%.

For MOS, additional post-processing prior to applying the quality checks was required to remove periods affected by ship
emissions (Boyer et al., 2023), using a pollution detection algorithm previously developed by Beck et al. (2022). The post-
processing pollution detection algorithm was applied to the 5-minute resolution CPC data (MOS_smps_5min in Andrews et al.
(2025b)). As all instruments in this campaign measured from the same inlet, periods identified as polluted using the CPC are
considered polluted for all instruments. The algorithm applies several filters: a power law filter (a = 0.95, m = 0.6), a threshold
filter (10-10* cm™3), a neighboring point filter, a median filter (30, 1.4), and a sparse data filter (30, 24). Only measurements
classified as clean (66% of the original data) are retained. After this filtering, minor additional removal of flagged SMPS
(0.1%) and CCN column A (0.07%) data was applied. Figure S1 shows the available measurement periods at MOS after
applying quality checks and the pollution detection algorithm.

2.3 CCN-derived properties

The Andrews et al. (2025a) data sets used in this study also include calculated parameters that can be used to characterize
the CCN activation properties of the aerosol. These parameters are the activated fraction (AF), the critical diameter (D),
and the hygroscopicity parameter (xcc n)-The activated fraction (AF) represents the fraction of particles that activate as CCN
at a given SS, calculated as the ratio of CCN concentration to the total particle number concentration. In this study, AF
values derived from CPC measurements were used at all sites except MAO, where SMPS data were used due to the lack
of CPC measurements. The critical diameter (D.,;;) represents the particle size above which all particles are activated into
cloud droplets at a given SS. It can be derived by integrating the PNSD from the largest to the smallest diameters until the

integrated number matches the measured CCN concentration at a given SS (Vogelmann et al., 2012; Jurdnyi et al., 2011).
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Alternatively, if D.,.;; is assumed and size distribution measurements are available but CCN data are not, CCN concentrations
can be estimated as the number of particles larger than D..,.;; (Bougiatioti et al., 2009; Kulkarni et al., 2023; Rejano et al., 2024).
The hygroscopicity parameter (kcc ) quantifies the ability of an aerosol population to absorb water from the environment and
activate as cloud droplets (Petters and Kreidenweis, 2007). koo n values derived from CCN measurements provide an estimate
of the effective hygroscopicity of activated particles in the CCNC and exhibit a dependence on SS. Detailed derivations and

equations for these parameters are provided in Andrews et al. (2025a).
2.4 ACSM-derived properties

Another approach to estimate the hygroscopicity parameter involves using chemical composition measurements. Since it is
not feasible to determine the properties of each individual particle in the sample, an effective x.penm for the entire population
is estimated. Petters and Kreidenweis (2007) proposed a simple approximation (Eq. 1) to calculate Kcper, based on the hy-
groscopicity parameter (x) and the corresponding volume fraction (e€) of each species (i) in the sample. This approximation
follows the Zdanovskii-Stokes-Robinson (ZSR) approach, assuming a multi-component solution (i.e., a mixture of n different

solutes) in equilibrium.

< M;/pi
Kchem = ) €Ki, €= —m =7 (D
o ; 21 M;/p;

Here, M; is the mass of species ¢ and p; its corresponding density. The index ¢ refers to each individual species in the aerosol
mixture. The summation in the denominator runs through all species (from 1 to n) each time. Further details on the kcpem
calculation under different assumptions, as well as its use in conjunction with measured size distributions used for CCN

prediction, are explained in Sect. 2.6.1.
2.5 Optical parameters

The aerosol optical properties can provide insight into the size and chemical composition of aerosol particles. In-situ mea-
surements of multi-wavelength aerosol scattering (o), back-scattering (o), and absorption (o) coefficients are available
at most sites (Tables S2 and S3). From these measurements, several optical parameters were calculated, including the back-
scattered fraction (BSF), scattering ;\ngstrém exponent (SAE), absorption Angstrbm exponent (AAE), and single scattering
albedo (SSA) following standard formulations (see Sherman et al., 2015; Shen et al., 2019).

The BSF indicates the relative abundance of smaller particles (D<0.3 pm) (Collaud Coen et al., 2007), while the SAE describes
the wavelength dependence of o, and serves as an additional proxy for particle size (Seinfeld and Pandis, 1998). BSF and
SAE are sensitive to different segments of the aerosol size distribution (Collaud Coen et al., 2007); BSF is more responsive
to particles in the lower part of the accumulation mode, whereas SAE is more influenced by particles in the upper part of
the accumulation mode and the coarse mode. The AAE is calculated analogously to SAE and provides insight into aerosol

composition, with values near 1 indicating the influence of dust or organic carbon (e.g., from biomass burning) (Bergstrom
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et al., 2007; Kirchstetter et al., 2004). The SSA quantifies the relative contribution of o, and o, and is also related to particle
composition. All optical parameters were calculated at the native instrument wavelengths, except SSA where the absorption
was adjusted to 550 nm to match the scattering wavelength: BSF at 550 nm, SAE using 450 and 700 nm wavelengths, AAE
with 464 and 648 nm wavelengths, and SSA at 550 nm.

2.6 CCN prediction methods

Although CCN concentration measurements are crucial for accurate representation of the CCN availability and variability
across sites, these observations are not always available. As noted in the introduction, various methods have been developed
to overcome this observational limitation and predict CCN concentrations (e.g. Gysel et al., 2007; Jefferson, 2010; Shen et al.,

2019). In this section, we describe the three methods we apply to predict CCN concentration.
2.6.1 CCN prediction using chemical composition

CCN concentrations can be predicted using x-Kohler theory together with PNSD measurements (Egs. 3 and 4 in Andrews
et al. (2025a)), once the bulk hygroscopicity parameter (kcher,) has been derived. Below we describe the three schemes used

to calculate Kepem:

Scheme I: Chemical composition measurements from the ACSM and the BC mass concentration are considered, so Eq. (1)
can be expressed in terms of three main components: organics (OA), inorganics (IA), and black carbon (BC) (Eq. 2). This
approximation has been shown to provide a reliable estimate of the effective aerosol hygroscopicity (e.g., Bougiatioti et al.,

2009; Rejano et al., 2024).

= + E €ra,) + 2
£ K2
Kchem = KOA€OA (K1a;€14,) + KBCEBC ()
i

The contribution of inorganic aerosols to x.p.., includes several inorganic salts present in the atmosphere, such as ammonium
nitrate, ammonium sulfate, ammonium bisulfate and sulfuric acid. The volume fractions of these salts are determined using the
simplified ion pairing scheme from Gysel et al. (2007). The densities and x values used for each component are summarized

in Table S4 in the Supplement.

Scheme 2: To better understand the influence of black carbon on aerosol hygroscopicity, Scheme 2 excludes BC from the &¢pem
calculation, focusing only on the hygroscopic components (inorganic salts, acids, and organics), which aligns with approaches
commonly used in previous literature (e.g., Almeida et al., 2014; Schmale et al., 2018; Rejano et al., 2024). Comparison of both
schemes allows for a clearer evaluation of the extent to which BC modulates the overall hygroscopic behavior of the aerosol

population.

Scheme 3: To complement these two approaches, Scheme 3 is introduced, in which a constant value of Kcpemy = 0.3 is assumed.

This scheme aims to serve as a simplified reference, independent of aerosol chemical composition. The value of 0.3 is com-
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monly used in the literature as representative of average aerosol hygroscopicity under diverse atmospheric conditions (e.g.,
Schmale et al., 2018; Pringle et al., 2010). Pringle et al. (2010) report global mean K.peq, values of 0.27 for continental regions

at the Earth’s surface, supporting the use of 0.3 as a reasonable approximation for bulk aerosol hygroscopicity.
2.6.2 CCN prediction using optical properties

The prediction of CCN concentrations from aerosol optical properties has been explored in several studies (e.g., Ghan et al.,
2006; Jefferson, 2010; Shinozuka et al., 2009, 2015; Liu and Li, 2014; Rejano et al., 2021). In addition to exploring the ability
of AOPs to estimate CCN concentrations, the main application of this approach is for improving satellite retrievals (e.g.,
Shinozuka et al., 2015). In Shen et al. (2019) (hereafter referred to as S2019), a new empirical parameterization was developed
by analyzing in situ measurements at six stations representing different environments. S2019 investigated the relationships
between CCN concentrations at different SS and AOPs, and derived the following parameterization that explicitly depends on
the SAE, BSF, BSF,,;,, (1st percentile of BSF data) and o, of PM; particles:

SS

N ~ (286 + 4 AE-In| ———
cCN,$2019(S9) (286+£46)S n(0.093j:0.006

)(BSF—BSFmin) +(5.243.3)| - oup. 3)

This parameterization is designed to be applicable to any site, regardless of its environmental conditions, and for any SS <

1.1% and provides a basis for estimating No o directly from optical measurements (Shen et al., 2019).

In this study, we first test the generality of Equation 3 and assess whether its performance holds across a wider range of aerosol
types. Then we apply the S2019 methodology to our 7 sites plus the 6 sites utilized by S2019 to develop a new equation based
on 13 sites to see if it improves the predictions of N¢oc . The derivation is detailed in the Appendix and leads to the following

equation:

SS

NcoN new(SS) =~ [(320£78) SAE - In (()089:&0011

> (BSF — BSFmin) + (8.7£9.3) | - 0gp. 4
For the seven sites with available AOPs included in this study, the BS F,, is estimated as 0.11 +0.01. Accounting for the
uncertainties in the regression coefficients, the propagated relative uncertainties in the predicted CCN concentrations are 81%,
34%, 27%, 26%, 25% and 25% at supersaturations 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0%, respectively. Applying the original S2019
parameterization (Eq. 3) to the same dataset yields uncertainties from 16% to 52%. The wider error range in the new fit is driven
primarily by the larger standard deviation of R,,,;,, defined as the first percentile of Nccon /05, (see Appendix for details),
which is 9.3 cm™3 Mm compared to +-3.3 cm~3 Mm in S2019. It is important to highlight several methodological differences
between our approach and that of Shen et al. (2019). Although both studies include measurements from the MAO site, in our
analysis this site is treated as independent from that in S2019 due to differences in time periods and data constraints: we used
data from 2014-2015 and applied a relative humidity (RH) filter (RH < 40%), while S2019 only used 2014 data without RH

restrictions. Similarly, for the ASI site, S2019 included optical measurements acquired at ambient RH > 40%, whereas we
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limited our analysis to dry conditions (RH < 40%) and thus did not include ASI data. Furthermore, instead of applying a
threshold of o5,>10 Mm ™! as in S2019, our study used a less restrictive filtering approach by excluding only data (o,, BSF
and SAE) when o, values were below 0.5 Mm ™! and above the 99.5th percentile, allowing a broader range of scattering
conditions to be considered. Differences in the treatment of CCN data may also contribute to the variability between the

resulting parameterizations.
2.6.3 CCN prediction based on AOPs using the Twomey equation and a random forest model

The Twomey equation (Twomey, 1959) describes the relationship between supersaturation (SS) and CCN concentration (Noon)

via a power law with parameters C' and k:
Neen(88)=C-SS*. ®)

This relationship is depicted graphically in Fig. S2 (solid lines) for some of the sites considered here. While Figure S2 shows
the overall fits to the data for each site, C and k can also be found for each individual SS scan at each site. Previous studies have
found strong correlations between C, k and various aerosol properties (Jefferson, 2010; Rejano et al., 2021). Here, machine-

learning is applied to predict these parameters from AOPs.

Random forest (RF) is a machine learning method that relates target variables (here, C' and k) to predictors or “features”
(Breiman, 2001; Cutler et al., 2012; Grange et al., 2018). Its main tuning parameters are (a) the number of trees, (b) the number
of features considered at each decision node, and (c) the minimum number of observations required in a terminal or “leaf”
node (also known as minimum leaf size), which controls the depth and complexity of each tree. The RF model might give
better predictions with more trees and more explanatory variables considered, but that also increases the computational cost.
Here, we use combinations of AOP variables (o, 045, BSF, SAE, SSA, and AAE) as predictors to train the model. The RF
algorithm is trained on one portion of the data and then the results of the training are applied to the non-training or test data
to validate the prediction. In this work, two different validation strategies are considered. First, our primary validation uses a
stratified 70 / 30 split: for each site, 70% of scans are randomly chosen for training and the remaining 30% for testing. These
per-site subsets are then pooled across all sites to form single training and test sets. Second, as an additional check, we perform
leave-one-site-out (LOSO) cross-validation—iteratively holding out one site for testing and training on the others—to assess
how including or excluding any given station affects model performance and to verify that the 70 / 30 approach yields valid

results across all locations. The predictors are not scaled or normalized before processing.

We implemented RF in MATLAB with TreeBagger function considering 500 trees, using the default minimum leaf size value
(1) and sampling all predictors at each split. Performance was assessed via out-of-bag (OOB) error, and feature importance via
OOB-permutation (Breiman, 2001). The model was run once to find the features relevant for C' and then again, on the same

data, to find the features relevant for k. Normalized importance scores reveal the variables that most consistently predict C' and
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k. These predicted C' and k values are then plugged into the Twomey power-law (Eq. 5) to estimate CCN concentrations at any

given SS.

3 Results

In this section, we present the results showing the phenomenology of aerosol and CCN activation properties for all the sta-
tions considered in this study and the CCN prediction outcomes. We first provide a general overview of aerosol microphysical
and CCN activation properties to demonstrate the range and variability of these characteristics at the 10 sites. Next, we sum-
marize the aerosol chemical composition and use them to predict Nocn for the sites where ACSM data are available using
Kehem- Similarly, we summarize the observed AOPs, where available, and use them to predict Nocn, using the S2019 and
RF methods. Finally, we evaluate the various CCN prediction methods we have applied and make recommendations for future

studies.
3.1 Overview of aerosol and CCN activation properties at 10 sites

A summary of aerosol and CCN parameters at 0.4% supersaturation for each site is presented in Figure 2 as normalized
frequency distributions. To facilitate a direct comparison with the results of Schmale et al. (2018), the distributions were
computed using the same or comparable binning methods and normalized to the total number of data points at each station.
However, we focus our analysis on 0.4% SS - rather than 0.2% SS used by Schmale et al. (2018) - because the measurements
at 0.4% SS undergo an additional quality check (see Sect. 2.2), ensuring greater reliability of the data. The leftmost column
(Fig. 2a) shows Ncon (colored solid line) overlaid with total particle number concentration (Vy,, black dashed line). The
center column (Fig. 2b) shows D.,;; (colored solid line) overlaid with the geometric diameter (D c,, black dashed line) of the
PNSD. The rightmost column (Fig. 2¢) depicts the CCN hygroscopicity parameter (kccn ). Table 1 provides the median values
together with the 25th and 75th percentiles (P25-P75) for the five parameters shown in Fig. 2 and for the activated fraction.
All variables referred to 0.4% SS.

Stations located in polar environments (MOS and ANX) tend to have the lowest N;,; and Ncoon (Fig. 2a), which is char-
acteristic of the Arctic maritime environment (Barrie, 1986; Schmale et al., 2018). These sites are representative of pristine
environments with minimal local sources of aerosols, dominated by natural processes and occasional long-range transport from
distant regions. A similar trend was observed in other Arctic sites such as Barrow (Alaska) by Schmale et al. (2018). Slightly
higher N;,; and N¢ocpn are observed at the ENA and ASI marine sites compared to the Arctic sites, consistent with these two
sites being remote marine locations where aerosols are primarily influenced by natural sources such as sea salt and biogenic
emissions (Quinn et al., 2023; Wilson et al., 2015). ENA shows higher concentration of particles, likely associated with local
sources due to the proximity of the station to an airport (Gallo et al., 2020). However, CCN concentrations are lower at ENA
than at ASI, leading to a smaller activated fraction at ENA (0.26) compared to ASI (0.85). This indicates a lower activation
ability of aerosol particles at ENA. In contrast, the high activated fraction observed at ASI are consistent with Zuidema et al.

(2016), who reported that nearly all aerosol particles at this site could activate as CCN even at low SS.
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The three mountain sites (GUC, SBS-CP, SBS-SPL) exhibit higher N,,; and Nocn at 0.4% SS than the polar and marine sites.
SBS-SPL shows the lowest V;,; and Noon of the three mountain sites. SBS-CP is a site where the difference between Ny,
and N¢o is particularly pronounced, with NV,; up to six times larger than N¢o ¢ v. Both distributions are relatively narrow,
suggesting that limited aerosol sources influence the site. The region where SBS-CP is located experiences springtime dust
transport from both local and remote sources, which affects overall hygroscopicity (Hallar et al., 2015). Although the SBS-
SPL site is very close to the SBS-CP site (SBS-SPL is 5 km east of SBS-CP), the altitude difference (~2500 m for SBS-CP and
~3200 m for SBS-SPL) makes SBS-CP more susceptible to influence from the atmospheric boundary layer, while SBS-SPL
is more likely to measure free troposphere aerosol in the cooler months when these measurements were made. SBS-SPL is
frequently in-cloud which may also lower aerosol loading via wet scavenging (Hallar et al., 2025). The N¢¢ v distribution at
GUC is broader and shows higher concentrations than SBS-SPL despite their similar altitude. This is related to the influence
of biomass burning intrusions during June and September 2022 (Gibson et al., 2025) affecting GUC. The three mountain sites
show low activated fractions at 0.4% SS (0.11, 0.24 and 0.19, at SBS-CP, GUC and SBS-SPL, respectively) compared to other
high-mountain sites (Schmale et al., 2018; Rejano et al., 2021; Juranyi et al., 2011).

Frequency distributions of N;,; and Noon for the continental sites are shifted to higher particle and CCN concentrations.
These sites represent regions with a mix of natural and anthropogenic influences, where long-range transport of pollution and
local emissions contribute to the aerosol burden. The highest concentration of particles is observed at COR (median value
of 3017 cm™, with concentrations above 10000 cm™), which is frequently affected by biomass burning from the Amazon
and anthropogenic emissions from Chile and Argentina (Fast et al., 2024). MAO exhibits a broad Nocon and Ny, frequency
distribution with an extended tail at the upper end of the distribution. The high Neocon (and Nyt) values at MAO are asso-
ciated with the station being affected by the regional transport of biomass burning pollutants (especially in the dry season,
July—December) and to the Manaus (city located located 70 km upwind) urban plume (Rizzo et al., 2013). COR and MAO
show similar activated fraction of 0.29 and 0.25, respectively. Slightly higher AF is observed at SGP (0.38) associated with

higher CCN concentrations.

The center column of Fig. 2 allows us to compare D.,;; and the size distribution D, at different sites. Dgyc, serves as a
proxy for the aerosol size distribution. Notable differences are observed in both the position and amplitude of the frequency
distributions, suggesting variations in aerosol composition and activation processes across locations. Overall, D, is generally
shifted to higher values compared to D,.,, indicating that a substantial fraction of particles do not reach the CCN activation
threshold at 0.4% SS. A similar trend between D.,.;; and D, was observed at most of the sites analyzed in Schmale et al.
(2018). However, at ASI and MOS, D.,;; is lower than D, meaning that at 0.4% SS, most particles activate as CCN. This
difference is particularly pronounced at ASI, which is consistent with its high koo values (median of 0.75; Fig. 2c, Table
1) and activated fraction (0.85), indicating a predominance of highly soluble aerosols, such as sea salt. Dedrick et al. (2024)
showed high hygroscopicity values during clean conditions (kcpeqnn, > 0.7) and lower values during smoke dominated periods
(Kehem ~ 0.3-0.4). Despite also being a marine station, ENA exhibits broader frequency distributions centered on larger values,

with overlapping D.,;; and D, suggesting that only a fraction of the particles activate at 0.4% SS (AF median value of 0.26).
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This aligns with the wide range of hygroscopicity values observed at ENA, reflecting a mixture of marine aerosols and other

sources, likely local emissions such as the nearby airport.

Of the two polar stations, ANX exhibits a lower median D...;; (55 nm), indicative of relatively hygroscopic aerosols, whereas
MOS shows a higher median value (85 nm). The D.,.;; at MOS is broadly consistent with previous short-term, episodic obser-
vations (Dada et al., 2022), which report ~ 80 nm at SS = 0.29% and ~ 50 nm at SS = 0.78% under background conditions.
At mountain stations, SBS-SPL stands out with the lowest D.,;; (59 nm) and the highest value of Kooy (0.35), indicating
a significant fraction of hygroscopic aerosols. This high hygroscopicity value could be attributed to the influence of anthro-
pogenic SO, plumes from nearby coal-fired power plants, which have been shown to enhance particle growth from NPF to

CCN-relevant sizes and thus facilitate CCN activation at SPL (Hirshorn et al., 2022).

In contrast, SBS-CP exhibits broader distributions and higher D.,.;; values, suggesting a more diverse aerosol mixture influ-
ences this site than SBS-SPL. The GUC mountain site exhibits frequency distributions similar to those of continental stations,
characterized by D, distributions shifted toward intermediate-to-high values. The bimodal distribution of D, observed at
GUC suggests the coexistence of different aerosol types, potentially with distinct hygroscopic properties. The first mode, with
values lower than D..,.;;, likely corresponds to highly soluble particles such as sulfates. In contrast, the second mode, at larger
diameters, may be associated with less hygroscopic aerosols, such as organic compounds related to biomass burning. Among
continental stations, SGP has the lowest median D.,;; (76 nm), indicating a higher fraction of CCN-active aerosols compared

to COR (82 nm) and MAO (98 nm). This is consistent with the higher ko and activated fraction observed at SGP.
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Figure 2. Normalized frequency distributions of (a) CCN number concentration (Ncc n) and total particle concentration (/V¢o¢) in black,
(b) critical diameter (D) and geometric diameter (Dygeo) in black and (c) hygroscopicity parameter (kccn). All parameters related to CCN
measurements are at 0.4% SS.

Table 1. Median values and percentiles 25th and 75th (P25-P75) of the total aerosol concentration (Nt,), CCN concentration (Ncen),
geometric diameter (Dgeo), critical diameter (D), hygroscopicity parameter (kccn) and activated fraction (AF) for each measurement
location grouped by site type. All parameters related to CCN measurements are at 0.4% SS.

Site location Niot (em™?) Ncen (em™) Degeo (nm) Deri¢ (nm) rcen(-) AF (-)
Continental

COR 3017 (1940-4660) 927 (589-1222) 49 (38-64) 82 (74-91) 0.15 (0.11-0.20) 0.29 (0.17-0.43)
SGP 2806 (1790-4035) 1061 (637-1564) 61 (44-82) 76 (66-85) 0.18 (0.13-0.28) 0.38 (0.23-0.54)
MAO 2030 (1106-3636) 659 (325-1253) 59 (43-85) 98 (82-113) 0.08 (0.06-0.12) 0.25 (0.15-0.42)
Mountain

SBS-CP 2011 (1246-3500) 310 (213-485) 32 (25-41) 88 (64-113) 0.12 (0.06-0.25) 0.11 (0.05-0.21)
GUC 1195 (780-1698) 348 (184-637) 46 (35-66) 82 (76-88) 0.15 (0.12-0.18) 0.24 (0.13-0.40)
SBS-SPL 712 (421-1198) 193 (115-306) 33 (27-41) 59 (51-68) 0.35(0.25-0.54) | 0.19(0.10-0.35)
Marine

ENA 398 (259-609) 160 (101-249) 61 (44-85) 74 (55-95) 0.20 (0.09-0.39) 0.26 (0.17-0.35)
ASI 271 (205-363) 255 (178-375) 126 (95-146) 41 (35-48) 0.75 (0.48-1.04) | 0.85(0.73-0.94)
Polar

MOS 156 (94-230) 103 (48-158) 140 (98-157) 85 (66-98) 0.13 (0.08-0.25) 0.78 (0.61-0.87)
ANX 138 (86-238) 100 (58-172) 57 (41-82) 55 (43-68) 0.35(0.23-0.60) | 0.36 (0.18-0.60)
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3.2 Aerosol chemical composition and CCN prediction
3.2.1 Overview of aerosol composition

The aerosol sub-micrometer chemical composition measured with the ACSM is available at five of the ten stations (see Tables
S2 and S3 for details). The operating temperature of the ACSM (600°C) is not high enough to vaporize refractory components
of the aerosol particles, thus only the non-refractory components can be analyzed. As a result, components such as elemental
carbon, crustal material, and sea salt cannot be detected (Wu et al., 2016). To complement the ACSM chemistry, BC concentra-
tions are derived from the PSAP absorption coefficient measurements at all sites except ASI, where BC data are not available in
the Andrews et al. (2025b) dataset. Figure 3 presents pie charts that illustrate the relative contribution of the species considered

(organics, S' Oi*, NO;,NH, j , C17, BC) to PM; at each site, along with the total mean mass concentration.

The mean concentration of PM; in the five sites ranges from 0.54 to 5.56 11g/m?, with varying contributions of the different
components, reflecting the distinct aerosol characteristics of each location during the measurement period. Continental sites,
COR and SGP, exhibit the highest concentrations (4.01 and 5.56 pg/m3, respectively). The mean value measured at SGP is
slightly lower than that measured during 2010-2011 at the site (7 pg/m?) (Parworth et al., 2015) while for COR, the same
value is reported in Fast et al. (2024) for the same campaign. In contrast, the lowest mass concentrations are observed at marine
sites, ASI and ENA, with mean values of 0.96 and 0.54 11g/m?, respectively. The mountain site GUC exhibits an intermediate
concentration of 1.57 ug/m?. These mean values are consistent with previous studies reporting PM; levels below 1 pg/m3
in remote and pristine marine environments over the Pacific, Atlantic, and polar oceans (Zhou et al., 2023), as well as with
observations from high-altitude mountain sites where lower aerosol mass concentrations are typically found due to reduced
anthropogenic influence (e.g., Frohlich et al., 2015; Jimenez et al., 2009). It is important to note that the aerosol chemical
composition exhibits strong seasonal variability, and the values presented here reflect specific measurement periods rather than

long-term, annual averages, except at SGP, where long-term measurements are available.

Sulfate COR SGP GUC ENA ASI

Ammonium Organics

33%

2%
39
52% ‘ L

Chloride PM,=4.01 pug/m?3 PM,=5.56 pug/m?3 PM,;=1.57 ug/m?3 PM,;=0.54 pg/m3 PM,=0.96 pug/m?3

Nitrate BC

Figure 3. Pie chart of PM; mass concentration (OA, SO; 2, NO;, NH,", Cl~ and BC) averaged for all the sites. Total mean PM; mass
concentration for each site included.

For non-marine sites, the most abundant aerosol component is organic aerosol (OA) while at marine locations (ASI and ENA)
sulfate dominates. Among non-marine sites, the relative contribution of OA ranges from 50% at COR to 73% at GUC. The

OA concentration is highest at SGP (2.30 p1g/m?) followed by COR (2 pg/m?), while the OA concentration at marine sites
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is less than 0.5 pg/m?>. Sulfate is the main contributor to aerosol mass in ASI, accounting for 52% of PM; (0.5 pg/m?). At
ENA, sulfate and organic have the same concentration values (0.19 j1g/m?), representing 35% each of the total PM; mass. The
presence of sulfate at these two sites is likely mainly associated with sea salt particles (Lin et al., 2022), consistent with their
location in the marine environment. For COR, SGP, and GUC, sulfate is the primary inorganic component, with contributions
of 31% at COR, 17% in SGP, and 12% in GUC. The high contribution of SOi* in COR has been linked to SOy emissions

from small fires occurring outside Patagonia and the Atacama Desert (Fast et al., 2024).

The ammonium contribution ranges from 6% at the GUC mountain site (0.10 11g/m?3) to 16% at the ENA marine site (0.009
g/ m?). At the continental sites, COR and SGP, ammonium accounts for 9% of the PM; mass concentration (0.36 and 0.50
pg/m3, respectively). Marine sites exhibit slightly higher variability, with contributions of 16% at ENA and 10% at ASI. These
differences reflect both emission sources and total aerosol load. In continental environments, higher ammonium concentrations
are driven by local and regional anthropogenic sources, including agriculture (especially livestock and fertilizer use), road
traffic, industrial activities, landfills, coal combustion, and biomass burning (Anderson et al., 2003; Sutton et al., 2000). In
contrast, the lower total PM; mass concentration observed for marine environments leads to a higher relative contribution
of ammonium, despite low absolute concentrations. The ocean is one source for this ammonium (e.g., Quinn et al., 1988).
Regional transport and secondary formation processes further enhance ammonium levels through the production of compounds

such as ammonium sulfate and nitrate (Kang et al., 2018).

At most stations, nitrate plays a minor role (contribution less than 5%) except for the continental stations (SGP; 11% and COR;
7%). SGP shows the higher mean NO3 concentration (0.6 1g/m?), followed by COR (0.3 pg/m?). The higher contribu-
tion of nitrate at continental sites is associated with anthropogenic emission sources such as fossil fuel combustion, biofuel

combustion, and agricultural fertilization (Jaegle et al., 2005).

Among BC concentrations, the highest contributions are observed at ENA (9%:; 0.05 p1g/m?), likely influenced by local human
activity near the station, which is located within half a kilometer of the local airport (Wilbourn et al., 2024). At the mountain site
GUC, BC concentrations remain low (0.42 pg/ m?), yet it accounts for 5% of PM; mass. At continental sites, BC contributes

less than 2% with concentrations of 0.11 pg/m? at SGP and 0.08 11g/m? at COR.
3.2.2 Composition-derived hygroscopicity, Kchem

The bulk chemical composition is used to estimate the overall ke for each site, as explained in Section 2.4. In this study,
Kchem 18 derived based on three variations of Equation 1: (i) including BC (Scheme 1); (ii) excluding BC (Scheme 2); and
(iii) assuming a fixed Kchem Of 0.3 for all aerosols (Scheme 3). Figure 4a shows the resulting kchem values for each scheme at
sites with available chemical composition measurements. Scheme 1 could not be applied at ASI due to the dataset RH<40%
constraint resulting in no harmonized absorption data at the site (Andrews et al., 2025a). Scheme 3, which assumes a constant
value kcnem regardless of site characteristics, is represented as a horizontal line at all stations. Among all sites and for both
Schemes 1 and 2, the marine stations (ENA and ASI) have the highest k.pep, values (around 0.45), followed by the continental
sites (COR and SGP, approximately 0.3), and the mountain site (GUC, around 0.23). In this context, applying a fixed value
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of Kchem = 0.3 (Scheme 3) tends to underestimate aerosol hygroscopicity in marine environments and overestimate it at the
mountain site, while for the continental stations it provides a reasonably accurate approximation. The inclusion of BC in
Scheme 1 results in slightly lower k¢hem Values compared to Scheme 2 across all sites, since BC is assumed to be completely
hydrophobic (kpc = 0), thereby reducing the volume-weighted contribution of hygroscopic species. It is also worth noting
that at marine sites, kqpen may be underestimated due to the inability of the ACSM to detect refractory sea salt, which can

significantly contribute to aerosol hygroscopicity in those regions (Deshmukh et al., 2025).

In general, koo is lower than kqpey, for all sites except ASI. Note that these two parameters cannot be directly compared
since koo only accounts for activated particles in the CCNC and its calculation depends primarily on the dry aerosol size
distribution and CCN concentrations as a function of SS, while x.jenm, is based on chemical composition and its calculation
here represents the aerosol particles in the size range sampled by the ACSM (40-1000 nm) (Watson, 2017). Depending on
the SS, the CCNC and ACSM may be measuring particles in different size ranges and with different compositions. Despite
the methodological differences, the general trend is similar: continental and mountain sites show lower hygroscopicity values,
while marine sites are characterized by higher hygroscopicity parameters. The higher koo compared to Kcper, Obtained for
ASI could be explained by the low D..,.;; value observed at this site, which is near the lower end of the sampling interval of the

ACSM.
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Figure 4. (a) Boxplots of kchem Values for Schemes 1 and 2 at all sites with available chemical composition measurements.The line inside
each box indicates the median, the bottom and top edges of the box represent the 25th and 75th percentiles, and the whiskers extend from
the ends of the interquartile range (IQR) to the most extreme data points within 1.5 times the IQR. Scheme 1 could not be applied at ASI
due to the absence of harmonized BC measurements. Scheme 3, which assumes a constant Kchem = 0.3, is represented as a horizontal line
across all sites.(b) Relationship of the composition-derived Kchem from Scheme 2 to the binned and averaged ratio of organic (OA) to total
(OA+IA) aerosol components. The vertical bars denote the standard deviation.

Figure 4b shows the variation in the chemical composition derived hygroscopicity parameter (kcpern,) from Scheme 2 as a

function of the binned and averaged ratio of organic to total aerosol mass concentration (OA / [OA + IA]) for the five locations
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with ACSM measurements. The data were binned into 30 logarithmically spaced intervals between 0.01 and 10. The standard
deviation is represented for each averaged value. Figure S3 in the Supplement provides the corresponding analysis using
Scheme 1 (ASI can not be included in this case due to the lack of harmonized BC measurements). For both schemes, a
clear decreasing trend in kcpe, With increasing organic fraction is observed at all sites, reflecting that a higher contribution of
organic aerosols reduces the overall hygroscopicity of the aerosol population. This behavior is consistent with the typically
lower hygroscopicity of organic compounds relative to inorganic salts (Pohlker et al., 2023). At low (OA / [OA + IA]) ratios
(<0.1) Kchem becomes more noisy due to the lower number of data points, but appears to plateau between 0.5 and 0.7. When
OA / [OA + IA] < 0.1, the volume fractions ¢; of sulfate, ammonium, and nitrate dominate, as these are the main inorganic
species at all sites (as shown in Fig. 3). Consequently, these species govern the sum in Eq. 1, and kKchem plateaus at their

volume-fraction-weighted average value (approximately 0.5-0.7; see Table S4).

This pattern is further supported by the results presented in Figures 3 and 4a. GUC, the site with the highest organic fraction
(73%), exhibits the lowest Kcpem sch2 Value among all the sites (~ 0.2). Similarly, the other two continental sites, SGP and COR,
have intermediate OA fractions (61% and 50%, respectively) and correspondingly 10w Kchem.sch2 values (~ 0.25 and ~ 30). In
contrast, the marine site ENA, with a lower organic fraction of 35%, presents a more balanced chemical composition—35%
organics, 35% sulfate, and 16% ammonium—and a higher Kchem sch2 (~ 0.47). ASI, characterized by a dominant sulfate contri-
bution (52%) and the lowest organic fraction among the sites (33%), exhibits a similar Kchem sch2 t0 ENA (~ 0.45). These results
suggest that the organic fraction is a key driver of particle hygroscopicity, modulating the ability of the aerosol to take up water,
thereby impacting the overall particle hygroscopicity (Aklilu et al., 2006; Dusek et al., 2010). In general, increasing organic
fraction leads to a reduction in K¢hem, While a higher contribution of inorganic species - particularly sulfate and ammonium -

increases overall hygroscopicity (Petters and Kreidenweis, 2007).
3.2.3 CCN prediction using Kchem

Using the calculated kchem Values, Ncen is estimated using «-Kohler theory (Section 2.6.1). The predictions are made consid-
ering the three xcpem schemes. Figure 5 compares the predicted and measured CCN concentrations at all SS for the four sites
where all three schemes can be applied to allow fair evaluation of the performance of each approach. Note that ASI is excluded

due to the lack of harmonized BC measurements at that station.
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Figure 5. Log-log scatter plot of predicted CCN concentrations (Nccn pred) with respect to the observed CCN concentrations (Nccon
meas) for all SS for all the sites except ASI using the three prediction schemes. A boxplot showing the relative bias is included- the central line
represents the median, the box edges correspond to the 25th and 75th percentiles, and the whiskers extend from the ends of the interquartile
range (IQR) to the most extreme data points within 1.5 times the IQR. Plots correspond to (a) Scheme 1 (Kchem,seh1 ), (b) Scheme 2 (Kchem,sch2)
and (c) Scheme 3 (fixed Kchem). The solid black line represents the 1:1 line and the dashed lines are the +/-50%.

Among the three schemes, the coefficient of determination (R?) is virtually identical (0.82 or 0.83), indicating a similarly
strong correlation between predicted and observed CCN concentrations for all schemes. Scheme 1 (Fig. 5a) shows the best
overall agreement with observations, with a slope of 1.09 and the lowest median relative bias (13%), indicating a slight overall
overprediction. Scheme 2 (Fig. 5b) shows a slightly higher slope of 1.15 and a median relative bias of 15%, reflecting a slightly
higher overprediction compared to observations. However, the overall performance remains comparable to Scheme 1, with
similar predictive capability despite not considering BC. Scheme 3 (Fig. 5c), which uses a fixed Kchem, €xhibits the highest
slope (1.22) and the highest median relative bias (24%), pointing to a consistent tendency to overpredict Nocon. We must
consider the effect of the differences in the size ranges of the CCNC and the ACSM. While the CCNC has no lower size cutoff,
the ACSM measures particles in the 40—-1000 nm size range (Watson et al., 2018), which could lead to an underestimation of
the predicted CCN concentrations if D.,.;; is smaller than the ACSM lower size cutoff. However, such small D.,.;; values are
rare: the 10th percentile drops below 40 nm only at ENA (32-33 nm for SS > 0.8%) and at ASI (18-28 nm for SS > 0.4%).
Therefore, the ACSM lower size cutoff may cause a slight underestimation of CCN at ASI and, to a lesser extent, at ENA, but

provides comparable estimates at the other sites.

Figure S4 in the Supplemental provides further insight into the performance of each scheme across different stations by showing
the R? and median relative bias (MRB) values per site—here, all available measurements for each scheme are included, and
ASI is also considered for Schemes 2 and 3. Table S5 lists the number of data points available per site for each scheme.
Continental stations (SGP, COR, GUC) show a slight overestimation of CCN concentration in all three schemes (MRB>0).
This may be due to the presence of lower activity particles not fully accounted for by a bulk Kchem value. Nevertheless, the
R? values remain high (between 0.77 and 0.82), indicating generally good predictive skill. At the marine station ENA, CCN
concentrations are slightly overestimated, by a bit more (10-15%) than at continental sites. Still, R? values remain above 0.78
across all schemes, indicating robust predictive performance despite some variability in chemical composition. In contrast, an

underestimation of CCN concentration is observed at the marine station ASI in Schemes 2 and 3 (MRB<0) (Scheme 1 cannot
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be applied at this site). Although ASI exhibits high sulfate levels (52%) and relatively low organics (33%), as shown in Fig. 3,
sea salt — typically abundant and highly hygroscopic in marine environments — cannot be detected due to the limitations of
the ACSM. Consequently, the predictions calculated using Scheme 2 may underestimate the actual aerosol hygroscopicity at
this site. Similarly, in Scheme 3, the use of a fixed #per=0.3 may underestimate the actual bulk aerosol hygroscopicity at ASI,
which likely exceeds this value due to the dominance of sulfate and the potential presence of unmeasured sea salt. Despite these
limitations, ASI shows the best agreement between predicted and measured CCN, with R? values of 0.97 and MRB<25% for
both schemes, suggesting the prediction framework performs well, possibly due to the relatively stable atmospheric conditions
and the less variable aerosol composition typical of remote marine environments (Saliba et al. (2020); Zuidema et al. (2015)).
An additional factor contributing to the N underestimation at ASI could be that the median D..,.;; at 0.8 and 1% SS is below
the ACSM detection limit (40 nm). Consequently, some particles activated as CCN are not captured in the chemically derived
predictions, leading to measured CCN concentrations exceeding the predicted values. Although ENA is also a marine station,
its higher organic fraction (35%) likely reduces the influence of unmeasured sea-salt particles — which are more hygroscopic
— 0N Kchem, Tesulting in an overestimation of Noc . Schmale et al. (2018) reported a consistent overestimation of predicted
CCN concentrations using different x¢hem SChemes at 6 measurement sites (only one of the seven sites studied in Schmale et al.
(2018) underestimated CCN measurements, and it was also a marine site). Although the use of composition-derived values
Kchem consistently reduces bias and tightens the fit to measured CCN, our results are consistent with those of Schmale et al.
(2018) suggesting that even a constant bulk kchem = 0.3 provides a realistic first-order estimate of CCN number concentrations

in diverse environments.
3.3 Aerosol optical properties and CCN prediction
3.3.1 Overview of aerosol optical properties

Aerosol optical measurements are available at 7 of the 10 sites (not available for SBS-CP, SBS-SPL and ASI). Figure 6 provides
an overview of key aerosol optical parameters for all sites, including o, and o,), and four derived parameters: BSF, SAE,
AAE and SSA. All measurements used in this analysis correspond to PM aerosol size cut hourly data and are reported at 550
nm, or for the blue/red wavelength pair for SAE and AAE. As filtering criteria, for the calculation of the derived parameters,
measurements with o, < 0.5 Mm™! were not considered and unphysical values were also excluded, i.e., SSA and BSF outside
0-1. In addition, negative SAE and AAE values were also excluded. On average, the combined constraints eliminated about
4% of the data across all stations, although at MOS up to 17% of the measurements were discarded. The filter responsible for
most exclusions varied depending on the station, while the SSA constraint was generally the least restrictive, removing the
fewest data points. It is important to note that the values presented here correspond to specific measurement periods rather than
year-round averages, except for SGP and GUC, where more than 1 year of AOP observations are available and allow for a

more representative characterization.
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520 The scattering coefficient (Fig. 6a) shows notable variability across sites, reflecting differences in aerosol loading. The highest
median oy, is observed at the marine site ENA (e.g., 20.7 Mm™!), which contrasts with the low PM; concentration at this site.
This is likely due to high concentrations of supermicron sea salt particles commonly found in marine-influenced environments
(Vaishya et al., 2011). This site is followed by MAO, SGP, and COR continental stations, with median values of 15.9, 13.9,
and 8.9 Mm™!, respectively. In contrast, the mountain site GUC and the polar locations (MOS and ANX) show the lowest

525 median scattering coefficients (e.g., 4.7, 5.2, and 5.7 Mm™!, respectively), consistent with their remote and cleaner atmospheric
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conditions. These findings align with those reported by Laj et al. (2020), where values below 10 Mm~! were observed for polar

environments and mountain sites.

The absorption coefficient (Fig. 6b) has a different pattern at the sites than the scattering coefficient. The highest median o,
is observed at the continental site MAO (1.63 Mm™), suggesting a strong presence of absorbing particles, likely from biomass
burning and anthropogenic emissions (Rizzo et al., 2013). This is followed by the other continental stations, COR and SGP,
with median values of 0.55 and 0.65 Mm™!, respectively. Marine and polar sites exhibit significantly lower values, with ENA,
MOS and ANX showing median concentrations of 0.17, 0.27, and 0.09 Mm™'. The mountain site GUC reports a moderate
absorption level of 0.28 Mm™, in line with previous findings for high-altitude, remote locations, where aerosol absorption

tends to be limited due to the absence of nearby combustion sources (Collaud Coen et al., 2018).

The back-scattered fraction (Fig. 6¢), which is a proxy for particle size in the aerosol population, shows the highest median
values at continental and mountain sites. The highest BSF is observed at COR (0.16), followed by SGP, GUC, and MAO, all
with median values of 0.14. These elevated BSF values indicate a greater contribution from smaller particles. Marine and polar
sites (ENA, ANX, and MOS) show smaller median BSF values in the range 0.10-0.13. This highlights the different source

regimes - sea spray and remote transport in the marine boundary layer, and aged background aerosol in polar regions.

The scattering Angstrém exponent (Fig. 6d) provides complementary information to BSFE, as it is more sensitive to particles
in the upper accumulation and coarse modes (Collaud Coen et al., 2007). The highest SAE values are observed at continental
and mountain sites such as SGP (2.01), GUC (1.67), and COR (1.37), consistent with the prevalence of fine-mode aerosols
from anthropogenic and biomass burning sources. At COR, frequent dust transport during the austral spring may explain its
relatively lower SAE compared to other continental sites (Varble et al., 2019). In contrast, lower SAE values at marine and
polar sites—ENA (0.36), ANX (0.62), and MOS (1.27) — suggest a stronger influence of coarse-mode particles such as sea

spray or aged background aerosol.

The absorption Angstrom exponent (Fig. 6e), which describes the wavelength dependence of aerosol light absorption and
provides insight into aerosol composition, shows relatively consistent median values across most sites, ranging between 1.1
and 1.3, but with the higher percentiles ranging up to 2 - 2.5. The median values reflect locations with absorption primarily
due to BC based on the Cappa et al. (2016) AAE/SAE matrix, while the higher AAE values indicate occasional incursions
of absorbing aerosols related to dust or biomass burning organics (Cazorla et al., 2013; Kirchstetter et al., 2004). In contrast,
the polar site MOS exhibits a notably lower median AAE of 0.67. AAE values below 1 have been previously reported at
remote Arctic and marine sites (Schmeisser et al., 2018), although such low AAE values may also be partially influenced by

measurement artifacts in the presence of coarse-mode aerosols (Bond et al., 1999).

Finally, the single scattering albedo (Fig. 6f), which indicates the relative contribution of absorbing particles to aerosol extinc-
tion coefficient, shows high values across most sites (>0.9), suggesting the dominance of scattering aerosols. ANX, MOS, and
ENA, which are all marine influenced, have median SSA > 0.95, while GUC, SGP and COR have median SSA values closer
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to 0.9. The lowest median SSA is found at MAO (0.80), indicating a relatively more absorbing aerosol mixture at this site

consistent with anthropogenic and biomass sources.
3.3.2 CCN predictions using aerosol optical properties (S2019)

Following the S2019 methodology described in Section 2.6.2, Figure 7 compares predicted CCN concentrations using (a)
the original S2019 equation (Nccn,s2019) and (b) the new version of the S2019 equation derived using the original data
of S2019 and the data from the stations in this study (Ncon,new), against measured CCN concentrations (Nccny meas)
for the seven sites with optical properties in this study and for all SS. The number of data points for each site used in the
comparison—identical for both equations—is provided in Table S5 in the Supplemental. The comparison shows an increase
in the regression slope from 0.72 in plot (a) to 0.86 in plot (b), indicating a better agreement between predicted and measured
Ncon when using the new equation. The coefficient of determination (R?) remains unchanged (0.61), suggesting that the
overall model performance is comparable in terms of explained variance. The median relative bias decreases in absolute value
from —27% in (a) to —8% in (b) as the number of sites increases, indicating a reduced underestimation in the predictions.
Meanwhile, the similar length of the MRB whiskers in both cases suggests that the variability remains comparable, even when
a broader range of stations and aerosol conditions are included. However, the interquartile range decreases from 81 to 69,
indicating reduced variability in errors. This reduction in MRB, together with the smaller IQR, reflects an improvement in
prediction accuracy, with fewer extreme deviations and a more balanced distribution of errors. Consequently, the new equation
provides CCN predictions that are more reliable and closely aligned with the measured CCN concentrations across the full

range of conditions.

Figure S5 in the Supplemental provides additional insight into the performance of both equations across different stations by
displaying the site-specific R and MRB (median relative bias) values. As observed in Fig. 7, the coefficients of determination
remain largely unchanged between the two equations. For continental (COR, SGP, MAO) and mountain (GUC) sites, CCN
concentrations tend to be slightly underpredicted with MRB<0 (Fig. S5a), whereas overpredictions are more common at marine
(ENA) and polar MOS, ANX) sites (MRB>0; Fig. S5a). The new equation (Fig. S5b) generally increases the predicted Noco v
values, leading to an overall improvement in prediction accuracy. Figure S6 shows the slope and relative bias for each measured
SS between the predicted and the measured CCN concentrations considering the new equation. Excluding the lowest SS (0.1%),
both the slope and the median relative bias remain relatively stable across all SS values, indicating that the predictive equation
performs consistently well regardless of SS. The larger deviation observed at 0.1% SS may be attributed to the logarithmic
function used to capture the dependence of No¢ n on SS. These results confirm that the original S2019 equation performs well
across a wide range of conditions, even when evaluated with an extended dataset. However, the new equation proposed in this
work provides a more accurate and balanced estimation of Nocn, particularly by reducing systematic underestimation and

improving agreement across the full concentration range.
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Figure 7. Log-log scatter plot of predicted CCN concentrations with respect to the observed CCN concentrations (Nccn meas) considering
(a) equation in S2019 (Nccen,s2019) and (b) new equation (Ncc v, new; based on 13 sites). The data plotted is only for the seven sites with
optical data in this study (i.e., sites shown in Fig. 6). The solid black line represents the 1:1 line and the dashed lines are the +/-50%. A
boxplot showing the relative bias is included. The boxes represent the interquartile range (25th—75th percentiles), with black lines indicating
the median values and whiskers extending from the ends of the interquartile range (IQR) to the most extreme data points within 1.5 times the
IQR.

3.3.3 CCN prediction with random forest model using optical properties

To further explore the potential of aerosol optical properties to predict CCN concentrations, a random forest model was im-
plemented to estimate the C' and k parameters of the Twomey equation. As input variables for the RF model, the same set
of AOPs as in the S2019 equation (Section 3.3.2) is considered: o,,, BSF and SAE. Once the model is run, the predicted
parameters are used to compute CCN concentrations across a range of SS. The performance of the model is evaluated by com-
paring these predictions based on RF with measured CCN values, allowing a direct comparison with the results of the S2019

parameterizations.

Figures 8 and S7 present the results of the RF model. Figures 8 (a) and (b) display the relative importance of each input
variable in predicting the C' and k parameters, respectively, while Figure S7 compares the observed and RF-predicted C' and
k parameters. For the C parameter, o, contributes the most, followed by BSF and SAE, highlighting the dominant role of
the total particle loading in determining the potential CCN concentration. In contrast, BSF is the most important variable in k
prediction, followed by SAE and o), suggesting that the physicochemical properties of the particles, more strongly reflected
by BSF and SAE, are more relevant to capture the chemical sensitivity embedded in k. These results are consistent with
previous studies that have shown that C' is primarily influenced by aerosol number concentration and total mass loading, while
k reflects aerosol hygroscopicity and size distribution (Cohard et al., 1998; Jefferson, 2010; Vié et al., 2016; Rejano et al.,
2021). Typically, high C' values are found under polluted conditions with high particle number concentrations, whereas low k

values are associated with particles exhibiting higher hygroscopicity and larger sizes (Martins et al., 2009; Pohlker et al., 2016;
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Jayachandran et al., 2020). Thus, independent prediction of these two parameters offers valuable information on the abundance

and physicochemical properties of aerosols that influence CCN activation.

Figure 8(c) shows the comparison of the predicted CCN concentrations, calculated using the RF-derived C' and k values, and
measured CCN concentrations across all supersaturations. The result shows a slope of 0.90 and a R? of 0.62, indicating good
agreement between predictions and measurements. The inset boxplot shows the distribution of relative bias, with a median

value of approximately 19%, indicating a overall overestimation.
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Figure 8. Importance of input variables in the random forest model considering AOPs used in S2019 (osp, BSF, and SAE) for (a) C' and (b)
k parameters. (c) Log-log scatter plot of predicted CCN concentrations (Nccn pred) versus observed concentrations (Noco n meas) using
a RF model to estimate the parameters of the Twomey equation. The solid black line represents the 1:1 line and the dashed lines are the
+/-50%. A boxplot showing the relative bias is included. Boxes show the interquartile range (IQR, 25th—75th percentiles), with black lines
indicating median values, and whiskers extending from the ends of the IQR to the most extreme data points within 1.5 times the IQR.

RF models can take advantage of additional informative features without a significant loss in predictive performance (Breiman,
2001) so, as the next step, the RF model is extended by including the full set of AOPs as predictors: oy, BSF, SAE, 0,
AAE and SSA. Although some of these variables are strongly correlated (see Fig. S8), RF models are known to be robust to
multicollinearity (Gregorutti et al., 2017). Figure 9c compares the predicted CCN concentrations—calculated using RF-derived
C and k values from the full AOP set—with the observed values. The extended model achieves a slope of 0.91 and an R? of
0.69, slightly improving upon the performance of the RF model using only the three Shen-based variables (slope = 0.90, R? =
0.62). The median relative bias also decreases slightly from 19% (three-variable case) to 15% (full AOP set), with comparable
interquartile ranges (92 to 180 vs. —88 to 145). To assess the RF models’ performance across different SS levels, Figure S9
presents the slope and median relative bias for both schemes. Results are consistent across the SS range, with slopes ranging
from 0.80 to 0.99 and median relative biases between 8% and 32%, indicating that the predictive capability of the RF models

is independent of SS. Finally, Figure S10 in the Supplemental Material shows site-specific R? values comparing predicted and
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measured CCN concentrations for both RF schemes-the S2019 AOPs (Fig. S10a) and the full AOP set (Fig. S10b). While the
overall performance is similar, the inclusion of all AOPs—despite some strong inter-variable correlations (Fig. S8)—slightly
improves both the coefficient of determination and the bias across all sites, supporting a more accurate prediction of CCN

concentrations.

To better understand the source of these improvements in CCN prediction, we next analyze the relative importance of the input
variables used to estimate the C' and k parameters when using the full AOPs set. Figures 9 (a) and (b) display the relative
importance of each input variable in predicting the C' and k£ parameters, respectively, while plots in Fig. S11 compare the
observed and RF-predicted C' and k parameters. AAE is identified as the most important input for the prediction of & (Fig.
9b), followed by SAE and BSF, suggesting that the chemical sensitivity embedded in k is better captured when accounting for
absorption-related properties. For the prediction of the C' parameter, BSF is the most important variable (Fig. 9a), followed
by SAE and AAE, while o, is of relatively lower importance. This result contrasts with the previous model (Fig. 8a), where
0sp dominated, highlighting that including absorption-related parameters redistribute the contribution across variables. As
previously mentioned, some of these variables are strongly correlated (Fig. S8) and the model tends to distribute the importance

among correlated variables affecting overall predictive performance (Genuer et al., 2010).
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Figure 9. Importance of input variables in the random forest model considering all AOPs (o5, BSF, and SAE, 045, AAE, and SSA) for
(a) C and (b) k parameters. (c) Log-log scatter plot of predicted CCN concentrations (Nccn pred) versus observed concentrations (Ncon
meas) using a RF model to estimate the parameters of the Twomey equation. The solid black line represents the 1:1 line and the dashed lines
are the +/-50%. A boxplot of the relative bias is included. Boxes show the interquartile range (IQR, 25th—75th percentiles), with black lines
indicating median values, and whiskers extending from the ends of the IQR to the most extreme data points within 1.5 times the IQR.

To further analyze how different AOPs contribute to the prediction of the C' and k parameters, Figure 10 presents heatmaps of
variable importance for models using different combinations of AOP inputs for C' (Figure 10a) and %k (Figure 10b). In these

heatmaps, each row corresponds to a model run (the first row includes all AOPs; subsequent rows exclude one AOP at a time),

26



640

645

650

655

660

https://doi.org/10.5194/egusphere-2025-4963
Preprint. Discussion started: 7 November 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

and each column represents one of the six AOPs. Analyzing these heatmaps reveals that BSF remains the most important
predictor of C, except when o, 04, or BSF itself are excluded from the model. In these cases, the model shifts its reliance to
a closely related variable: AAE becomes the dominant predictor when BSF is removed, while o,}, and o, substitute each other
when one is absent. This behavior likely reflects the partial redundancy and strong interdependence among BSF, AAE, o, and
0ap- Indeed, their relationships are supported by the Spearman correlation coefficients (Fig. S8 in the Supplemental): BSF and
osp are negatively correlated (p, = —0.41), o}, and o, show a strong positive correlation (ps = 0.68), and BSF and AAE are
moderately correlated (p; = 0.36). While these correlations help explain why certain variables gain importance when others are
removed, it is important to note that RF variable importance also depends on how much each variable contributes to reducing
prediction error across the ensemble, not solely on pairwise correlations (Breiman, 2001). For the prediction of &k (Figure 10b),
the AAE is the most important predictor under the full model. Removing AAE shifts the top rank to BSF, again reflecting
their correlation. This result highlights the RF model’s ability to reallocate predictive importance among partially redundant

features, relying on combinations of variables that together best capture the relevant information rather than depending on any

single one.
C prediction | 0,, 0,, BSF SAE SSA AAE Kk prediction | o,, o0,, BSF SAE SSA AAE
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Figure 10. Heatmap of input variable importance in the Random Forest model for (a) C' and (b) k parameters. Each row corresponds to a
RF model in which one AOP has been removed, while each column represents the importance assigned to each available AOP in that model.
The variable with the highest importance in each prediction is shown in red; importance values >0.20 are shown in orange; values between
0.15 and 0.19 in dark yellow; and values <0.15 in light yellow.

RF model results could be influenced by the differences in the availability of data at each measurement site, providing better
results for those sites where datasets are longer. Therefore, to evaluate the influence of each location on model generalization
when considering all AOPs, a LOSO cross-validation approach is applied as explained in section 2.6.3. Figure S12 in the
Supplement shows the variable importance for each site in the LOSO iteration. In each subplot, the name of the site excluded is
indicated. The importance of predictors remains consistent across sites: AAE and SAE typically dominate the prediction of &,
while BSF, SAE and AAE are more important for predicting C'. This consistency confirms that no single site influences feature
selection within the model. Notably, when SGP — the site with the largest number of observations — is excluded, some shifts
in variable importance are observed. However, these changes are not large enough to affect the overall importance, suggesting
that the 70/30 approach used in the main analysis is not biased by the dominance of SGP data. Figure S13 in the Supplement

shows the comparison between predicted and observed CCN concentrations at each excluded site. Slopes range from 0.38 in
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ENA to 1.87 in MOS, and R? values from 0.03 to 0.56. Although predictive performance remains good for most sites, the
model shows reduced accuracy at marine and polar locations (e.g., ENA, MOS, ANX). This is likely due to the fact that the
training data are dominated by continental stations, limiting the model’s ability to capture the distinct AOP characteristics of

marine and polar environments.

A recently published study by Wang et al. (2025a) used an ensemble of multiple machine learning tools to investigate the
ability of AOPs to predict CCN concentrations at 5 sites which are common to this study (SGP, GUC, ENA, ASI and MOS).
As input variables, Wang et al. (2025a) uses o,,, BSF, SAE and SSA at the different wavelengths. The R? values obtained
ranged between 0.2 to 0.63, depending on the predictive model construction. Their ensemble model was trained specifically for
each site and for SS=0.4%, aiming at optimizing their predictive potential to the unique atmospheric conditions of each site.
In our case, we decided to apply the RF model to the whole range of SS and to all sites together in order to provide a general

model that performs reasonably well at most atmospheric conditions.

4 Discussion of CCN prediction methods

Direct measurements of CCN concentration are less common than other aerosol properties measurements. Multisite harmo-
nization efforts combining CCN and other collocated aerosol measurements (e.g., Schmale et al., 2017; Andrews et al., 2025a)
can strengthen global prediction frameworks. Reliable CCN predictions from commonly measured aerosol properties would

offer a cost-effective and scalable alternative to direct measurements, expanding the scope of aerosol-cloud interaction studies.

Several methodologies for the prediction of CCN concentrations have been reported in the literature. Approaches based on
aerosol chemical composition, as considered in this work, apply «-Kohler theory to derive CCN activity from bulk or size-
resolved chemical measurements (Gunthe et al., 2009; Juranyi et al., 2010; Wang et al., 2010), providing a physically grounded
estimate that captures the influence of composition on particle activation. Optical property—based approaches use measured
aerosol optical characteristics as empirical proxies for CCN concentrations (Ghan et al., 2006; Shinozuka et al., 2009; Liu
and Li, 2014), offering a simple and cost-effective method, particularly when long-term observational datasets are available.
Other methods rely on particle number size distributions (PNSD) combined with either a critical activation diameter or the
aerosol hygroscopicity parameter « derived from hygroscopic growth measurements (Ervens et al., 2007; Cai et al., 2018),
providing predictions that directly account for particle size and activation behavior. Parameterization schemes based on aerosol
activation properties, such as size-resolved activation ratios and inferred critical diameters, have been evaluated in several field

campaigns, demonstrating robust performance across diverse environments (Deng et al., 2013).

Among PNSD-based methods, the simplest assumes a single activation diameter from which all particles are activated, typically
50-150 nm depending on SS (Lihavainen et al., 2003). This approach has been used in other studies (Asmi et al., 2011;
Kerminen et al., 2012; Rose et al., 2017; Rejano et al., 2024) providing satisfactory CCN estimations. This simple approach to
estimate CCN from PNSD and D.,.;; is included here to enhance the discussion. The D,,.;; values assumed in this work—150,

110, 80, 65, 53, and 49 nm for SS=0.1, 0.2, 0.4, 0.6, 0.8, and 1.0%, respectively — correspond to the median D...;; for each
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SS, obtained from the median values across stations, and are in line with previous studies (Bougiatioti et al., 2011; Juradnyi
et al., 2011; Schmale et al., 2018). Figure S14 presents the results of the PNSD prediction method, showing predicted versus

measured CCN concentrations across the 10 sites.

Figure 11 shows the MRB between predicted and measured CCN concentrations across all SS for all the methods tested in this
study. Positive MRB values indicate overprediction and negative values underprediction. The simple D.,.;; approach yields a
MRB of —5% (shown in green) indicating an excellent agreement with observations. We next compare the aerosol optical and

chemical predictions to each other and to this D.,;; approach.

In this study we evaluated three chemistry-based prediction schemes: including BC (scheme 1), excluding BC (scheme 2), and
assuming constant K.pem, = 0.3. The first two performed similarly (MRB < 15%), while scheme 3 exhibits higher overprediction
(24%). Comparable correlations to the other two methods suggest that even a bulk k.pep, value can provide a first-order CCN
estimate across diverse environments. The overprediction observed with this method is consistent with previous applications of
this approach. Schmale et al. (2017) reported a general overprediction of different k.., schemes at 7 sites, and similar results
were found at a high-mountain site by Rejano et al. (2024). Two main limitations of the chemical prediction method contribute
to this bias. First, it is based on bulk chemical composition measurements (size-resolved chemical composition measurements
are rare) which assumes that particles are internally mixed and chemically homogeneous regardless of size (Wang et al., 2010;
Ren et al., 2018). Second, it requires assumptions about the chemical species present (e.g., sulfate forms, organic types) in the

atmosphere, which can introduce large variability in the predictions (Schmale et al., 2018; Rejano et al., 2024).

Dcrit [

RF All AOPs

RF §2019 AOPs

New eq. r
52019
Scheme 3
Scheme 2 [ | I Chemistry
N Optics
Scheme 1 | PNSD 13%

-30 -20 -10 0 10 20 30
MRB (%)

Figure 11. Median relative bias (MRB,%) between predicted and measured Nccn across all SS for different prediction methods. Each
box represents a different predictive method (applied for the sites with available data as described in each section). Positive values indicate
overprediction, while negative values indicate underprediction.

AOQPs provide indirect information on particle size and composition and have been extensively measured for decades (Laj et al.,
2020; Collaud Coen et al., 2020). Shen et al. (2019) developed an empirical parameterization to estimate CCN concentrations
from three AOPs: o,;,, BSF and SAE. In this study, we applied their method with additional sites, deriving new coefficients for
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their empirical parameterization. As shown in Fig. 11, the original S2019 equation performs well across diverse conditions, but
the updated version reduces underestimation (MRB) from —27% to —8% and achieves tighter agreement across the full Noon
range (blue bars labeled S2019 and New eq.). The new Shen-based parameters perform comparably to the D.,;; approach
in terms of MRB and other metrics (e.g., slope and R?). This S2019 approach is simple to apply and suitable where only
nephelometer data are available, enhancing its applicability to global datasets. The historical availability of AOP data can
potentially facilitate broader spatial and temporal coverage of CCN estimates, albeit with more uncertainty than direct CCN

observations or predictions based on aerosol size distributions.

Finally, we introduced a new approach based on the Twomey equation parameters, using a RF model to predict C' and k. Inputs
included both the three AOPs from the S2019 equation (o, BSF, SAE) and the full set of available AOPs (o, BSF, SAE,
Oap>» AAE, SSA). As shown in Fig. 11, incorporating all AOPs reduced the MRB between predicted and measured Nccny from
19% (S2019 variables) to 15%, demonstrating the benefit of additional optical predictors. The MRB values are comparable
to to scheme 1 and 2 of the chemical prediction, though not as low as those from the updated S2019 or D.,;; approaches.
However, the RF analysis of AOP importance provides insights into the prediction of C' and k that cannot be obtained with

other prediction methods based on optical properties.

There are still many ways in which the CCN prediction schemes based on aerosol optical or chemical properties can be ex-
panded. In particular, a recent study (Wang et al., 2025b) shows that using dry scattering measurements instead of ambient-RH
conditions results in a significant improvement of CCN concentration estimations—an error that increases with RH. This high-
lights a potential systematic bias in approaches relying solely on dry optical observations. Observational datasets such as those
compiled by Burgos et al. (2019), with co-located scattering-related hygroscopicity, f(RH), at multiple sites, represent a key re-
source for future work. Leveraging such datasets could help refine CCN prediction models under ambient humidity and reduce

associated uncertainties.

Also, although this study combines information from 10 measurement sites, there are similar datasets at additional sites, that
would be interesting to combine to have those additional co-located measurements harmonized. A potential application of the
RF model and the new S2019 equation developed in this study is to look at long-term aerosol optical measurements to estimate
CCN concentrations and expand the global and temporal coverage of CCN estimates. Additionally, those results could be used

to evaluate global models performance (Fanourgakis et al., 2019).

5 Conclusions

This work presents a comprehensive phenomenological study of in-situ aerosol microphysical, CCN activation, chemical com-
position, and optical properties at ten surface sites across diverse environments. Several CCN prediction methods using the

chemical composition and aerosol optical properties were evaluated.

Analysis of aerosol microphysical properties and CCN activation at 0.4% SS reveals a wide variability between environments.

The polar and marine sites exhibited the lowest concentrations of N, and N¢on, with values below 400 em ™2 and 255
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cm ™3, respectively. Despite similar particle concentrations at these remote sites, the significant variability in D.,.;; and AF

underscores the importance of size distribution and chemistry in CCN activation. In contrast, continental sites exhibited the
highest Ny and Nocn (>2000 em ™2 and 659 ¢m 3, respectively) with fairly similar AF values (0.25-0.38) and a relatively
narrow range in D.,;; (76-98 nm). The mountain sites were more similar to the continental sites than the remote sites in terms

of aerosol concentrations, but generally exhibited lower AF (<0.24).

The chemical composition analysis of the sites with ACSM measurements shows that organics dominate in continental and
mountain sites (50-73% of PM;), while marine stations are sulfate-rich (35-52% of PM;). Total PM; mass ranges from 0.54
to 5.5 pug/m? across sites. Ammonium and nitrate reflect local emissions at the sites and BC is a minor fraction (<9%) of the
aerosol mass. A K¢penm analysis was performed using three different schemes to represent hygroscopcity (k¢penm calculated from
ACSM composition + BC, £cpep, calculated from ACSM composition only and fixed &¢pen,=0.3). The median hygroscopicity

across sites ranged from approximately 0.2 to 0.5 and increased systematically as the organic fraction decreased.

Aerosol optical properties across the seven sites reveal clear environmental differences. Both o, and o, vary with aerosol
loading and sources, with continental sites having the highest absorption due to biomass burning and anthropogenic emissions.
At the marine site ENA, high o, reflects the presence of marine aerosols with high scattering efficiency. BSF and SAE indicate
a predominance of fine particles at continental and mountain sites, whereas marine and polar sites are dominated by coarser
particles. AAE values remain generally consistent across sites with median values of approximately 1.2, indicating that BC is
the primary absorbing component. Most sites are dominated by scattering aerosols (SSA > 0.9), with lower SSA observed at

the site with the most urban influence.

The joint dataset of CCN, aerosol chemical composition and optical properties have been used to evaluate the ability of
different prediction methods to estimate CCN concentrations, using either chemical composition or aerosol optical properties
as inputs. Comparing these prediction methods across site types provides a better understanding of biases and uncertainty
in CCN concentration estimates when direct CCN measurements are unavailable. When PNSD measurements are available,
assuming a fixed D..,.;; for each SS and counting particles larger than this diameter yields a simple estimate with only a slight
underprediction (MRB = —5%). Similarly, assuming a fixed hygroscopicity (kcpem = 0.3) provides a straightforward estimate,
but it tends to overpredict CCN concentrations (MRB = 24%). When chemical composition measurements are combined with
PNSD, or when only AOPs are available, prediction accuracy is similar, particularly when using K¢pep, values derived from
measured species or AOP-based models incorporating multiple variables. Both approaches perform similarly well (8 < IMRBI
<27 %). In stations with limited instrumentation, measuring AOPs — especially o, BSF, and SAE — allows the application
of S2019 parameterization presented here, which performs robustly (MRB = -8%) across environments and SS, and involves

fewer assumptions than chemically-based methods.

The random forest model approach allowed investigation of a wider range of AOPs than included in the S2019 parameterization.
Our RF analysis also represents, to the best of our knowledge, the first time the absorption Angstrém exponent (AAE) has been

explicitly considered as a predictor in CCN estimation based on aerosol optical properties. The random forest model indicated
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the importance of AAE in the prediction of the Twomey exponent k, highlighting the potential of including absorbing aerosol

characteristics in future parametrizations.

Both the empirical (Shen-based) and machine learning (random forest) approaches presented here offer a pathway to estimate
long-term trends in CCN concentrations at stations with extensive archives of aerosol optical data. Applying these methods
retrospectively could provide insights into the evolution of aerosol-cloud interactions over recent decades. However, a key
requirement for such analyses is a robust quantification of the associated prediction uncertainties, which will be essential to

ensure the reliability of inferred trends.

Finally, while this study adds to the accumulated knowledge and previous synthesis of data (e.g., Schmale et al., 2018) relevant
for CCN analysis, there are still gaps in spatial coverage. Other observational sites making PNSD and CCN measurements do
exist. A truly global CCN climatology, similar in spirit to the effort of Rose et al. (2021) for N, and PNSD, would require an

extensive harmonization of disparate datasets - it would be a monumental but valuable undertaking.

Appendix A: Overview of S2019 methodology

The first step in the approach of S2019 demonstrates that a logarithmic function more accurately captures the dependence of
Ncen on SS than other commonly used fits (see Fig. 1 in S2019). Figure S2 in the Supplementary Material shows the same
result for the stations considered here. The second step explores the relationship between Nccon and o), highlighting the
role of BSF in modulating this dependence. S2019 introduce the ratio Roon/oe = Noon /0sp and show that there is a linear

relationship between Rcc v/, and BSF:

N.
Reonje =~ =a-BSF+b (A1)

sp

Equation A1l provides the starting point for the parameterization of CCN using aerosol optical properties. Fit coefficients at
each SS for the sites analyzed in S2019 are listed in their Table 3, while those for the sites in this study are shown in Table S1.
This relationship clearly differs among sites and for different SS. To eliminate the SS dependence, the slopes (agg) and offsets
(bss) from the linear regressions are plotted against the SS, following the S2019 methodology. As shown in Figure A1, the data

follow a logarithmic fit, leading to the reformulation of equation A1 as:

NCCN = (aSS -BSF + bss) *Osp = ((al lIl(SS) + ao) -BSF + bl IH(SS) + bo) *Osp (A2)

The coefficients ay, ag, by and by with their respective errors from both this study and Shen et al. (2019) are shown in Table
Al. Next, to obtain a site-independent parametrization, the different coefficients from all sites are combined. Figure A2 shows
the relationships of the coefficients ag vs. a1, by vs. b1, ay vs. b1, and aq vs. bg. Linear regressions yield ag = (2.41 £ 0.13)a;,
by = (2.42 £ 0.12)b; and b; = (-0.095 £ 0.011)a;+(5.7+ 11.0). Considering these relationships and, after the development
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Figure A1. Slopes (a) and offsets (b) of the linear regressions Rocn /o = a.BSF +b of each site (Table S1) as a function of SS. Logarithmic

fitting applied to data.
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Table A1. Coefficients a1, ag, b1 and by from the logarithmic fitting of coefficients in Table S1 to SS. Shen et al. values are given in Table 4
of Shen et al. (2019). SE: standard error of the respective coefficient obtained from the linear regressions.

Site a1+ SE agt SE b1+ SE bo:l: SE
SMEARII 464+11 1170 £ 16 —494+15 —-118+0.67
= SORPES 331+12 817+18 —26+09 —62+1.4
15} PGH 205+ 30 385 +41 —6.3+1.5 —-91+2.0
E) PVC 810+ 17 1933 £ 21 —704+1.7 —160+2.1
2l MAO 393 £45 858 £40 —25+6.6 —60+£5.8
ASI 52 +17 164 4+ 26 —29+1.6 —6.3+£2.3
ANX 124 +18 303 +14 —114+2.9 —25+2
GUC 384 + 20 994 + 17 —17+5 —494+4
= COR 730 £+ 96 1834+ 77 —514+6 —1414+5
S ENA 122 430 385+ 23 —13+4 —40+3
2 MAO 207+16  467+13 —3+4 —2+3
&= MOS 222+ 23 889 + 18 —23+2 —86+2
SGP 783 +140 2003 +106 —85 416 —206+12
2000 0
y =2.41x; R? = 0.97 y =2.42x; R?=0.97
1500 -50
3 1000 A 2 -100
500 ® This work =120
. ® Shenetal 200
0 200 400 600 800 -100 50 0
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o]
=-0.09x+57;R?=087 ® y = -0.10x + 16.8; R? = 0.87
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0 200 400 600 800 0 500 1000 1500 2000
al a0

Figure A2. Relationship between the coefficients ao, a1, bo, and b; of Eq. A2 for each site shown in Table Al. The coefficients units are
-3
cm™ 2 Mm.

810 It was shown in Shen et al. (2019) that when the number of hourly samples exceeds approximately 1000 — a condition also

met at all our sites — the uncertainty in the minimum BSF (BSF,,;,) becomes sufficiently low. Therefore, instead of subtracting
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O

a fixed offset of (0.095 4 0.025) from the BSF, we use the observed minimum BSF value (BSF,i,; 1st percentile of BSF). In
addition, as shown in the derivation presented in Supplementary Section S4 of Shen et al. (2019), the final term (5.7411.0) is
treated as a constant C, which depends on R,,,;,,, defined as the minimum (first percentile) of Noon /0. Taking all this into

account, Eq. A3 can be reformulated by incorporating these terms, and is written as follows.

SS
Neaw = (011 (g9 5 1) (BSF~ BSFaie) + R ) - A9

The final step consists of relating the coefficient a1 in Eq. A4 to the scattering Angstrom exponent (SAE), which is the only
parameter among optical properties found to be positively correlated with a;. Based on the median values from Shen et al.
(2019) and from this study, linear regression yields a; ~ (320£78)-SAE cm® Mm (Fig. A3). Additionally, the minimum value
of Rin Eq. A4, Ry, was estimated as the 1st percentile of Rcc /o at each site and supersaturation, resulting in an average

value of Ry, = 8.7 4 9.3 cm—3 Mm. Consequently, the parameterization becomes

SS
Neen =~ [(320+ AE-In{ ———— | (BSF — BSF,; 7+£9.3)| - ogp. A
cen & | (320£78)S n(0.08910.011>( S SFmin) + (8.7£9.3) | - op (AS)
800 f i T i 9

a, = (320 £ 78) SAE

600 - R?=0.60

(]
@ 400
200
® ® This work
[ ] ® Shenetal
0 L 1 L 1
0 0.5 1 1.5 2 2.5

SAE

Figure A3. Relationship of the a; coefficient in Eq. A3 with the average PM ¢ scattering Angstrém exponent (SAE).

Code availability. Code will be made available on request.

Data availability. All data presented here are described in Andrews et al. (2025a) and accessible at Andrews et al. (2025b).
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