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Abstract. Better understanding of peatland dynamics requires more data on more peat properties than provided by existing

databases. These data needs may be addressed with resource efficient measurement tools, such as models that predict peat

properties from mid-infrared spectra (MIRS). High-quality spectral prediction models are already used for mineral soils, but

similar developments for peatland-focused research lag behind.

Here, we present transmission-MIRS prediction models for peat which are openly available, easy to use, have basic quality5

checks for prediction quality, and propagate prediction errors. The models target element contents (C, N, H, O, P, S, K, Ca,

Si, Ti), element ratios (C/N, H/C, O/C), isotope values (δ13C, δ15N), physical properties (bulk density, loss on ignition (LOI),

macroporosity, non-macroporosity, volume fraction of solids, hydraulic conductivity, specific heat capacity, dry thermal con-

ductivity), thermodynamic properties (Gibbs free energy of formation (∆G0
f )), and nominal oxidation state of carbon (NOSC).

They are representative for more diverse peat samples than currently existing peat-exclusive models while having a competitive10

predictive accuracy. Relatively accurate predictions can be made for example for many element contents (C, N, O, S, Si, Ca,

∆G0
f , O/C, H/C, bulk density, and LOI).

Many of these properties are not predicted by existing high-quality prediction models focusing on mineral soils. For some of

the target variables, high-quality prediction models focusing on mineral soils exist. These models may be more accurate, but

reported predictive accuracies are not directly comparable due to imbalances in the amount of organic vs mineral soil samples15

in the training data. We suggest that some soil properties are easier to predict for peat, whereas others are easier to predict for

mineral soils, emphasizing that we need new approaches to meaningfully compare prediction errors of spectral models com-

puted on datasets with variable amounts of organic soils. Our tests also indicate that replacing δ13C and δ15N measurements

by MIRS models probably is not feasible due to large prediction errors. Future studies should address the lack of open training

and validation data for some peat properties (O, H, NOSC, ∆G0
f , LOI, H/C, O/C), the lack of mineral-rich peat samples, and20

improve and standardize model validation and comparison for models trained on data with very different proportions of peat

soils. This study is a step to catch up with high quality standards set by models for mineral soils and it provides novel models

for several peat properties. By filling data gaps in the Peatland Mid-Infrared Database, we make a step to provide the data

required to better understand peatland dynamics.
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1 Introduction25

Northern peatlands are projected to both become a larger sink and source for greenhouse gases (Frolking et al., 2011; Qiu et al.,

2022). However, these projections have large uncertainties: They range from an estimated net emission of 0.2 to an estimated

net carbon sequestration of 0.1 Pg C yr−1 (Qiu et al., 2022). Also peatland C stock estimates are highly uncertain, ranging

from ~270 to 1045 Pg (Yu, 2012; Nichols and Peteet, 2019). Some fraction of this uncertainty is caused by a lack of knowledge

on processes, their incomplete representation in models (Loisel et al., 2021; Qiu et al., 2022), a high spatial variability of peat30

properties (Frolking et al., 2011; Loisel et al., 2014, 2017; Normand et al., 2021; Qiu et al., 2022), and a lack of systematic

data collections.

It would be possible to address errors due to unknown peat properties and stocks with more data on peat properties. Such data

could be used to interpret and compare individual peat cores, quantify global peat properties at sufficient spatial resolution,

constrain parameter estimates in peatland models, and test peatland models and hypotheses on peatland processes (Loisel et al.,35

2014). Existing databases on global and regional peat properties partly address these needs (Zoltai et al., 2000; Charman et al.,

2013; Loisel et al., 2014; Treat et al., 2016; Gallego-Sala et al., 2018; Leifeld et al., 2020). However, they still have large gaps

in terms of spatial coverage (e.g. Loisel et al. (2017)) and the peat properties considered.

For example, one of the largest database on peat properties (Loisel et al., 2014) contains peat ages, bulk densities, C and N

contents, but other peat properties, such as nutrient contents, hydraulic properties, and availability of labile organic matter also40

play a pivotal role in peatland models (e.g., Yu et al., 2001; Bauer, 2004; Frolking et al., 2010; Baird et al., 2012; Mahdiyasa

et al., 2022; Qiu et al., 2022) and are not part of this database. Even though similar databases exist for such data, they are

much smaller, containing not only fewer samples, but also covering smaller geographical areas (e.g., Liu and Lennartz, 2019;

O’Connor et al., 2020).

A major obstacle towards addressing these limitations is that data collection is difficult in practice: Collection and analysis of45

peat cores are costly and resource limitations constrain both the number of peat samples collected and the set of peat properties

measured. Examples for such resource limitations are restricted access to measurement devices, lack of funding, lack of time,

or simply the fact that the amount of peat in a given sample is limited; this makes it difficult to measure all peat properties at

high spatio-temporal resolution (e.g., Zaccone et al., 2018).

A promising approach to address this problem has been developed for mineral soils: Soil spectroscopy combined with spectral50

prediction models can reduce the time and cost of the measurements of diverse soil properties at an accuracy partly compet-

itive to traditional measurement methods (Viscarra Rossel et al., 2008; Nocita et al., 2015; Hartmann and Nopmanee, 2019;

Sanderman et al., 2020). This approach requires few sample preprocessing steps and only one infrared spectrum needs to be

measured to predict soil properties as diverse as carbon content, bulk density, and pH value (e.g., Nocita et al., 2015; Dangal

et al., 2019). In addition, spectral prediction models can be combined with pedotransfer functions to predict soil properties55

which are only rarely measured together with spectra (e.g., McBratney et al., 2006). In case of peat, this would be in particular

useful to predict peat hydraulic and thermal properties since these are rarely measured together with spectra (e.g., Teickner

et al., 2025a). Within the last years, databases, modeling approaches, and user interfaces have been improved to an extent that
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many traditional measurements can be replaced at a minimal trade-off for accuracy (e.g., Shepherd et al., 2022; Hengl et al.,

2021).60

Even though aforementioned databases and models also comprise peat, peat soils are still underrepresented in prediction mod-

els (even the largest databases contain no more than several hundred to 1000 samples which may be classified as peat based on

their C content, see for example Sanderman et al. (2020), Helfenstein et al. (2021), and Hengl et al. (2021)). Moreover, existing

mineral soil databases target soil properties linked to agriculture and forestry. Peatland research often targets stocks, indicators

for peat degradation, and modeling ecosystem processes and for this requires additional soil properties, for example loss on ig-65

nition, total sulfur contents, stable isotope abundances, and porosity. Finally, many existing studies use different spectroscopic

measurement techniques (transmission mid-infrared spectroscopy, visible and near-infrared spectroscopy, or mid-infrared dif-

fuse reflectance spectroscopy). In summary, existing spectral libraries and prediction services can be very useful to predict

some peat properties (e.g., C, N content, bulk density) with some spectral data, but there still is a need for complementary

spectral libraries and prediction models dedicated to the specific questions and approaches of peatland research.70

There are many spectral prediction models exclusively for peat, but these are still in an early phase of development in compar-

ison to those for mineral soils (Downey and Byrne, 1986; Bergner and Albano, 1993; McTiernan et al., 1998; Chapman et al.,

2001; Ludwig et al., 2006; Rinnan and Rinnan, 2007; Artz et al., 2008; Terhoeven-Urselmans et al., 2008; Lang et al., 2009;

Laiho et al., 2014; Hayes et al., 2015; Pérez-Rodríguez et al., 2016; Hodgkins et al., 2018; Straková et al., 2020; Helfenstein

et al., 2021; Teickner et al., 2022). Major limitations in comparison to state of the art studies for mineral soils are the follow-75

ing: First, many of the computed models are probably unrepresentative for many new samples and likely have low reliability

and predictive accuracy because they were computed with samples from only few peat cores (e.g., McTiernan et al., 1998;

Chapman et al., 2001). Second, even though there exist many prediction models, there are some often used peat properties

for which no prediction models for peat has been developed yet (e.g., some nutrient contents, C and N isotope values, peat

hydraulic, thermal and thermodynamic properties). Third, several newer and important concepts in state of the art mineral soil80

studies have not yet been applied in the development of prediction models for peat: prediction domains (Wadoux et al. (2021);

see also Sanderman et al. (2020) and Shepherd et al. (2022) for some recent examples), propagation of prediction errors (e.g.,

Viscarra Rossel et al., 2008; Shepherd et al., 2022; Padarian et al., 2022), open accessibility of model data and code (Hengl

et al., 2021; Shepherd et al., 2022), and software that allows non-experts to generate predictions and check their reliability

(Hengl et al., 2021; Shepherd et al., 2022). We will discuss each of these concepts in turn.85

The prediction domain (sometimes referred to as calibration space, predictor space, or feature space) is the range of the spectra

for which a model has been computed and validated (Wadoux et al., 2021). If a new spectrum is outside this range, a prediction

model may still produce accurate predictions, but there is no guaranty for this because the model was not trained and tested on

such extreme samples. Checking whether a new spectrum is within the prediction domain is therefore a first rule of thumb to

decide whether to trust predictions and their uncertainties (e.g., Shepherd et al., 2022).90

Many studies which use spectral prediction models to analyze peat ignore prediction errors. This can lead to overly confident

inferences (e.g., Hodgkins et al., 2018; Moore et al., 2019; Baysinger et al., 2022). Prediction models should propagate errors,

such that they can be appropriately included in subsequent analyses. Computing prediction errors is both a matter of developing
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statistical approaches which allow to compute reliable estimates of prediction errors and of software which allows scientists to

easily access prediction errors.95

Making raw spectra and code for spectral preprocessing and computation of models accessible is one of the largest current

efforts in the development of spectral prediction models for mineral soils (Hengl et al., 2021; Shepherd et al., 2022). This

allows others to use, to criticize, and to improve prediction models. The advantages therefore are improved reliability, more

engagement between developers and users of models, and faster, more efficient, improvement of models. In contrast, only few

of the peatland models we are aware of are openly accessible, including the underlying data (Hodgkins et al., 2018; Teickner100

et al., 2021, 2022; Teickner and Knorr, 2022a).

Finally, recent projects target the development of estimation services to allow non-experts to easily generate predictions (Shep-

herd et al., 2022). These estimation services are web applications which estimate soil properties based on spectra you have

uploaded, while taking care of spectral preprocessing and reliability checks in the background (e.g., whether spectra are within

the prediction domain) (Shepherd et al., 2022). Ultimately, this makes spectral prediction models widely accessible to scientists105

who can then quickly fill existing data gaps.

To summarize, spectral prediction models for mineral soils currently have higher quality standards than existing models for

peat, and are openly accessible and easier to use. Our study aims to develop spectral prediction models for many peat properties

relevant in peatland research, which use transmission mid-infrared spectra and meet quality standards set by models for mineral

soils. More specifically, we want to:110

1. Develop openly available spectral prediction models for many peat properties relevant in peatland research.

2. Provide prediction domains for all these models as reliability check for predictions.

3. Propagate errors from data (where available) and parameters to predictions.

4. Fill data gaps in the pmird database, one of the largest open databases focusing on peat and mid-infrared spectra (Teickner

et al., 2025a), to support peatland research.115

To this end, we computed spectral prediction models for element contents (C, H, N, O, P, S, K, Ca, Si, Ti), element ratios

(C/N, H/C, O/C), isotope values (δ13C, δ15N), physical properties (bulk density (BD), loss on ignition (LOI) macroporosity,

non-macroporosity, volume fraction of solids, saturated hydraulic conductivity (Ks), specific heat capacity (cp), dry thermal

conductivity (KT)), standard Gibbs free energy of formation (∆G0
f ), and nominal oxidation state of C (NOSC) (Masiello et al.,

2008). To our knowledge, our study is the first test to compute prediction models for some of these variables (O, K, Ca, Si,120

Ti contents, H/C, O/C, δ13C, δ15N, ∆G0
f , NOSC, LOI). The models were computed and validated with data from one of the

largest open accessible peat spectral libraries (Teickner et al., 2025a) which makes them representative for more diverse peat

samples than most existing models that focus on peat. While some of our models may only generate approximate predictions,

many have prediction errors small enough to be useful in diverse applications.

Bayesian data analysis was used to propagate errors from model parameters and data (where measurement errors are known)125

to predictions. We made the models openly accessible via the R packages irpeatmodels (Teickner, 2025b) and irpeat (Teickner
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and Hodgkins, 2025). For all computed models and those already implemented in both packages, we also computed prediction

domains. Finally, we extended irpeat to allow making predictions with a few lines of code, where spectral preprocessing and

basic checks for the reliability of predictions are performed in the background.

Peat sample

1. Measure MIRS 2. Import to R with 
package 'ir'

3. Make predictions
with 'irpeat'

C, H, O, N, S, P, K, Ca, Si, Ti contents
δ13C, δ15N, ΔGf, NOSC
O/C, H/C, N/C 
bulk density, LOI, macroporosity 
non-macroporosity, Ks, KT, cp

0

Figure 1. Workflow how to use the models developed in this study to estimate peat properties.

The models can be used to estimate peat properties in a workflow as shown in Fig. 1. We demonstrate the usefulness of the130

models and the workflow to fill gaps in databases by predicting these peat properties for samples in the pmird database. This

makes pmird to one of the largest open access collections of, for example, peat element contents (C, H, O, N, P, S, K, Ca, Si,

Ti) and thermodynamic properties (∆G0
f ).

2 Methods135

2.1 Target variables

Table 1 summarizes the peat properties (target variables) for which we computed models. The variables were selected because

they can be used to understand and quantify important processes in peatlands and because many of them cannot be predicted

with existing models (e.g., Sanderman et al., 2020; Shepherd et al., 2022).
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Table 1. Overview on the peat properties for which we computed prediction models. “Has model” indicates whether we computed a spectral

prediction model for the target variable (“yes”) or a pedotransfer function which uses bulk density or N content to predict the variable (“no”).

“Likelihood” is the likelihood used in the prediction model for each target variable (see subsection 2.4).

Variable Definition Relevance Has model Likelihood

C Mass content of C in 1 g bulk peat. Estimating peat C stocks. yes beta

H Mass content of H in 1 g bulk peat. Estimating peat H stocks. yes beta

N Mass content of N in 1 g bulk peat. Quantifying peat N stocks. Quantifying N limitation (e.g., Koerselman and Meuleman, 1996; Olde Venterink et al., 2003;

Wang and Moore, 2014; Wieder, 2022).

yes beta

O Mass content of O in 1 g bulk peat. Estimating peat O stocks. yes beta

S Mass content of S in 1 g bulk peat. Quantifying peat S stocks. Quantifying nutrient limitations (e.g., Wieder, 2022) and atmospheric S deposition (e.g., Moore

et al., 2005; Wieder et al., 2016).

yes beta

P Mass content of P in 1 g bulk peat. Quantifying peat P stocks. Quantifying nutrient limitations (e.g., Koerselman and Meuleman, 1996; Olde Venterink et al.,

2003; Wang and Moore, 2014; Wieder, 2022).

yes beta

K Mass content of K in 1 g bulk peat. Quantifying peat K stocks. Quantifying nutrient limitations (e.g., Olde Venterink et al., 2003; Wang and Moore, 2014;

Wieder, 2022).

yes beta

Si Mass content of Si in 1 g bulk peat. Estimating peat Si stocks. Estimating peat mineral inputs. yes beta

Ca Mass content of Ca in 1 g bulk peat. Estimating peat Ca stocks. Quantifying minerotrophy (e.g., Waughman, 1980; Wang et al., 2015b). yes beta

Ti Mass content of Ti in 1 g bulk peat. Quantifying peat Ti stocks. Quantifying mineral dust inputs and degree of decomposition (Shotyk, 1996; Hölzer and Hölzer,

1998; Gałka et al., 2022a).

yes beta

δ13C δ13C value of bulk peat relative to the

Vienna Pee Dee Bee standard.

Estimating the degree of decomposition (Nadelhoffer and Fry, 1988; Lerch et al., 2011; Biester et al., 2014), moisture

conditions during photosynthesis (Williams and Flanagan, 1996; Schmidt, 2014; Xia et al., 2020), contribution of

sequestered C from methane (Larmola et al., 2010, Schmidt (2014)). Note that there are a lot of unclear confounding factors

(e.g. Williams and Flanagan, 1996; Asada et al., 2005a; Bragazza and Iacumin, 2009; Drollinger et al., 2019).

yes normal

δ15N δ15N value of bulk peat relative to the Air

N2 standard.

Estimating the degree of decomposition (e.g. Drollinger et al. (2019), but see Asada et al. (2005b), Biester et al. (2014)),

vegetation nitrogen source (Asada et al., 2005b).

yes normal

NOSC Nominal oxidation state of carbon as defined

in Masiello et al. (2008)

Estimating degree of decomposition. Computation of the oxidative ratio (Masiello et al., 2008). yes beta

∆G0
f Standard free Gibbs energy of formation

(25°C, 1 bar).

Quantifying peat degree of decomposition (e.g., Worrall et al., 2018), quantifying thermodynamic feasibility of reactions. yes normal

C/N The mass ratio of a samples’ C and N

content.

Estimating the degree of decomposition (e.g., Malmer and Holm, 1984; Kuhry and Vitt, 1996; Biester et al., 2014; Leifeld

et al., 2020) and nutrient limitations (e.g., Bauer, 2004).

yes beta

O/C The mass ratio of a samples’ O and C

content.

Estimating the degree of decomposition (e.g., Bader et al., 2018; Zaccone et al., 2018; Moore et al., 2018; Leifeld et al.,

2020), estimating the relative abundance of organic matter fractions from Van Krevelen diagrams (e.g., Kim et al., 2003,

Bader et al. (2018)).

yes gamma

H/C The mass ratio of a samples’ H and C

content.

Estimating the degree of decomposition (e.g., Bader et al., 2018; Zaccone et al., 2018; Moore et al., 2018; Leifeld et al.,

2020), estimating the relative abundance of organic matter fractions from Van Krevelen diagrams (e.g., Kim et al., 2003,

Bader et al. (2018)).

yes gamma

Bulk density Mass of the dried sample divided by its

volume.

Quantifying peat hydraulic properties (Liu and Lennartz, 2019). Quantifying storage of chemical elements. Quantifying peat

degree of decomposition (e.g., Chambers et al., 2011).

yes gamma

Loss on

ignition

Fraction of initial mass lost during

combustion of the dried sample at 400°C.

Estimating organic matter pools and mineral pools. Quantifying degree of decomposition. yes beta

Macroporosity The total volume of macropores (as defined

in Liu and Lennartz (2019)) divided by the

total volume of a sample.

Quantifying peat hydraulic properties (Liu and Lennartz, 2019), modeling peat thermal properties and water storage (e.g.,

Weiss et al., 2006).

no Dirichlet

Non-

macroporosity

The total volume of non-macropores (as

defined in Liu and Lennartz (2019)) divided

by the total volume of a sample.

Quantifying peat hydraulic properties (Liu and Lennartz, 2019), modeling peat thermal properties and water storage (e.g.,

Weiss et al., 2006).

no Dirichlet

Volume

fraction of

solids

The total volume of solids divided by the

total volume of a sample (one minus

macroporosity minus non-macroporosity).

Quantifying gas volume in peat. Quantifying total porosity. Quantifying solid matter mass density of peat. Modeling peat

thermal properties and water storage (e.g., Weiss et al., 2006).

no Dirichlet

Saturated

hydraulic

conductivity

The saturated hydraulic conductivity of a

sample as defined in Liu and Lennartz

(2019).

Quantifying peat hydraulic properties (Liu and Lennartz, 2019), modeling water flow (e.g., Granberg et al., 1999; Weiss

et al., 2006).

no beta

Dry thermal

conductivity

The dry thermal conductivity of a sample as

defined in O’Connor et al. (2020).

Quantifying peat thermal properties, modeling heat flow. Modeling peat thermal properties (e.g., Granberg et al., 1999; Weiss

et al., 2006).

no gamma

Specific heat

capacity

The specific heat capacity of a sample as

defined in Gnatowski et al. (2022).

Modeling peat thermal properties (e.g., Granberg et al., 1999; Weiss et al., 2006). no gamma
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2.2 Data sources140

The prediction models were computed with a subset of the pmird database (Teickner et al., 2025a; Münchberger, 2019; Münch-

berger et al., 2019; Schuster et al., 2022; Drollinger et al., 2019, 2020; Agethen and Knorr, 2018; Kendall, 2020; Harris et al.,

2023; Harris and Olefeldt, 2023; Pelletier et al., 2017; Teickner et al., 2021, 2022; Broder et al., 2012; Hömberg, 2014; Diaconu

et al., 2020; Gałka et al., 2022b, a; Boothroyd et al., 2021; Worrall, 2021; Reuter et al., 2019a, b, 2020; Moore et al., 2005;

Turunen et al., 2004). The pmird database is a collection of infrared spectra and other chemical and physical properties of peat,145

peat forming vegetation, and dissolved organic matter (DOM). For many peat variables, the database has data from several dif-

ferent sites and covers global gradients of conditions under which peat is formed. This makes the models more representative

for many peat properties than existing models (Bergner and Albano, 1993; Chapman et al., 2001; Artz et al., 2008; Helfenstein

et al., 2021).

We did not use spectra that were classified as already baseline corrected in the pmird database (Teickner et al., 2025b), except150

for those from dataset 13 where we checked that the corrected spectra are similar to the result of our procedure here, to avoid

that differences in preprocessing would decrease the predictive accuracy of the models. The pmird database contains a compar-

atively small number of vegetation and dissolved organic matter (DOM) samples and we therefore do not consider our models

applicable to DOM or vegetation in general, except for Sphagnum which forms the bulk undecomposed peat material in bogs.

Since DOM can have spectral properties different from peat, we did not include DOM samples in our models. Except for some155

cores, the peat is from ombrotrophic bogs, and peat with larger mineral contents and fen peat is thus underrepresented.

The pmird database does not contain data for saturated hydraulic conductivity, total porosity, macroporosity, volume fraction of

solids, specific heat capacity, and dry thermal conductivity for samples with MIRS (Teickner et al., 2025a). For these variables,

we used modified versions of models from Liu and Lennartz (2019), Liu et al. (2020), Gnatowski et al. (2022), and O’Connor

et al. (2020) to predict these variables from bulk density or N content. These models are described in supporting section S1. As160

suggested in previous studies (e.g., McBratney et al., 2006), these models (also known as pedotransfer functions) can be used

with bulk density and N contents predicted from MIRS to predict these physical peat properties, whereby all relevant errors are

propagated.

The pmird database also does not contain ∆G0
f estimates. We predicted ∆G0

f from element contents (at least C, H, N, O)

using modified versions of the models from Thornton (1917), Patel and Erickson (1981), and Battley (1999) for the enthalpy165

of combustion and the entropy of formation, as described in Popovic (2019). These models are described in supporting section

S2.

2.3 Spectral preprocessing

All computations for this manuscript were made in R 4.3.0 (R Core Team, 2022). For each of the target variables, except the

physical peat properties mentioned in the previous section, we computed three spectral prediction models. The three models170

use differently preprocessed spectra (no derivative, first derivative, second derivative spectra), but otherwise were computed

in the same way. All spectral preprocessing was done with the ir package (Teickner, 2022). To harmonize the spectra, we
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interpolated them to unit wavenumber resolution and clipped them to the range 650 to 4000 cm−1. Next, we conducted an

atmospheric correction of water vapor and CO2 artifacts using the approach suggested in Perez-Guaita et al. (2013). First, we

subtracted a baseline created from a Savitzky-Golay smoothed version of the spectra where regions with strong CO2 peaks (645175

to 695 cm−1 and 2230 to 2410 cm−1) (Wallace and NIST Mass Spectrometry Data Center, 1997) were linearly interpolated

and then we used CO2 and water vapor spectra from the pimrd R package (Teickner, 2025a) (see also Teickner et al., 2025b) to

perform the atmospheric correction as described in Perez-Guaita et al. (2013). Due to differences in devices and measurement

conditions, this procedure attenuated CO2 artifacts, but did not remove them completely. Thereafter, the corrected spectra were

baseline corrected using a convex hull procedure (Beleites and Sergo, 2021), normalized using the signal normal variate (SNV),180

the three versions of derivative spectra were computed, and all spectra were binned with a bin width of 10 cm−1 to reduce the

number of redundant predictor variables and reduce possible wavenumber shifts between measurements from different devices.

Finally, we excluded intensities from 2250 to 2400 cm−1, to avoid that remaining CO2 peaks confound predictions.

2.4 Prediction models

We used normal, gamma, and beta distributions as likelihoods (Tab. 1) and used Bayesian statistics to compute all prediction185

models. All models were computed with brms (Bürkner, 2018), using a logit (beta regression), log (gamma regression) or

identity link function (normal regression), assuming a constant shape parameter (beta, gamma) or standard deviation (normal),

using a normal prior for the intercept, gamma priors for the shape parameter or standard deviation, and regularized horseshoe

priors (Piironen and Vehtari, 2017a, b) for the slopes (for each predictor variable). The regularized horseshoe prior shrinks

coefficients to zero except where they are strongly related to the response variable, conditional on other predictors. To reduce190

overfitting, we defined a large amount of shrinkage, by assuming that 5 of the 321 predictor variables have non-zero coefficients

(Piironen and Vehtari, 2017b). The regularized horseshoe prior can lead to a complex posterior geometry that is difficult to

sample from even with efficient sampling algorithms and to run most of the models without divergent transitions, we had to

increase the degrees of freedom of the student-t distribution of the horseshoe prior from 1 to 3 or 4. This reduced the number of

divergent transitions, but also leads to less regularization (deviation from the horseshoe shape) (Piironen and Vehtari, 2017b)195

which may lead to overfitting and less interpretable model coefficients. In our case, less regularization was not a critical

limitation because our aim was not to interpret model coefficients, but to optimize predictive accuracy, and because our model

validation did not indicate overfitting (Tab. 2).

The posterior distributions were estimated with Markov Chain Monte Carlo (MCMC) sampling with Stan (Stan Development

Team, 2021), using 4 chains, 3000 warmup iterations and 2000 sampling iterations per chain. Chains were initialized with200

pathfinder (Zhang et al., 2022). Maximum Monte Carlo standard errors (Vehtari et al., 2021) for predictions of the target

variables by the best models (see the next section) for each target variable are shown in Tab. 2. As mentioned above, some

models had divergent transitions, but at least one model per target variable did not and we only evaluate and interpret models

without divergent transitions. The largest rank-normalized R̂ for model parameters was 1.01, indicating convergence of the

chains (Vehtari et al., 2021).205

8

https://doi.org/10.5194/egusphere-2025-4955
Preprint. Discussion started: 13 November 2025
c© Author(s) 2025. CC BY 4.0 License.



2.5 Model validation and data filtering

We used the Kennard-Stone algorithm as implemented in the prospectr package (Stevens and Ramirez-Lopez, 2013) to split the

observations for each target variable into a training and a testing dataset, using the euclidean distance between the underived

preprocessed spectra. The number of observations assigned to the test dataset was defined as min(0.8n,nmax), where n is the

number of available observations for a target variable and nmax = 200. All models for the same target variables use the same210

observations for training and testing such that the models are comparable.

This procedure was chosen because our aim is to develop prediction models that are applicable to as diverse peat samples as

possible, that is, to compute one prediction model with maximum prediction domain (the value ranges covered by all predictor

variables) (Wadoux et al., 2021) and smallest possible prediction error across this prediction domain. The Kennard-Stone

algorithm maximizes the distance between spectra covered by the training data and therefore selects a diverse training data set.215

An ideal test of the prediction models would use test data that covers the whole spectral range of the training data and is

independent of the training data, which in the case of peat samples are samples from different peatland sites. We had to deviate

from this ideal because of the heterogeneity of the pmird data. In particular, because there are only few samples from few

peatland sites with large carbonate or silicate contents, it would have been possible with independent observations either only

to test the models over a much smaller range of spectral variation if only independent test data would have been used, or to220

test the predictive accuracy for spectral conditions the model was not trained on. In the first case, we would risk overfitting

in the untested spectral range, and in the second case, the predictive accuracy would be underestimated due to extrapolation.

Therefore, as an alternative, we did not separate observations from the same cores or sites when defining training and test

data. This allowed us to test the models across a much larger spectral range within their prediction domains. For many target

variables, the overfitting risk should be small because both the training and the test data have samples from many different225

sites.

To compare models, we used the expected log predictive density (ELPD) computed on the test data. Model evaluation was

performed with the loo package (Vehtari et al., 2019). Following rules of thumb (Sivula et al., 2022), we assumed models

to have equivalent predictive performance (according to the capability of our evaluation) when the difference of their ELPD

(∆ELPD) is smaller than 4, and otherwise when ∆ELPD is larger than two times its standard error (using normal approximation230

for ∆ELPD). Models with divergent transitions were not considered during model evaluation. To give an easier to interpret

performance metric, we also computed the root mean square error (RMSE).

We do not interpret model coefficients and how this may reflect causal links between molecular structures and target variables

because our model coefficients are not intended to estimate causal effects, because it is very likely that they do not represent

causal effects, and because specific wavenumbers cannot be assigned unambiguously to molecular structures (e.g., Stuart,235

2004). For those interested in model coefficients, we show a plot of the model coefficients with the best model for each target

variable and a table listing possible assignments to molecular structures for coefficients with a posterior probability of being

larger than 0 of at least 90% or a posterior probability of being smaller than 0 of at least 90% in supporting section S4.
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2.6 Prediction domains

A regression model interpolates a target variable within the range of predictor values — the prediction domain (Wadoux et al.,240

2021). If such a model is used for prediction with new data that are outside the prediction domain, it is unclear how large

prediction errors are, particularly for models with high dimensional prediction domain, such as spectral prediction models.

Consequently, it should be checked that new data are within the prediction domain of the model (e.g., Roberts et al., 2017),

even though this is no guaranty for accurate predictions.

For this reason, we computed the training prediction domain (Wadoux et al., 2021) for each model as the range of the predictor245

variable values across all training samples (training prediction domain), and a prediction domain for the test samples (test

prediction domain) for each model as the range of predictor variable values across all testing samples. When samples are

outside the prediction domain, predictions may be less reliable than estimated by the model validation. The difference between

testing and training prediction domain shows where the models need further testing. The difference between training (or testing)

prediction domain and the prediction domain formed by all relevant spectra in the pmird database indicates whether the model250

covers the spectral variability in the pmird database, as approximation of the spectral variability of peat in general, and therefore

indicates where additional data can improve the models.

When making predictions with the models, irpeat checks whether the input data are within the testing or training prediction

domain. This is a safety device to avoid a misuse of models and it provides information for those who want to improve our

models.255

2.7 Testing the influence of confounding factors

Based on previous experience in the interpretation of peat MIRS and on the peaks caused by silicates, carbonates, amides,

carbohydrates, aromatics, and lipids (Stuart, 2004; Tatzber et al., 2007; Parikh et al., 2014), we suggest that the main gradients

in peat chemistry that control spectral variation are (1) the content of silicates, (2) the content of carbonates, (3) the initial veg-

etation composition that controls differences in the initial content of amides, carbohydrates, and aromatics, and (4) the degree260

of decomposition, which increases the relative contents of amides, lipids, and aromatics, and decreases the overall content of

carbohydrates (e.g., Cocozza et al., 2003). Previous studies suggest that differences in amide contents and silicates can bias

predictions (Broder et al., 2012; Teickner and Knorr, 2022b) and similar effects are likely for carbonates, because carbonates

cause dominant peaks that overlap with peaks caused by aromatics and amides (Tatzber et al., 2007) and because large car-

bonate contents usually indicate higher pH values and therefore shifts in carboxyl peaks due to deprotonation (Ellerbrock and265

Gerke, 2021). To test for such confounding factors, we plotted model residuals versus Ca, Si, and N measured for the same

samples (residuals were not plotted for samples where Ca, Si, and N, respectively, were not measured).

2.8 Filling data gaps in the pmird database

To fill data gaps in the pmird database, we used the best models for each target variable (Tab. 2) to predict missing values for

the target variables where samples have MIRS. These predictions are stored in a published data table. Moreover, we created270
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two additional data tables that indicate, for each prediction, whether the MIRS is in the training or testing prediction domain

for the respective model. We restricted gap filling to peat and litter samples with absorbance-FT-MIR spectra. In contrast to

the model development, we included spectra that may have already been baseline corrected, since we the prediction domains

can be used to screen spectra that are not similar to the data used to train and test the models. For variables that can be

predicted without MIRS if other data are available (e.g., C, H, O, N, bulk density) with the additional models developed here275

(∆G0
f , saturated hydraulic conductivity, total porosity, macroporosity, volume fraction of solids, specific heat capacity, and

dry thermal conductivity) or previously published models (NOSC, C/N, H/C, O/C), we created an additional data table with

predictions without MIRS. For ∆G0
f , we required C, H, O, and N contents to be measured for this; contents of other elements

were included if available and otherwise the contents were set to 0 g g−1 when computing ∆G0
f .

3 Results and discussion280

We developed spectral prediction models for many peat properties relevant in peatland research. In the next subsections, we

evaluate these models in terms of their prediction errors estimated on test data, in terms of confounding factors, and in terms of

how much of the spectral variation in the pmird database is covered by the models (prediction domains). Where other models

for the same target variable are available, we compare prediction errors of our models to that from other studies. Our models

are openly available via the irpeatmodels package, functions to use them are available from the irpeat package, and we show285

how to use these packages. Finally, to provide data that can be useful for future research, we summarize the gap-filling of the

pmird database.

3.1 Predictive accuracy

The predictive accuracy for the best models for each target variable is summarized in Tab. 2 and plots of measured versus

predicted values are shown in Fig. 2. Estimates for the predictive accuracy are both worse and better than that of previously290

published models using spectra in the visible, near infrared or mid-infrared range (Fig. 3), but these estimates are not directly

comparable because of different modeling approaches and differences in the variability of data used to train and test the models.

Studies that use large databases can use modeling approaches that require more training data but may outperform linear models,

such as cubist (Hengl et al., 2021; Sanderman et al., 2020). Another reason for differences in the predictive accuracy is the

chemical diversity of the training and testing data. For example, one reason for the better predictive accuracy for C contents,295

N contents, and C/N reported in Chapman et al. (2001) certainly is that samples are from one site only which leads to less

confounding between predictors and C content. Similarly, data from Terhoeven-Urselmans et al. (2008), Bergner and Albano

(1993), and Artz et al. (2008) also cover smaller gradients in peat properties than the pmird database, in particular no peat with

large mineral fractions (Fig. 3).

Not only differences in the range of chemical properties, but also the distribution of observations along chemical gradients300

can lead to differences in estimated predictive accuracies. For example, models from Sanderman et al. (2020) and Hengl et al.

(2021) for C and N contents have a better predictive accuracy and were computed with many peat samples, but the majority of
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observations is from mineral soils with small C and N contents. It has been repeatedly observed that prediction errors are larger

for larger C contents than for smaller C contents (Dangal et al., 2019; Helfenstein et al., 2021). These heterogeneous prediction

errors are probably caused by two factors: Firstly, spectra of mineral soil have prominent mineral peaks which allow a more305

accurate estimation of small C contents, whereas at large OM contents there is a much more complex and diverse pattern

of peaks caused by organic matter molecular structures. Secondly, whenever a variable is positive and the majority of values

is small, prediction errors are smaller due to the positivity constraint. This does not only explain worse estimated predictive

accuracy of our models for C and N, but can also explain why our model for bulk density has a better estimated predictive

accuracy than models from Sanderman et al. (2020) and Hengl et al. (2021) because the majority of the peat samples have a310

small bulk density and the positivity constraint therefore implies smaller prediction errors. A last reason for a better predictive

accuracy is outlier removal in previous studies not based on specific theoretical considerations (Terhoeven-Urselmans et al.,

2008; Sanderman et al., 2020). We did not remove outliers here because we wanted to develop prediction models that are

applicable to a diverse range of peat samples, while outlier removal may lead to better predictive accuracy for peat samples with

specific chemical properties. Overall, the modeling approach and data properties of our studies are most directly comparable315

to Helfenstein et al. (2021), who focused on C contents, and here, our model performs similarly well.

In summary, our models have a roughly similar or better predictive performance for some variables as have previous studies

focusing exclusively on peat samples. Albeit direct comparison of prediction errors to high-quality models computed with

large spectral libraries is not possible in terms of peat, it is very likely that the predictive accuracy for peat properties could be

improved with more flexible modeling approaches which would, however, require more balanced data and, for some variables,320

more data in general.
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Table 2. Overview on the predictive properties of the best models for each target variable. “Unit” is the measurement unit for all numeric

variables. “Derivative” indicates which derivative of the spectra was used in the model. “ntrain” and “ntest” are training and testing sample

sizes. “RMSEtest” is the root mean square error computed for the test data. “biastest” is the average difference between predictions and mea-

surements. “RMSEtrain−RMSEtest” is the difference between the training RMSE and the testing RMSE (RMSEtest). “MCSEmean”, “MCSEsd”,

“MCSElower”, and “MCSEupper” are maximum estimated Monte Carlo standard errors for the average, standard deviation, lower, and upper

95% prediction interval for predicted values across the training and testing data. “BD” is bulk density and “LOI” is loss on ignition.

Variable Unit Derivative ntrain ntest Range RMSEtest biastest RMSEtrain−RMSEtest MCSEmean MCSEsd MCSElower MCSEupper

C g g−1
sample 0 200 2182 0 to 0.68 0.04 (0.04, 0.04) 0 (-0.01, 0.01) 0 (0, 0.01) 0.0004 0.0003 0.0019 0.0018

H g g−1
sample 0 80 20 0.03 to 0.06 0.01 (0, 0.01) 0 (0, 0) 0 (0, 0) 0.0001 0.0001 0.0003 0.0003

N g g−1
sample 1 200 2176 0 to 0.033 0.003 (0.002, 0.003) 0 (-0.001, 0) 0 (0, 0.001) 0.0001 0.0001 0.0001 0.0005

O g g−1
sample 1 80 20 0.23 to 0.45 0.02 (0.02, 0.03) 0 (-0.01, 0.01) 0 (-0.01, 0.01) 0.0002 0.0002 0.0010 0.0010

S µg g−1
sample 1 200 1285 0 to 30121 1711 (1550, 1900) 121 (-120, 341) -96 (-371, 198) 55.1521 50.4974 152.0532 238.8588

P µg g−1
sample 1 200 669 90 to 3228 141 (123, 161) -5 (-26, 14) 4 (-19, 28) 4.4786 3.0589 13.5042 12.5039

K µg g−1
sample 1 200 670 0 to 20959 839 (696, 1023) -100 (-211, -1) 208 (-6, 441) 48.6916 27.4687 101.2688 119.2660

Si g g−1
sample 1 100 766 0 to 0.32 0.02 (0.01, 0.02) -0.01 (-0.01, 0) 0.01 (0, 0.02) 0.0007 0.0005 0.0019 0.0026

Ca g g−1
sample 0 200 671 0 to 0.048 0.003 (0.003, 0.004) 0 (-0.001, 0) 0 (0, 0.001) 0.0001 0.0001 0.0004 0.0003

Ti µg g−1
sample 1 200 669 0 to 10470 434 (349, 609) -65 (-131, -7) 230 (11, 400) 27.3602 30.3450 43.4585 127.0340

δ13C ‰ 2 200 1041 -32.8 to -17.8 1.5 (1.4, 1.6) 0.1 (-0.2, 0.3) 0 (-0.1, 0.2) 0.0201 0.0143 0.0637 0.0670

δ15N ‰ 2 200 1041 -8 to 5.8 2.3 (2.1, 2.5) 0.1 (-0.3, 0.6) 0 (-0.2, 0.2) 0.0303 0.0221 0.1260 0.1014

NOSC - 1 80 20 -0.4 to 0.1 0.1 (0.1, 0.2) 0 (-0.1, 0) 0 (0, 0) 0.0014 0.0010 0.0049 0.0048

∆G0
f kJ mol−1

C 2 80 20 -121.6 to -70.4 6.5 (4.3, 9.2) 0.7 (-2.8, 3.9) 1.2 (-1.1, 3.3) 0.1509 0.0924 0.3798 0.3490

C/N g g−1 2 200 1976 10 to 164.6 16.8 (15.5, 18.6) -2.1 (-5.9, 1.5) -3.7 (-5.8, -1.8) 0.2907 0.2474 0.6514 1.1699

O/C g g−1 2 80 20 0.636 to 0.991 0.044 (0.031, 0.06) 0 (-0.02, 0.02) 0.002 (-0.014, 0.017) 0.0006 0.0004 0.0019 0.0021

H/C g g−1 2 80 20 0.108 to 0.137 0.005 (0.003, 0.006) 0.001 (-0.002, 0.003) 0 (-0.001, 0.002) 0.0001 0.0000 0.0002 0.0002

BD gsample cm−3
sample 2 200 689 0.01 to 1.59 0.07 (0.04, 0.14) 0 (0, 0.01) 0.03 (-0.05, 0.11) 0.0451 0.4527 0.0083 0.2822

LOI g g−1
sample 0 80 21 0.04 to 1 0.01 (0.01, 0.02) 0 (0, 0.01) 0 (-0.01, 0.01) 0.0004 0.0003 0.0011 0.0012
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Figure 2. Measured versus fitted and predicted values for all target variables. For ∆G0
f , standard errors of prediction estimated by the

auxiliary model (section S2) are shown as error bars. Diamond-shaped points with red borders are outliers (discussed in the text).
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Figure 3. RMSE for test data from the best models compared to RMSE for test data from other studies (a) and ranges of target variable

values in the training data for the models (b). In (a), points are average values and error bars 95% confidence intervals for individual models

(our models) or the ranges of average RMSE for different strata of the data, where different analyses were performed. When studies report

only one point estimate, this point estimate is shown was vertical tic. In (b), error bars are ranges for target variable values in the training

data.

3.2 Outliers and confounding factors

There are some interesting patterns in the plots of measured versus predicted values (Fig. 2): For C, there are two outliers,

one with a measured C content > 0.6 g g−1 and one with a measured C content < 0.1 g g−1 (Fig. S20). A peat sample with

> 0.6 gC g−1 should be decomposed because litter initially has large O and H contents that cause small relative C contents and325

because preferential decomposition of organic matter fractions with large O and H contents (carbohydrates, phenols) leads to

a relative accumulation of C (Schellekens et al., 2015; Moore et al., 2018; Leifeld et al., 2020), but the spectrum does not have

pronounced aromatic or lipid peaks one would expect for a peat sample with such high C content (supporting Fig. S20). A

peat sample with < 0.1 gC g−1 must have a comparatively large mineral content because undecomposed peat forming litter has

much larger C contents, yet the spectrum does not have typical silicate peaks (supporting Fig. S20). We therefore assume that330

either the C measurements in the pmird database are not correct for these two measurements or that spectra were incorrectly

assigned to these samples.

For H, the plot indicates overestimation for smaller H contents and underestimation for larger H contents. Samples with smaller
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H contents have larger Si contents (Fig. S18) which suggests that predictions are confounded by silicate peaks.

For P and K, several samples with the largest measured P and K contents have relatively large prediction errors. These sam-335

ples are Juncus effusus samples from a short-term NPK fertilization experiment with high nutrient loads (Agethen and Knorr,

2018). While it appears that the models can predict P and K contents reasonably well for these samples, more samples would

be required to evaluate whether the model overfits to spectral characteristics of J. effusus litter (supporting Fig. S20) rather than

spectral characteristics for high P contents in vegetation.

For Si, there are several samples with larger Si content for which the model overestimates Si contents, besides the four samples340

with maximum Si content for which the model underestimates Si contents. The overestimated samples have a large Ca content

and the underestimated do not (supporting Fig. S16). Presence of carbonates therefore biases predictions of Si contents, even

though this bias seems to be small for the training data. The one observation marked as outlier in Fig. 2 may be a measurement

error of Si contents or erroneously assigned spectrum to this sample because the sample does not have typical characteristics

for silicate rich peat, such as a pronounced peak around 1100 cm−1 and peaks around 1900 cm−1 (supporting Fig. S20) (Parikh345

et al., 2014).

For S, larger Ca contents do not bias predictions, but they increase the residual variance indicating, similarly to Si, that peaks

caused by carbonates confound predictions (Fig. 2). One reason for the difficulty to predict S contents here is that samples

in the data with large S contents also contain large Ca contents, but only some samples with large Ca content have carbonate

peaks. Samples with large carbonate peaks probably are influenced by groundwater with relative high pH value under which350

calcite can precipitate with sufficiently high Ca2+ concentrations. In contrast, samples with large Ca contents, but without

carbonate peaks probably have Ca2+ bound to carboxyl groups, which leads to a small carboxyl peak (around 1730 cm−1) and

a more pronounced peak around 1640 cm−1 which has contributions by carboxylates (Ellerbrock and Gerke, 2021) (supporting

Fig. S19).

It is interesting that prediction of other variables (e.g., C, N, K, P, Ti, bulk density) is possible without such bias. Since the355

majority of samples with large Ca contents (ca. > 15000 µg g−1) are from cores from one permafrost peatland site, this may be

due to overfitting, indicating that more peat MIRS from carbonate rich samples need to be published to improve development

and testing of transmission-MIR prediction models for carbonate-rich peat.

Ti is the only target variable for which the training RMSE is significantly larger than the testing RMSE (Tab. 2). This indicates

that Ti contents were more variable in the training data than in the testing data. Since Ti is unlikely to cause detectable peaks360

in peat MIRS, prediction of Ti concentrations probably relies mainly on a similar atmospheric deposition across the analyzed

peatlands and residual enrichment as peat is lost due to decomposition or fires. That even small Ti concentrations can be esti-

mated from MIRS therefore supports application of Ti concentrations as decomposition indicator, even though the model also

suggests that there are other sources of variation. In fact, the most useful application of the models may not be the accurate

prediction of Ti contents, but the detection of conditions where Ti concentrations are controlled by other factors than residual365

enrichment from decomposition. Such conditions can be detected by comparing predictions of the model to Ti measurements.

The models for δ13C and δ15N have prediction errors much too large for most current applications of such isotope measure-

ments. C and N isotope values are controlled by many different processes that can easily lead to a large variation in δ13C and
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δ15N values despite similar spectral properties (for δ13C: differences in δ13C signatures of assimilated CO2 (due to isotope

fractionation (Williams and Flanagan, 1996; Hobbie and Werner, 2004), the Suess effect (Keeling, 1979), and differences in the370

fraction of CO2 assimilated from methanotrophy (Larmola et al., 2010; Schmidt, 2014). For δ15N: different pathways via which

N is assimilated by peat forming vegetation (Asada et al., 2005b) and the opposite effects of isotope fractionation (Nadelhoffer

and Fry, 1988; Lerch et al., 2011; Asada et al., 2005a; Alewell et al., 2011) and enrichment of OM fractions with negative δ13C

values during aerobic decomposition (Bowling et al., 2008; Xia et al., 2020), which agrees with weak correlations of δ15N

values with peat decompostion indicators (Broder et al., 2012; Biester et al., 2014; Mathijssen et al., 2019; Serk et al., 2022)).375

It may therefore be the case that δ13C and δ15N measurements cannot be estimated accurately with MIRS prediction models.

However, many of the δ13C and δ15N measurements in the pmird database do not correct for blank effects (Teickner et al.,

2025b), which biases δ13C and δ15N values proportionally to the C and N mass (Langel and Dyckmans, 2017). According

to blank corrections for other projects, this bias has a magnitude of ca. 0.2 to 0.5 (depending on the sample C mass) ‰for

δ13C and a magnitude of ca. 0.2 to 1 (depending on the sample N mass) ‰for δ15N. This is only a fraction of the estimated380

RMSE (Tab. 2) and we therefore currently assume that unbiased measurements would still result in large prediction errors

relative to measurements of δ13C and δ15N. For δ15N, the contribution of this bias is certainly larger than for δ13C. A factor

that contributes to the large prediction errors therefore are biased measurements due to uncorrected blank effects.

An alternative explanation for the large prediction errors may therefore be biased measurements due to uncorrected blank ef-

fects.385

For C/N, prediction errors are larger for samples with larger C/N. Two factors probably contribute to this pattern: Firstly, large

C/N values imply small N contents and at large C/N values, very small changes in N contents cause large changes in C/N

values. Such slight changes in N contents probably cause only small changes in peak intensities that are not easy to detect in

MIRS and hence not easy to predict. Secondly, some of the samples with large C/N values have large silicate contents (Fig.

S18). The large differences in spectra between undecomposed Sphagnum peat and mineral-rich peat very likely confounds390

linear relations present in peat without large mineral contents.

To summarize, for many variables, accurate predictions are possible with the models developed here, whereby the accuracy

needed will of course depend on the specific purpose of the analysis. The models for δ13C and δ15N are probably not accurate

enough for any analysis of isotope values, even if blank effects are corrected. Besides silicates and nitrogen, calcium — either

in the form of carbonates or in the form of Ca2+ bound to carboxylates — is an important contributor to spectral variability in395

peat samples and makes it difficult to predict S, Si, and Ca contents, at least with the modeling approach used here. Since the

pmird database contains Ca-rich samples only from few sites, future tests of the models with additional Ca-rich peat samples

would be useful.

3.3 Prediction domains

A comparison of training and testing prediction domains for our models shows that the testing prediction domains covers only400

a small fraction of the training prediction domain for H, O, NOSC, ∆G0
f , H/C, O/C, C/N, and LOI (Fig. 4), which indicates that

models for these target variables cover a small range of peat spectral properties and therefore may make erroneous predictions
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for peat samples as diverse as for example used to compute the prediction model for N.

The difference between testing and training prediction domain can be used to identify samples useful to test the models in

the future. Similarly, the difference between the training prediction domain and the domain formed from all spectra identifies405

samples that would be useful additions to the training data if the target variable would be measured for these samples. For

example, for H, O, NOSC, ∆G0
f , H/C, O/C, and C/N there is a lack of mineral-rich samples in both the training and testing

data, whereas for LOI there are mineral-rich samples in the training data, but not enough mineral-rich samples were left for

model testing (Fig. 4). The prediction domains are available from the irpeatmodels package.
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Figure 4. Prediction domains of the best model for each target variable. The training and testing prediction domains are created from the

maximum and minimum intensity values at each wavenumber of the preprocessed spectra across the training or test data. The shaded region

“All spectra” is formed in the same way, but with all data that were used for model development. The “All spectra” regions differ from target

variable to target variable depending on whether the best model uses zero, first, or second derivative spectra, and depending on how predictor

variables are scaled in each model.

3.4 Filling gaps in the pmird database410

Table 3 summarizes the results of our gap filling. Even though we filled all gaps with MIRS predictions, predictions that are

outside the training and testing prediction domain may be unreliable and therefore we consider all observations for which the

spectra is neither inside the training nor the testing prediction domain as unfilled gaps for our evaluation here.
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Since the pmird database contains many bulk density and N measurements, but no measurements for porosity, hydraulic

conductivity, specific heat capacity, and thermal conductivity, many missing values could be estimated with the pedotransfer415

functions and the remaining gaps filled with MIRS-predicted bulk density and N. Similarly, a large fraction of fillable gaps

for element contents could be imputed, except for H and O for which training and testing prediction domains cover a smaller

fraction of the spectral variability. Much fewer gaps could be filled for O, NOSC and ∆G0
f than for H because of differences

in the preprocessing for these models: the models for H uses underived spectra, whereas the models for O, NOSC and ∆G0
f

use first or second derivative spectra, where high frequency features are more emphasized and therefore many spectra are not420

within the prediction domains (Tab. 2). For observations, where spectra are outside the prediction domain only because a few

of the variables exceed the prediction domain boundaries by small values are still reliable; the amount of useful predictions is

therefore probably underestimated. Compared with existing databases (Zoltai et al., 2000; Charman et al., 2013; Loisel et al.,

2014; Treat et al., 2016; Gallego-Sala et al., 2018; Leifeld et al., 2020), this makes the gap-filled pmird database one of the

largest available data sources for contents of many elements, hydraulic and thermal properties, and peat chemistry, in particular425

NOSC, and ∆G0
f . The gap filling predictions are available from Zenodo (Teickner and Knorr, 2025a).
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Table 3. Summary of gap filling the pmird database. For each variable, the table shows the number of measured values (no gap filling needed)

(“Measured”), the number of gaps (“Gaps”), the number of gaps that can be filled with the pedotransfer functions (with bulk density or N

measurements), with the auxiliary model for ∆G0
f (with element contents), or with formulas for element ratios and NOSC (with element

contents) (“Auxiliary models”), the number of gaps that can be filled with MIRS predictions, where spectra are in the training or in the testing

prediction domain (“Training domain” and “Testing domain”; some spectra are in both prediction domains and then are counted twice), the

number of gaps that could be filled in total (“Filled”), and the fraction of gaps that could be filled (“Filled (%)”). In total, there were 3379

samples with spectra for each target variable.

MIRS predictions

Variable Measured Gaps Auxilliary models Training domain Testing domain Filled Filled (%)

C 2947 432 0 403 397 407 94

H 103 3276 0 1439 39 1440 44

N 2942 437 0 339 339 370 85

O 103 3276 0 232 15 235 7

S 1744 1635 0 1080 1111 1234 75

P 1128 2251 0 1442 1276 1551 69

K 1129 2250 0 1462 1269 1566 70

Si 1125 2254 0 1254 1348 1530 68

Ca 1130 2249 0 1919 1785 1970 88

Ti 1128 2251 0 1442 1276 1551 69

δ13C 1764 1615 0 565 707 794 49

δ15N 1764 1615 0 565 707 794 49

NOSC 0 3379 103 194 0 297 9

∆G0
f 0 3379 103 83 0 186 6

C/N 0 3379 2945 136 183 3156 93

O/C 0 3379 103 83 0 186 6

H/C 0 3379 103 83 0 186 6

BD 1264 2115 0 823 860 1033 49

LOI 349 3030 0 1486 256 1491 49

Macroporosity 0 3379 1268 783 826 2248 67

Non-macroporosity 0 3379 1268 783 826 2248 67

Volume fraction of solids 0 3379 1268 783 826 2248 67

Saturated hydraulic conductivity 0 3379 1268 783 826 2248 67

Specific heat capacity 0 3379 2946 274 257 3243 96

Dry thermal conductivity 0 3379 1268 783 826 2248 67
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3.5 Implementation of the models in the irpeatmodels and irpeat R packages

The models can be used with R by installing the irpeat (Teickner, 2025a) and irpeatmodels (Teickner, 2025b) packages. The

irpeatmodels package contains the models itself and irpeat contains functions to interact with the models. This design was

chosen to account for faster development cycles for code to interact with the models and code for other functions of the irpeat430

package and also to account for size limitations for software packages in online repositories.

4 Conclusions

Our aim was to develop transmission-MIRS prediction models for peat with the quality standards of state of the art prediction

models for mineral soils. We have developed models for element contents (C, N, H, O, P, S, K, Ti), element ratios (C/N, H/C,

O/C), isotope values (δ13C, δ15N), physical properties (bulk density, macroporosity, non-macroporosity, hydraulic conductivity,435

specific heat capacity, dry thermal conductivity), Gibbs free energy of formation (∆G0
f ), and nominal oxidation state of carbon

(NOSC) of bog peat with data from the pmird database, one of the largest spectral databases available for peat soils. The

models have predictive accuracies comparable to or better than existing models for peat, while covering a more diverse range

of peat spectral chemistry. All models are available via the R packages irpeat and irpeatmodels. irpeat automatically propagates

prediction errors and flags predictions where spectra are outside the prediction domain of the models.440

A limitation to be addressed in future studies is that more diverse test data and, for some variables, more training data are

required to reduce prediction errors and cover more representative chemical gradients of peat, in particular for O and H contents,

NOSC and ∆G0
f , and peat samples with larger silicate, carbonate, and, in general, mineral contents. This would also make it

possible to use more flexible modeling approaches which could reduce prediction errors. Moreover, it is recommendable to

replace pedotransfer functions for peat hydrological and thermal proeprties by spectral prediction models to reduce prediction445

errors.

Our model evaluation lets us draw the following conclusions: First, transmission-MIRS probably are not suitable to predict peat

δ13C and δ15N very precisely and we attribute this mainly to the diversity of processes that control δ13C and δ15N and their

contrasting effects. Second, a comparison to existing models for mineral soils suggests that we need more targeted approaches

to meaningfully compare the predictive accuracy of models evaluated on databases with contrasting fractions of organic versus450

mineral soil samples.

Finally, we used our models to fill gaps in the pmird database, making it one of the largest databases for many peat properties

such as hydraulic properties, Ti, O, H, and P contents, NOSC, and ∆G0
f . This illustrates that the models, represent a first step

to provide the data required to quantify diverse peat properties at high spatial resolutions which will in particular be useful to

estimate and test process models.455

Code and data availability. Data and code to reproduce this manuscript are available from (Teickner and Knorr, 2025b). The data used in

this study are from the pmird database (Teickner et al., 2025a), Wang et al. (2015a), Liu and Lennartz (2019), O’Connor et al. (2020),
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Gnatowski et al. (2022), from several studies (Helgeson, 1978; Wagman et al., 1982; Shock, 1993; Dale et al., 1997; Richard and Helgeson,

1998; Helgeson et al., 1998; Richard, 2001; LaRowe and Helgeson, 2006a, b; Helgeson et al., 2009; LaRowe and Dick, 2012) included

in the OBIGT database (Dick, 2019), from Linstrom (1997), and Battley (1999). The models computed in this study are available in the460

irpeatmodels package (Teickner, 2025b) and can be used with the irpeat package (Teickner and Hodgkins, 2025). The gap-filled subsets of

the pmird database are available from (Teickner and Knorr, 2025a).
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