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Abstract. Better understanding of peatland dynamics requires more data on more peat properties than provided by existing
databases. These data needs may be addressed with resource efficient measurement tools, such as models that predict peat
properties from mid-infrared spectra (MIRS). High-quality spectral prediction models are already used for mineral soils, but
similar developments for peatland-focused research lag behind.

Here, we present transmission-MIRS prediction models for peat which are openly available, easy to use, have basic quality
checks for prediction quality, and propagate prediction errors. The models target element contents (C, N, H, O, P, S, K, Ca,
Si, Ti), element ratios (C/N, H/C, O/C), isotope values (§'3C, §'°N), physical properties (bulk density, loss on ignition (LOI),
macroporosity, non-macroporosity, volume fraction of solids, hydraulic conductivity, specific heat capacity, dry thermal con-
ductivity), thermodynamic properties (Gibbs free energy of formation (AG? )), and nominal oxidation state of carbon (NOSC).
They are representative for more diverse peat samples than currently existing peat-exclusive models while having a competitive
predictive accuracy. Relatively accurate predictions can be made for example for many element contents (C, N, O, S, Si, Ca,
AG? , O/C, H/C, bulk density, and LOI).

Many of these properties are not predicted by existing high-quality prediction models focusing on mineral soils. For some of
the target variables, high-quality prediction models focusing on mineral soils exist. These models may be more accurate, but
reported predictive accuracies are not directly comparable due to imbalances in the amount of organic vs mineral soil samples
in the training data. We suggest that some soil properties are easier to predict for peat, whereas others are easier to predict for
mineral soils, emphasizing that we need new approaches to meaningfully compare prediction errors of spectral models com-
puted on datasets with variable amounts of organic soils. Our tests also indicate that replacing §'>C and §'°N measurements
by MIRS models probably is not feasible due to large prediction errors. Future studies should address the lack of open training
and validation data for some peat properties (O, H, NOSC, AG? , LOIL, H/C, O/C), the lack of mineral-rich peat samples, and
improve and standardize model validation and comparison for models trained on data with very different proportions of peat
soils. This study is a step to catch up with high quality standards set by models for mineral soils and it provides novel models
for several peat properties. By filling data gaps in the Peatland Mid-Infrared Database, we make a step to provide the data

required to better understand peatland dynamics.
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1 Introduction

Northern peatlands are projected to both become a larger sink and source for greenhouse gases (Frolking et al., 2011; Qiu et al.,
2022). However, these projections have large uncertainties: They range from an estimated net emission of 0.2 to an estimated
net carbon sequestration of 0.1 Pg C yr=! (Qiu et al., 2022). Also peatland C stock estimates are highly uncertain, ranging
from ~270 to 1045 Pg (Yu, 2012; Nichols and Peteet, 2019). Some fraction of this uncertainty is caused by a lack of knowledge
on processes, their incomplete representation in models (Loisel et al., 2021; Qiu et al., 2022), a high spatial variability of peat
properties (Frolking et al., 2011; Loisel et al., 2014, 2017; Normand et al., 2021; Qiu et al., 2022), and a lack of systematic
data collections.

It would be possible to address errors due to unknown peat properties and stocks with more data on peat properties. Such data
could be used to interpret and compare individual peat cores, quantify global peat properties at sufficient spatial resolution,
constrain parameter estimates in peatland models, and test peatland models and hypotheses on peatland processes (Loisel et al.,
2014). Existing databases on global and regional peat properties partly address these needs (Zoltai et al., 2000; Charman et al.,
2013; Loisel et al., 2014; Treat et al., 2016; Gallego-Sala et al., 2018; Leifeld et al., 2020). However, they still have large gaps
in terms of spatial coverage (e.g. Loisel et al. (2017)) and the peat properties considered.

For example, one of the largest database on peat properties (Loisel et al., 2014) contains peat ages, bulk densities, C and N
contents, but other peat properties, such as nutrient contents, hydraulic properties, and availability of labile organic matter also
play a pivotal role in peatland models (e.g., Yu et al., 2001; Bauer, 2004; Frolking et al., 2010; Baird et al., 2012; Mahdiyasa
et al., 2022; Qiu et al., 2022) and are not part of this database. Even though similar databases exist for such data, they are
much smaller, containing not only fewer samples, but also covering smaller geographical areas (e.g., Liu and Lennartz, 2019;
O’Connor et al., 2020).

A major obstacle towards addressing these limitations is that data collection is difficult in practice: Collection and analysis of
peat cores are costly and resource limitations constrain both the number of peat samples collected and the set of peat properties
measured. Examples for such resource limitations are restricted access to measurement devices, lack of funding, lack of time,
or simply the fact that the amount of peat in a given sample is limited; this makes it difficult to measure all peat properties at
high spatio-temporal resolution (e.g., Zaccone et al., 2018).

A promising approach to address this problem has been developed for mineral soils: Soil spectroscopy combined with spectral
prediction models can reduce the time and cost of the measurements of diverse soil properties at an accuracy partly compet-
itive to traditional measurement methods (Viscarra Rossel et al., 2008; Nocita et al., 2015; Hartmann and Nopmanee, 2019;
Sanderman et al., 2020). This approach requires few sample preprocessing steps and only one infrared spectrum needs to be
measured to predict soil properties as diverse as carbon content, bulk density, and pH value (e.g., Nocita et al., 2015; Dangal
et al., 2019). In addition, spectral prediction models can be combined with pedotransfer functions to predict soil properties
which are only rarely measured together with spectra (e.g., McBratney et al., 2006). In case of peat, this would be in particular
useful to predict peat hydraulic and thermal properties since these are rarely measured together with spectra (e.g., Teickner

et al., 2025a). Within the last years, databases, modeling approaches, and user interfaces have been improved to an extent that
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many traditional measurements can be replaced at a minimal trade-off for accuracy (e.g., Shepherd et al., 2022; Hengl et al.,
2021).

Even though aforementioned databases and models also comprise peat, peat soils are still underrepresented in prediction mod-
els (even the largest databases contain no more than several hundred to 1000 samples which may be classified as peat based on
their C content, see for example Sanderman et al. (2020), Helfenstein et al. (2021), and Hengl et al. (2021)). Moreover, existing
mineral soil databases target soil properties linked to agriculture and forestry. Peatland research often targets stocks, indicators
for peat degradation, and modeling ecosystem processes and for this requires additional soil properties, for example loss on ig-
nition, total sulfur contents, stable isotope abundances, and porosity. Finally, many existing studies use different spectroscopic
measurement techniques (transmission mid-infrared spectroscopy, visible and near-infrared spectroscopy, or mid-infrared dif-
fuse reflectance spectroscopy). In summary, existing spectral libraries and prediction services can be very useful to predict
some peat properties (e.g., C, N content, bulk density) with some spectral data, but there still is a need for complementary
spectral libraries and prediction models dedicated to the specific questions and approaches of peatland research.

There are many spectral prediction models exclusively for peat, but these are still in an early phase of development in compar-
ison to those for mineral soils (Downey and Byrne, 1986; Bergner and Albano, 1993; McTiernan et al., 1998; Chapman et al.,
2001; Ludwig et al., 2006; Rinnan and Rinnan, 2007; Artz et al., 2008; Terhoeven-Urselmans et al., 2008; Lang et al., 2009;
Laiho et al., 2014; Hayes et al., 2015; Pérez-Rodriguez et al., 2016; Hodgkins et al., 2018; Strakova et al., 2020; Helfenstein
et al., 2021; Teickner et al., 2022). Major limitations in comparison to state of the art studies for mineral soils are the follow-
ing: First, many of the computed models are probably unrepresentative for many new samples and likely have low reliability
and predictive accuracy because they were computed with samples from only few peat cores (e.g., McTiernan et al., 1998;
Chapman et al., 2001). Second, even though there exist many prediction models, there are some often used peat properties
for which no prediction models for peat has been developed yet (e.g., some nutrient contents, C and N isotope values, peat
hydraulic, thermal and thermodynamic properties). Third, several newer and important concepts in state of the art mineral soil
studies have not yet been applied in the development of prediction models for peat: prediction domains (Wadoux et al. (2021);
see also Sanderman et al. (2020) and Shepherd et al. (2022) for some recent examples), propagation of prediction errors (e.g.,
Viscarra Rossel et al., 2008; Shepherd et al., 2022; Padarian et al., 2022), open accessibility of model data and code (Hengl
et al., 2021; Shepherd et al., 2022), and software that allows non-experts to generate predictions and check their reliability
(Hengl et al., 2021; Shepherd et al., 2022). We will discuss each of these concepts in turn.

The prediction domain (sometimes referred to as calibration space, predictor space, or feature space) is the range of the spectra
for which a model has been computed and validated (Wadoux et al., 2021). If a new spectrum is outside this range, a prediction
model may still produce accurate predictions, but there is no guaranty for this because the model was not trained and tested on
such extreme samples. Checking whether a new spectrum is within the prediction domain is therefore a first rule of thumb to
decide whether to trust predictions and their uncertainties (e.g., Shepherd et al., 2022).

Many studies which use spectral prediction models to analyze peat ignore prediction errors. This can lead to overly confident
inferences (e.g., Hodgkins et al., 2018; Moore et al., 2019; Baysinger et al., 2022). Prediction models should propagate errors,

such that they can be appropriately included in subsequent analyses. Computing prediction errors is both a matter of developing
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statistical approaches which allow to compute reliable estimates of prediction errors and of software which allows scientists to
easily access prediction errors.

Making raw spectra and code for spectral preprocessing and computation of models accessible is one of the largest current
efforts in the development of spectral prediction models for mineral soils (Hengl et al., 2021; Shepherd et al., 2022). This
allows others to use, to criticize, and to improve prediction models. The advantages therefore are improved reliability, more
engagement between developers and users of models, and faster, more efficient, improvement of models. In contrast, only few
of the peatland models we are aware of are openly accessible, including the underlying data (Hodgkins et al., 2018; Teickner
et al., 2021, 2022; Teickner and Knorr, 2022a).

Finally, recent projects target the development of estimation services to allow non-experts to easily generate predictions (Shep-
herd et al., 2022). These estimation services are web applications which estimate soil properties based on spectra you have
uploaded, while taking care of spectral preprocessing and reliability checks in the background (e.g., whether spectra are within
the prediction domain) (Shepherd et al., 2022). Ultimately, this makes spectral prediction models widely accessible to scientists
who can then quickly fill existing data gaps.

To summarize, spectral prediction models for mineral soils currently have higher quality standards than existing models for
peat, and are openly accessible and easier to use. Our study aims to develop spectral prediction models for many peat properties
relevant in peatland research, which use transmission mid-infrared spectra and meet quality standards set by models for mineral

soils. More specifically, we want to:
1. Develop openly available spectral prediction models for many peat properties relevant in peatland research.
2. Provide prediction domains for all these models as reliability check for predictions.
3. Propagate errors from data (where available) and parameters to predictions.

4. Fill data gaps in the pmird database, one of the largest open databases focusing on peat and mid-infrared spectra (Teickner

et al., 2025a), to support peatland research.

To this end, we computed spectral prediction models for element contents (C, H, N, O, P, S, K, Ca, Si, Ti), element ratios
(C/N, H/C, O/C), isotope values (§'3C, §'°N), physical properties (bulk density (BD), loss on ignition (LOI) macroporosity,
non-macroporosity, volume fraction of solids, saturated hydraulic conductivity (Kj), specific heat capacity (c,), dry thermal
conductivity (Kr)), standard Gibbs free energy of formation (AG?), and nominal oxidation state of C (NOSC) (Masiello et al.,
2008). To our knowledge, our study is the first test to compute prediction models for some of these variables (O, K, Ca, Si,
Ti contents, H/C, O/C, §13C, §5N, AG?, NOSC, LOI). The models were computed and validated with data from one of the
largest open accessible peat spectral libraries (Teickner et al., 2025a) which makes them representative for more diverse peat
samples than most existing models that focus on peat. While some of our models may only generate approximate predictions,
many have prediction errors small enough to be useful in diverse applications.

Bayesian data analysis was used to propagate errors from model parameters and data (where measurement errors are known)

to predictions. We made the models openly accessible via the R packages irpeatmodels (Teickner, 2025b) and irpeat (Teickner
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and Hodgkins, 2025). For all computed models and those already implemented in both packages, we also computed prediction
domains. Finally, we extended irpeat to allow making predictions with a few lines of code, where spectral preprocessing and

basic checks for the reliability of predictions are performed in the background.

1. Measure MIRS 2. Import to R with 3. Make predictions C,H,ON,S,P, K, Ca, Si, Ti contents
package 'ir' with 'irpeat’ 813C, 6'°N, AGY, NOSC
Peat sample P O/C, H/C, N/C

bulk density, LOI, macroporosity
non-macroporosity, K, Ky, ¢,

Figure 1. Workflow how to use the models developed in this study to estimate peat properties.

The models can be used to estimate peat properties in a workflow as shown in Fig. 1. We demonstrate the usefulness of the
models and the workflow to fill gaps in databases by predicting these peat properties for samples in the pmird database. This
makes pmird to one of the largest open access collections of, for example, peat element contents (C, H, O, N, P, S, K, Ca, Si,

Ti) and thermodynamic properties (AG? ).

2 Methods
2.1 Target variables

Table 1 summarizes the peat properties (target variables) for which we computed models. The variables were selected because
they can be used to understand and quantify important processes in peatlands and because many of them cannot be predicted

with existing models (e.g., Sanderman et al., 2020; Shepherd et al., 2022).
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Table 1. Overview on the peat properties for which we computed prediction models. “Has model” indicates whether we computed a spectral

prediction model for the target variable (“yes”) or a pedotransfer function which uses bulk density or N content to predict the variable (“no”).

“Likelihood” is the likelihood used in the prediction model for each target variable (see subsection 2.4).

Variable Definition Relevance Has model  Likelihood
C Mass content of C in 1 g bulk peat. Estimating peat C stocks. yes beta
H Mass content of Hin 1 g bulk peat. Estimating peat H stocks. yes beta
N Mass content of N in 1 g bulk peat. Quantifying peat N stocks. Quantifying N limitation (e.g., Koerselman and Meuleman, 1996; Olde Venterink et al., 2003; yes beta
‘Wang and Moore, 2014; Wieder, 2022).
o] Mass content of O in 1 g bulk peat. Estimating peat O stocks. yes beta
S Mass content of S in 1 g bulk peat. Quantifying peat S stocks. Quantifying nutrient limitations (e.g., Wieder, 2022) and atmospheric S deposition (e.g., Moore yes beta
et al., 2005; Wieder et al., 2016).
P Mass content of P in 1 g bulk peat. Quantifying peat P stocks. Quantifying nutrient limitations (e.g., Koerselman and Meuleman, 1996; Olde Venterink et al., yes beta
2003; Wang and Moore, 2014; Wieder, 2022).
K Mass content of K in 1 g bulk peat. Quantifying peat K stocks. Quantifying nutrient limitations (e.g., Olde Venterink et al., 2003; Wang and Moore, 2014; yes beta
Wieder, 2022).
Si Mass content of Si in 1 g bulk peat. Estimating peat Si stocks. Estimating peat mineral inputs. yes beta
Ca Mass content of Ca in 1 g bulk peat. Estimating peat Ca stocks. Quantifying minerotrophy (e.g., Waughman, 1980; Wang et al., 2015b). yes beta
Ti Mass content of Ti in 1 g bulk peat. Quantifying peat Ti stocks. Quantifying mineral dust inputs and degree of decomposition (Shotyk, 1996; Hélzer and Holzer,  yes beta
1998; Gatka et al., 2022a).
s3c §'3C value of bulk peat relative to the Estimating the degree of decomposition (Nadelhoffer and Fry, 1988; Lerch et al., 2011; Biester et al., 2014), moisture yes normal
Vienna Pee Dee Bee standard. conditions during photosynthesis (Williams and Flanagan, 1996; Schmidt, 2014; Xia et al., 2020), contribution of
sequestered C from methane (Larmola et al., 2010, Schmidt (2014)). Note that there are a lot of unclear confounding factors
(e.g. Williams and Flanagan, 1996; Asada et al., 2005a; Bragazza and Iacumin, 2009; Drollinger et al., 2019).
SN §'°N value of bulk peat relative to the Air Estimating the degree of decomposition (e.g. Drollinger et al. (2019), but see Asada et al. (2005b), Biester et al. (2014)), yes normal
N, standard. vegetation nitrogen source (Asada et al., 2005b).
NOSC Nominal oxidation state of carbon as defined ~ Estimating degree of decomposition. Computation of the oxidative ratio (Masiello et al., 2008). yes beta
in Masiello et al. (2008)
AG? Standard free Gibbs energy of formation Quantifying peat degree of decomposition (e.g., Worrall et al., 2018), quantifying thermodynamic feasibility of reactions. yes normal
(25°C, 1 bar).
C/IN The mass ratio of a samples’ C and N Estimating the degree of decomposition (e.g., Malmer and Holm, 1984; Kuhry and Vitt, 1996; Biester et al., 2014; Leifeld yes beta
content. et al., 2020) and nutrient limitations (e.g., Bauer, 2004).
o/C The mass ratio of a samples’ O and C Estimating the degree of decomposition (e.g., Bader et al., 2018; Zaccone et al., 2018; Moore et al., 2018; Leifeld et al., yes gamma
content. 2020), estimating the relative abundance of organic matter fractions from Van Krevelen diagrams (e.g., Kim et al., 2003,
Bader et al. (2018)).
H/C The mass ratio of a samples” H and C Estimating the degree of decomposition (e.g., Bader et al., 2018; Zaccone et al., 2018; Moore et al., 2018; Leifeld et al., yes gamma
content. 2020), estimating the relative abundance of organic matter fractions from Van Krevelen diagrams (e.g., Kim et al., 2003,
Bader et al. (2018)).
Bulk density Mass of the dried sample divided by its Quantifying peat hydraulic properties (Liu and Lennartz, 2019). Quantifying storage of chemical elements. Quantifying peat  yes gamma
volume. degree of decomposition (e.g., Chambers et al., 2011).
Loss on Fraction of initial mass lost during Estimating organic matter pools and mineral pools. Quantifying degree of decomposition. yes beta
ignition combustion of the dried sample at 400°C.
Macroporosity ~ The total volume of macropores (as defined Quantifying peat hydraulic properties (Liu and Lennartz, 2019), modeling peat thermal properties and water storage (e.g., no Dirichlet
in Liu and Lennartz (2019)) divided by the Weiss et al., 2006).
total volume of a sample.
Non- The total volume of non-macropores (as Quantifying peat hydraulic properties (Liu and Lennartz, 2019), modeling peat thermal properties and water storage (e.g., no Dirichlet
macroporosity  defined in Liu and Lennartz (2019)) divided ~ Weiss et al., 2006).
by the total volume of a sample.
Volume The total volume of solids divided by the Quantifying gas volume in peat. Quantifying total porosity. Quantifying solid matter mass density of peat. Modeling peat no Dirichlet
fraction of total volume of a sample (one minus thermal properties and water storage (e.g., Weiss et al., 2006).
solids Macroporosity minus non-macroporosity).
Saturated The saturated hydraulic conductivity of a Quantifying peat hydraulic properties (Liu and Lennartz, 2019), modeling water flow (e.g., Granberg et al., 1999; Weiss no beta
hydraulic sample as defined in Liu and Lennartz et al., 2006).
conductivity (2019).
Dry thermal The dry thermal conductivity of a sample as  Quantifying peat thermal properties, modeling heat flow. Modeling peat thermal properties (e.g., Granberg et al., 1999; Weiss  no gamma
conductivity defined in O’Connor et al. (2020). et al., 2006).
Specific heat The specific heat capacity of a sample as Modeling peat thermal properties (e.g., Granberg et al., 1999; Weiss et al., 2006). no gamma

capacity

defined in Gnatowski et al. (2022).
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2.2 Data sources

The prediction models were computed with a subset of the pmird database (Teickner et al., 2025a; Miinchberger, 2019; Miinch-
berger et al., 2019; Schuster et al., 2022; Drollinger et al., 2019, 2020; Agethen and Knorr, 2018; Kendall, 2020; Harris et al.,
2023; Harris and Olefeldt, 2023; Pelletier et al., 2017; Teickner et al., 2021, 2022; Broder et al., 2012; Homberg, 2014; Diaconu
et al., 2020; Galka et al., 2022b, a; Boothroyd et al., 2021; Worrall, 2021; Reuter et al., 2019a, b, 2020; Moore et al., 2005;
Turunen et al., 2004). The pmird database is a collection of infrared spectra and other chemical and physical properties of peat,
peat forming vegetation, and dissolved organic matter (DOM). For many peat variables, the database has data from several dif-
ferent sites and covers global gradients of conditions under which peat is formed. This makes the models more representative
for many peat properties than existing models (Bergner and Albano, 1993; Chapman et al., 2001; Artz et al., 2008; Helfenstein
et al., 2021).

We did not use spectra that were classified as already baseline corrected in the pmird database (Teickner et al., 2025b), except
for those from dataset 13 where we checked that the corrected spectra are similar to the result of our procedure here, to avoid
that differences in preprocessing would decrease the predictive accuracy of the models. The pmird database contains a compar-
atively small number of vegetation and dissolved organic matter (DOM) samples and we therefore do not consider our models
applicable to DOM or vegetation in general, except for Sphagnum which forms the bulk undecomposed peat material in bogs.
Since DOM can have spectral properties different from peat, we did not include DOM samples in our models. Except for some
cores, the peat is from ombrotrophic bogs, and peat with larger mineral contents and fen peat is thus underrepresented.

The pmird database does not contain data for saturated hydraulic conductivity, total porosity, macroporosity, volume fraction of
solids, specific heat capacity, and dry thermal conductivity for samples with MIRS (Teickner et al., 2025a). For these variables,
we used modified versions of models from Liu and Lennartz (2019), Liu et al. (2020), Gnatowski et al. (2022), and O’Connor
et al. (2020) to predict these variables from bulk density or N content. These models are described in supporting section S1. As
suggested in previous studies (e.g., McBratney et al., 2006), these models (also known as pedotransfer functions) can be used
with bulk density and N contents predicted from MIRS to predict these physical peat properties, whereby all relevant errors are
propagated.

The pmird database also does not contain AG? estimates. We predicted AG? from element contents (at least C, H, N, O)
using modified versions of the models from Thornton (1917), Patel and Erickson (1981), and Battley (1999) for the enthalpy
of combustion and the entropy of formation, as described in Popovic (2019). These models are described in supporting section
S2.

2.3 Spectral preprocessing

All computations for this manuscript were made in R 4.3.0 (R Core Team, 2022). For each of the target variables, except the
physical peat properties mentioned in the previous section, we computed three spectral prediction models. The three models
use differently preprocessed spectra (no derivative, first derivative, second derivative spectra), but otherwise were computed

in the same way. All spectral preprocessing was done with the ir package (Teickner, 2022). To harmonize the spectra, we



175

180

185

190

195

200

205

https://doi.org/10.5194/egusphere-2025-4955
Preprint. Discussion started: 13 November 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

interpolated them to unit wavenumber resolution and clipped them to the range 650 to 4000 cm~!. Next, we conducted an
atmospheric correction of water vapor and COs artifacts using the approach suggested in Perez-Guaita et al. (2013). First, we
subtracted a baseline created from a Savitzky-Golay smoothed version of the spectra where regions with strong CO» peaks (645
to 695 cm™! and 2230 to 2410 cm™!) (Wallace and NIST Mass Spectrometry Data Center, 1997) were linearly interpolated
and then we used CO5 and water vapor spectra from the pimrd R package (Teickner, 2025a) (see also Teickner et al., 2025b) to
perform the atmospheric correction as described in Perez-Guaita et al. (2013). Due to differences in devices and measurement
conditions, this procedure attenuated CO» artifacts, but did not remove them completely. Thereafter, the corrected spectra were
baseline corrected using a convex hull procedure (Beleites and Sergo, 2021), normalized using the signal normal variate (SNV),
the three versions of derivative spectra were computed, and all spectra were binned with a bin width of 10 cm™! to reduce the
number of redundant predictor variables and reduce possible wavenumber shifts between measurements from different devices.

Finally, we excluded intensities from 2250 to 2400 cm ™}, to avoid that remaining CO, peaks confound predictions.
2.4 Prediction models

We used normal, gamma, and beta distributions as likelihoods (Tab. 1) and used Bayesian statistics to compute all prediction
models. All models were computed with brms (Biirkner, 2018), using a logit (beta regression), log (gamma regression) or
identity link function (normal regression), assuming a constant shape parameter (beta, gamma) or standard deviation (normal),
using a normal prior for the intercept, gamma priors for the shape parameter or standard deviation, and regularized horseshoe
priors (Piironen and Vehtari, 2017a, b) for the slopes (for each predictor variable). The regularized horseshoe prior shrinks
coefficients to zero except where they are strongly related to the response variable, conditional on other predictors. To reduce
overfitting, we defined a large amount of shrinkage, by assuming that 5 of the 321 predictor variables have non-zero coefficients
(Piironen and Vehtari, 2017b). The regularized horseshoe prior can lead to a complex posterior geometry that is difficult to
sample from even with efficient sampling algorithms and to run most of the models without divergent transitions, we had to
increase the degrees of freedom of the student-t distribution of the horseshoe prior from 1 to 3 or 4. This reduced the number of
divergent transitions, but also leads to less regularization (deviation from the horseshoe shape) (Piironen and Vehtari, 2017b)
which may lead to overfitting and less interpretable model coefficients. In our case, less regularization was not a critical
limitation because our aim was not to interpret model coefficients, but to optimize predictive accuracy, and because our model
validation did not indicate overfitting (Tab. 2).

The posterior distributions were estimated with Markov Chain Monte Carlo (MCMC) sampling with Stan (Stan Development
Team, 2021), using 4 chains, 3000 warmup iterations and 2000 sampling iterations per chain. Chains were initialized with
pathfinder (Zhang et al., 2022). Maximum Monte Carlo standard errors (Vehtari et al., 2021) for predictions of the target
variables by the best models (see the next section) for each target variable are shown in Tab. 2. As mentioned above, some
models had divergent transitions, but at least one model per target variable did not and we only evaluate and interpret models
without divergent transitions. The largest rank-normalized R for model parameters was 1.01, indicating convergence of the

chains (Vehtari et al., 2021).
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2.5 Model validation and data filtering

We used the Kennard-Stone algorithm as implemented in the prospectr package (Stevens and Ramirez-Lopez, 2013) to split the
observations for each target variable into a training and a testing dataset, using the euclidean distance between the underived
preprocessed spectra. The number of observations assigned to the test dataset was defined as min(0.8n, nmax ), Where n is the
number of available observations for a target variable and nm,,x = 200. All models for the same target variables use the same
observations for training and testing such that the models are comparable.

This procedure was chosen because our aim is to develop prediction models that are applicable to as diverse peat samples as
possible, that is, to compute one prediction model with maximum prediction domain (the value ranges covered by all predictor
variables) (Wadoux et al., 2021) and smallest possible prediction error across this prediction domain. The Kennard-Stone
algorithm maximizes the distance between spectra covered by the training data and therefore selects a diverse training data set.
An ideal test of the prediction models would use test data that covers the whole spectral range of the training data and is
independent of the training data, which in the case of peat samples are samples from different peatland sites. We had to deviate
from this ideal because of the heterogeneity of the pmird data. In particular, because there are only few samples from few
peatland sites with large carbonate or silicate contents, it would have been possible with independent observations either only
to test the models over a much smaller range of spectral variation if only independent test data would have been used, or to
test the predictive accuracy for spectral conditions the model was not trained on. In the first case, we would risk overfitting
in the untested spectral range, and in the second case, the predictive accuracy would be underestimated due to extrapolation.
Therefore, as an alternative, we did not separate observations from the same cores or sites when defining training and test
data. This allowed us to test the models across a much larger spectral range within their prediction domains. For many target
variables, the overfitting risk should be small because both the training and the test data have samples from many different
sites.

To compare models, we used the expected log predictive density (ELPD) computed on the test data. Model evaluation was
performed with the loo package (Vehtari et al., 2019). Following rules of thumb (Sivula et al., 2022), we assumed models
to have equivalent predictive performance (according to the capability of our evaluation) when the difference of their ELPD
(AELPD) is smaller than 4, and otherwise when AELPD is larger than two times its standard error (using normal approximation
for AELPD). Models with divergent transitions were not considered during model evaluation. To give an easier to interpret
performance metric, we also computed the root mean square error (RMSE).

We do not interpret model coefficients and how this may reflect causal links between molecular structures and target variables
because our model coefficients are not intended to estimate causal effects, because it is very likely that they do not represent
causal effects, and because specific wavenumbers cannot be assigned unambiguously to molecular structures (e.g., Stuart,
2004). For those interested in model coefficients, we show a plot of the model coefficients with the best model for each target
variable and a table listing possible assignments to molecular structures for coefficients with a posterior probability of being

larger than O of at least 90% or a posterior probability of being smaller than O of at least 90% in supporting section S4.
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2.6 Prediction domains

A regression model interpolates a target variable within the range of predictor values — the prediction domain (Wadoux et al.,
2021). If such a model is used for prediction with new data that are outside the prediction domain, it is unclear how large
prediction errors are, particularly for models with high dimensional prediction domain, such as spectral prediction models.
Consequently, it should be checked that new data are within the prediction domain of the model (e.g., Roberts et al., 2017),
even though this is no guaranty for accurate predictions.

For this reason, we computed the training prediction domain (Wadoux et al., 2021) for each model as the range of the predictor
variable values across all training samples (training prediction domain), and a prediction domain for the test samples (test
prediction domain) for each model as the range of predictor variable values across all testing samples. When samples are
outside the prediction domain, predictions may be less reliable than estimated by the model validation. The difference between
testing and training prediction domain shows where the models need further testing. The difference between training (or testing)
prediction domain and the prediction domain formed by all relevant spectra in the pmird database indicates whether the model
covers the spectral variability in the pmird database, as approximation of the spectral variability of peat in general, and therefore
indicates where additional data can improve the models.

When making predictions with the models, irpeat checks whether the input data are within the testing or training prediction
domain. This is a safety device to avoid a misuse of models and it provides information for those who want to improve our

models.
2.7 Testing the influence of confounding factors

Based on previous experience in the interpretation of peat MIRS and on the peaks caused by silicates, carbonates, amides,
carbohydrates, aromatics, and lipids (Stuart, 2004; Tatzber et al., 2007; Parikh et al., 2014), we suggest that the main gradients
in peat chemistry that control spectral variation are (1) the content of silicates, (2) the content of carbonates, (3) the initial veg-
etation composition that controls differences in the initial content of amides, carbohydrates, and aromatics, and (4) the degree
of decomposition, which increases the relative contents of amides, lipids, and aromatics, and decreases the overall content of
carbohydrates (e.g., Cocozza et al., 2003). Previous studies suggest that differences in amide contents and silicates can bias
predictions (Broder et al., 2012; Teickner and Knorr, 2022b) and similar effects are likely for carbonates, because carbonates
cause dominant peaks that overlap with peaks caused by aromatics and amides (Tatzber et al., 2007) and because large car-
bonate contents usually indicate higher pH values and therefore shifts in carboxyl peaks due to deprotonation (Ellerbrock and
Gerke, 2021). To test for such confounding factors, we plotted model residuals versus Ca, Si, and N measured for the same

samples (residuals were not plotted for samples where Ca, Si, and N, respectively, were not measured).
2.8 Filling data gaps in the pmird database

To fill data gaps in the pmird database, we used the best models for each target variable (Tab. 2) to predict missing values for

the target variables where samples have MIRS. These predictions are stored in a published data table. Moreover, we created
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two additional data tables that indicate, for each prediction, whether the MIRS is in the training or testing prediction domain
for the respective model. We restricted gap filling to peat and litter samples with absorbance-FT-MIR spectra. In contrast to
the model development, we included spectra that may have already been baseline corrected, since we the prediction domains
can be used to screen spectra that are not similar to the data used to train and test the models. For variables that can be
predicted without MIRS if other data are available (e.g., C, H, O, N, bulk density) with the additional models developed here
(AGEJ , saturated hydraulic conductivity, total porosity, macroporosity, volume fraction of solids, specific heat capacity, and
dry thermal conductivity) or previously published models (NOSC, C/N, H/C, O/C), we created an additional data table with
predictions without MIRS. For AG?, we required C, H, O, and N contents to be measured for this; contents of other elements

1

were included if available and otherwise the contents were set to 0 g g~* when computing AG?.

3 Results and discussion

We developed spectral prediction models for many peat properties relevant in peatland research. In the next subsections, we
evaluate these models in terms of their prediction errors estimated on test data, in terms of confounding factors, and in terms of
how much of the spectral variation in the pmird database is covered by the models (prediction domains). Where other models
for the same target variable are available, we compare prediction errors of our models to that from other studies. Our models
are openly available via the irpeatmodels package, functions to use them are available from the irpeat package, and we show
how to use these packages. Finally, to provide data that can be useful for future research, we summarize the gap-filling of the

pmird database.
3.1 Predictive accuracy

The predictive accuracy for the best models for each target variable is summarized in Tab. 2 and plots of measured versus
predicted values are shown in Fig. 2. Estimates for the predictive accuracy are both worse and better than that of previously
published models using spectra in the visible, near infrared or mid-infrared range (Fig. 3), but these estimates are not directly
comparable because of different modeling approaches and differences in the variability of data used to train and test the models.
Studies that use large databases can use modeling approaches that require more training data but may outperform linear models,
such as cubist (Hengl et al., 2021; Sanderman et al., 2020). Another reason for differences in the predictive accuracy is the
chemical diversity of the training and testing data. For example, one reason for the better predictive accuracy for C contents,
N contents, and C/N reported in Chapman et al. (2001) certainly is that samples are from one site only which leads to less
confounding between predictors and C content. Similarly, data from Terhoeven-Urselmans et al. (2008), Bergner and Albano
(1993), and Artz et al. (2008) also cover smaller gradients in peat properties than the pmird database, in particular no peat with
large mineral fractions (Fig. 3).

Not only differences in the range of chemical properties, but also the distribution of observations along chemical gradients
can lead to differences in estimated predictive accuracies. For example, models from Sanderman et al. (2020) and Hengl et al.

(2021) for C and N contents have a better predictive accuracy and were computed with many peat samples, but the majority of
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observations is from mineral soils with small C and N contents. It has been repeatedly observed that prediction errors are larger
for larger C contents than for smaller C contents (Dangal et al., 2019; Helfenstein et al., 2021). These heterogeneous prediction
errors are probably caused by two factors: Firstly, spectra of mineral soil have prominent mineral peaks which allow a more
accurate estimation of small C contents, whereas at large OM contents there is a much more complex and diverse pattern
of peaks caused by organic matter molecular structures. Secondly, whenever a variable is positive and the majority of values
is small, prediction errors are smaller due to the positivity constraint. This does not only explain worse estimated predictive
accuracy of our models for C and N, but can also explain why our model for bulk density has a better estimated predictive
accuracy than models from Sanderman et al. (2020) and Hengl et al. (2021) because the majority of the peat samples have a
small bulk density and the positivity constraint therefore implies smaller prediction errors. A last reason for a better predictive
accuracy is outlier removal in previous studies not based on specific theoretical considerations (Terhoeven-Urselmans et al.,
2008; Sanderman et al., 2020). We did not remove outliers here because we wanted to develop prediction models that are
applicable to a diverse range of peat samples, while outlier removal may lead to better predictive accuracy for peat samples with
specific chemical properties. Overall, the modeling approach and data properties of our studies are most directly comparable
to Helfenstein et al. (2021), who focused on C contents, and here, our model performs similarly well.

In summary, our models have a roughly similar or better predictive performance for some variables as have previous studies
focusing exclusively on peat samples. Albeit direct comparison of prediction errors to high-quality models computed with
large spectral libraries is not possible in terms of peat, it is very likely that the predictive accuracy for peat properties could be
improved with more flexible modeling approaches which would, however, require more balanced data and, for some variables,

more data in general.

12



https://doi.org/10.5194/egusphere-2025-4955

Preprint. Discussion started: 13 November 2025

(© Author(s) 2025. CC BY 4.0 License.

EGUsphere

Table 2. Overview on the predictive properties of the best models for each target variable. “Unit” is the measurement unit for all numeric

variables. “Derivative” indicates which derivative of the spectra was used in the model. “nuain” and “nes” are training and testing sample

sizes. “RMSE. " is the root mean square error computed for the test data. “biases’” is the average difference between predictions and mea-

9 <

surements. “RMSEin —RMSEc” is the difference between the training RMSE and the testing RMSE (RMSEies). “MCSEmean”,

MCSE”,

“MCSEiower”, and “MCSEyppe;” are maximum estimated Monte Carlo standard errors for the average, standard deviation, lower, and upper

95% prediction interval for predicted values across the training and testing data. “BD” is bulk density and “LOI” is loss on ignition.

Variable  Unit Derivative  7ain et  Range RMSE;c biases RMSEin — RMSEeq  MCSEpean  MCSEqq  MCSEjgwer MCSEypper
C g g;;lpls 0 200 2182 0to0.68 0.04 (0.04, 0.04) 0(-0.01, 0.01) 0(0,0.01) 0.0004  0.0003 0.0019 0.0018
H g g;;mlc 0 80 20 0.03t00.06 0.01 (0, 0.01) 0(0,0) 0(0,0) 0.0001 0.0001 0.0003 0.0003
N g g;m}wplc 1 200 2176 0t00.033 0.003 (0.002, 0.003) 0 (-0.001, 0) 0 (0, 0.001) 0.0001 0.0001 0.0001 0.0005
O g g;ﬂ,}qme 1 80 20 0.23t0045 0.02 (0.02, 0.03) 0(-0.01, 0.01) 0(-0.01, 0.01) 0.0002 0.0002 0.0010 0.0010
S ng g;“:wlc 1200 1285 O0to30121 1711 (1550, 1900) 121 (-120, 341) -96 (-371, 198) 55.1521  50.4974 152.0532  238.8588
P ng g:miple I 200 669 90to 3228 141 (123, 161) -5(-26, 14) 4(-19,28) 4.4786 3.0589 13.5042 12.5039
K g g;;plc 1 200 670 0to20959 839 (696, 1023) -100 (211, -1) 208 (-6, 441) 48.6916  27.4687 101.2688 119.2660
Si g gs’a;m,e 1 100 766 0t00.32 0.02 (0.01, 0.02) -0.01 (-0.01, 0) 0.01 (0, 0.02) 0.0007 0.0005 0.0019 0.0026
Ca g g;“:qp,e 0 200 671 0t00.048 0.003 (0.003, 0.004) 0 (-0.001, 0) 0 (0, 0.001) 0.0001 0.0001 0.0004 0.0003
Ti ng g;‘éple I 200 669 Oto10470 434 (349, 609) -65 (-131,-7) 230 (11, 400) 27.3602  30.3450 43.4585 127.0340
e Yoo 2 200 1041 -32.8t0-178 1.5(1.4,1.6) 0.1(-0.2,0.3) 0(-0.1,0.2) 0.0201 0.0143 0.0637 0.0670
SN Yoo 2 200 1041 -8to5.8 2.3(2.1,25) 0.1 (-0.3,0.6) 0(-0.2,0.2) 0.0303 0.0221 0.1260 0.1014
NOSC - 1 80 20 -041t00.1 0.1(0.1,0.2) 0(-0.1,0) 0(0,0) 0.0014  0.0010 0.0049 0.0048
AGY kJ molg’ 2 80 20 -121.6t0-704 6.5(4.3,9.2) 0.7 (-2.8,3.9) 1.2(-1.1,3.3) 0.1509 0.0924 0.3798 0.3490
C/N gg! 2 200 1976 10to 164.6 16.8 (15.5, 18.6) -2.1(-5.9, 1.5) -3.7(-5.8,-1.8) 0.2907 0.2474 0.6514 1.1699
o/C gg! 2 80 20 0.636t00.991  0.044 (0.031,0.06)  0(-0.02, 0.02) 0.002 (-0.014, 0.017) 0.0006  0.0004 0.0019 0.0021
H/C gg! 2 80 20 0.108t0 0.137  0.005 (0.003, 0.006)  0.001 (-0.002, 0.003) 0 (-0.001, 0.002) 0.0001 0.0000 0.0002 0.0002
BD Zsample cm;‘g‘p]é 2 200 689 0.01tol.59 0.07 (0.04, 0.14) 0(0,0.01) 0.03 (-0.05, 0.11) 0.0451 0.4527 0.0083 0.2822
Lol g g:‘ui]pls 0 80 21 0.04tol 0.01 (0.01, 0.02) 0(0,0.01) 0(-0.01, 0.01) 0.0004  0.0003 0.0011 0.0012
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Figure 2. Measured versus fitted and predicted values for all target variables. For AGY, standard errors of prediction estimated by the

auxiliary model (section S2) are shown as error bars. Diamond-shaped points with red borders are outliers (discussed in the text).
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Figure 3. RMSE for test data from the best models compared to RMSE for test data from other studies (a) and ranges of target variable
values in the training data for the models (b). In (a), points are average values and error bars 95% confidence intervals for individual models
(our models) or the ranges of average RMSE for different strata of the data, where different analyses were performed. When studies report
only one point estimate, this point estimate is shown was vertical tic. In (b), error bars are ranges for target variable values in the training

data.

3.2 Outliers and confounding factors

There are some interesting patterns in the plots of measured versus predicted values (Fig. 2): For C, there are two outliers,
one with a measured C content > 0.6 g g~ ! and one with a measured C content < 0.1 g g~! (Fig. S20). A peat sample with
> 0.6 gc g~ ! should be decomposed because litter initially has large O and H contents that cause small relative C contents and
because preferential decomposition of organic matter fractions with large O and H contents (carbohydrates, phenols) leads to
a relative accumulation of C (Schellekens et al., 2015; Moore et al., 2018; Leifeld et al., 2020), but the spectrum does not have
pronounced aromatic or lipid peaks one would expect for a peat sample with such high C content (supporting Fig. S20). A
peat sample with < 0.1 gc g~! must have a comparatively large mineral content because undecomposed peat forming litter has
much larger C contents, yet the spectrum does not have typical silicate peaks (supporting Fig. S20). We therefore assume that
either the C measurements in the pmird database are not correct for these two measurements or that spectra were incorrectly
assigned to these samples.

For H, the plot indicates overestimation for smaller H contents and underestimation for larger H contents. Samples with smaller
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H contents have larger Si contents (Fig. S18) which suggests that predictions are confounded by silicate peaks.

For P and K, several samples with the largest measured P and K contents have relatively large prediction errors. These sam-
ples are Juncus effusus samples from a short-term NPK fertilization experiment with high nutrient loads (Agethen and Knorr,
2018). While it appears that the models can predict P and K contents reasonably well for these samples, more samples would
be required to evaluate whether the model overfits to spectral characteristics of J. effusus litter (supporting Fig. S20) rather than
spectral characteristics for high P contents in vegetation.

For Si, there are several samples with larger Si content for which the model overestimates Si contents, besides the four samples
with maximum Si content for which the model underestimates Si contents. The overestimated samples have a large Ca content
and the underestimated do not (supporting Fig. S16). Presence of carbonates therefore biases predictions of Si contents, even
though this bias seems to be small for the training data. The one observation marked as outlier in Fig. 2 may be a measurement
error of Si contents or erroneously assigned spectrum to this sample because the sample does not have typical characteristics
for silicate rich peat, such as a pronounced peak around 1100 cm ™~ and peaks around 1900 cm~—! (supporting Fig. S20) (Parikh
et al., 2014).

For S, larger Ca contents do not bias predictions, but they increase the residual variance indicating, similarly to Si, that peaks
caused by carbonates confound predictions (Fig. 2). One reason for the difficulty to predict S contents here is that samples
in the data with large S contents also contain large Ca contents, but only some samples with large Ca content have carbonate
peaks. Samples with large carbonate peaks probably are influenced by groundwater with relative high pH value under which
calcite can precipitate with sufficiently high Ca?* concentrations. In contrast, samples with large Ca contents, but without
carbonate peaks probably have Ca?* bound to carboxyl groups, which leads to a small carboxyl peak (around 1730 cm~1!) and
a more pronounced peak around 1640 cm ™! which has contributions by carboxylates (Ellerbrock and Gerke, 2021) (supporting
Fig. S19).

It is interesting that prediction of other variables (e.g., C, N, K, P, Ti, bulk density) is possible without such bias. Since the
majority of samples with large Ca contents (ca. > 15000 ug g~ 1) are from cores from one permafrost peatland site, this may be
due to overfitting, indicating that more peat MIRS from carbonate rich samples need to be published to improve development
and testing of transmission-MIR prediction models for carbonate-rich peat.

Ti is the only target variable for which the training RMSE is significantly larger than the testing RMSE (Tab. 2). This indicates
that Ti contents were more variable in the training data than in the testing data. Since Ti is unlikely to cause detectable peaks
in peat MIRS, prediction of Ti concentrations probably relies mainly on a similar atmospheric deposition across the analyzed
peatlands and residual enrichment as peat is lost due to decomposition or fires. That even small Ti concentrations can be esti-
mated from MIRS therefore supports application of Ti concentrations as decomposition indicator, even though the model also
suggests that there are other sources of variation. In fact, the most useful application of the models may not be the accurate
prediction of Ti contents, but the detection of conditions where Ti concentrations are controlled by other factors than residual
enrichment from decomposition. Such conditions can be detected by comparing predictions of the model to Ti measurements.
The models for 6*3C and §'°N have prediction errors much too large for most current applications of such isotope measure-

ments. C and N isotope values are controlled by many different processes that can easily lead to a large variation in §'C and
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d'5N values despite similar spectral properties (for 6'3C: differences in 6'2C signatures of assimilated CO, (due to isotope
fractionation (Williams and Flanagan, 1996; Hobbie and Werner, 2004), the Suess effect (Keeling, 1979), and differences in the
fraction of CO5 assimilated from methanotrophy (Larmola et al., 2010; Schmidt, 2014). For ¢ 15N different pathways via which
N is assimilated by peat forming vegetation (Asada et al., 2005b) and the opposite effects of isotope fractionation (Nadelhoffer
and Fry, 1988; Lerch et al., 2011; Asada et al., 2005a; Alewell et al., 2011) and enrichment of OM fractions with negative § 3¢
values during aerobic decomposition (Bowling et al., 2008; Xia et al., 2020), which agrees with weak correlations of 15N
values with peat decompostion indicators (Broder et al., 2012; Biester et al., 2014; Mathijssen et al., 2019; Serk et al., 2022)).
It may therefore be the case that §'3C and §'°N measurements cannot be estimated accurately with MIRS prediction models.
However, many of the 513C and 6'°N measurements in the pmird database do not correct for blank effects (Teickner et al.,
2025b), which biases §13C and §'°N values proportionally to the C and N mass (Langel and Dyckmans, 2017). According
to blank corrections for other projects, this bias has a magnitude of ca. 0.2 to 0.5 (depending on the sample C mass) %ofor
§13C and a magnitude of ca. 0.2 to 1 (depending on the sample N mass) %ofor 6'°N. This is only a fraction of the estimated
RMSE (Tab. 2) and we therefore currently assume that unbiased measurements would still result in large prediction errors
relative to measurements of §13C and 6*°N. For §1°N, the contribution of this bias is certainly larger than for 6'3C. A factor
that contributes to the large prediction errors therefore are biased measurements due to uncorrected blank effects.

An alternative explanation for the large prediction errors may therefore be biased measurements due to uncorrected blank ef-
fects.

For C/N, prediction errors are larger for samples with larger C/N. Two factors probably contribute to this pattern: Firstly, large
C/N values imply small N contents and at large C/N values, very small changes in N contents cause large changes in C/N
values. Such slight changes in N contents probably cause only small changes in peak intensities that are not easy to detect in
MIRS and hence not easy to predict. Secondly, some of the samples with large C/N values have large silicate contents (Fig.
S18). The large differences in spectra between undecomposed Sphagnum peat and mineral-rich peat very likely confounds
linear relations present in peat without large mineral contents.

To summarize, for many variables, accurate predictions are possible with the models developed here, whereby the accuracy
needed will of course depend on the specific purpose of the analysis. The models for 6'3C and §'°N are probably not accurate
enough for any analysis of isotope values, even if blank effects are corrected. Besides silicates and nitrogen, calcium — either
in the form of carbonates or in the form of Ca?* bound to carboxylates — is an important contributor to spectral variability in
peat samples and makes it difficult to predict S, Si, and Ca contents, at least with the modeling approach used here. Since the
pmird database contains Ca-rich samples only from few sites, future tests of the models with additional Ca-rich peat samples

would be useful.
3.3 Prediction domains

A comparison of training and testing prediction domains for our models shows that the testing prediction domains covers only
a small fraction of the training prediction domain for H, O, NOSC, AG?, H/C, O/C, C/N, and LOI (Fig. 4), which indicates that

models for these target variables cover a small range of peat spectral properties and therefore may make erroneous predictions
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for peat samples as diverse as for example used to compute the prediction model for N.

The difference between testing and training prediction domain can be used to identify samples useful to test the models in
405 the future. Similarly, the difference between the training prediction domain and the domain formed from all spectra identifies

samples that would be useful additions to the training data if the target variable would be measured for these samples. For

example, for H, O, NOSC, AG? , H/C, O/C, and C/N there is a lack of mineral-rich samples in both the training and testing

data, whereas for LOI there are mineral-rich samples in the training data, but not enough mineral-rich samples were left for

model testing (Fig. 4). The prediction domains are available from the irpeatmodels package.
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Figure 4. Prediction domains of the best model for each target variable. The training and testing prediction domains are created from the

maximum and minimum intensity values at each wavenumber of the preprocessed spectra across the training or test data. The shaded region

“All spectra” is formed in the same way, but with all data that were used for model development. The “All spectra” regions differ from target

variable to target variable depending on whether the best model uses zero, first, or second derivative spectra, and depending on how predictor

variables are scaled in each model.

3.4 Filling gaps in the pmird database

Table 3 summarizes the results of our gap filling. Even though we filled all gaps with MIRS predictions, predictions that are

outside the training and testing prediction domain may be unreliable and therefore we consider all observations for which the

spectra is neither inside the training nor the testing prediction domain as unfilled gaps for our evaluation here.
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Since the pmird database contains many bulk density and N measurements, but no measurements for porosity, hydraulic
conductivity, specific heat capacity, and thermal conductivity, many missing values could be estimated with the pedotransfer
functions and the remaining gaps filled with MIRS-predicted bulk density and N. Similarly, a large fraction of fillable gaps
for element contents could be imputed, except for H and O for which training and testing prediction domains cover a smaller
fraction of the spectral variability. Much fewer gaps could be filled for O, NOSC and AG? than for H because of differences
in the preprocessing for these models: the models for H uses underived spectra, whereas the models for O, NOSC and AG?
use first or second derivative spectra, where high frequency features are more emphasized and therefore many spectra are not
within the prediction domains (Tab. 2). For observations, where spectra are outside the prediction domain only because a few
of the variables exceed the prediction domain boundaries by small values are still reliable; the amount of useful predictions is
therefore probably underestimated. Compared with existing databases (Zoltai et al., 2000; Charman et al., 2013; Loisel et al.,
2014; Treat et al., 2016; Gallego-Sala et al., 2018; Leifeld et al., 2020), this makes the gap-filled pmird database one of the
largest available data sources for contents of many elements, hydraulic and thermal properties, and peat chemistry, in particular

NOSC, and AG(f). The gap filling predictions are available from Zenodo (Teickner and Knorr, 2025a).
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Table 3. Summary of gap filling the pmird database. For each variable, the table shows the number of measured values (no gap filling needed)
(“Measured”), the number of gaps (“Gaps”), the number of gaps that can be filled with the pedotransfer functions (with bulk density or N
measurements), with the auxiliary model for AG? (with element contents), or with formulas for element ratios and NOSC (with element
contents) (“Auxiliary models”), the number of gaps that can be filled with MIRS predictions, where spectra are in the training or in the testing
prediction domain (“Training domain” and “Testing domain”; some spectra are in both prediction domains and then are counted twice), the
number of gaps that could be filled in total (“Filled”), and the fraction of gaps that could be filled (“Filled (%)”). In total, there were 3379

samples with spectra for each target variable.

MIRS predictions

Variable Measured Gaps Auxilliary models Training domain  Testing domain  Filled  Filled (%)
C 2947 432 0 403 397 407 94
H 103 3276 0 1439 39 1440 44
N 2942 437 0 339 339 370 85
o 103 3276 0 232 15 235 7
S 1744 1635 0 1080 1111 1234 75
p 1128 2251 0 1442 1276 1551 69
K 1129 2250 0 1462 1269 1566 70
Si 1125 2254 0 1254 1348 1530 68
Ca 1130 2249 0 1919 1785 1970 88
Ti 1128 2251 0 1442 1276 1551 69
s3C 1764 1615 0 565 707 794 49
SN 1764 1615 0 565 707 794 49
NOSC 0 3379 103 194 0 297

AG? 0 3379 103 83 0 186 6
C/N 0 3379 2945 136 183 3156 93
o/C 0 3379 103 83 0 186

H/C 0 3379 103 83 0 186

BD 1264 2115 0 823 860 1033 49
LOI 349 3030 0 1486 256 1491 49
Macroporosity 0 3379 1268 783 826 2248 67
Non-macroporosity 0 3379 1268 783 826 2248 67
Volume fraction of solids 0 3379 1268 783 826 2248 67
Saturated hydraulic conductivity 0 3379 1268 783 826 2248 67
Specific heat capacity 0 3379 2946 274 257 3243 96
Dry thermal conductivity 0 3379 1268 783 826 2248 67
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3.5 Implementation of the models in the irpeatmodels and irpeat R packages

The models can be used with R by installing the irpeat (Teickner, 2025a) and irpeatmodels (Teickner, 2025b) packages. The
irpeatmodels package contains the models itself and irpeat contains functions to interact with the models. This design was
chosen to account for faster development cycles for code to interact with the models and code for other functions of the irpeat

package and also to account for size limitations for software packages in online repositories.

4 Conclusions

Our aim was to develop transmission-MIRS prediction models for peat with the quality standards of state of the art prediction
models for mineral soils. We have developed models for element contents (C, N, H, O, P, S, K, Ti), element ratios (C/N, H/C,
0/C), isotope values (6'3C, §1°N), physical properties (bulk density, macroporosity, non-macroporosity, hydraulic conductivity,
specific heat capacity, dry thermal conductivity), Gibbs free energy of formation (AG}J ), and nominal oxidation state of carbon
(NOSC) of bog peat with data from the pmird database, one of the largest spectral databases available for peat soils. The
models have predictive accuracies comparable to or better than existing models for peat, while covering a more diverse range
of peat spectral chemistry. All models are available via the R packages irpeat and irpeatmodels. irpeat automatically propagates
prediction errors and flags predictions where spectra are outside the prediction domain of the models.

A limitation to be addressed in future studies is that more diverse test data and, for some variables, more training data are
required to reduce prediction errors and cover more representative chemical gradients of peat, in particular for O and H contents,
NOSC and AGO, and peat samples with larger silicate, carbonate, and, in general, mineral contents. This would also make it
possible to use more flexible modeling approaches which could reduce prediction errors. Moreover, it is recommendable to
replace pedotransfer functions for peat hydrological and thermal proeprties by spectral prediction models to reduce prediction
errors.

Our model evaluation lets us draw the following conclusions: First, transmission-MIRS probably are not suitable to predict peat
§'3C and 6'°N very precisely and we attribute this mainly to the diversity of processes that control §'3C and §'°N and their
contrasting effects. Second, a comparison to existing models for mineral soils suggests that we need more targeted approaches
to meaningfully compare the predictive accuracy of models evaluated on databases with contrasting fractions of organic versus
mineral soil samples.

Finally, we used our models to fill gaps in the pmird database, making it one of the largest databases for many peat properties
such as hydraulic properties, Ti, O, H, and P contents, NOSC, and AG?. This illustrates that the models, represent a first step
to provide the data required to quantify diverse peat properties at high spatial resolutions which will in particular be useful to

estimate and test process models.

Code and data availability. Data and code to reproduce this manuscript are available from (Teickner and Knorr, 2025b). The data used in

this study are from the pmird database (Teickner et al., 2025a), Wang et al. (2015a), Liu and Lennartz (2019), O’Connor et al. (2020),
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Gnatowski et al. (2022), from several studies (Helgeson, 1978; Wagman et al., 1982; Shock, 1993; Dale et al., 1997; Richard and Helgeson,
1998; Helgeson et al., 1998; Richard, 2001; LaRowe and Helgeson, 2006a, b; Helgeson et al., 2009; LaRowe and Dick, 2012) included
in the OBIGT database (Dick, 2019), from Linstrom (1997), and Battley (1999). The models computed in this study are available in the
irpeatmodels package (Teickner, 2025b) and can be used with the irpeat package (Teickner and Hodgkins, 2025). The gap-filled subsets of

the pmird database are available from (Teickner and Knorr, 2025a).
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