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S1 Pedotransfer functions

S1.1 Total porosity, macroporosity

Total porosity is defined as the volume fraction of a peat sample which is filled either with
gas or water. Macroporosity is defined, following Liu and Lennartz (2019), as the difference
between total porosity and the volumetric water content at 60 cm pressure head (implying30

a pore diameter of ~ 50 µm).
The pmird database does not contain measured peat porosities and MIRS measured for the
same samples. However, both can in principle be predicted from peat bulk density, even
though prediction errors of such pedotransfer functions are large (Liu et al., 2020; Liu and
Lennartz, 2019), especially in combination with prediction errors for bulk densities from the35

MIRS prediction model.
We nevertheless think that computing such models is useful because it is still better to have
a rough estimate than no estimate, our approach provides software infrastructure to combine
pedotransfer functions and spectral prediction models, and it is easier to test the usefulness
of both the spectral prediction model and the pedotransfer function when such combined40

models are available.
The pmird database contains the data collected by Liu and Lennartz (2019) and we computed
a modified version of their models for the volume fractions of different pore classes. Our
model has the following structure:

 ymacropores
ynon-macropores

ysolids

 ∼ Dirichlet


 µmacropores
µnon-macropores

µsolids

 , ϕ


µmacropores = exp(ηmacropores)∑

k∈{macropores, non-macropores, solids} exp(ηk)

µnon-macropores = exp(ηnon-macropores)∑
k∈{macropores, non-macropores, solids} exp(ηk)

µsolids = exp(ηsolids)∑
k∈{macropores, non-macropores, solids} exp(ηk)

ηmacropores = αmacropores + β1, macroporesx + β2, macropores ln(x)
ηnon-macropores = αnon-macropores + β1, non-macroporesx + β2, non-macropores ln(x)

ηsolids = 0
αmacropores ∼ normal(µαmacropores , σαmacropores)

αnon-macropores ∼ normal(µαnon-macropores , σαnon-macropores)
β1, macropores ∼ normal(µβ1, macropores , σβ1, macropores)
β2, macropores ∼ normal(µβ2, macropores , σβ2, macropores)

β1, non-macropores ∼ normal(µβ1, non-macropores , σβ1, non-macropores)
β2, non-macropores ∼ normal(µβ2, non-macropores , σβ2, non-macropores)

ϕ ∼ gamma(αϕ, βϕ),

(S1)
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where µk is the average volume fraction of compartment k, k ∈ {macropores, non-macropores, solids},45

ηk is the same, but on the latent scale, αmacropores, αnon-macropores, β1, macropores, β2, macropores,
β1, non-macropores, and β2, non-macropores are the intercept and slopes to model the average
volume fraction of macropores and non-macropores from the bulk density (x), respectively,
which are modeled with normal prior distributions, and ϕ is the precision parameter of the
Dirichlet distribution, assumed to have a gamma distribution. Solids serve as reference class50

and therefore have ηsolids = 0.
The modifications are the following:

1. Instead of modelling macroporosity and non-macroporosity separately, we model them
simultaneously using a Dirichlet regression model which also models the volume frac-
tion of solids. This considers that the volume fractions of macropores, non-macro55

pores, and solid matter each cannot be smaller than 0% or larger than 100% and must
sum to 100%.

2. Instead of using simple linear or exponential relations of each class with bulk density, we
model macroporosity and non-macroporosity with a Ricker-like model (Ricker, 1954),
i.e. ηk = α + xβ1,k + ln(x)β2,k. Apart from better fitting the data than a simple linear60

or exponential model, a Ricker-like model makes intuitively sense:

• A reasonable assumption is that the total porosity must decrease with increasing
bulk density, as shown in Liu and Lennartz (2019) and also observable for organic
shales (extremely compacted organic sediments, see modification 3 below) (Wang
et al., 2015), because otherwise one would have to assume that the total porosity65

could increase or remain constant while the bulk density increases, which would
only be possible if low density solids would be replaced by high density solids
without changing or while increasing the total porosity — an unlikely scenario.
The ln(x)β2,k terms account for this assumption.

• Peat mass loss during decomposition is assumed to be proportional to the re-70

maining mass and therefore can be modeled with an exponential function (e.g.,
Clymo, 1984). Similarly, we assume that the loss of macropores is proportional
to the fraction of remaining macropores because more macropores imply more
fibers which form the boundaries of macropores and these fibers get decomposed
by losing mass. If one then assumes that the loss of macropores occurs at a higher75

rate than the loss of peat mass — because compaction happens faster than mass
loss — this implies a decreasing exponential relation of macroporosity with bulk
density, as shown in Liu and Lennartz (2019). The xβ1,k term account for this.

• This relatively simple model can also account for the decrease in non-
macroporosity with increasing bulk densities (Fig. S1).80

• When the bulk density approaches zero, a sample is in principle the content of a
container filled with gas, i.e. the sample is a single macropore (if one considers
a sample with sufficiently large volume). The model is in accordance with this
because at a very small bulk density, it predicts a macroporosity of 100%, a non-
macroporosity of 0%, and a fraction of solids of 0%. Likewise, for very high bulk85
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densities, the model predicts a macroporosity of 0%, a non-macroporosity of 0%,
and a fraction of solids of 100% (Fig. S1).

3. We added data from organic shales extracted from table 2 in Wang et al. (2015) to the
model. As described above, organic shales may be formed from peat-like material due
to extreme compaction (Wang et al., 2015) and a model which captures the general90

relation between porosity and bulk density, should also fit data for organic shales as
one extreme (high bulk density and low porosity) (Wang et al., 2015). Including such
high-bulk density data allows us to make the assumption that this model can be applied
both to very low-density, but also very high-density peat samples.
The porosity values reported by Wang et al. (2015) represent total porosities and no95

easily extractable data for the macroporosity and non-macroporosity are given. Since
the fraction of macropores in these organic shales is small (see Fig. 5 in Wang et al.
(2015)), we assumed a macroporosity of 0% or, equivalently, that the porosity data
reported equals the non-macroporosity.

In accordance with the theoretical justifications, we chose prior distributions for the intercept100

that reflect that the macroporosity should be 100%, the non-macroporosity 0%, and the
fraction of solids 0% when the bulk density goes to 0 g cm−3. For all other parameters, we
used weakly informative priors. Model fits to the data are shown in Fig. S2. As additional
test, we compared model predictions for total porosity to measurements by Whittington and
Koiter (2024). Predictions of our model agree within prediction interval boundaries to the105

measured values (Fig. S3).
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Figure S1: Plot of measured (points) and predicted (lines and shaded areas) total porosity,
macroporosity, non-macroporosity, and volume fraction of solids versus bulk density. Shaded
areas are prediction intervals. Data from organic shales are from Wang et al. (2015) and data
from peat samples are from Liu and Lennartz (2019) as contained in the pmird database.
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Figure S2: Plot of measured (or assumed) total porosity, macroporosity, non-macroporosity,
and volume fraction of solids versus predictions by model (S1). Error bars are 95% prediction
intervals.
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Figure S3: Comparison of model predictions for total porosity to measured total porosities
for peat cores from Whittington and Koiter (2024). Each panel shows values for one peat
core. Lines are averages. Shaded areas are 95% prediction intervals.

S1.2 Saturated hydraulic conductivity (Ks)

As for porosity, the pmird database does not contain measured peat saturated hydraulic
conductivity (Ks) and MIRS measured for the same samples, but pedotransfer functions are
available to predict it from bulk densities (Liu and Lennartz, 2019). To predict Ks from110

MIRS, we used the same strategy as for porosity, again recomputing modified versions of
the model described in Liu and Lennartz (2019).
Values of Ks are highly variable for small bulk densities (Liu and Lennartz, 2019) because
they do not just depend on porosity, but also factors such as pore connectivity. However, peat
with a small fraction of macropores (or equivalently a bulk density approximately > 0.15115

g cm−3) generally has a small Ks (Liu and Lennartz, 2019). The simple model we present
therefore is informative in so far as it makes accurate predictions when Ks is small, but it
does not provide very accurate estimates for peat with bulk densities approximately ≤ 0.15
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g cm−3. As described for porosity above, we nevertheless think that it is useful to compute
such a model.120

Again, we modified the original model for Ks to model Ks on the original scale (not log-
scaled). In addition, we modeled Ks with a beta regression model, assuming that Ks is in
(0, 3000) cm h−1 (Liu and Lennartz, 2019). This has mainly the advantage to restrict the
maximum error ranges in comparison to using a gamma distribution:

Ks ∼ beta(µϕ, (1 − µ)ϕ)

µ = 1
1 + exp(−η)

η = αµ + β1,µx + β2,µ ln(x)
αµ ∼ normal(µαµ , σαµ)

β1,µ ∼ normal(µβ1,µ , σβ1,µ)
β2,µ ∼ normal(µβ2,µ , σβ2,µ)

ϕ = exp(αϕ + β1,ϕx + β2,ϕ ln(x))
αϕ ∼ normal(µαϕ

, σαϕ
)

β1,ϕ ∼ normal(µβ1,ϕ
, σβ1,ϕ

)
β2,ϕ ∼ normal(µβ2,ϕ

, σβ2,ϕ
),

(S2)

where µ is the average saturated hydraulic conductivity, ϕ the precision parameter of the125

beta distribution, αµ, β1,µ, and β2,µ are the intercept and slopes for the model for µ in
dependency of the bulk density (x), all modeled with normal prior distributions, and αϕ and
βϕ are the intercept and slope for the model for ϕ in dependency of the bulk density, which
are also modeled with normal prior distributions.
Since Ks depends on porosity, we used the same model for the average bulk density, i.e. µ =130

α + β1x + β2 log(x) (see above). Also the variability in Ks (modeled by ϕ) is related to bulk
density and therefore we included a model term for ϕ in dependency of the bulk density
in the model. Since one can expect that Ks is similarly small for peat with even higher
bulk densities than contained in the data from Liu and Lennartz (2019), we assume that
this model can be used across the full range of bulk densities for peat. Plots of measured135

and predicted Ks versus bulk density are shown in Fig. S4 and measurements versus fitted
values in Fig. S5. As additional test, we compared model predictions to measurements by
Whittington and Koiter (2024) and predictions of model 1 from Morris et al. (2022) (Fig.
S3). Predictions of our model agree within prediction interval boundaries to the measured
values, but the predicted average is larger than the measurements and our predictions agree140

better with predictions from model 1 from Morris et al. (2022) than with measurements
from Whittington and Koiter (2024).
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Figure S4: Plot of measured Ks versus predictions by model (S2), either on the raw scale or
the log10-transformed values. Error bars are 95% prediction intervals.
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Figure S5: Plot of measured (points) and predicted (lines and shaded areas) Ks, either on
the raw scale or the log10-transformed values. Shaded areas are prediction intervals.
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Figure S6: Comparison of model predictions for saturated hydraulic conductivity to mea-
sured saturated hydraulic conductivity for peat cores from Whittington and Koiter (2024)
and saturated hydraulic conductivity predicted for the same cores with model 1 from Morris
et al. (2022). Each panel shows values for one peat core. Lines are averages. Shaded areas
are 95% prediction intervals.

S1.3 Specific heat capacity (cp)

The pmird database does not contain measured peat specific heat capacities and MIRS mea-
sured for the same samples. However, peat specific heat capacities can be modeled from145

peat N contents if the peat temperature is known (Gnatowski et al., 2022).
We therefore modeled the specific heat capacity from MIRS by predicting peat N contents
from MIRS and then using the approach described in Gnatowski et al. (2022). We recom-
puted the models described there with the reported data and some modifications:
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cp,measured ∼ normal(cp, σcp)

cp ∼ gamma
(

ϕ,
ϕ

µcp

)
µcp = exp(αC0 [i] + βC0N + αC1T + βC1NT)

αC0 [i] ∼ normal(α, σ)
σ ∼ normal+(0, 0.2)
ϕ ∼ gamma(1, 0.005),

(S3)

where cp is the true specific heat capacity (J g−1 K−1), cp,measured the measured specific heat150

capacity (J g−1 K−1) with reported measurement errors σcp (Gnatowski et al., 2022), µcp the
expected value of the specific heat capacity (J g−1 K−1), αC0 [i] is µcp for T = 0 K and a
solid N content of 0 mass-% (equivalent to the intercept for C0 in Gnatowski et al. (2022)),
βC0 describes how µcp changes with N content (equivalent to the slope for C0 in Gnatowski
et al. (2022)), αC1 is the change in µcp with temperature (equivalent to the intercept for C1155

in Gnatowski et al. (2022)), βC1 describe how µcp changes with temperature and N content
(equivalent to the slope for C1 in Gnatowski et al. (2022)). α and σ are the global intercept
and standard deviation for the αC0 [i], to account for the repeated measurements per sample.
The modifications consider that cp > 0 J g−1 K−1 (gamma distribution), propagate errors
in C0 and C1 as predicted from N content to cp, and consider measurement errors in cp. In160

addition, to account for repeated measurements of the heat capacity for each peat sample at
different temperatures, we model αC0 [i] with a normal distribution with global intercept α
and standard deviation σ. Parameter α was set to log(cp(air)), where cp(air) is the specific
heat capacity of dry air at 0 K.
The data in Gnatowski et al. (2022) are from drained peat and therefore are not represen-165

tative for less decomposed peat. To extent the model to less decomposed peat, we use data
for the specific heat capacity of dry air from Hilsenrath et al. (1955). Undecomposed peat
is known to have lower N contents and larger pore spaces. The larger the porosity is the
more is the specific heat capacity of dry peat controlled by that of the enclosed air. There-
fore, we used the data for the specific heat capacity of dry air as estimate for the specific170

heat capacity of an undecomposed peat sample with a total N content of 0 mass-%. This
allowed us to predict the specific heat capacity of a peat sample from its MIRS by using the
spectral prediction model for peat N content to predict the N content for the peat sample
and inserting this into equations (S3) together with the (known) peat temperature.
Plots of measured and predicted cp versus N content are shown in Fig. S7 and measurements175

versus fitted values in Fig. S8.
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Figure S7: Plot of measured cp versus predictions by model (S3). Error bars are 95%
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Figure S8: Plot of measured (points) and predicted (lines and shaded areas) cp. Shaded
areas are prediction intervals and error bars represent measurement errors.

S1.4 Dry thermal conductivity (KT)

The pmird database does not contain measured peat dry thermal conductivity and MIRS
measured for the same samples. However, peat dry thermal conductivity can be modeled
from peat bulk density (O’Connor et al., 2020).180

We therefore modeled the dry thermal conductivity from MIRS by predicting peat bulk
density from MIRS and then using the model from O’Connor et al. (2020). We recomputed
the model described there with data received from the authors of O’Connor et al. (2020)
via email as the data included in the supporting information to O’Connor et al. (2020) were
incomplete and some modifications:185
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KT ∼ gamma
(

ϕ,
ϕ

µKT

)
µKT = exp(αµ + βµ,1ρ + βµ,2 log(ρ))

ϕ = exp(αϕ + βϕ,1ρ + βϕ,2 log(ρ)),

(S4)

where KT is the dry thermal conductivity (W m−1 K−1), µKT is the expected dry thermal
conductivity (W m−1 K−1), αµ is the intercept, βµ,1 and βµ,2 are the slopes of the relation
with ρ and log(ρ), and ρ is the bulk density (g cm−3). The shape parameter of the gamma
distribution, ϕ, was modeled with a similar model (in dependency of bulk density) since the
prediction standard deviation was less than expected based on a gamma distribution with190

constant shape parameter. The modifications consider that KT is > 0 W m−1 K−1.
This allowed us to predict the dry thermal conductivity of a peat sample from its MIRS
by using the spectral prediction model for peat bulk density to predict the bulk density for
the peat sample and inserting this into equation (S4). Plots of measured and predicted KT
versus bulk density are shown in Fig. S9 and measurements versus fitted values in Fig. S10.195
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Figure S9: Plot of measured KT versus predictions by model (S4). Error bars are 95%
prediction intervals.
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Figure S10: Plot of measured (points) and predicted (lines and shaded areas) KT. Shaded
areas are prediction intervals.

S2 Estimating the standard Gibbs free energy of for-
mation (∆G0

f ) from elemental contents

S2.1 Modeling approach

The pmird database does not contain ∆G0
f values. However, several procedures have been

proposed to compute ∆G0
f of organic matter (mixtures) with unknown molecular formula200

from its stoichiometry (see e.g., Popovic, 2019). Such an approach can be applied to peat
samples from the pmird database with measured C, H, O, N contents to estimate ∆G0

f . To
this end, we here combine the approaches suggested in Thornton (1917), Patel and Erickson
(1981), and Battley (1999) to compute ∆G0

f , as explained in detail in Popovic (2019).
The standard Gibbs free energy of a sample (∆G0

f,sample) can be computed from the enthalpy205
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of formation and the entropy of formation, using the Gibbs equation (Battley, 1999; Popovic,
2019):

∆G0
f,sample = ∆H0

f,sample − T∆S0
f,sample, (S5)

where T = 298.15 K is the temperature under standard conditions, ∆H0
f,sample the standard

enthalpy of formation of the peat sample (kJ mol−1
C ), and ∆S0

f,sample the standard entropy of
formation of the peat sample (J mol−1

C K−1). The equation is also valid for values normal-210

ized to the molar C content (which is a premise in case of peat because we do not know the
individual molecular formulas).
∆H0

f,sample and ∆S0
f,sample can both be derived from the stoichiometry of peat samples (Batt-

ley, 1999; Patel and Erickson, 1981; Popovic, 2019; Thornton, 1917), as explained in the two
next subsections and described by Popovic (2019). In a third subsection, we describe how215

uncertainties in estimated ∆H0
f,sample and ∆S0

f,sample are propagated to estimated ∆G0
f .

We could check this approach with a subset from the OBIGT database (Dale et al., 1997;
Helgeson, 1978; Helgeson et al., 1998, 2009; LaRowe and Dick, 2012; LaRowe and Helgeson,
2006a, b; Richard, 2001; Richard and Helgeson, 1998; Shock, 1993; Wagman et al., 1982)
from the ‘CHNOSZ’ R package (version 2.1.0) (Dick, 2019). The OBIGT database is one of220

the largest open access databases on thermodynamic data (Dick, 2019). To this end, we used
the approach described here to estimate ∆G0

f for samples in the OBIGT database and plot
∆G0

f values stored in the OBIGT database for the same compounds and derived by different
methods against these estimates. The values were in relative good agreement (supporting
Fig. S15).225

According to Hess’ law, ∆H0
f,sample can be computed from the standard enthalpy of com-

bustion (∆H0
c,sample) and the standard enthalpies of formation of the chemical elements the

sample is composed of (Popovic, 2019):

∆H0
f,sample = nCH0

f,CO2 + 1
2nH∆H0

f,H2O + 1
4nPH0

f,P4O10 + 1
2nSH0

f,SO2 − H0
c,sample, (S6)

where all terms have unit kJ mol−1
C , ∆H0

c,sample is the standard enthalpy of formation for
the sample, H0

c,sample the standard enthalpy of combustion, ni the mols of chemical element230

i per moles of C in the sample (moli mol−1
C ), and all other terms the standard enthalpies of

formation of the subscripted species.
All quantities in equation (S6) can be derived from literature values (we used values de-
rived from the OBIGT database and, for P4O10, data from (https://webbook.nist.gov/cgi/
cbook.cgi?ID=C16752606&Mask=6F) (Linstrom, 1997)), except for ∆H0

c,sample, which can be235

computed with Thornton’s rule (Patel and Erickson, 1981; Popovic, 2019; Thornton, 1917):

∆H0
c,sample = α1E, (S7)

where α1 is a proportionality constant (kJ mol−1
C ) and E the amount of electrons trans-

ferred during combustion of an amount of the sample containing 1 mol of C (mole− mol−1
C ).

Praameter α1 can be estimated by regressing measured combustion enthalpies of samples
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against their E (see below). Values for E can be computed from known element composi-240

tions (assuming formation of SO2) (Popovic, 2019):

E = 4nC + nH + 2nO + 0nN + 5nP + 4nS, (S8)

where E is the amount of electrons transferred to oxygen during combustion of an amount
of the sample containing one mol of C (mole− mol−1

C ) and ni are the amounts of chemical
element i in the same amount of sample sample (moli mol−1

C ).

S2.2 Model for the enthalpy of combustion (∆H0
c)245

The proportionality constant α1 from equation (S7) has been estimated — using different
datasets — to range between −108.99 kJ mol−1

C and −111.14 kJ mol−1
C (Battley, 1999). Un-

fortunately, errors for this estimate, as well as raw data to recompute the models are not
straightforwardly accessible and usable from the original studies.
Even though equation (S7) had a good fit to multiple datasets (Patel and Erickson, 1981;250

Thornton, 1917), peat samples typically cover only a very small range of transferred elec-
trons (E) and therefore, despite a good fit across a large range of E, prediction errors for
individual samples can be large in comparison to the range in predicted average values for
peat samples.
For this reason, we re-computed the model to predict ∆H0

c from E with raw data from the255

OBIGT database (Dale et al., 1997; Dick, 2019; Helgeson, 1978; Helgeson et al., 1998, 2009;
LaRowe and Dick, 2012; LaRowe and Helgeson, 2006a, b; Richard, 2001; Richard and Helge-
son, 1998; Shock, 1993; Wagman et al., 1982).
∆H0

c cannot be > 0 because combustion always releases energy. The original model formu-
lations implicitly assume a normal distribution. We suggest an alternative model, where260

|∆H0
c| (the absolute value for ∆H0

c) is modeled with a gamma distribution. The full model
is:

|∆H0
c,sample| ∼ gamma(µ, ϕ)

µ = exp(α1 + β log(E)), (S9)

where gamma(µ, ϕ) is a gamma distribution parameterized with an average value (µ) and a
precision parameter (ϕ). Parameter µ is modeled with a log-link function and is assumed to
be proportional to log(E).265

For the computations, we used a subset of the OBIGT database (Dale et al., 1997; Helgeson,
1978; Helgeson et al., 1998, 2009; LaRowe and Dick, 2012; LaRowe and Helgeson, 2006a,
b; Richard, 2001; Richard and Helgeson, 1998; Shock, 1993; Wagman et al., 1982) in the
CHNOSZ package (version 2.1.0) (Dick, 2019). The OBIGT database currently is one of the
largest open access database on thermodynamic data from which thermodynamic data can270

directly be retrieved (Dick, 2019).
We subsetted data on organic compounds, CO2, and CH4, in either solid, liquid, or gaseous
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state, for which values for the enthalpy of formation are reported, which consist only of C, H,
N, O, S, P, and are reported as simple chemical formulas. This resulted in thermodynamic
data for 966 compounds. The majority of thermodynamic data in this subset is derived275

either from measured (and recalculated) data or using different group additivity algorithms
(Helgeson et al., 1998; LaRowe and Helgeson, 2006a; Richard, 2001; Richard and Helgeson,
1998).
Standard combustion enthalpies can be computed from standard formation enthalpies in-
cluded in the database by Hess’ law using the CHNOSZ package (Dick, 2019). The assumed280

combustion reaction is (Popovic, 2019):
CaHbOcNdPeSf + (a + 1

4b + 5
4e + f) O2 (g) −−→ aCO2 (g) + b

2 H2O (l) + d
2 N2 (g) + e

4P4O10 (s) +
fSO2 (g)
The results are shown in Fig. S11 and S12. Our estimated slope is approximately (approx-
imately because of the log-link of the model), -103.7 (-99, -108.5) kJ mol−1

C (average and285

95% confidence interval, Fig. S11) (Battley, 1999; Patel and Erickson, 1981; Popovic, 2019)
within the lower range of reported values (−108.99 kJ mol−1

C to −111.14 kJ mol−1
C (Battley,

1999)).
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Figure S11: Plot of ∆H0
c values in the OBIGT database versus electrons transferred during

combustion calculated from equation (S8). The line represents average predictions by model
(S9).
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Figure S12: Plot of ∆H0
c values in the OBIGT database versus predictions by model (S9).

S2.3 Model for the entropy of formation (∆S0
f )

Here, we describe how we recomputed the original model proposed in Battley (1999) that290

predicts the entropy of formation from sample stoichiometry with data from the OBIGT
database (Dale et al., 1997; Dick, 2019; Helgeson, 1978; Helgeson et al., 1998, 2009; LaRowe
and Dick, 2012; LaRowe and Helgeson, 2006a, b; Richard, 2001; Richard and Helgeson, 1998;
Shock, 1993; Wagman et al., 1982) and data from Battley (1999).
Similar to ∆H0

c, we used modified the original model by assuming a gamma distribution with295

log link function for |∆S0
f,sample|, since ∆S0

f,sample is < 0 for all considered compounds/samples:

|∆S0
f,sample| ∼ Gamma(µ, ϕ)

µ = exp
(

α2 + β log
(∑

i

S0
i

ai

ni

))
, (S10)

As data, we used data from Tab. 1 in Battley (1999) extracted with the tabulizer package
(Leeper, 2018), and data for compounds from the OBIGT database in their solid state
(where ∆S0

f,sample was computed from standard entropies included in the database and
standard entropies from Battley (1999), as described in Battley (1999)) (in total 264300

samples). Results are shown in Fig. S13 and S14.
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Figure S13: Plot of ∆S0
f values in the OBIGT database and from Tab. 1 in Battley (1999)

versus the sum of standard atomic entropies calculated from the stoichiometry of the com-
pounds and tabulated standard entropies of atoms (∑i

S0
i

ai
ni in equation (S10)). The line

represents average predictions by model (S10).
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Figure S14: Plot of ∆S0
f values in the OBIGT database and from Battley (1999) versus

predictions by model (S10). Error bars are 95% prediction intervals.

S2.4 Standard Gibbs free energy of formation (∆G0
f )

With the models for the enthalpy of combustion and entropy of formation, we could estimate
∆G0

f as described above (subsection S2.1) for peat samples from the pmird database with305

C, H, N, and O contents (contents of additional elements were also considered when mea-
surements were available). Since the average is estimated precisely and the model assumes
i.i.d prediction errors, predictions for different samples are independent and could be well
approximated with independent normal distributions. For the samples from the OBIGT
database, this modeling approach produces estimates that agree reasonably well with ∆G0

f310

estimates in the OBIGT database (Fig. S15).
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Figure S15: Plot of ∆G0
f values in the OBIGT database versus estimates calculated from

elemental contents (per mol C). Error bars are 95% prediction intervals.
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S3 Model evaluation

H/C (g g-1) BD (g cm-3) LOI (g g-1
sample)
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Figure S16: Measured minus predicted values (by the best model) for all target variables
versus measured Ca contents (predictions for samples without Ca measurements are not
shown). Lines and shaded areas are LOESS smoothers and 95% confidence intervals.
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Figure S17: Measured minus predicted values (by the best model) for all target variables ver-
sus measured N contents (predictions for samples without N measurements are not shown).
Lines and shaded areas are LOESS smoothers and 95% confidence intervals.
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Figure S18: Measured minus predicted values (by the best model) for all target variables ver-
sus measured Si contents (predictions for samples without Si measurements are not shown).
Lines and shaded areas are LOESS smoothers and 95% confidence intervals.
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Figure S19: Plot of spectra of samples with Ca content > 0.015 g g−1 and for five samples
with Ca content > 0.0005 g g−1. Spectra with large Ca and small organic matter content
(indicated by presence of large peaks caused by silicates around 1100 and 2000 cm−1, e.g.,
Parikh et al. (2014)) have large peaks caused by carbonates (871 and 1415 cm−1, vertical
lines) (Tatzber et al., 2007). Spectra with large Ca and large organic matter content (in-
dicated by large peaks from aliphatics (around 2900 cm−1)) have large carboxylate peaks
(around 1650 cm−1 (Ellerbrock and Gerke, 2021), vertical line). Spectra with small Ca
and large organic matter content have peaks caused by carboxyls (protonated carboxylates)
(around 1750 cm−1 (Ellerbrock and Gerke, 2021)).
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Figure S20: Plot of spectra for observations labelled as outliers in 2 for each target variable.
Note that outliers are identical for P, K, and δ13C (J. effusus samples from a short-term
fertilization experiment (Agethen and Knorr, 2018)).
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S4 Model coefficients
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Figure S21: Model coefficients versus wavenumber values of the predictor variables for the
best models (see Tab. 2 in the main text). The line is the median coefficient value and
shaded areas are confidence intervals with significance level given in the legend.
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Table S1: Selected coefficients (slopes) for the best models (all with Pr(slope > 0) ≥ 0.9
or Pr(slope < 0) ≥ 0.9 ) and assignment of the wavenumber values to possible molecular
structures. Assignments of moelcular structures to wavenumbers are from Stuart (2004),
Kubo and Kadla (2005), Schmidt et al. (2006), Tatzber et al. (2007), Parikh et al. (2014),
and Workman (2016).

Variable Wavenumber Coefficient Molecular structures
O 1390 -0.02 (-0.07, 0) C–H bending (alkanes, aromatic), C=O

stretch (carbonates), C-S stretch
S 780 -0.29 (-0.45, -0.11) aromatic C-H bending (3-substitued), alkene

C-H bending
790 0.08 (-0.01, 0.21) aromatic C-H bending (3-substitued), alkene

C-H bending
1240 -0.12 (-0.3, 0.01) C–O stretching (carboxyls), P–O stretching,

P=O stretching
3910 -0.15 (-0.34, 0) S=O stretch (sulfones), O-H bend (alcohols)

P 1150 -0.31 (-0.53, -0.03) SO2 symmetric stretching, C–O stretching
(carbohydrates), P-O stretching, O-H bend

1240 0.18 (0.01, 0.29) C–O stretching (carboxyls), P–O stretching,
P=O stretching

1630 0.09 (0, 0.23) C=C stretching (alkene, aromatic), C=O
stretching (amide, keton)

2920 0.12 (0.03, 0.2) methylene C–H stretching (alkane)
K 780 -0.08 (-0.25, 0.01) aromatic C-H bending (3-substitued), alkene

C-H bending
1240 0.12 (0, 0.3) C–O stretching (carboxyls), P–O stretching,

P=O stretching
3000 0.29 (0, 0.68) C-C stretching and C–H stretching

(aromatic)
Ti 690 -0.1 (-0.22, 0) C-S stretching, aromatic C-H bending

3700 -0.35 (-0.59, -0.07) O–H stretching of weakly bonded OH groups
(amorphous cellulose, phenolics, silicates)

δ15N 1560 -0.19 (-0.49, 0.01) N–H bending and C-N stretching (amide),
C=O stretching (keton, carboxylate), C-H
bend (aromatics)

C/N 1670 0.07 (0, 0.19) C=O stretching (amide, keton, quinones),
C-H bend (aromatic)
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