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Dear Referee,

thank you for taking the time and effort to review this manuscript. Surely, incorporating your suggestions will
improve the readability and overall quality of the manuscript.

Please find our responses to your comments below. These should be considered as preliminary (part of the
interactive discussion) since the actual implementation of changes depends on the editorial decision.

Thanks again for your efforts!

Kind regards,
Paul Voit, Felix Fauer, and Maik Heistermann

RC: The term “local counterfactual” should be defined more firmly in the opening section so that readers
unfamiliar with the concept can immediately grasp its hydrological meaning.

AR: We agree and try to address the comment by the following changes:

In the sentence after l. 62 of the preprint:

[...] Voit and Heistermann (2024a) introduced the concept of ”local counterfactuals”: they selected
HPEs that had caused high runoff peaks in basins from a close (i.e. ”local”) neighborhood around
the CoI (more specifically, a 20 km radius), transposed these events to the CoI and used it to force
a rainfall-runoff model that would than return the counterfactual flood peak. The approach was
based on the assumption that if an HPE were sampled from a local neighborhood, it would be more
representative for HPEs that are ”typical” for the CoI. Even with this local TD, local counterfactuals
produced flood peaks comparable to a 200-year return level flood.

RC: The introduction would benefit from a clearer explanation of why a 30-km neighborhood and ten neigh-
boring catchments were selected as the basis for local counterfactual generation.

AR: While the size of the transposition domain (30 km neighborhood) will most likely always remain a matter of
discussion, it would be generally preferable to select more than 10 neighboring catchments and thus, create
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more counterfactuals. This decision was mainly based on computational limitations because every additional
neighboring catchment results in additional 23 counterfactuals which need to be modelled. We will clarify
this by adding the following sentence in line 85:

A 30 km radius neighborhood (transposition domain) can be still be considered as local and small,
compared to the domain sizes in other studies (e.g. Voit and Heistermann, 2024; Abbasian et al., 2025)
while the number of 10 neighboring catchments was chosen mainly to contain the computational load.

RC: The background section is strong, but it would be helpful to distinguish more explicitly between catchment
similarity and storm similarity, as the manuscript presently assumes these are equivalent.

AR: We entirely agree, and we will attempt, in the revised manuscript, to clarify the notion of similarity already in
the introduction. Most importantly, we will try to better explain that the use of catchment similarity metrics is,
to a considerable extent, also motivated by the aim to identify similar storms. How is that? Surely, the 30 km
radius is the prime filter to make sure we sample storms from an atmospheric environment that is governed
by similar mechanisms as the CoI. Yet, sampling storms that caused annual maxima in similar catchments
ensures that the sampled storms have spatio-temporal characteristics that make them impact-relevant for the
CoI (e.g. similar size or similar unit hydrographs) and that could also occur over the CoI given the potential
for orographic effects (e.g. similar mean and standard deviation of elevation in the catchment). Based on these
considerations, we aim to create counterfactuals that are representative for our CoI. In the revised manuscript,
we will extend the corresponding explanations on the design of the local counterfactuals, and we will also
discuss in further depth the limitations that we face in creating such representative counterfactuals.

RC: The use of an uncalibrated SCS-CN and GIUH model across more than 13,000 catchments introduces
considerable uncertainty, and the authors should include either a brief validation example or a reference
to previous calibration results.

AR: We agree that our hydrological model introduces considerable uncertainty, as would any hydrological model
under extreme rainfall-runoff conditions. However, our modelling approach is well established in the flash
flood community (Marchi et al., 2010; Borga et al., 2007; Ruiz-Villanueva et al., 2012; Tarolli et al., 2013).
Furthermore, Voit and Heistermann (2024) could show for the Ahr flood in 2021 in Western Germany that our
model was able to reproduce the reconstructed flood hydrograph at gauge Altenahr (Roggenkamp and Herget,
2022; Mohr et al., 2023) very well (Fig. 1). For that reason, we think that the presentation of additional
validation results is not required within the present manuscript. This is also because we only compare model
results within each catchment to one each other. Within such a comparison, any systematic model errors
should tend to cancel out when used for GEV fitting. Furthermore, our study should be considered as a
proof-of-concept. In the section ”Limitations”, we also recommended, for practical applications in the context
of risk management, to rather use a model that has proven valid for the application region.

However, we suggest to expand (also in response to other referee comments) the section on ’Limitations”
further with regard to the uncertainties of the hydrological model and potential implications for our analysis.

RC: The criteria used to define "catchment similarity" deserve more explanation, especially regarding how the
attributes were scaled and weighted in the KDTree analysis.

AR: In our analysis, we aimed at sampling rainfall events that would have a strong impact in the CoI. Because we
based the selection on the flood peaks in the NCs, we want to ensure that the catchments are hydrologically
similar, as well as that the rainfall events are representative for the factual rainfall events in the CoI. For this
reason, we based similarity mostly on descriptors of topography, land use and soil which should i) govern the
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Figure 1: Top: Reconstruction by Roggenkamp and Herget (2022) published in Mohr et al. (2023) of the
flood event in Altenahr, West-Germany, July 2021. Discharge is shown in red, water level in blue. Bottom:
Modelled discharge for the same event with RADKLIM data with our model.

formation and concentration of surface runoff and ii) ensure that potential orographic effects could occur both
in the CoI and the NCs. Following descriptors were chosen:

• Peak [m³/s], time to peak [s] and standard deviation [m³/s] of the unit hydrograph: The unit hydrograph
is derived directly from the DEM, similar hydrographs imply, to a certain degree, similar topography.

• Upstream catchment area

• Curve number (soil moisture class 2): The curve number represents soils and land use in our model. A
similar curve number would lead to a similar runoff generation in our model.

• Mean and standard elevation of the DEM and mean slope. With this descriptor we try to avoid sampling
rainfall events from catchments which are e.g. situated at a substantially different elevation. If the CoI
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was e.g. close to a mountain range, rainfall events should not be sampled from this mountainous area,
because they might not be representative for the rainfall events occuring in the CoI.

• Unit Peak Discharge: The peak of the unit hydrograph divided by the catchment area is yet another
descriptor of the hydrological character of the catchment.

We used the KDTree-algorithm from the Python library "SciKit-Learn" and scaled all catchment descriptors
with the "StandardScaler" from this library to ensure that none of this descriptors dominates the decision for
similarity.

We suggest to change following sentence in section 3.2, line 123, to clarify the scaling:

Similarity was quantified using a KDTree (SciKit-Learn) based on the following scaled (Scikit-Learn
StandardScaler) catchment attributes:...

RC: The assumption that storms producing high runoff in a nearby basin are hydrologically meaningful for
the catchment of interest should be justified with either empirical evidence or literature support.

AR: We are not entirely sure what the referee means by "hydrologically meaningful for the catchment of interest".
We assume, however, the referee means that the selected storms should be "representative" for the kind of
storms that cause flood peaks in the CoI. In that regard, we would like to refer to our above explanations
on similarity. At the same time, the referee implies that all our assumptions on similarity and hence
representativeness are only that: assumptions, or, more benevolent, "expert guess". That is correct. And while
we think that our assumptions are plausible and well in line with ”hydrological common sense”, the only
way to actually assess the validity of our similarity metrics is to compare them against others in a kind of
benchmark analysis: considering our KDTree-approach as a filter, the question would be which filter provides
the best results in terms of improvement of our performance metric (QSS). That way, we could at least say
which filter is superior over another one. In fact, we did this when we analysed the sensitivity of the QSS to
different neighbourhood radii around our CoI. But while it would be highly interesting to expand such an
analysis to other similarity metrics, we think that this is beyond the scope of the present study which rather
aims to introduce a framework and provide proof-of-concept. We will, however, expand our discussion of the
limitations of similarity metrics, and also outline future research to assess the validity of similarity metrics.

RC: The manuscript should explain how independence among counterfactual annual maxima is ensured, given
that neighboring catchments may experience correlated rainfall events.

AR: Thank you for this remark. Indeed, we make the assumption that the counterfactual HPEs represent alternative
variants of a given HPE in the CoI, that could have happened at another time within the CoI. With this
approach we increase the sample size to improve the GEV parameter estimation. Also, we argue that events
which cover two or more NCs at the same time, are allowed to have more influence on the GEV parameter
estimation.

RC: Mixing factual and counterfactual peaks in a single GEV fit may violate standard assumptions, and this
issue requires at least a clear justification in the methods section.

AR: Thank you for this comment. We agree that further justification might improve the manuscript. Since the
peaks of factual and counterfactual HPEs are determined with the same method, we argue that both can be
pooled to fit a GEV. The discriminating characteristic between factual and counterfactual is that counterfactual
peaks are derived from storm transposition.
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We suggest to add in line 153:

Since the peaks of factual and counterfactual HPEs are determined with the same method, both can be
pooled to fit a GEV, given all assumptions above.

RC: Although the QSS results show improvements, the authors should comment on the fact that GEVNCs
outperforms GEVCoI even without using any data from the catchment of interest, which may indicate
over-smoothing or strong regional influences.

Figure 2: Cumulative distributions showing the quantile skill scores for GEVNCs in reference to GEVall, for all
subbasins and for four different transposition domains (10-km buffer: yellow, 30-km buffer:blue, 30-60-km
ring: green, 60-90-km ring: orange. Subplots a)-d) show different quantiles that relate to the a) 20-year, b)
50-year, c) 100-year and d) 200-year flood. A quantile score > 0 indicates the superiority of the GEVNCs. The
median QSS of the 30-km buffer is indicated with the vertical blue dashed line

AR: Thank you for this comment. We believe that these results underline a strong regional influence and are a
justification of our method. Apparently the flood peaks which we generated by sampling rainfall events from
hydrological similar and nearby basins leads to counterfactual annual flood peaks that fit very well into the
distribution of "observed" flood peaks. The uncertainty of the GEV fit decreases significantly when using 230
instead of 23 values. We already comment on the regional smoothing in section 4.3:
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Secondly, local counterfactuals also induce spatial smoothing (which is desired): each catchment is a
CoI once, but serves as neighbor for many other CoIs. As a result, nearby and hydrologically similar
catchments often share almost identical sets of peaks. When a counterfactual peak increases the return
level estimate for one CoI, the peaks from that CoI will also enter the NC data pool once their roles are
reversed. In this case, the inclusion of the peak can reduce the return level estimate for the neighboring
catchment.

We also suggest to add another sentence in section 4.1 to explain the more robust fit of the GEV:

These results serve as a proof of concept: for the majority of cases, we are able to better represent the
quantiles in the data of the CoI by using a GEV distribution fitted exclusively to the counterfactual
peaks (GEVNCs). Besides the fact, that the counterfactual peaks represent the distribution of CoI
peaks well, the GEVNCs is also more robust because it is fitted to 230 values, instead of the 23 values
used for GEVCoI. The improvement is more pronounced for higher quantiles (or return periods). In
practice the GEV would be fitted to both factual and counterfactual peaks together (GEVall), which
only marginally increases the robustness of the return level estimates. The QSS for GEVall is shown in
Figure S1 in the supplement.

As referee #2 pointed out, the supplement was not online. We apologize for that attach the figure here (Fig. 2
and will make sure, that the Supplement is properly uploaded with the revised version of the manuscript.

RC: The improvement of GEVNCs with increasing return period is convincingly shown, yet the manuscript
should discuss why the lower tail benefits less from the counterfactual approach.

AR: Thank you, we will try to make this clearer. The higher the return period, the more we need to extrapolate
and the higher the uncertainty will be. When using only 23 years of data for extreme value statistics the
uncertainty for the 200-yr return level is very high. With more data we do not extrapolate. In the case of the
GEVNCs we already have 230 (counterfactual)-"annual" maxima. The uncertainty for the 200-yr return level
is very low, as shown in the example in Figure 4. We will add two sentences in line 212 to clarify this further.

We would like to take a closer look at the differences between the return periods. Increasing return
periods lead to a decreasing fraction of catchments with positive QSSNCs values - obviously not
desirable -, but also to a desirable increase of catchments with very high QSS values (for T=20 a,
0.2% of the catchments have a QSS > 0.5, while this fraction grows to 28% for T=200 a). Altogether,
the median QSS continuously grows from a value of 0.16 for T=20 a to a value of 0.27 for T=200 a,
suggesting that the value added by using GEVNCs increases with the return period. This is plausible,
since return levels for low return periods can be estimated more robustly from short time series
(for T=20 a, the estimation of a return level from an annual series of 23 years does not even imply
extrapolation). The uncertainty increases the more we extrapolate beyond the length of the annual
series. Especially for high return periods the benefit of an increased data basis is visible in these
results.

RC: The discussion should reflect that counterfactual extremes depend strongly on the selected time window
and may not represent the full range of possible events.

AR: We agree. The longer the record length, the higher the probability it will contain an event with an even larger
magnitude (although we would be careful with the term ”full range of possible events” - even with very long
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time series, we will have difficulties in spanning that range). In that sense, an analysis that includes local
counterfactuals shows exactly the same behavior as conventional flood frequency analysis within the CoI. We
will expand the section "Limitations" accordingly.

RC: The authors appropriately highlight the short time series, but they omit discussion of potential non-
stationarity in rainfall over the 2001–2023 period, which may influence GEV tail behavior.

AR: We agree that non-stationarity of the extreme value distribution is not accounted for by our approach, and we
will expand the discussion of "Limitation" in order to point this out. That being said, we would speculate
(meaning that we cannot prove it) that the brevity of the time series underlying conventional GEV fitting is a
more important source of uncertainty than the non-stationarity of the distribution.

RC: The conclusion section accurately summarizes the study, but it should offer clearer guidance on when the
counterfactual method might be unsuitable—particularly in regions with strong orographic gradients or
highly heterogeneous rainfall patterns.

AR: Thank you for this suggestion. We will add following part to the "Conclusions":

The selection of the TD affects the quality GEV estimation when local counterfactuals are employed.
We showed that the QSS decreased when HPEs were sampled from a distance of more than 30 km
away from the CoI. Still, the optimal definition of the TD will remain arbitrary and represents a subject
for further research, as it represents an inherent trade-off: while an increasing distance allows us to
sample from a larger variety of events and particularly from a larger choice of hydrologically similar
catchments, an increasing distance will typically sample HPEs that are less representative for the
meteorological processes that govern the CoI. At of now, the 30 km radius remains a rather pragmatic
choice and a compromise between these two requirements. In regions with high orographic gradients
or highly heterogeneous rainfall patterns the size of the TD might have to be reduced or optimized in
benchmark experiments similar to the one carried out in this study.
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