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Abstract

India experiences some of the highest fine particulate matter (PM> 5) concentrations globally. Understanding the
spatiotemporal variations of PM, s and its source attribution requires robust air quality modeling supported by
up-to-date emission inventories. Here we present the first WRF-Chem model evaluation and source attribution

5  analysis for India for 2022, supported by updates in sectoral emission inventories and model schemes. We
incorporate an updated residential emission inventory reflecting recent transitions to cleaner fuels in Indian
households and develop a plant-level inventory for Indian coal-fired power plants. Further major improvements
include model updates to the secondary organic aerosol scheme and an improved representation of near-surface
pollutant mixing. Collectively our improvements result in a simulation with annual PM, 5 bias of only 0.2+16.9

10  pg/m? (0£31%) across 288 surface monitoring sites in South Asia. We find that, compared to earlier studies, in
2022 India’s residential sector remained the dominant source of PM 5 in the Indo-Gangetic Plain, but nationally
ranked second in population-weighted (PW) mean PM, s concentrations contributing 15% (7.3 pug/m?). Instead,
industrial emissions emerged as the largest domestic contributor to national PW mean PMa s (18%, 8.6 pg/m?),

with urban hotspots including Delhi and Mumbai. The power sector contributions ranked third nationally (13%,

15 6.1 pg/m®) and was particularly influential in central India. Transboundary transport contributed more than any
individual domestic source nationally (27%, 12.8 pg/m®). These findings highlight the benefits of India’s partial
residential sector transition toward cleaner fuels, while underscoring the growing consequence of industrial and

power sector emissions that have limited pollution controls.
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1 Introduction

20 Long-term exposure to elevated ambient fine particulate matter (PMzs) is a major risk factor for human
health and premature mortality globally (Institute for Health Metrics and Evaluation, 2024). India has among the
highest surface PM» 5 concentrations worldwide, leading to an estimated 1.0 to 2.1 million premature deaths
annually (Lelieveld et al., 2015; Health Effects Institute, 2024). To address the severe air pollution challenges,
the Indian government has proposed and implemented measures aimed at reducing emissions of PM» 5 and its

25  precursors, including the National Clean Air Program (NCAP) launched in January 2019 (The Government of
India, 2019). Despite an observed reduction in surface PMa s levels across India during 2018 to 2022, aided by
favorable meteorology, annual PM; 5 pollution in ~80% of non-attainment cities with continuous monitors still
exceeded the country’s annual standard of 40 ug/m? in 2022 (Xie et al., 2024). In addition, future PM, 5 pollution
in north India is projected to worsen under global warming (Zhang et al., 2023; Zhou et al., 2024). This highlights

30  the need for strengthened mitigation measures. Effective regulation design and implementation depend on
understanding spatiotemporal distributions of PMs across India and the contribution of various emission
sources. Given the complex interactions of atmospheric physical and chemical processes across India, robust

emissions and air quality modeling are essential to address these questions.

35 Previous modeling studies have quantified the source contributions to India’s annual ambient PM, s pollution
levels during 2015 to 2019 (Conibear et al., 2018; Guo et al., 2018; Reddington et al., 2019; Singh et al., 2021;
Pai et al., 2022; Chatterjee et al., 2023; Kumar et al., 2025; Venkataraman et al., 2018). Across these studies, the
residential sector consistently emerged as the leading contributor to PM; 5 exposure nationwide, accounting for
21% to 52% of the national annual population-weighted (PW) mean PM;s concentrations, with the range

40  reflecting whether transboundary transport of residential emissions from adjacent countries were attributed to
the residential sector. This dominance stems from inefficient and incomplete small-scale combustion of solid
fuels in households, which produces substantial primary PM,s emissions. In the literature, the power and
industrial sectors were often among the largest national PM 5 sources after the residential sector, but their relative
importance varied across studies, depending on the anthropogenic emission inventory applied. The power sector

45  has been the dominant source of sulfur dioxide (SO-, a key precursor of secondary inorganic PM; 5) emissions
since 2015 (Venkataraman et al., 2018), primarily due to India’s fast-growing electricity demand and heavy
dependence on coal, with only about 3% of coal-based power plants equipped with flue gas desulfurization (FGD)
systems in 2022 (National Environmental Engineering Research Institute, 2024). In addition, the industry sector
was a major source of primary PM; s and SO, emissions in 2015, and its emissions were projected to continuously

50 increase from 2015 to 2050 (Venkataraman et al., 2018). In addition to these anthropogenic sources within India,
studies identified a 20-28% contribution from background (transboundary plus natural) sources to national mean
PMy s in India in 2016 (Singh et al., 2021; Pai et al., 2022).

Amid India’s fast development, surging energy demand, and ongoing air quality regulations, the more recent

55 source contributions to PM» 5 concentrations across the country remains unclear. Specifically, the continued
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growth of coal-based electricity generation in the power sector and the promotion of cleaner fuels in the
residential sector have not been incorporated into existing PM> 5 attribution studies. In addition, previous PM, s
modeling studies for India—excluding those projecting future changes—primarily focused on years before the
NCAP baseline year of 2017, when relatively few surface PM» s measurement sites existed and thorough model
60 evaluation was thus not possible (Schnell et al., 2018; Guo et al., 2018; Singh et al., 2021; Pai et al., 2022;
Agarwal et al., 2024). Given the need for up-to-date source attribution studies to guide India's future air quality
interventions (e.g., the next phase of the NCAP), more rigorous modeling studies with updated emissions and
robust model evaluation that disentangle the source contributions to India’s surface PM; s pollution in recent
years are needed.
65
Here we present the first air quality modeling analysis for India using updated emissions for 2022, supported
by key improvements in sectoral emission inventories and model schemes. We incorporate revised residential
emissions that capture household transitions from solid fuels to liquefied petroleum gas (LPG), develop a refined
plant-level inventory for coal-fired power generation, and update model treatments of secondary organic aerosol
70  (SOA) formation and pollutant near-surface mixing. Using this enhanced inventory and model schemes, we
conduct a rigorous evaluation of simulated PM» s concentrations against 288 surface PM» s measurements and
satellite-derived aerosol optical depth (AOD) retrievals across India and adjacent regions. We then quantify the
contributions of nine emission sources to surface PM> s pollution across India in 2022: eight domestic sources
(six anthropogenic and two natural) and transboundary source (all sources combined as one), providing critical

75  insights for targeted air quality policy interventions.

2 Methods
2.1 WRF-Chem model

80 We use a recent version of the Weather Research and Forecasting model coupled with Chemistry (WRF-
Chem, version 4.6.1) primarily developed by the National Center for Atmospheric Research (NCAR) (Grell et
al., 2005). WRF-Chem is a mesoscale air quality model that online couples atmospheric chemistry (including
aerosols) and meteorology (Fast et al., 2006; Chapman et al., 2009), allowing the simulation of the aerosol
feedback on regional meteorology that are particularly critical in regions with high aerosol loadings (Zhou et al.,

85 2019; Sharma et al., 2023; Huang et al., 2023). WRF-Chem is thus widely used to simulate surface PM> s
pollution over India (Govardhan et al., 2019; Agarwal et al., 2024; Venkataraman et al., 2024; Xie et al., 2024).

2.1.1 Model Configuration
We conduct simulations for 2022, the most recent year with available emission inventories for India (Section
90  2.2), using one month to represent each season: January for winter, April for pre-monsoon, July for monsoon,

and October for post-monsoon. We use a single domain covering India and adjacent regions (57-103° E, 4-39°
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N) with a horizontal resolution of 27 km? (Figure 1). There are 37 vertical layers extending from the surface to
50 hPa, with 10 to 15 layers below 1000m above ground level, depending on local terrain heights. For
meteorological initial and lateral boundary conditions, we use the hourly ERA5 climate reanalysis dataset at
95  0.25°x0.25° resolution. To prevent drifting effects in simulated meteorological fields, we reinitialize WRF-Chem
meteorology with ERAS every 48 hours, following our previous studies (Zhou et al., 2022; Xie et al., 2024). The
chemical initial and boundary conditions are provided by the 6-hour output from the Whole Atmosphere

Community Climate Model (WACCM) (Gettelman et al., 2019; Emmons et al., 2020).
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Figure 1. WRF-Chem modeling domain and surface PM..s measurement stations utilized in this study. The base
map shows the WRF-Chem modeling domain, with colors representing the terrain height in the model. The 288 surface
PM; s measurement sites used in this study are marked as follows: Red dots represent the continuous monitoring
stations from the Indian Central Pollution Control Board (CPCB) network; the black and blue crosses represent the

105 stations from U.S. Air Now network in India and adjacent countries, respectively. Thick black lines represent the
boundary of the Indo-Gangetic Plain (IGP), which includes Delhi, Punjab, Haryana, Uttar Pradesh, Bihar, and West
Bengal. We also label the five major cities of Delhi, Mumbai, Kolkata, Hyderabad, and Chennai, where U.S. Air Now

PM, s measurements were available in India.

110 We configure WRF-Chem with the following chemical schemes: the Carbon Bond Mechanism Z (CBMZ)
gas-phase chemistry scheme (Zaveri and Peters, 1999), and the 4-bin version of the MOdel for Simulating
Acrosol Interactions and Chemistry (MOSAIC) aerosol scheme with aqueous chemistry (Zaveri et al., 2008).
The selected MOSAIC scheme simulates major aerosol species, including primary organic aerosols (POA), black

carbon (BC), sulfate (SO3™), nitrate (NO3 ), ammonium (NHJ ), sodium (Na™), chloride (C1~), and other inorganic



https://doi.org/10.5194/egusphere-2025-4947
Preprint. Discussion started: 20 November 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

115  aerosols (OIN, including both natural dust and anthropogenic combustion and non-combustion dust). Each
aerosol species is distributed across four size bins, with the first three bins (diameters < 2.5 um) contributing
to PM2 5 dry mass. Aerosols are assumed to be internally mixed inside each bin for optical property calculations.
Under this configuration, the water uptake and hygroscopic growth properties of aerosols are calculated based
on the bulk composition of the internally mixed particles (Zaveri et al., 2008). Configurations for physical

120  schemes are provided in Supplementary Information 1.1.

Natural emissions of dust and biogenic Non-Methane Volatile Organic Compounds (NMVOCs) are
calculated online within WRF-Chem. For dust emissions, we use the Goddard Chemistry Aerosol Radiation and
Transport (GOCART) dust module (Ginoux et al., 2001). The GOCART dust emission scheme is widely used in

125  aerosol modeling due to its relatively simple input requirements. Specifically, the GOCART scheme calculates
dust emission fluxes using surface erodibility, 10-meter wind speed, threshold soil moisture, and threshold wind
speed, distributing dust aerosols into five size bins that partially overlap with the MOSAIC aerosol scheme’s
PM; 5 bins. For biogenic NMVOCs, we use the Model of Emissions of Gases and Aerosols from Nature
(MEGAN, version 2.06) (Guenther et al., 2006). MEGAN uses leaf area index (LAI), plant functional types

130  (PFTs), and WRF-Chem-simulated meteorology to calculate emissions for 134 chemical species, which are
subsequently mapped into the CBMZ gas-phase mechanism. Anthropogenic emissions, including emissions of

open burning are described in Section 2.2.

Based on the model configuration, PM; s dry mass in WRF-Chem is calculated using Equation 1:
135
PM,5 = YIZ3(POA; + BC; + OIN; + SO}~ , + NO3 , + NH} , + Na; + Cl;) 6}

Here, i indicates the aerosol bin used in WRF-Chem.

140 2.1.2 Model Updates
We implement the simple SOA scheme from the GEOS-Chem global chemistry transport model into WRF-
Chem 4.6.1, as the selected WRF-Chem chemical option treats POA as non-volatile and does not include SOA.
The simple SOA scheme uses a fixed-yield approach to estimate SOA and SOA precursor (SOAP) emissions
from biogenic and combustion sources. For biogenic sources, SOA (SOAP) mass yields are assumed to be 1.5%
145  (1.5%) from isoprene and 5% (5%) from both monoterpenes and sesquiterpenes. For combustion sources, no
SOA is directly emitted. However, SOAP mass yields are assumed to be 1.3% (6.9%) from biomass (fossil fuel)
combustion carbon monoxide (CO). Designed as a computationally efficient alternative, the simple SOA scheme
approximates SOA concentrations without mechanistically modeling the formation and fate of individual aerosol
species or explicit thermodynamic partitioning (Pai et al., 2020). The simple SOA scheme has demonstrated
150  performance comparable to more complex, process-based SOA schemes (Pai et al., 2020; Miao et al., 2021). For

simplicity, the predicted SOA mass from the simple SOA scheme is added to the POA variable to represent total
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organic aerosols in the model, as shown in Equation 1.

We improve near-surface mixing of chemical species by setting a minimum exchange coefficient for air
155  pollutants in the selected boundary layer scheme, following a previous study that found WRF-Chem’s weak

nighttime mixing led to overestimated diurnal variations of PM, 5 (Du et al., 2020).

2.2 Anthropogenic emissions

2.2.1 Adoption of existing 2022 emission inventories

160 We use the most recent release of two global emission inventories for our 2022 WRF-Chem simulation: the
Community Emissions Data System (CEDS, version 2024-07-08) and the Emissions Database for Global
Atmospheric Research (EDGAR, version 8.1). Both inventories provide gridded emissions for years until 2022
and are widely used for air quality research. We adopt monthly gaseous emissions of sulfur dioxide (SO»),
nitrogen oxides (NOx), ammonia (NH3), CO, and NMVOCs in 2022 from CEDS at 0.5°x0.5° resolution (Hoesly

165  etal., 2018). In addition, we obtain monthly particulate matter emissions of primary organic carbon (POC), BC,
primary PMz 5, and PM o emissions in 2022 from EDGAR at 0.1°x0.1° resolution (Crippa et al., 2018), as CEDS
does not provide primary PM; 5 and PMj emissions. We spatially interpolate CEDS and EDGAR inventories to
the 27-km resolution WRF-Chem grid using a mass-conservative method. We use the satellite-derived daily Fire
INventory from NCAR (FINN, version 2.5.1) to represent open burning emissions of agricultural and municipal

170  waste, as well as smoke emissions from wildfires (Wiedinmyer et al., 2023). To avoid double counting, we
exclude open burning emissions from the global inventories described above when they already include this

source.

To better capture India’s recent increasing displacement of solid fuels by LPG for clean residential energy
175  use (The Government of India, 2019), we adopt a 2022 emission inventory developed at the Indian Institute of
Technology Delhi. This new residential inventory applies regression analysis to evaluate residential fuel usage,
considering recent changes in consumption patterns and updated data on cleaner fuels (Velamuri et al., 2024).
Thus reductions in emissions from the residential sector are better represented than in the flat residential emission
trends provided in EDGAR and CEDS from 2015-2022 (Figure 2). Specifically, we adjust India’s residential
180 PM3 s, SO,, and NOy emissions to align with state-level totals from this new residential inventory. In addition,
we scale residential emissions of OC, BC, and CO in each Indian state using the factor calculated as the ratio of
residential PM, s emissions from the new inventory to those from EDGAR. We retain the original spatial patterns
for all these scaled species. We provide a detailed comparison between residential emissions from the current
global inventories and our updated inventory in Section 3.1.
185
Then, we replace the PM, s, SO, and NOy emissions from coal-fired power plants in the updated inventory
with a new national emission inventory for coal-fired power plants in India for 2022, which is detailed in section
2.2.2.



https://doi.org/10.5194/egusphere-2025-4947
Preprint. Discussion started: 20 November 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

190 In addition to these major updates to the emissions from India’s residential and power sectors, we scale
India’s transportation-related PM, s and coarse PM (PMcoarse, defined as particles with diameters >2.5 pm and
< 10 um) emissions to match the state-level totals from a 2022 road dust emission inventory (Katiyar et al.,
2024). This adjustment is motivated by our finding that transportation PM> s emissions in EDGAR (i.e., 0.11 Tg
across India in 2022) are underestimated compared with this locally-developed inventory in India (i.e., 0.33 Tg).

195  Similarly, transportation PMcoarse €missions in EDGAR were only 0.01 Tg across India in 2022, significantly
lower than the 1.04 Tg estimated by the recent Indian inventory. The discrepancy likely reflects EDGAR’s

omission of fugitive road dust PM> s emissions.

We provide details on aerosol mapping from EDGAR to WRF-Chem and on vertical allocation of emissions

200  in Supplementary Information 1.2-1.3.

2.2.2 Development of new 2022 coal-fired power plant emission inventory for India
We construct a new national emission inventory for coal-fired power plants in India in 2022, focusing on
major air pollutants of SO», NOy, and PM; 5. The development of this inventory involves three major steps: (1)
205  compiling and cross-checking unit-level information from multiple databases; (2) estimating plant-level
emission factors based on a fuel linkage database linking coal used at specific plants to coal source regions, coal
composition information, and a document estimating emissions factors from coal composition (U.S.
Environmental Protection Agency); and (3) utilizing plant-level electricity generation and coal consumption data
from reports from the Central Electricity Authority (CEA) of India. Each of these steps is detailed in the
210  following paragraphs.

We collect unit-level information from the Global Energy Monitor’s (GEM)'s coal power plant database for
July 2022. To align with India’s central government data, as reflected in the Vasudha Foundation's datasets (The
National Institution for Transforming India Aayog, 2025), we include all operating units from the GEM database.
215  For captive units, we only include those documented by Vasudha. This results in a total of 210.6 GW in
generation capacity, which matches the coal and lignite capacity reported by the CEA in July 2022. We retrieve
the unit location from the GEM database. For units listed with “approximate” location coordinates in the GEM
database, we update their coordinates using Google Earth. We replace the heating rate in the GEM database with
a machine-learning-developed, measurement-constrained database (Ding et al., 2024).
220
We collect coal composition data for nine domestic coal source states and three imported coal regions
(Australia, South Africa, and Indonesia) through a literature review. We then convert the carbon, sulfur, and ash
content of coal into uncontrolled emission factors for SO, and PM; 5 under various firing configurations for both
bituminous and subbituminous coal based on a report (U.S. Environmental Protection Agency). In addition, the

225  report provides NOx emission factors that are independent of nitrogen content in the coal. Based on this
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information, we establish region-specific uncontrolled emission factors for both domestic coal and imported coal
used in India’s power plants (Supplementary Table 1). We average data for a given region if multiple coal
composition data is found. We assume no variation in coal composition within a given coal source region. Plant-
level fuel linkage dataset are obtained from multiple data sources (The National Institution for Transforming
230 India Aayog, 2025), which matches each plant with one or more coal source regions. Finally, we estimate plant-

level emission factors for air pollutants, using Equation 2.
n
EF;s = Zr:l ER.s* Fiy ()

235 Where EFj is the emission factor (g pollutant/kg coal) for power plant 7 and species s; EF; is the emission
factor (g pollutant/kg coal) of coal for source region  and species s; F; - is the fraction of coal supplied at plant

i that is sourced from region r.

We retrieve daily plant-level coal consumption reports from the CEA for the calendar year 2022 and

240  aggregate data by month. In addition, we retrieve monthly plant-level electricity generation reports from the
CEA for the same year. While generation data is available for all plants throughout the year, the coal consumption

data is missing for some plants. For plants with missing monthly coal consumption data, we estimate the missing

values by applying the plant’s generation-to-coal consumption ratio, averaged from months where both
generation and coal consumption data are available. For plants with no coal consumption data for the entire year,

245  we estimate the coal consumption using the reported generation, coal heating value, and heating rate using

Equation 3:
Ci,j = Gi,j * HRL/TVL (3)

250 Where C;; is the monthly coal consumption (tons) for power plant i and month j; G;; is the monthly electricity
generation (MWh) for power plant i and month j; HR; is the heating rate (MJ/kWh) for plant i, which represents
the plant thermal efficiency; TV is the thermal value (MJ/kg coal) of coal used in plant 7.

Finally, we estimate the monthly total emissions for air pollutants for each plant, using Equation 4.
255
Eijs=Cij*EFjs* (1-n) “4)

Where E;,; s, is the monthly total emissions (tons) for power plant i/, month j, and species s; C;; is the monthly

coal consumption (tons) for power plant i and month j; E; is the emission factor (kg pollutant/ton coal) of coal

260  for plant i and species s; 7, is the removal efficiency for air pollutant species s, and we assume a 90% removal
rate (#=0.9) for PM> 5 and no end-of-pipe controls for SO, and NOy (#=0) following previous studies (Sengupta

et al., 2022; Singh et al., 2024). This assumption is supported by a recent report which documents that only 3.2%
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of coal-based power plants in India have installed Flue Gas Desulfurization (FGD) systems and does not mention

the installation of NOy control devices (National Environmental Engineering Research Institute, 2024).

265
We do not account for NOx emission from gas plant operation in 2022. According to the Indian Petroleum
and Natural Gas Statistics 202223, gas consumption for this fiscal year was ~8 billion m®. Using the gas plant
NOx emission factors from the USEPA report, we estimate the total NOx emissions from gas plant to range from
0.01 to 0.04 Tg/year, which is far lower than those from coal-fired power plants (i.e., 4.56 Tg/year).
270

2.3 Measurement data for model evaluation

2.3.1 Surface PM; s measurements
To evaluate the model performance, we compare simulated PM> s dry mass concentrations with surface
observations from the India Central Pollution Control Board (CPCB) continuous monitoring network and the
275  US AirNow network in South Asia (Figure 1). We initially retrieve hourly data from 510 measurement stations
within the WRF-Chem modeling domain and apply rigorous quality control procedures to filter out outliers and
identical consecutive values, as documented in our previous publications (Zhou et al., 2024; Xie et al., 2024).
Measurement stations with at least 80% valid hourly data in a given model evaluation period (e.g., January 2022)
after quality control are used to evaluate the WRF-Chem model. This criterion excludes 223 stations and retains
280 288 stations for analysis. Multiple measurements within a single WRF-Chem grid cell are averaged before

comparison with model output.

2.3.2 Satellite AOD measurements
We obtain Aerosol Optical Depth (AOD) from the Multi-Angle Implementation of Atmospheric Correction
285  (MAIAC) algorithm, which provides AOD at a 1-km spatial resolution globally over land and coastal regions
(Lyapustin et al., 2018). The radiances used in the retrieval are measured by the twin Moderate Resolution
Imaging Spectroradiometer (MODIS) instruments onboard the Terra and Aqua satellites. Terra follows a
descending orbit with an equatorial crossing at 10:30 Local Time (LT), while Aqua follows an ascending orbit
with an equatorial crossing at 13:30 LT. For model evaluation, we interpolate the satellite AOD to the WRF-
290 Chem resolution of 27 km?, and compare it with the model results averaged from 10:00 to 14:00 LT each day
for each grid box. In addition, WRF-Chem calculates AOD at 300 nm, 400 nm, 600 nm, and 1000 nm
wavelengths, and the model interpolates AOD to 550 nm for diagnostic output using the Angstrom power law,

making it consistent with the MAIAC product.

295  2.3.3 Population dataset and Population-Weighted (PW) mean PM; s concentration
We obtain gridded 2015 population from the Global Population for the World dataset (version 4) and scale
those values to reported total population in India in 2022. PW mean PM, s concentrations in a given region is

calculated using Equation 5.

10
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300 PWPM, 5 = YiZ1(PM2,5; * POP;) / $iZH(POP;) )

Where PM; 5; and POP; are the annual mean PM> s concentration (from the WRF-Chem baseline simulation)

and total population in grid i, respectively; # is the number of model grids in a given region.

305 2.4 WRF-Chem Simulation

We conduct a baseline simulation using the model configurations described in Section 2.1 and the updated
anthropogenic emission inventory described in Section 2.2. We perform a thorough model evaluation against

PM> 5 and AOD observations in Section 2.3 that establishes the robustness of model results.
To attribute surface PM, s concentrations to specific sources, we next conduct a series of additional WRF-
310  Chem simulations in which emissions from individual sources inside and outside India are sequentially zeroed
out. We individually remove six domestic anthropogenic sectors within India (i.e., power, industry, residential,
transportation, open burning, and agriculture emissions), two natural sources within India (i.e., dust and biogenic
emissions), and transboundary emission sources from outside India (i.e., natural and anthropogenic emissions).

We provide a summary of emission scenarios for all WRF-Chem simulations in Table 1.

315
Table 1. Emission scenarios for WRF-Chem simulations conducted in this study
Domestic Sources (Emissions inside India) Transboundary Sources
Scenarios "
Anthropogenic Dust ¥ Biogenic ' (Emissions outside India)
Baseline On On On On
POW ot Power sector off *
INDosr Industry sector off *
RESofr Residential sector off
- On On On
TRAs Transportation sector off *
AGR,t Agriculture sector off *
FIRE s Open burning off *
DSTost On off On On
BVOC. On On off On
TBDYosr On On On off

“This includes emissions from six source sectors within India: power, industry, residential, transportation, agriculture

(excluding open burning), and open burning.

We modify WRF-Chem to enable grid-level customization to turn dust and biogenic emission modules on and off.
320  'This includes both anthropogenic and natural emissions (i.e., dust and biogenic) originating outside of India but

within the WRF-Chem modeling domain, as well as the long-range transport of pollutants from regions beyond the

WRF-Chem domain (i.e., the chemical boundary conditions for the model derived from the Whole Atmosphere

Community Climate Model).

11
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*All other sectors’ emissions are kept unchanged as the baseline scenario.

325

The contribution of each source is first estimated by subtracting the results of the source-zeroed simulation

from those of the baseline simulation, using Equation 6. However, due to strong non-linearities in the
relationship between partial emission reductions (i.e., less than 100%) and resulting decreases in PMas
concentrations—primarily driven by secondary PM,s formation (Liu et al., 2021) and aerosol-meteorology

330  feedbacks (Zhou et al., 2019)—the sum of individual source contributions does not equal the total concentration
in the baseline simulation. To address this disparity, we apply a scaling factor to each source’s contribution, based
on the ratio of baseline concentration to the summed contributions at each WRF-Chem grid cell for PM» 5 and
its components, using Equation 7. This ensures that the sum of individual source contributions equals the total
concentration in the baseline simulation for each WRF-Chem grid.

335

Cont”bchem,i = Lchem,baseline chem,i—-of f (6)

Cvarbaseline (7)
Y3 Contyari

Contribscqieavari = CONtyar; *

Here, Contribcnem,; represents the source attribution (in concentration units) of chemical species chem to the

340 i emission source; Cehem,baseline Ahd Cepem,i-ofr are the WRF-Chem simulated concentrations of chemical species
chem in the baseline simulation and in the simulation where the i/ emission source is turned off, respectively;

th

Contribscaied.chem,i 18 the scaled source attribution (in concentration units) of variable chem to the i emission

source.

345
3 Results

In this section, we first compare annual national and sectoral anthropogenic emissions of PM» s and key
precursors in India from 2015 to 2022, comparing multiple global inventories and our updated merged 2022
inventory (Section 3.1). We then evaluate the performance of the WRF-Chem model using ground-based PM, s
350 measurements and satellite-derived aerosol optical depth (AOD) (Section 3.2). Last, we use the model to assess
the spatial distribution of PMa s pollution in 2022 and quantify contributions from major emission sources to

both total PM> 5 and PM, s components (Section 3.3-3.4).

3.1 Comparison of annual anthropogenic emissions of PM» s and key precursors in India

We present annual national total and sectoral emissions for SO,, NOx (as NOz), and PM> 5 in India from 2015

355  to 2022 (Figure 2), showing results from five inventories: our updated 2022 inventory, the Speciated
MultipOllutant Generator (SMoG) 2015 inventory developed in Indian Institute of Technology (IIT) Bombay
(Venkataraman et al., 2018), and three widely used global inventories (recent releases)—CEDS (released on
2024-07-08), EDGAR (version 8.1, released in 2024), and Hemispheric Transport of Air Pollution (HTAP,

12
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version 3.1, released in 2025) (Hoesly et al., 2018; Crippa et al., 2018; Guizzardi et al., 2025). For global
inventories, while CEDS and EDGAR provide emissions up to 2022, HTAP extends only through 2020. For
India, HTAP adopts the Regional Emission inventory in ASia (REAS, version 3.2.1 (Kurokawa and Ohara, 2020))

for 2015 and applies country-sector-pollutant-specific emission trends derived
emissions from 2016 to 2020.

from EDGAR to estimate

Annual primary PM; 5 emissions in India, reported only by EDGAR (2015-2022), HTAP (2015-2020), and
SMoG (2015), exhibit interannual variations, with emissions increasing from 2015 to 2018, declining to 2020,
and rising again thereafter. Specifically, EDGAR reports a total PM» s emission of 4.3 Tg in 2022, while HTAP

reports 5.0 Tg for 2020, its latest available year. The cross-inventory uncertainty for annual PM, 5 emissions

(calculated annually as the highest emission minus the lowest emission, divided by the averaged emission) from

2015 to 2020 is 24+2%. The residential and industrial sectors were two leading contributors to total PMa s

emissions in India, accounting for 42+2% and 414+5% of total emissions, respectively.
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375 inventories, one regional 2015 inventory, and our updated 2022 inventory. For each country and species,
CEDSy2024-07-08, EDGARys.1, and HTAPy3,; report sectoral total emission across 59, 32, and 16 detailed sectors,
respectively. Those detailed sectors are aggregated into five widely used sectors: power, industry, residential,
transportation, and agriculture. In this figure, because CEDSy2024-07-08 does not include open burning of agricultural
waste and wildfire, we exclude it from the agricultural sector emissions in EDGAR.s1 and HTAP,3, to enable direct

380 comparison among the inventories. Note that CEDSy2024-07-0 does not provide primary PM, s emissions, and HTAP,3

extends only until 2020. Details on the updated inventory are provided in Section 2.1.

For annual total SO, emissions, all three global inventories indicate a similar emission trend from 2015 to

2020, showing an increase from 10.6+0.9 Tg in 2015 to a peak of 11.8+1.2 Tg in 2018, followed by a reduction

385  t010.3+0.8 Tgin 2020 due to COVID lockdown. After 2020, the CEDS and EDGAR inventories report increases
in annual total SO, emissions from 9.4 Tg and 10.7 Tg in 2020 to 10.9 Tg and 12.5 Tg in 2022, respectively. The
cross-inventory uncertainty for annual SO, emissions is 15+3% from 2015 to 2022. The power sector
consistently dominates SO, emissions in India from 2015 to 2022, accounting for 61+2% of total emissions

across inventories (Supplementary Table 2). This dominance is driven by India’s growing electricity

390  consumption (e.g., an increase of 86% from 2010 to 2022) and continued heavy reliance on coal-fired power
generation (e.g., 72% in 2022), along with limited implementation of end-of-pipe pollution controls (Kumar and
Dahiya, 2023). The industry and residential sectors contribute 32+2% and 6+0%, respectively, to total SO

emissions in India over the same period.

395 Similarly, annual total NOx emissions in India increased from 9.5+1.0 Tg in 2015 to 10.2+1.1 Tg in 2018,
then declined to 9.1+1.0 Tg by 2020 according to all three global inventories. Post-2020, the CEDS and EDGAR
inventories show increases in annual total NOx emissions from 8.5 Tg and 8.6 Tg in 2020 to 9.3 Tg and 9.8 Tg
in 2022, respectively. The power sector remains the largest contributor to NOx emissions over the period of 2015
to 2022 in all inventories, accounting for 39 = 0% of the total, followed by the transportation (29+1%), industry

400  (19+1%), and residential (8+0%) sectors. The inventory for annual NOy emissions is 16+8% from 2015 to 2022

across inventories.

Solid fuel had been historically widely used in India’s residential sector, such as biomass for residential

cooking and kerosene for lighting, which leads to high PM, s emission due to their inefficient and incomplete

405  combustion (Chowdhury et al., 2019). The residential sector has recently benefited from mitigation efforts under
the NCAP which has promoted the use of liquified petroleum gas (LPG) as a cleaner fuel replacing solid fuels
(Bhaskar, 2019). This clean energy transition in the residential sector is not captured by any of the global
inventories, in which residential emissions remain largely unchanged after 2017 (Figure 2). Therefore, we
adopted a recently developed residential emission inventory that accounts for recent consumption pattern

410  changes and cleaner fuel adoption in 2022 (Velamuri et al., 2024). As a result of incorporating the updated

residential inventory, annual total residential emissions are reduced by 0.5 Tg for primary PM» 5 (33% relative

14
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to EDGAR), reduced by 0.4 Tg for SO, (82% relative to CEDS), and reduced by 0.7 Tg for NOy (80% relative
to CEDS).

415 In addition to update the residential emissions, we replace power sector emissions with our coal-fired power
plant emission inventory described in Section 2.2.2. Our coal-fired plant emission inventory covers all
operating units regulated by India’s Central Electricity Authority (CEA), using detailed plant-level generation
reports archived by the CEA to improve the accuracy of activity data. We estimate annual total emissions from
coal-fired power generation across India in 2022 to be 6.2+1.5 Tg for SO,, 4.6+0.3 Tg for NOy, and 0.8+0.1 Tg

420  for primary PM, s, with the range reflecting uncertainties in emission factors without mitigation as reflected in
the literature (Supplementary Table 1). These total emissions, along with the estimated emission factors
per unit of electricity generated, are comparable to those reported in four earlier studies focused on India’s
coal-fired power plant emissions (Guttikunda and Jawahar, 2014; Cropper et al., 2021; Singh et al., 2024;
Velamuri et al., 2024) (Supplementary Table 3). In addition, the spatial distributions of gridded power plant

425  emissions among CEDS, EDGAR, and our inventory are similar (Supplementary Figure 1). As a result of
incorporating our coal plant inventory, annual total emissions for the power sector are increased by 0.4 Tg for
PM, 5 (90% relative to EDGAR), reduced by 0.6 Tg for SO (9% relative to CEDS), and increased by 0.4 Tg for
NOx (10% relative to CEDS). The adoption of India-specific emission factors (Supplementary Table 1),
informed by a literature review of India’s high-ash coal, may explain why our estimates of primary PM, s

430  emissions are substantially higher than those from EDGAR. A 2019 emission inventory developed by multiple
Indian institutions reported an even higher annual primary PM; s emission of 1.7 Tg from the power sector

(Venkataraman et al., 2024).

In 2022, our updated emission inventory reports India total emissions at 9.5 Tg for SO, 10.1 Tg for NOx,

435  and 4.3 Tg for primary PMzs. Compared with existing global inventories in 2022, our total SO, emissions are
1.4 Tg (13% relative to CEDS) lower, while total PM> 5 and NOx emissions are 0.04 Tg (1% relative to EDGAR)

and 0.8 Tg (9% relative to CEDS) higher, respectively. These differences result from the updates in emissions

from the residential, power, and transportation (i.e., road dust) sectors in 2022.

440 3.2 Model evaluation for surface PM; s and aerosol optical depth (AOD)

The improved WRF-Chem simulations capture the spatial distribution of annual mean surface PM,s
concentrations (calculated as the mean of January, April, July and October means) across India and adjacent
regions well, achieving a Pearson correlation coefficient (R) of 0.71 between modeled and observed
concentrations (Figure 3). Annual model bias across the entire domain (116 model grids and 288 measurement

445  sites)is 0.2+16.9 ug/m’ (0+£31%). Model biases in annual mean surface PM, 5 are within +10 ug/m? in 57% of
the WRF-Chem grids which have measurement sites, whereas biases exceed +30 pg/m’ in 9% of these grids.
Across the Indo-Gangetic Plain (IGP), the region with the most severe PM, 5 pollution in India, simulated annual

mean surface PMys concentrations differ from observed concentrations by -1.9+21.2 pg/m’ (3+31%).

15
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Specifically, in Delhi, the modeled annual mean surface PM, s concentration (100.2 pg/m?) is virtually the same
450  as the observed mean (100.7 ug/m?). These results indicate the models’ ability to reproduce the spatial pattern
of annual mean surface PM> 5 levels across India and nearby regions in 2022, providing large improvements over
previous air quality modeling studies for India (Conibear et al., 2018; Reddington et al., 2019; Singh et al., 2021;
Pai et al., 2022). Model simulations using the global emission inventories without improvements for Indian
sectoral emissions and without improved near-surface mixing of pollutants show a significant overestimation of
455  annual PMa s by 23.0+29.0 pg/m? (42+53%) across the domain and by 92.5+40.9 ug/m?® (92+41%) in Delhi (The

‘Default’ Simulation in Figure 4).
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Figure 3. Comparison of observed and modeled surface PMa.s concentrations in 2022. Measurement stations with
460  at least 80% valid hourly data during the four-month period (January, April, July, and October) are selected. Multiple
measurements within a single WRF-Chem grid cell are averaged before comparison with WRF-Chem. a-d,
comparison of annual mean surface PM» 5 concentrations between observations (OBS) and model simulations (MOD).
Annual value is estimated by averaging PM, s concentrations during the four-month period. In a-¢, N denotes the
number of grid cells used for evaluation, and the other numbers represent the mean + one standard deviation across
465 all grid cells. The thick black line denotes the boundary of the Indo-Gangetic Plain (IGP). In d, R is the Pearson
correlation coefficient between observed and modeled annual mean concentrations across all grid cells. e and g,

comparison of daily mean surface PM, s concentrations between observations and WRF-Chem simulations in the IGP
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(e) and Delhi (g). f and h are the same as e and g, but for annual mean PM, s diurnal variations. In e-h, red and black
lines represent PM, s concentrations for observations and simulations, respectively, averaged across available grid
470 cells in each region noted in the panel, with shaded areas indicating one standard deviation. Temporal R is the Pearson
correlation coefficient between the red and black lines in each panel. See Supplementary Table 4 for PM, s model

performance at state level.

Beyond annual averages, WRF-Chem also effectively captures daily PM> 5 variations throughout the four-

475  month period (Figure 3e-h). In the IGP and Delhi, the Pearson correlation coefficients between modeled and
observed regional mean daily PMa s concentrations are 0.93 and 0.81, respectively. In addition, the twin-peak

pattern in diurnal PM> 5 concentrations are well reproduced by WRF-Chem, though the morning peak in Delhi

is underestimated. In contrast, model simulations without the emission and near-surface mixing updates show

much stronger diurnal variability in hourly PMa2s concentrations than the observation, resulting from

480 overestimated local emission fluxes and insufficient nighttime near-surface mixing (Figure 4).

(a) Simulated Annual F’M2 5 Bias (WRF-Chem minus Observations)

150 Default
Default+Emission Updates

Default+Emission Updates+Mixing Updates (Baseline in Main Text)
Observations (shown in panel b and c)

100

PM, . Bias [ug m]
o
T
1
|
1
|
|
|
1
|
|
|
1
|
1
|
|
1
|
|
|
1
|
|

.50

100 L L L I !
Jan Apr Jul Oct Annual

(b) Simulated vs. Observed Diurnal PMz.s (IGP)

(c) Simulated vs. Observed Diurnal PM, _ (Delhi)
200 2.5

400

@
S

350

=Y
=)

300

>
S

250

]
=3

o
1=}

200

@
S

150

)
1=}

Diurnal PMz 5 Concentrations [ug m'3]

100

IS
=)

50
00 03 06 09 12 15 18 21 00 03 06 09 12 15 18 21

Hour of the day Hour of the day

N
S

Figure 4. Comparison of PM2s performances among three emission and model configurations in 2022. The
configurations are: (1) Default (in blue)— official WRF-Chem v4.6.1 with the GEOS-Chem simple SOA scheme,
485  driven by the standard CEDS and EDGAR inventories as described in Section 2.2.1; (2) Default + Emission Updates
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(in green)— configuration (1) plus sectoral updates for the residential and power sectors, as well as road dust, as
described in Sections 2.2.1 and 2.2.2; (3) Default + Emission Updates + Mixing Updates (in red)— configuration (2)
plus improved near-surface mixing of chemical species, this configuration is adopted by the Baseline simulation as
mentioned in Table 1 and Figures 3 and 5. Model performance is evaluated using (a) monthly and annual mean bias
490 across the entire domain, and (b—¢) annual mean PM 5 diurnal patterns for the Indo-Gangetic Plain (IGP) and Delhi,
respectively. In a, box-whisker plots demonstrate the distribution of PM»s model bias across the entire domain
simulated by three configurations. The boxes denote the 25", 50%, and 75% percentiles, and the whiskers denote the
5t and 95" percentiles of PM, s bias. In b-¢, shaded areas indicate one standard deviation across available grid cells
in each region noted in the panel.
495
Despite the good model performance of the baseline simulation discussed above, notable biases remain in
several regions (Figure 3b). Specifically, modeled annual mean surface PM,s concentrations exceed
observations by more than 30 pg/m® in West Bengal (e.g., Kolkata) and a few stations in Gujarat, Punjab, and
Rajasthan, while modeled concentrations underestimate observations by more than 30 pg/m® in a few stations in
500  Bihar and Uttar Pradesh. We summarize the state-level model performance in Supplementary Table 4. We find
the largest negative model bias in annual mean surface PMy s concentrations in Bihar (-19+12 pg/m?, -23+17%).
Out of 10 WRF-Chem grids in Bihar containing measurement stations, 9 grids underestimate PM» 5, with 2 grids
underestimating by more than 30 pg/m®. In contrast, the largest positive model bias occurs in West Bengal, where
modeled annual mean surface PMys concentrations exceed observations by 32+19 pg/m’ (61+47%). Model
505  biases in January play a dominant role in these annual biases, contributing, on average, 51% (10 pg/m?) of the
annual negative bias in Bihar and 57% (18 pg/m?®) of the annual positive bias in West Bengal. However, PMa 5
concentrations observed at CPCB stations in Kolkata (West Bengal) are systematically lower—by 60 pg/m?
(39%) in January and 30 pg/m® (44%) annually—compared to those recorded at the nearby US Air Now station.
A model evaluation at Kolkata using only the US Air Now station data, instead of averaging across all available
510  measurement stations, significantly reduces the positive model bias from 145% to 49% in January, and from
147% to 45% annually.

We then utilize satellite-derived AOD data to evaluate the model's performance in simulating the spatial
distribution of aerosol column loadings across India. Satellite data provides greater spatial coverage than the

515 surface PM> s measurement network. WRF-Chem reproduces the spatial pattern of AOD, with a Pearson
correlation coefficient of 0.84 between annual modeled and observed AOD across India (Supplementary Figure

2), and monthly correlations ranging from 0.72 to 0.82 (except for July when too much data is missing). However,
WRF-Chem exhibits a consistent negative bias in AOD across India, with an annual mean bias (normalized mean

bias) of -0.12+0.06 (-29+ 14%) compared to satellite observations. AOD underestimation persists even in

520 regions where surface PM»s concentrations are significantly overestimated (e.g., West Bengal). Previous
modeling studies have attributed similar AOD underestimation over India primarily to the underrepresentation

of large particles (diameter > 2.5 pm) (David et al., 2018; Singh et al., 2021). Consistent with this, our simulation
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525

530

535

shows significantly underestimated surface coarse particulate matter (PM_coarse; particles with
diameters > 2.5 um and < 10 pm) compared to CPCB measurements (Supplementary Figure 3). This domain-
wide low bias in PMcoarse concentrations is likely due to missing PMcoarse €missions (e.g., urban dust and other

underrepresented burning activities) in our updated emission inventory.

3.3 Total surface PM; 5 concentrations and their source attribution across India in 2022

We analyze the national and regional surface PM» s concentrations (both total and attributed to specific
sources) using the PW mean metric (see Section 2.2.3 for PW mean calculation). PW mean concentrations reflect
population exposure and is indicative of associated health risks. In addition, we investigate the spatial
distribution of PM2s concentrations originating from various sources in order to identify local hotspots

associated with specific emission sources.
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Figure 5. Baseline annual PM2s concentrations in 2022 across India and their source attribution. In a, Annual
results are calculated as the average of January, April, July, and October simulations. Spatial distribution of annual
average PM. s concentrations across India are shown in color. National averages for Population-Weighted (PW) and
spatial mean PM, 5 concentrations are given as inset values in the figure. Panel b shows 27km? gridded population
540 density across India. In a and b, the thick black line denotes the boundary of the Indo-Gangetic Plain (IGP). In ¢,
WRF-Chem grids are aggregated by ranges of annual mean PM, 5 concentrations, with colored bars indicating source
attribution (left Y axis). The red line and dots indicate the cumulative percentage of the population (right Y axis) living
in areas where the annual mean PM, s concentration falls within or below a given concentration range. For example,
36.6% (95.2%) of the Indian population was exposed to annual PM, s concentrations < 40 (80) pg/m?® in 2022). See

545 monthly versions of panel ¢ in Supplementary Figure 4.

Our WRF-Chem simulation estimates a 2022 national PW mean annual surface PMz 5 concentration of 47.4
pg/m?® (Figure 5a), similar to the 51.6 ug/m? reported in a recent satellite-based machine learning study (Kawano
et al., 2025). In 2022, 37% of India’s population lived in areas where annual PM s concentrations met the

550  national air quality standard of 40 ug/m’ (Figure 5¢), representing an increase from 17% in 2016 (Apte and Pant,
2019). This change indicates an improvement in India’s PM; s air quality from 2016 to 2022 under the NCAP,
aided by favorable meteorological conditions that enhanced pollutant dispersion and removal (Xie et al., 2024).
However, in 2022, only 29% of the national population was exposed to PM; s levels below the least stringent
annual World Health Organization (WHO) standard (35 ug/m®), and less than 0.1% met the most stringent annual
555  WHO standard (5 pg/m®). Regionally, the IGP experienced the highest annual PW mean PM, 5 concentration in
2022 at 58.9 pg/m’, followed by Northwest India (58.3 pg/m?) and Central India (46.3 pg/m?). In contrast,
Northeast India (28.1 pg/m®), South India (27.3 pg/m®) and the Himalayan states (25.3 pg/m®) had lower annual

PW mean PM; 5 concentrations.

560 At the national level, emissions originating within India accounted for 73% (34.5 pg/m®) of the annual PW
mean PM, 5 concentration in 2022, while transboundary emission sources contributed the remaining 27% (12.8
pg/m®) (Figure 6). We summarize the national and state-level PW mean PM, s concentrations attributed by

source in Supplementary Table 5.

565 Among domestic sources, the industrial sector was the leading contributor to the national annual PW mean
PM,s concentration in 2022, accounting for 18% (8.6 ug/m®). Spatially, its contribution was particularly
dominant in heavily polluted areas where annual PM, s levels exceeding 80 pug/m? (twice the national standard)
(Figure 5c¢). In some local hotspots within these areas—including major urban centers such those of Delhi and
Mumbai—industrial emissions alone contributed more than 40 pg/m® to simulated annual surface PMys

570  concentrations (Figure 6), suggesting that to achieve national air quality standards in these hotspots it will be

necessary to regulate industrial emissions.
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India’s residential sector, which has been undergoing a clean energy transition toward LPG since 2016, was
the second-largest domestic contributor (15%; 7.3 pg/m?) to the national PW mean PM, 5 concentration in 2022.
575 Spatially, however, the residential sector remained the dominant PM, 5 source across large areas of the IGP,
especially during winter (Figures 7). Consequently, ~500 million people in India lived in areas where residential
emissions were the dominant source of annual PM; 5 pollution in 2022, the highest among all domestic sources.
This highlights the continued substantial health burden associated with residential emissions, and the need to
augment recent progress in adoption of cleaner cooking fuels.
580
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Figure 6. Spatial pattern of annual surface PMzs concentrations across India in 2022 attributed to a given
source. Annual results are calculated as the average of January, April, July, and October simulations. In each panel,
numbers outside parentheses indicate the annual Population-Weighted (PW) mean PM, s concentrations and spatial
585 mean (Mean) PM,s concentrations across India. Numbers inside parentheses represent the source’s percentage
contribution across India to total PM,s. Uncertainty bounds represent one standard deviation across monthly values,
and provide an indication of the seasonal variation of a given sector’s impact on surface PM, 5. See Supplementary

Table 3 for source contribution to annual PW mean PM, 5 at each state. The thick black line denotes the boundary of
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the Indo-Gangetic Plain (IGP).
590
India’s power sector, based on our updated emission inventory, was the third-largest contributor to the
national PW mean PMys concentration in 2022 (13%; 6.1 ug/m?). Spatially, the power sector primarily
influenced PM; 5 air quality in Central India, particularly in Chhattisgarh and Jharkhand (Figures 6 and 7). This
is due to central India generating 52% of India’s annual coal-based electricity in 2022 and power plants typically
595  having emission controls only on primary particulates and not on SO» or NO4 which contribute to the formation
of secondary inorganic aerosols. About 270 million people lived in areas where power sector emissions were the
largest domestic source for annual PM> s exposure. Notably, the spatial extent of power sector—-dominated areas

was the largest among all domestic emission sources.

600 India’s transportation sector made a smaller contribution to the national annual PW mean PM, 5 concentration
in 2022 (8%; 3.8 pg/m®), compared with the industry, residential, and power sectors. Spatially, its impact was
most notable across much of the IGP and eastern Rajasthan, where it contributed moderately (~5 to 10 pg/m?)
to annual PM, s (Figures 5). In Delhi, the transportation sector recorded its highest state-level contribution to
annual PM,s, reaching 11.6 ug/m® (11%, Supplementary Table 5). However, transportation was not the

605  dominant domestic source of annual PM, s in any of India’s populous regions in 2022 (Figures 6).

. Residential (495 M)

Industry (481 M)

Power (272 M)
Open Burning (72 M)

Natural Dust (55 M)

Agriculture (1 M)

Transportation (0 M)

. Biogenic (0 M)

Figure 7. Dominant domestic PM:.s sources at monthly and annual timescales. Transboundary emission sources

are excluded. Numbers in parentheses in the legend indicate the population (in millions) across India residing in areas
610  where a specific domestic emission source dominated in 2022. The thick black line denotes the boundary of the Indo-
Gangetic Plain (IGP).
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India’s agricultural sources contributed 8% (3.7 pug/m®) to the national annual PW mean PM, s concentration.
This PM, 5 was primarily derived from secondary inorganic aerosols formed from NH3 emitted from fertilizer

615  use and livestock as well as a minor source from NOy emitted from agricultural fields.

India’s open burning emissions, derived from the FINN inventory and representing satellite- detectable
burning of crop residues, municipal waste and wildfires, contributed 8% (3.6 pg/m?) to the annual PW mean
PM, 5 concentrations across India in 2022. Their impacts were strongly seasonal, with elevated contributions of
620 15% (8.3 ng/m*) and 10% (4.3 pg/m?) to the national PW mean PM, s in April and October, respectively. Spatially,
the regional hotspots switched between months. In April, open burning is most influential in Central India and
Northeast India (Figures 5). In October, open burning became the dominant source of PM, s in northeastern IGP,
including Delhi, with significant monthly contributions exceeding 40 pg/m’ (Supplementary Figure 5).
Previous studies have shown that groundwater conservation policies in the northeastern IGP—one of India’s
625  major crop harvesting and residue burning regions—have shortened the turnover period between crop seasons
and delayed agricultural burning (Balwinder-Singh et al., 2019). As a result, burning has shifted later in the year,
often extending into late fall, when meteorological conditions are less favorable for pollutant dispersion, thereby
amplifying the impact of open burning on surface PM, s concentrations (Liu et al., 2022). These earlier findings
underscore the complexity of effectively controlling open burning emissions.
630
Domestic natural dust emissions, derived from desert dust simulated by WRF-Chem, contributed 4% (1.9
pg/m®) to the national annual PW mean PM, s concentration in 2022. Spatially, it had a substantial impact on
PM, s levels in Northwest India, where grid-level annual contributions exceed 40 pg/m? in its western part.
However, due to the low population density in Northwest India and the limited impact of natural dust on surface
635  PM;ys outside this region (Figures 4b and 5), natural dust was not a major factor for PM» s exposure at the
national level. Despite limited exposure among the population, the natural dust zones overlap substantially with
India’s solar energy generation centers. This spatial coincidence may lower solar power generation efficiency
due to aerosol-induced dimming and soiling, though the soiling impact can be mitigated if panels are cleaned on
a regular basis (Li et al., 2020).
640
Domestic biogenic emissions had a small but net negative contribution to annual PW mean PM;s
concentrations across India (-1%; -0.5 pg/m?). At the grid level, the net annual contribution was between -2
pg/m?® to 0 pg/m? across the country. We find a reduction in secondary inorganic PM, s components—sulfate,
nitrate, and ammonium—as well as in the sulfate oxidation ratio and nitrate oxidation ratio, following the
645  inclusion of domestic biogenic emissions in the WRF-Chem model (Supplementary Figure 6). The inclusion
of biogenic VOCs reduced the atmospheric oxidation capacity by consuming OH and HO; radicals, thereby
decreasing the conversion of SO, to sulfate and NO; to nitrate, which also reduced ammonium and led to

reductions in secondary inorganic PM, s.
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650 Transboundary sources (emissions from outside of India) accounted for 27% (12.8 pg/m?) of annual national
PW mean PM; 5 in India in 2022, exceeding the contribution of any individual domestic emission source (Figure
6). These transboundary sources include emissions from six anthropogenic sectors (i.e., power, industry,
residential, transportation, agriculture, and open burning) and three natural sources (i.e., dust and biogenic) from
outside India, representing emissions beyond the jurisdiction of the Indian government. Spatially, the influence
655  of transboundary sources exhibits a northwest-to-southeast gradient. In 2022, transboundary sources contributed
more than 20% to grid-level annual PM s concentrations across most of India, with contributions exceeding 30%
in western states such as Punjab, Haryana, Rajasthan, and Gujarat (Supplementary Figure 7). In Delhi,

transboundary sources contributed 21 pg/m?, or 20%, to the annual PM> 5 concentration in 2022.

660 3.4 Chemical components of total surface PM; s and their source attribution across India for 2022

We analyze the contributions of individual PM, s components simulated by WRF-Chem to total PM; s
concentrations across India in 2022, along with their respective source attributions. Figure 8 shows the spatial
distribution of annual concentrations of all components. Figure 9 and Supplementary Table 6 present the source
contributions to national PW mean concentrations of PM, 5 components.

665

Annual, Organic Annual, Dust Annual, SOi’

Annual, NO’3

Mean=3.9+4.3
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(28+7%) - (3413%)|
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Figure 8. Spatial pattern of annual concentrations of PM:.s components across India in 2022. Annual results are
calculated as the average of January, April, July, and October simulations. In each panel, numbers outside parentheses
indicate the Population-Weighted (PW) mean concentrations and spatial mean (Mean) concentrations across India.
670  Numbers inside parentheses represent the component’s percentage contribution to total PM,s. Uncertainty bounds

represent one standard deviation across four monthly values representing each season. The thick black line denotes
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the boundary of the Indo-Gangetic Plain (IGP).

Among components resolved by WRF-Chem, organic aerosols (including both primary and secondary) had

675  the largest contribution to the national PW mean total PM> 5 concentrations in 2022, at 34% (16.1 ug/m®) (Figure
8). Residential emissions from within India were the dominant source of population exposure to organic PMs s,
accounting for 6.6 ug/m’ of its annual national PW mean concentration (Figure 9). Transboundary (3.1 pg/m’)

and industrial (2.6 pg/m®) sources were also significant contributors to organic PMy 5 levels across the country.
Spatially, organic PM s had a north-to-south gradient, with its dominance closely overlapping with regions

680  where residential emissions were also dominant—particularly the IGP.

Industry (18%)
Organic (34%)

Residential (15%)

Power (13%) |:|
Z Dust (26%)

Transportation (8%) |:|
Agriculture (8%) .

Open Burning (8%)

Natural Dust (4%)
Biogenic (-1%) ==

Sulfate (14%)

S I Nitrate (11%)

Transboundary (27%) "
Ammonium (8%)

Black Carbon (5%)
=== Sodium + Chloride (1%)

Figure 9. Source contributions to population-weighted mean concentrations of PM:.s components across India
in 2022. Contributions are attributed to six domestic anthropogenic sectors (industry, residential, power, transportation,
685 open burning, and agriculture), two domestic natural sources (dust and biogenic emissions), as well as sources from
outside of India (transboundary emissions). Note that contributions below 0.1 pg/m? for a given source—component
pair are omitted from the figure. All contributions presented are positive, except those from biogenic sources, which
are negative. Numbers in parentheses indicate the percentage share (rounded to the nearest integer) of each source or
component in the total PM» s concentration. See Supplementary Table 6 for detailed values for each pair in this figure.

690
The dust component, including both anthropogenic and natural sources, was the second-largest contributor
to the national PW mean total PMy s concentration in 2022, at 26% (12.4 ug/m’) (Figure 8). Transboundary
emissions dominated dust PM, s at the national level, contributing 5.0 pg/m? to its annual PW mean concentration
(Figure 9). In addition, industrial (2.0 pg/m?) and natural dust (1.8 pg/m®) emissions from within India were the

695  other major contributors to dust PMa s across India. Spatially, dust PM2 5 exhibited a west-to-east gradient, with

25



https://doi.org/10.5194/egusphere-2025-4947
Preprint. Discussion started: 20 November 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

annual concentrations exceeding 40 pg/m* across most of Rajasthan and Gujarat (Figure 8).

Sulfate PM, 5 was the third-largest contributor to the national PW mean total PM» s level in 2022, at 14%
(6.8 nug/m?), and was the dominant component of secondary inorganic PM, s (including sulfate, nitrate, and
700  ammonium) (Figure 8). India’s power sector, the largest domestic SO, emitter, was the dominant source for
sulfate, accounting for 2.8 pg/m? of its annual PW mean concentration, followed by transboundary pollution and
the industrial sector (Figure 9). Spatially, sulfate concentrations exhibited a relatively small gradient compared
to organic and dust PM; 5, though highest concentrations were found in eastern India around Chhattisgarh and
Jharkhand.
705
Nitrate PM> s contributed 5.3 ug/m? (11%) to national PW mean total PMy s concentration in 2022, smaller
than that of sulfate PM» s (Figure 8). However, spatially nitrate PM> s was the dominant component among
secondary inorganic PM s across the IGP, especially in Bihar, Haryana, and Delhi. Unlike organic, dust, and
sulfate PM> s, nitrate PM> 5 exhibited highly nonlinear relationships between precursor (i.e., NOy) emissions and
710  resulting concentrations. Specifically, the agriculture sector—contributing only 2% of national NOx but 80% of
national NH3 emissions in 2022—were identified as the largest contributor (2.0 ug/m?) to nitrate PMy 5 in 2022
(Figure 9). In the atmosphere, nitric acid (HNO3, from NOy oxidation) reacts with NH3 remaining after
neutralizing sulfuric acid to form ammonium nitrate. Removing agricultural emissions reduced NH3 availability
across India by 77%, cutting the national average NO;" fraction of total NO3+HNO; from 51% (baseline) to 25%

715  and leading to the largest nitrate reduction among all simulations that removed individual sources (Figure 10).

Ammonium PM s contributed 4.0 pg/m> (8%) to national PW mean total PM> s concentration in 2022, with
spatial hotspots overlapping those of sulfate and nitrate (Figure 8). Like nitrate, ammonium’s response to
precursor (NH3) emissions was highly nonlinear. Notably, we identified India’s power sector—emitting no NH3

720 but 80% of national SO, and 40% of national NOx emissions in 2022—resulted in the largest reduction (1.1
pg/m?) of ammonium PM, s when this sector’s emissions were removed (Figure 9). While the power sector did
not emit NH3 directly, its dominance in SO, and NOyx emissions within India increased the availability of sulfuric
and nitric acids, which react with NH3 to form ammonium aerosols. Removing power sector emissions therefore
left a larger fraction of total reduced nitrogen (NHx = NH3 + NH4") as NHj, leading to greater reductions in

725  ammonium PM;s than any other single-source removal scenarios (Figure 10). In contrast, when removing
agricultural emissions (dominant NHj3 source domestically), transport of NH3 from outside India partially offset
the decrease in NHj supply, sustaining some ammonium formation and leading to smaller reductions in
ammonium than the simulation in which power-sector emissions were removed. These findings illustrate how
when source emissions are entirely removed, non-linear chemistry can yield results that deviate from

730 attributional methods (e.g., tagging precursor emissions) (Koo et al., 2009).

Black Carbon, primarily from the incomplete combustion of solid fuels, contributed 2.3 ug/m® (5%) to
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national PW mean total PM> s concentration in 2022, with India’s industrial sector the dominant source.

735 Sodium and chloride together contributed only 0.4 pg/m® (1%) to national PW mean total PMas
concentration in 2022, primarily from transboundary sources. Previous observational studies reported relatively
high chloride concentrations in particulate matter in Delhi (e.g., 15-month average of 8.6 pug/m? during 2017-
2018), Kanpur (e.g., monthly average of 19.3 pg/m’® in January 2016), and Chennai (episodically), suggesting
possible local emissions of hydrochloric acid from plastic-contained waste burning and industry (Gani et al.,
740 2019; Thamban et al., 2019; Gunthe et al., 2021). However, because the emission inventories used in this study
(i.e., CEDS, EDGAR, and FINN) do not include anthropogenic emissions of chloride-containing species, such
elevated chloride levels observed in these cities were not reproduced in our model simulations. A recent modeling
study that incorporated anthropogenic chlorine emissions reported a spatial average increase of 3—4 pg/m?® in
PMa.s concentrations in the IGP during January—March 2018 (Patel et al., 2024). By comparison, our model
745  simulated a spatial average of 88 pug/m? for January 2022 and 56 pg/m? for the annual mean in 2022 across the
IGP, which suggests a relatively small impact of incorporating chlorine emissions into our source attribution

studies.

081 0.78 0.78 [l Baseline

0.76 & Power Sector 100% Emissions Off
& Transportation Sector 100% Emissions Off
[ Agriculture Sector 100% Emissions Off

— & Agriculture Sector 20% Emissions Off
% _0.7F 068

Spatial Mean Concentrations [umol m

NHZ (outlined) + NH3 SOi' (outlined) + H2804 NO'3 (outlined) + HNO3

750 Figure 10. Partitioning between secondary PM:s components (NHs*, SO, and NO3) and their relevant
precursors (NHs, H:SO4 and HNO:3) for the baseline simulation and following the removal of individual sectoral
emissions. Annual spatial mean concentrations (in umol/m?) across India in 2022 are shown for the baseline simulation
(grey bars) and for scenarios where individual sector emissions (power, transportation, and agriculture) are removed
completely or partially. Solid-line-outlined boxes indicate the concentrations of NH4*, SO4%, and NOs", while the upper

755 portions of each bar (above the outlined boxes) represent the concentrations of NH3, H,SO4, and HNO;. Numbers
above each bar show the total concentration of the species group on the X-axis for the respective scenario. Percentages

inside each outlined box indicate the share of NH4", SO4*, and NOs" in the total concentration of NH4+NH3, SO4*
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+H,S04, and NOs+HNOs, respectively.

760
4 Discussion

India’s residential sector has undergone an energy transition with part of the sector moving from inefficient
solid fuels to cleaner LPG, resulting in substantial reductions in primary PM, 5 emissions that would otherwise
arise from biomass burning. The Pradhan Mantri Ujjwala Yojana (PMUY) program, launched in 2016, has

765  played a central role by providing income support for LPG connections to rural and low-income households, and
by December 2024 had reached over 103 million beneficiaries. Incorporating an updated residential inventory
that captured this trend is key to our finding that the absolute and relative contributions of residential emissions
to national population-weighted mean PM> 5 concentration are smaller than in two earlier studies for 2016 (Singh
et al., 2021; Pai et al., 2022) (Table 2), though it remained the leading PM> s source in the IGP (Figure 11). In

770  addition, our explicit separation of emissions from within and outside India further explains why our estimated
residential contribution is smaller than in previous studies, which included transboundary residential sources
when accounting for this sector (Conibear et al., 2018; Guo et al., 2018; Reddington et al., 2019; Chatterjee et
al., 2023). However, recent research highlights challenges in sustaining LPG usage under PMUY, including high
refill costs and subsidy delays (Asharaf and Tol, 2024; Gaikwad et al., 2025), which may result in backsliding

775  to a continued reliance on solid fuels which may not be fully captured in the updated inventory.
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Figure 11. Source attribution of regional population-weighted mean annual PM: s concentrations in 2022 across
Delhi and six regions of India. Inset numbers illustrate the percentage contribution from the largest three sources

780 (including the transboundary source) in each region.
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India’s industrial sector emerged as the largest domestic contributor to India’s PM s pollution in 2022,
resulting from rapid growth in activity and limited pollution controls. Specifically, its energy consumption nearly
doubled from 7.8 EJ in 2010 to 13.6 EJ in 2022 with coal, biofuels, and waste being the dominant sources of

785  energy (International Energy Agency, 2024), while emission regulations in this sector have primarily focused on
improved energy efficiency with few new regulations focused on certain small-scale informal industries such as
brick kilns (The Government of India, 2019; Tibrewal and Venkataraman, 2021). Consistent with these trends,
the EDGAR global inventory reports an increase in primary PM2 5 emissions from the industrial sector from 1.4
Tg/year in 2010 to 2.1 Tg/year in 2022. Our adoption of the EDGAR 2022 inventory for the industrial sector

790  therefore results in higher estimated absolute and relative industrial contributions to national population-
weighted mean PM, s concentrations compared with earlier studies that focused on 2016 (Table 2). Notably,
industrial sources contributed 33% of Delhi’s annual PM, s in our analysis (Figure 11), a sharp increase from
14% in 2016 (Singh et al., 2021), underscoring the growing dominance of this sector in urban and national

pollution burdens.

795
Table 2. A comparison of source attribution to national population-weighted mean PM:.s concentration in
India across studies*
This Study (Singh et al., 2021) (Pai et al., 2022)
Year - 2022 2016 2016
CEDS\2024-07-08 for gas,
) Developed by the .
Anthropogenic | EDGAR,s; for aerosols; ) CEDS\2018-08, with NOy and
Greenhouse Gas and Air o )
Emission (excl. open Improved upon the ) ) NHj3 emissions scaled using
) ) ) Pollution Interactions ) )
Inventory burning) residential and power ) satellite observations
L and Synergies (GAINS)-
emissions }
Asia model
Open Burning FINNv2.5.1 GFED4s
Method 100% emissions off 20% emissions off 100% emissions off
Industry 18% (8.6 pg/m3) 16%* 11% (6.8 pg/m?)
Residential 15% (7.3 pg/m3) 31%* 21% (12.9 pg/m®)
Power 13% (6.1 pg/m?) 7%?* 19% (11.7 pg/m3)
Source
Transportation 8% (3.8 pg/m%) 7%} 12% (7.4 pg/m®)
Attribution "
Agriculture 8% (3.7 pg/m®) <12%"* 14% (8.6 pg/m)
Open Burning 8% (3.6 pg/m?) 8%* 6% (3.7 ug/m’)
Transboundary 27% (12.8 pg/m3) 20% <28% (17.2 pg/m?)?
*In this table, we only include studies that investigated emissions from within India for a direct comparison with our
results.
800 "Agricultural NH; emissions were aggregated with other emission source as ‘Others Source’ in this study.

ITransboundary sources were aggregated with natural emissions as ‘Background Source’ in this study.

*This study did not report national population-weighted mean PM, 5 concentration attributed to a given source.
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India’s power sector has been heavily and increasingly relied on coal generation, with the challenges of

805  implementing emission controls for SO, and NOx. Coal-based electricity generation substantially increased from
658 TWh in 2010 to 1307 TWh in 2022 (International Energy Agency, 2024). Although the Indian government
introduced stringent emission standards for thermal power plants in 2015, compliance has been weak, with only

about 3% of coal-based plants having installed flue gas desulfurization (FGD) systems by 2022 (National
Environmental Engineering Research Institute, 2024). As a result, SO, emissions from the power sector

810  increased substantially between 2010 and 2022, with CEDS reporting a 34% rise and EDGAR a 71% rise,
consistent with satellite-derived SO total column concentration trends across India during this period (Xie et al.,

2024). In addition, the adoption of NOy control technologies in India’s coal-fired plants are being tested but are

not yet commercially deployed as India’s high-ash coals can adversely impact NOx control systems (Wiatros-
Motyka, 2019). Projections further suggest that with only limited adoption and operation of pollution-control

815  technologies continuing, SO, emissions from the power sector could rise by nearly 500% between 2020 and
2050 (Venkataraman et al., 2018). These trends, combined with the recent suggested relaxation of FGD
requirements for coal plants (Koshy, 2025), will likely increase secondary inorganic aerosol formation and will
threaten to undermine national efforts to reduce PM, s pollution and protect public health. The plant-level
database and emission inventory developed in this study provide a foundation to further evaluate the air quality

820  and health benefits of a clean power transition for future studies.

Import of pollution across national borders (transboundary sources) continued to be responsible on average
for over 20% of surface PM,s pollution in 2022, similar to findings from 2016 (Table 2). These results
underscore the persistent influence of transported pollution on India’s air quality.

825

Our source attribution approach has inherent limitations due to the nonlinear chemistry of secondary aerosol
formation and aerosol-meteorology feedbacks, similar to previous studies that employed the complete source
removal method (Conibear et al., 2018; Pai et al., 2022; Chatterjee et al., 2023). For example, we identify the
power sector as the largest contributors to ammonium PM; 5 in 2022, despite the fact that it did not emit NH3.

830  This result is primarily driven by secondary inorganic aerosol chemistry (discussed in Section 3.4) and are
consistent with findings from a previous study for 2016 (Pai et al., 2022). We also find a small but non-negligible
contribution of agricultural emissions to national PW mean dust concentrations (0.15 pg/m?). This
counterintuitive result reflects the impact of aerosol-meteorology feedbacks: when agricultural emissions are
removed, reductions in secondary PM,s improve ventilation conditions by weakening aerosol-radiation

835  interactions (Zhou et al., 2019), thereby lowering primary PM> s concentrations, even though their emissions
themselves are unaffected. These examples illustrate the interpretive challenges inherent to source attributional

results via complete emission removal.

Nonlinear secondary aerosol chemistry limits the direct application of our results to real-world emission
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840  regulations, particularly for sources dominated by PM; 5 precursor emissions whose reductions have a nonlinear
effect on resulting PM> 5 concentrations, since policies typically involve partial rather than complete reductions.
For sources dominated by primary PM>s components, such as the industrial and residential sectors, the
differences between complete removal and scaled partial reductions are small: national spatial mean and
population-weighted mean PM; s concentration reductions differ by less than 7% and 3%, respectively, between
845 a 100% emission reduction and a fivefold scaling of 20% reductions (Supplementary Figure 8). However, for
the agricultural sector, a 20% emission reduction results in 25% less national PM> s reduction (after a fivefold
scaling) compared with a 100% emission reduction. This nonlinearity is primarily due to India’s overall NH3-
rich environment (Figure 10), where nitrate availability limits secondary inorganic aerosol formation. This
suggests that partial removal of NHj3 is less effective—defined as concentration decrease per unit emission

850  reduction—in mitigating PM, s than substantial NH3 emission reductions.

5 Conclusion and Implications

We conduct the first WRF-Chem model evaluation and source attribution analysis for India for the year 2022,

leveraging recent advances in India-specific residential and power sector emission inventories and the expansion

855  of ground-based PM; s monitoring networks. Our simulations incorporate the 2022 CEDS and EDGAR global
emission inventories (released in 2024), a 2022 coal-fired power plant emission inventory developed in this

work, and a revised 2022 residential emission inventory (Velamuri et al., 2024). We also incorporate the simple

SOA scheme into WRF-Chem and improve model treatment of near-surface mixing of pollutants. We evaluate

the baseline WRF-Chem simulation against observed PMz s concentrations from 288 surface monitoring sites

860  across India and neighboring countries, demonstrating very good model performance across India that captures
spatial and temporal variations of PMz s concentrations in 2022. Our findings, compared with earlier source
attribution studies, highlight that residential emissions from within India are no longer the largest source of
national population-weighted mean PM;s pollution, although they remained the second-largest domestic
contributor nationally (Figures 6 and 9) and the leading contributor regionally in the Indo-Gangetic Plain

865  (Figure 11). Instead, industrial emissions from within India emerged as the largest domestic contributor at the
national scale, while the power sector within India ranks third, with 77% of its contribution arising from
secondary inorganic PM,s formed from gaseous precursor emissions. Importantly, transboundary sources

contributed more than any individual domestic source to surface PM> s concentrations in 2022 across India.

870 Tracking India’s evolving air pollution and the shifting contributions of various sources is needed to inform
regulatory mitigation strategies. This requires robust air quality modeling based on up-to-date emission
inventories that incorporate real-world changes in activity, emission factors, technology adoption, and
regulations. By combining information from both global and regional inventories, our study provides an
improved understanding of PM 5 pollution and its source attribution for 2022, with several implications. First,

875  efforts to reduce primary PM> 5 emissions from the residential sector have been beneficial and should continue

through initiatives such as the NCAP and the residential PMUY programs. In addition, electrification of the
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residential sector coupled with decarbonization of the grid can further help reduce air pollution emissions (Zhou
et al., 2022). Second, enforcement of new stringent emission regulations targeting both primary PM; 5 and SO»
are needed for the fast-growing industrial sector, especially in densely populated urban areas. Continuing to

880  improve energy efficiency for large and energy-intensive industries such as steel production under the Perform,
Achieve, and Trade (PAT) scheme will also be beneficial for mitigating primary PM; 5 and SO, emissions from
the industrial sector (Ministry of Power, 2022). Third, SO, controls in the coal dominated power sector should
be enforced to prevent further deterioration of air quality particularly as new coal power comes on-line. Finally,
more stringent regulations of local emissions are needed in areas heavily influenced by transboundary pollution

885  in order to meet air quality standards. Collaborative efforts, including data sharing and cross-border source
identification between India and its neighboring countries would be beneficial in identifying opportunities to
improve air quality within South Asia. Future Indian PM; s pollution and its source attribution research will
benefit from the development of a multi-year, India-specific emission inventory with recent coverage to better
support long-term air quality management.

890

Data and Code Availability
Surface PMs measurements from the India CPCB network are publicly available at:
airquality.cpcb.gov.in/ccr/#/caaqm-dashboard-all/caagm-landing. Continuous PM; 5 data from the U.S. AirNow
895  network are no longer accessible, and the daily quality-controlled PM 5 concentrations used in this study will
be shared at the Princeton archive at LinkTBD upon accepted for publication. The WRF-Chem source code can
be obtained from: github.com/wrf-model/WRF/releases. The CEDS emission inventory is available at:
github.com/JGCRI/CEDS. The EDGAR emission inventory is available at: edgar.jrc.ec.europa.eu/dataset_ap81.
The HTAP emission inventory is available at: edgar.jrc.ec.europa.cu/dataset_htap v31. Meteorological data
900 from ERAS are available at: ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5. Gridded population data were
retrieved from: earthdata.nasa.gov/data/catalog/sedac-ciesin-sedac-gpwv4-popdens-r11-4.11. Annual result for
WRF-Chem output generated in this study will be publicly available via the Princeton archive at LinkTBD upon
accepted for publication. The MATLAB Script for Sankey plot in Figure 9 is publicly available at
https://www.mathworks.com/matlabcentral/fileexchange/128679-sankey-plot. Geographical boundaries used in

905 all map plots are adopted from a global database (https://doi.org/10.1371/journal.pone.0231866).
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