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Abstract 

India experiences some of the highest fine particulate matter (PM2.5) concentrations globally. Understanding the 

spatiotemporal variations of PM2.5 and its source attribution requires robust air quality modeling supported by 

up-to-date emission inventories. Here we present the first WRF-Chem model evaluation and source attribution 

analysis for India for 2022, supported by updates in sectoral emission inventories and model schemes. We 5 

incorporate an updated residential emission inventory reflecting recent transitions to cleaner fuels in Indian 

households and develop a plant-level inventory for Indian coal-fired power plants. Further major improvements 

include model updates to the secondary organic aerosol scheme and an improved representation of near-surface 

pollutant mixing. Collectively our improvements result in a simulation with annual PM2.5 bias of only 0.2±16.9 

μg/m3 (0±31%) across 288 surface monitoring sites in South Asia. We find that, compared to earlier studies, in 10 

2022 India’s residential sector remained the dominant source of PM2.5 in the Indo-Gangetic Plain, but nationally 

ranked second in population-weighted (PW) mean PM2.5 concentrations contributing 15% (7.3 μg/m3). Instead, 

industrial emissions emerged as the largest domestic contributor to national PW mean PM2.5 (18%, 8.6 μg/m3), 

with urban hotspots including Delhi and Mumbai. The power sector contributions ranked third nationally (13%, 

6.1 μg/m3) and was particularly influential in central India. Transboundary transport contributed more than any 15 

individual domestic source nationally (27%, 12.8 μg/m3). These findings highlight the benefits of India’s partial 

residential sector transition toward cleaner fuels, while underscoring the growing consequence of industrial and 

power sector emissions that have limited pollution controls.   
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1 Introduction 

Long-term exposure to elevated ambient fine particulate matter (PM2.5) is a major risk factor for human 20 

health and premature mortality globally (Institute for Health Metrics and Evaluation, 2024). India has among the 

highest surface PM2.5 concentrations worldwide, leading to an estimated 1.0 to 2.1 million premature deaths 

annually (Lelieveld et al., 2015; Health Effects Institute, 2024). To address the severe air pollution challenges, 

the Indian government has proposed and implemented measures aimed at reducing emissions of PM2.5 and its 

precursors, including the National Clean Air Program (NCAP) launched in January 2019 (The Government of 25 

India, 2019). Despite an observed reduction in surface PM2.5 levels across India during 2018 to 2022, aided by 

favorable meteorology, annual PM2.5 pollution in ~80% of non-attainment cities with continuous monitors still 

exceeded the country’s annual standard of 40 μg/m3 in 2022 (Xie et al., 2024). In addition, future PM2.5 pollution 

in north India is projected to worsen under global warming (Zhang et al., 2023; Zhou et al., 2024). This highlights 

the need for strengthened mitigation measures. Effective regulation design and implementation depend on 30 

understanding spatiotemporal distributions of PM2.5 across India and the contribution of various emission 

sources. Given the complex interactions of atmospheric physical and chemical processes across India, robust 

emissions and air quality modeling are essential to address these questions. 

 

Previous modeling studies have quantified the source contributions to India’s annual ambient PM2.5 pollution 35 

levels during 2015 to 2019 (Conibear et al., 2018; Guo et al., 2018; Reddington et al., 2019; Singh et al., 2021; 

Pai et al., 2022; Chatterjee et al., 2023; Kumar et al., 2025; Venkataraman et al., 2018). Across these studies, the 

residential sector consistently emerged as the leading contributor to PM2.5 exposure nationwide, accounting for 

21% to 52% of the national annual population-weighted (PW) mean PM2.5 concentrations, with the range 

reflecting whether transboundary transport of residential emissions from adjacent countries were attributed to 40 

the residential sector. This dominance stems from inefficient and incomplete small-scale combustion of solid 

fuels in households, which produces substantial primary PM2.5 emissions. In the literature, the power and 

industrial sectors were often among the largest national PM2.5 sources after the residential sector, but their relative 

importance varied across studies, depending on the anthropogenic emission inventory applied. The power sector 

has been the dominant source of sulfur dioxide (SO2, a key precursor of secondary inorganic PM2.5) emissions 45 

since 2015 (Venkataraman et al., 2018), primarily due to India’s fast-growing electricity demand and heavy 

dependence on coal, with only about 3% of coal-based power plants equipped with flue gas desulfurization (FGD) 

systems in 2022 (National Environmental Engineering Research Institute, 2024). In addition, the industry sector 

was a major source of primary PM2.5 and SO2 emissions in 2015, and its emissions were projected to continuously 

increase from 2015 to 2050 (Venkataraman et al., 2018). In addition to these anthropogenic sources within India, 50 

studies identified a 20-28% contribution from background (transboundary plus natural) sources to national mean 

PM2.5 in India in 2016 (Singh et al., 2021; Pai et al., 2022). 

 

Amid India’s fast development, surging energy demand, and ongoing air quality regulations, the more recent 

source contributions to PM2.5 concentrations across the country remains unclear. Specifically, the continued 55 
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growth of coal-based electricity generation in the power sector and the promotion of cleaner fuels in the 

residential sector have not been incorporated into existing PM2.5 attribution studies. In addition, previous PM2.5 

modeling studies for India—excluding those projecting future changes—primarily focused on years before the 

NCAP baseline year of 2017, when relatively few surface PM2.5 measurement sites existed and thorough model 

evaluation was thus not possible (Schnell et al., 2018; Guo et al., 2018; Singh et al., 2021; Pai et al., 2022; 60 

Agarwal et al., 2024). Given the need for up-to-date source attribution studies to guide India's future air quality 

interventions (e.g., the next phase of the NCAP), more rigorous modeling studies with updated emissions and 

robust model evaluation that disentangle the source contributions to India’s surface PM2.5 pollution in recent 

years are needed. 

 65 

Here we present the first air quality modeling analysis for India using updated emissions for 2022, supported 

by key improvements in sectoral emission inventories and model schemes. We incorporate revised residential 

emissions that capture household transitions from solid fuels to liquefied petroleum gas (LPG), develop a refined 

plant-level inventory for coal-fired power generation, and update model treatments of secondary organic aerosol 

(SOA) formation and pollutant near-surface mixing. Using this enhanced inventory and model schemes, we 70 

conduct a rigorous evaluation of simulated PM2.5 concentrations against 288 surface PM2.5 measurements and 

satellite-derived aerosol optical depth (AOD) retrievals across India and adjacent regions. We then quantify the 

contributions of nine emission sources to surface PM2.5 pollution across India in 2022: eight domestic sources 

(six anthropogenic and two natural) and transboundary source (all sources combined as one), providing critical 

insights for targeted air quality policy interventions. 75 

 

 

2 Methods 

2.1 WRF-Chem model 

We use a recent version of the Weather Research and Forecasting model coupled with Chemistry (WRF-80 

Chem, version 4.6.1) primarily developed by the National Center for Atmospheric Research (NCAR) (Grell et 

al., 2005). WRF-Chem is a mesoscale air quality model that online couples atmospheric chemistry (including 

aerosols) and meteorology (Fast et al., 2006; Chapman et al., 2009), allowing the simulation of the aerosol 

feedback on regional meteorology that are particularly critical in regions with high aerosol loadings (Zhou et al., 

2019; Sharma et al., 2023; Huang et al., 2023). WRF-Chem is thus widely used to simulate surface PM2.5 85 

pollution over India (Govardhan et al., 2019; Agarwal et al., 2024; Venkataraman et al., 2024; Xie et al., 2024). 

 

2.1.1 Model Configuration 

We conduct simulations for 2022, the most recent year with available emission inventories for India (Section 

2.2), using one month to represent each season: January for winter, April for pre-monsoon, July for monsoon, 90 

and October for post-monsoon. We use a single domain covering India and adjacent regions (57-103° E, 4-39° 

https://doi.org/10.5194/egusphere-2025-4947
Preprint. Discussion started: 20 November 2025
c© Author(s) 2025. CC BY 4.0 License.



  5

N) with a horizontal resolution of 27 km2 (Figure 1). There are 37 vertical layers extending from the surface to 

50 hPa, with 10 to 15 layers below 1000m above ground level, depending on local terrain heights. For 

meteorological initial and lateral boundary conditions, we use the hourly ERA5 climate reanalysis dataset at 

0.25°×0.25° resolution. To prevent drifting effects in simulated meteorological fields, we reinitialize WRF-Chem 95 

meteorology with ERA5 every 48 hours, following our previous studies (Zhou et al., 2022; Xie et al., 2024). The 

chemical initial and boundary conditions are provided by the 6-hour output from the Whole Atmosphere 

Community Climate Model (WACCM) (Gettelman et al., 2019; Emmons et al., 2020).  

 

 100 

Figure 1. WRF-Chem modeling domain and surface PM2.5 measurement stations utilized in this study. The base 

map shows the WRF-Chem modeling domain, with colors representing the terrain height in the model. The 288 surface 

PM2.5 measurement sites used in this study are marked as follows: Red dots represent the continuous monitoring 

stations from the Indian Central Pollution Control Board (CPCB) network; the black and blue crosses represent the 

stations from U.S. Air Now network in India and adjacent countries, respectively. Thick black lines represent the 105 

boundary of the Indo-Gangetic Plain (IGP), which includes Delhi, Punjab, Haryana, Uttar Pradesh, Bihar, and West 

Bengal. We also label the five major cities of Delhi, Mumbai, Kolkata, Hyderabad, and Chennai, where U.S. Air Now 

PM2.5 measurements were available in India.  

 

We configure WRF-Chem with the following chemical schemes: the Carbon Bond Mechanism Z (CBMZ) 110 

gas-phase chemistry scheme (Zaveri and Peters, 1999), and the 4-bin version of the MOdel for Simulating 

Aerosol Interactions and Chemistry (MOSAIC) aerosol scheme with aqueous chemistry (Zaveri et al., 2008). 

The selected MOSAIC scheme simulates major aerosol species, including primary organic aerosols (POA), black 

carbon (BC), sulfate (SOସ
ଶି), nitrate (NOଷ

ି), ammonium (NHସ
ା), sodium (Naା), chloride (Clି), and other inorganic 
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aerosols (OIN, including both natural dust and anthropogenic combustion and non-combustion dust). Each 115 

aerosol species is distributed across four size bins, with the first three bins (diameters ≤ 2.5 µm) contributing 

to PM2.5 dry mass. Aerosols are assumed to be internally mixed inside each bin for optical property calculations. 

Under this configuration, the water uptake and hygroscopic growth properties of aerosols are calculated based 

on the bulk composition of the internally mixed particles (Zaveri et al., 2008). Configurations for physical 

schemes are provided in Supplementary Information 1.1. 120 

 

Natural emissions of dust and biogenic Non-Methane Volatile Organic Compounds (NMVOCs) are 

calculated online within WRF-Chem. For dust emissions, we use the Goddard Chemistry Aerosol Radiation and 

Transport (GOCART) dust module (Ginoux et al., 2001). The GOCART dust emission scheme is widely used in 

aerosol modeling due to its relatively simple input requirements. Specifically, the GOCART scheme calculates 125 

dust emission fluxes using surface erodibility, 10-meter wind speed, threshold soil moisture, and threshold wind 

speed, distributing dust aerosols into five size bins that partially overlap with the MOSAIC aerosol scheme’s 

PM2.5 bins. For biogenic NMVOCs, we use the Model of Emissions of Gases and Aerosols from Nature 

(MEGAN, version 2.06) (Guenther et al., 2006). MEGAN uses leaf area index (LAI), plant functional types 

(PFTs), and WRF-Chem-simulated meteorology to calculate emissions for 134 chemical species, which are 130 

subsequently mapped into the CBMZ gas-phase mechanism. Anthropogenic emissions, including emissions of 

open burning are described in Section 2.2. 

 

Based on the model configuration, PM2.5 dry mass in WRF-Chem is calculated using Equation 1: 

 135 

𝑃𝑀ଶ.ହ ൌ ∑ ሺ𝑃𝑂𝐴௜ ൅ 𝐵𝐶௜ ൅ 𝑂𝐼𝑁௜ ൅ 𝑆𝑂ସ
ଶି

௜ ൅ 𝑁𝑂ଷ
ି
௜ ൅ 𝑁𝐻ସ

ା
௜ ൅ 𝑁𝑎௜ ൅ 𝐶𝑙௜ሻ

௜ୀଷ
௜ୀଵ           (1) 

 

Here, i indicates the aerosol bin used in WRF-Chem.  

 

2.1.2 Model Updates 140 

We implement the simple SOA scheme from the GEOS-Chem global chemistry transport model into WRF-

Chem 4.6.1, as the selected WRF-Chem chemical option treats POA as non-volatile and does not include SOA. 

The simple SOA scheme uses a fixed-yield approach to estimate SOA and SOA precursor (SOAP) emissions 

from biogenic and combustion sources. For biogenic sources, SOA (SOAP) mass yields are assumed to be 1.5% 

(1.5%) from isoprene and 5% (5%) from both monoterpenes and sesquiterpenes. For combustion sources, no 145 

SOA is directly emitted. However, SOAP mass yields are assumed to be 1.3% (6.9%) from biomass (fossil fuel) 

combustion carbon monoxide (CO). Designed as a computationally efficient alternative, the simple SOA scheme 

approximates SOA concentrations without mechanistically modeling the formation and fate of individual aerosol 

species or explicit thermodynamic partitioning (Pai et al., 2020). The simple SOA scheme has demonstrated 

performance comparable to more complex, process-based SOA schemes (Pai et al., 2020; Miao et al., 2021). For 150 

simplicity, the predicted SOA mass from the simple SOA scheme is added to the POA variable to represent total 
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organic aerosols in the model, as shown in Equation 1. 

 

We improve near-surface mixing of chemical species by setting a minimum exchange coefficient for air 

pollutants in the selected boundary layer scheme, following a previous study that found WRF-Chem’s weak 155 

nighttime mixing led to overestimated diurnal variations of PM2.5 (Du et al., 2020).  

 

2.2 Anthropogenic emissions 

2.2.1 Adoption of existing 2022 emission inventories  

We use the most recent release of two global emission inventories for our 2022 WRF-Chem simulation: the 160 

Community Emissions Data System (CEDS, version 2024-07-08) and the Emissions Database for Global 

Atmospheric Research (EDGAR, version 8.1). Both inventories provide gridded emissions for years until 2022 

and are widely used for air quality research. We adopt monthly gaseous emissions of sulfur dioxide (SO2), 

nitrogen oxides (NOx), ammonia (NH3), CO, and NMVOCs in 2022 from CEDS at 0.5°×0.5° resolution (Hoesly 

et al., 2018). In addition, we obtain monthly particulate matter emissions of primary organic carbon (POC), BC, 165 

primary PM2.5, and PM10 emissions in 2022 from EDGAR at 0.1°×0.1° resolution (Crippa et al., 2018), as CEDS 

does not provide primary PM2.5 and PM10 emissions. We spatially interpolate CEDS and EDGAR inventories to 

the 27-km resolution WRF-Chem grid using a mass-conservative method. We use the satellite-derived daily Fire 

INventory from NCAR (FINN, version 2.5.1) to represent open burning emissions of agricultural and municipal 

waste, as well as smoke emissions from wildfires (Wiedinmyer et al., 2023). To avoid double counting, we 170 

exclude open burning emissions from the global inventories described above when they already include this 

source. 

 

To better capture India’s recent increasing displacement of solid fuels by LPG for clean residential energy 

use (The Government of India, 2019), we adopt a 2022 emission inventory developed at the Indian Institute of 175 

Technology Delhi. This new residential inventory applies regression analysis to evaluate residential fuel usage, 

considering recent changes in consumption patterns and updated data on cleaner fuels (Velamuri et al., 2024). 

Thus reductions in emissions from the residential sector are better represented than in the flat residential emission 

trends provided in EDGAR and CEDS from 2015-2022 (Figure 2). Specifically, we adjust India’s residential 

PM2.5, SO2, and NOx emissions to align with state-level totals from this new residential inventory. In addition, 180 

we scale residential emissions of OC, BC, and CO in each Indian state using the factor calculated as the ratio of 

residential PM2.5 emissions from the new inventory to those from EDGAR. We retain the original spatial patterns 

for all these scaled species. We provide a detailed comparison between residential emissions from the current 

global inventories and our updated inventory in Section 3.1. 

 185 

Then, we replace the PM2.5, SO2, and NOx emissions from coal-fired power plants in the updated inventory 

with a new national emission inventory for coal-fired power plants in India for 2022, which is detailed in section 

2.2.2.  
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In addition to these major updates to the emissions from India’s residential and power sectors, we scale 190 

India’s transportation-related PM2.5 and coarse PM (PMcoarse, defined as particles with diameters > 2.5 µm and 

≤ 10 µm) emissions to match the state-level totals from a 2022 road dust emission inventory (Katiyar et al., 

2024). This adjustment is motivated by our finding that transportation PM2.5 emissions in EDGAR (i.e., 0.11 Tg 

across India in 2022) are underestimated compared with this locally-developed inventory in India (i.e., 0.33 Tg). 

Similarly, transportation PMcoarse emissions in EDGAR were only 0.01 Tg across India in 2022, significantly 195 

lower than  the 1.04 Tg estimated by the recent Indian inventory. The discrepancy likely reflects EDGAR’s 

omission of fugitive road dust PM2.5 emissions. 

 

We provide details on aerosol mapping from EDGAR to WRF-Chem and on vertical allocation of emissions 

in Supplementary Information 1.2-1.3. 200 

 

2.2.2 Development of new 2022 coal-fired power plant emission inventory for India 

We construct a new national emission inventory for coal-fired power plants in India in 2022, focusing on 

major air pollutants of SO2, NOx, and PM2.5. The development of this inventory involves three major steps: (1) 

compiling and cross-checking unit-level information from multiple databases; (2) estimating plant-level 205 

emission factors based on a fuel linkage database linking coal used at specific plants to coal source regions, coal 

composition information, and a document estimating emissions factors from coal composition (U.S. 

Environmental Protection Agency); and (3) utilizing plant-level electricity generation and coal consumption data 

from reports from the Central Electricity Authority (CEA) of India. Each of these steps is detailed in the 

following paragraphs. 210 

 

We collect unit-level information from the Global Energy Monitor’s (GEM)'s coal power plant database for 

July 2022. To align with India’s central government data, as reflected in the Vasudha Foundation's datasets (The 

National Institution for Transforming India Aayog, 2025), we include all operating units from the GEM database. 

For captive units, we only include those documented by Vasudha. This results in a total of 210.6 GW in 215 

generation capacity, which matches the coal and lignite capacity reported by the CEA in July 2022. We retrieve 

the unit location from the GEM database. For units listed with “approximate” location coordinates in the GEM 

database, we update their coordinates using Google Earth. We replace the heating rate in the GEM database with 

a machine-learning-developed, measurement-constrained database (Ding et al., 2024). 

 220 

We collect coal composition data for nine domestic coal source states and three imported coal regions 

(Australia, South Africa, and Indonesia) through a literature review. We then convert the carbon, sulfur, and ash 

content of coal into uncontrolled emission factors for SO2 and PM2.5 under various firing configurations for both 

bituminous and subbituminous coal based on a report (U.S. Environmental Protection Agency). In addition, the 

report provides NOx emission factors that are independent of nitrogen content in the coal. Based on this 225 
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information, we establish region-specific uncontrolled emission factors for both domestic coal and imported coal 

used in India’s power plants (Supplementary Table 1). We average data for a given region if multiple coal 

composition data is found. We assume no variation in coal composition within a given coal source region. Plant-

level fuel linkage dataset are obtained from multiple data sources (The National Institution for Transforming 

India Aayog, 2025), which matches each plant with one or more coal source regions. Finally, we estimate plant-230 

level emission factors for air pollutants, using Equation 2. 

 

𝐸𝐹௜,௦ ൌ ෌ 𝐸𝐹௥,௦
௡

௥ୀଵ
∗ 𝐹௜,௥          (2) 

 

Where EFi,s is the emission factor (g pollutant/kg coal) for power plant i and species s; EFr,s is the emission 235 

factor (g pollutant/kg coal) of coal for source region r and species s; Fi,r is the fraction of coal supplied at plant 

i that is sourced from region r. 

 

We retrieve daily plant-level coal consumption reports from the CEA for the calendar year 2022 and 

aggregate data by month. In addition, we retrieve monthly plant-level electricity generation reports from the 240 

CEA for the same year. While generation data is available for all plants throughout the year, the coal consumption 

data is missing for some plants. For plants with missing monthly coal consumption data, we estimate the missing 

values by applying the plant’s generation-to-coal consumption ratio, averaged from months where both 

generation and coal consumption data are available. For plants with no coal consumption data for the entire year, 

we estimate the coal consumption using the reported generation, coal heating value, and heating rate using 245 

Equation 3: 

 

𝐶௜,௝ ൌ 𝐺௜,௝ ∗ 𝐻𝑅௜/𝑇𝑉௜          (3) 

 

Where Ci,j is the monthly coal consumption (tons) for power plant i and month j; Gi,j is the monthly electricity 250 

generation (MWh) for power plant i and month j; HRi is the heating rate (MJ/kWh) for plant i, which represents 

the plant thermal efficiency; TVi is the thermal value (MJ/kg coal) of coal used in plant i. 

 

Finally, we estimate the monthly total emissions for air pollutants for each plant, using Equation 4. 

 255 

𝐸௜,௝,௦ ൌ 𝐶௜,௝ ∗ 𝐸𝐹௜,௦ ∗ ሺ1െ 𝜂௦ሻ          (4) 

 

Where Ei,i,s, is the monthly total emissions (tons) for power plant i, month j, and species s; Ci,j is the monthly 

coal consumption (tons) for power plant i and month j; Ei,s is the emission factor (kg pollutant/ton coal) of coal 

for plant i and species s; ηs is the removal efficiency for air pollutant species s, and we assume a 90% removal 260 

rate (η=0.9) for PM2.5 and no end-of-pipe controls for SO2 and NOx (η=0) following previous studies (Sengupta 

et al., 2022; Singh et al., 2024). This assumption is supported by a recent report which documents that only 3.2% 
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of coal-based power plants in India have installed Flue Gas Desulfurization (FGD) systems and does not mention 

the installation of NOx control devices (National Environmental Engineering Research Institute, 2024). 

 265 

We do not account for NOx emission from gas plant operation in 2022. According to the Indian Petroleum 

and Natural Gas Statistics 2022–23, gas consumption for this fiscal year was ~8 billion m3. Using the gas plant 

NOx emission factors from the USEPA report, we estimate the total NOx emissions from gas plant to range from 

0.01 to 0.04 Tg/year, which is far lower than those from coal-fired power plants (i.e., 4.56 Tg/year).    

 270 

2.3 Measurement data for model evaluation 

2.3.1 Surface PM2.5 measurements 

To evaluate the model performance, we compare simulated PM2.5 dry mass concentrations with surface 

observations from the India Central Pollution Control Board (CPCB) continuous monitoring network and the 

US AirNow network in South Asia (Figure 1). We initially retrieve hourly data from 510 measurement stations 275 

within the WRF-Chem modeling domain and apply rigorous quality control procedures to filter out outliers and 

identical consecutive values, as documented in our previous publications (Zhou et al., 2024; Xie et al., 2024). 

Measurement stations with at least 80% valid hourly data in a given model evaluation period (e.g., January 2022) 

after quality control are used to evaluate the WRF-Chem model. This criterion excludes 223 stations and retains 

288 stations for analysis. Multiple measurements within a single WRF-Chem grid cell are averaged before 280 

comparison with model output. 

 

2.3.2 Satellite AOD measurements 

We obtain Aerosol Optical Depth (AOD) from the Multi-Angle Implementation of Atmospheric Correction 

(MAIAC) algorithm, which provides AOD at a 1-km spatial resolution globally over land and coastal regions 285 

(Lyapustin et al., 2018). The radiances used in the retrieval are measured by the twin Moderate Resolution 

Imaging Spectroradiometer (MODIS) instruments onboard the Terra and Aqua satellites. Terra follows a 

descending orbit with an equatorial crossing at 10:30 Local Time (LT), while Aqua follows an ascending orbit 

with an equatorial crossing at 13:30 LT. For model evaluation, we interpolate the satellite AOD to the WRF-

Chem resolution of 27 km2, and compare it with the model results averaged from 10:00 to 14:00 LT each day 290 

for each grid box. In addition, WRF-Chem calculates AOD at 300 nm, 400 nm, 600 nm, and 1000 nm 

wavelengths, and the model interpolates AOD to 550 nm for diagnostic output using the Ångström power law, 

making it consistent with the MAIAC product. 

 

2.3.3 Population dataset and Population-Weighted (PW) mean PM2.5 concentration 295 

We obtain gridded 2015 population from the Global Population for the World dataset (version 4) and scale 

those values to reported total population in India in 2022. PW mean PM2.5 concentrations in a given region is 

calculated using Equation 5. 

 

https://doi.org/10.5194/egusphere-2025-4947
Preprint. Discussion started: 20 November 2025
c© Author(s) 2025. CC BY 4.0 License.



  11

𝑃𝑊𝑃𝑀ଶ.ହ ൌ ∑ ሺ𝑃𝑀2ଶ.ହ,௜ ∗ 𝑃𝑂𝑃௜ሻ
௜ୀ௡
௜ୀଵ /∑ ሺ𝑃𝑂𝑃௜ሻ

௜ୀ௡
௜ୀଵ           (5) 300 

 

Where PM2.5,i and POPi are the annual mean PM2.5 concentration (from the WRF-Chem baseline simulation) 

and total population in grid i, respectively; n is the number of model grids in a given region. 

 

2.4 WRF-Chem Simulation 305 

We conduct a baseline simulation using the model configurations described in Section 2.1 and the updated 

anthropogenic emission inventory described in Section 2.2. We perform a thorough model evaluation against 

PM2.5 and AOD observations in Section 2.3 that establishes the robustness of model results. 

To attribute surface PM2.5 concentrations to specific sources, we next conduct a series of additional WRF-

Chem simulations in which emissions from individual sources inside and outside India are sequentially zeroed 310 

out. We individually remove six domestic anthropogenic sectors within India (i.e., power, industry, residential, 

transportation, open burning, and agriculture emissions), two natural sources within India (i.e., dust and biogenic 

emissions), and transboundary emission sources from outside India (i.e., natural and anthropogenic emissions). 

We provide a summary of emission scenarios for all WRF-Chem simulations in Table 1.  

 315 

Table 1. Emission scenarios for WRF-Chem simulations conducted in this study 

Scenarios 
Domestic Sources (Emissions inside India) Transboundary Sources 

(Emissions outside India) † Anthropogenic * Dust ¶ Biogenic ¶ 

Baseline On On On On 

POWoff Power sector off ‡ 

On On On 

INDoff Industry sector off ‡ 

RESoff Residential sector off ‡ 

TRAoff Transportation sector off ‡ 

AGRoff Agriculture sector off ‡ 

FIREoff Open burning off ‡ 

DSToff On Off On On 

BVOCoff On On Off On 

TBDYoff On On On Off 

*This includes emissions from six source sectors within India: power, industry, residential, transportation, agriculture 

(excluding open burning), and open burning. 
¶We modify WRF-Chem to enable grid-level customization to turn dust and biogenic emission modules on and off. 
†This includes both anthropogenic and natural emissions (i.e., dust and biogenic) originating outside of India but 320 

within the WRF-Chem modeling domain, as well as the long-range transport of pollutants from regions beyond the 

WRF-Chem domain (i.e., the chemical boundary conditions for the model derived from the Whole Atmosphere 

Community Climate Model). 
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‡All other sectors’ emissions are kept unchanged as the baseline scenario. 

 325 

The contribution of each source is first estimated by subtracting the results of the source-zeroed simulation 

from those of the baseline simulation, using Equation 6. However, due to strong non-linearities in the 

relationship between partial emission reductions (i.e., less than 100%) and resulting decreases in PM2.5 

concentrations—primarily driven by secondary PM2.5 formation (Liu et al., 2021) and aerosol-meteorology 

feedbacks (Zhou et al., 2019)—the sum of individual source contributions does not equal the total concentration 330 

in the baseline simulation. To address this disparity, we apply a scaling factor to each source’s contribution, based 

on the ratio of baseline concentration to the summed contributions at each WRF-Chem grid cell for PM2.5 and 

its components, using Equation 7. This ensures that the sum of individual source contributions equals the total 

concentration in the baseline simulation for each WRF-Chem grid. 

 335 

𝐶𝑜𝑛𝑡𝑟𝑖𝑏௖௛௘௠,௜ ൌ 𝐶௖௛௘௠,௕௔௦௘௟௜௡௘ െ 𝐶௖௛௘௠,௜ି௢௙௙          (6) 

𝐶𝑜𝑛𝑡𝑟𝑖𝑏௦௖௔௟௘ௗ,௩௔௥,௜ ൌ 𝐶𝑜𝑛𝑡௩௔௥,௜ ∗
஼ೡೌೝ,್ೌೞ೐೗೔೙೐
∑ ஼௢௡௧ೡೌೝ,೔
వ
೔సభ

          (7) 

 

Here, Contribchem,i represents the source attribution (in concentration units) of chemical species chem to the 

ith emission source; Cchem,baseline and Cchem,i-off are the WRF-Chem simulated concentrations of chemical species 340 

chem in the baseline simulation and in the simulation where the ith emission source is turned off, respectively; 

Contribscaled,chem,i is the scaled source attribution (in concentration units) of variable chem to the ith emission 

source. 

 

 345 

3 Results 

In this section, we first compare annual national and sectoral anthropogenic emissions of PM2.5 and key 

precursors in India from 2015 to 2022, comparing multiple global inventories and our updated merged 2022 

inventory (Section 3.1). We then evaluate the performance of the WRF-Chem model using ground-based PM2.5 

measurements and satellite-derived aerosol optical depth (AOD) (Section 3.2). Last, we use the model to assess 350 

the spatial distribution of PM2.5 pollution in 2022 and quantify contributions from major emission sources to 

both total PM2.5 and PM2.5 components (Section 3.3-3.4).  

3.1 Comparison of annual anthropogenic emissions of PM2.5 and key precursors in India 

We present annual national total and sectoral emissions for SO2, NOx (as NO2), and PM2.5 in India from 2015 

to 2022 (Figure 2), showing results from five inventories: our updated 2022 inventory, the Speciated 355 

MultipOllutant Generator (SMoG) 2015 inventory developed in Indian Institute of Technology (IIT) Bombay 

(Venkataraman et al., 2018), and three widely used global inventories (recent releases)—CEDS (released on 

2024-07-08), EDGAR (version 8.1, released in 2024), and Hemispheric Transport of Air Pollution (HTAP, 
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version 3.1, released in 2025) (Hoesly et al., 2018; Crippa et al., 2018; Guizzardi et al., 2025). For global 

inventories, while CEDS and EDGAR provide emissions up to 2022, HTAP extends only through 2020. For 360 

India, HTAP adopts the Regional Emission inventory in ASia (REAS, version 3.2.1 (Kurokawa and Ohara, 2020)) 

for 2015 and applies country-sector-pollutant-specific emission trends derived from EDGAR to estimate 

emissions from 2016 to 2020.  

 

Annual primary PM2.5 emissions in India, reported only by EDGAR (2015-2022), HTAP (2015-2020), and 365 

SMoG (2015), exhibit interannual variations, with emissions increasing from 2015 to 2018, declining to 2020, 

and rising again thereafter. Specifically, EDGAR reports a total PM2.5 emission of 4.3 Tg in 2022, while HTAP 

reports 5.0 Tg for 2020, its latest available year. The cross-inventory uncertainty for annual PM2.5 emissions 

(calculated annually as the highest emission minus the lowest emission, divided by the averaged emission) from 

2015 to 2020 is 24±2%. The residential and industrial sectors were two leading contributors to total PM2.5 370 

emissions in India, accounting for 42±2% and 41±5% of total emissions, respectively. 

 

 

Figure 2. Comparison of annual anthropogenic sectoral total emissions over India among three global 

https://doi.org/10.5194/egusphere-2025-4947
Preprint. Discussion started: 20 November 2025
c© Author(s) 2025. CC BY 4.0 License.



  14

inventories, one regional 2015 inventory, and our updated 2022 inventory. For each country and species, 375 

CEDSv2024-07-08, EDGARv8.1, and HTAPv3.1 report sectoral total emission across 59, 32, and 16 detailed sectors, 

respectively. Those detailed sectors are aggregated into five widely used sectors: power, industry, residential, 

transportation, and agriculture. In this figure, because CEDSv2024-07-08 does not include open burning of agricultural 

waste and wildfire, we exclude it from the agricultural sector emissions in EDGARv8.1 and HTAPv3.1 to enable direct 

comparison among the inventories. Note that CEDSv2024-07-08 does not provide primary PM2.5 emissions, and HTAPv3.1 380 

extends only until 2020. Details on the updated inventory are provided in Section 2.1.  

 

For annual total SO2 emissions, all three global inventories indicate a similar emission trend from 2015 to 

2020, showing an increase from 10.6±0.9 Tg in 2015 to a peak of 11.8±1.2 Tg in 2018, followed by a reduction 

to 10.3±0.8 Tg in 2020 due to COVID lockdown. After 2020, the CEDS and EDGAR inventories report increases 385 

in annual total SO2 emissions from 9.4 Tg and 10.7 Tg in 2020 to 10.9 Tg and 12.5 Tg in 2022, respectively. The 

cross-inventory uncertainty for annual SO2 emissions is 15± 3% from 2015 to 2022. The power sector 

consistently dominates SO2 emissions in India from 2015 to 2022, accounting for 61±2% of total emissions 

across inventories (Supplementary Table 2). This dominance is driven by India’s growing electricity 

consumption (e.g., an increase of 86% from 2010 to 2022) and continued heavy reliance on coal-fired power 390 

generation (e.g., 72% in 2022), along with limited implementation of end-of-pipe pollution controls (Kumar and 

Dahiya, 2023). The industry and residential sectors contribute 32±2% and 6±0%, respectively, to total SO2 

emissions in India over the same period. 

 

Similarly, annual total NOx emissions in India increased from 9.5±1.0 Tg in 2015 to 10.2±1.1 Tg in 2018, 395 

then declined to 9.1±1.0 Tg by 2020 according to all three global inventories. Post-2020, the CEDS and EDGAR 

inventories show increases in annual total NOx emissions from 8.5 Tg and 8.6 Tg in 2020 to 9.3 Tg and 9.8 Tg 

in 2022, respectively. The power sector remains the largest contributor to NOx emissions over the period of 2015 

to 2022 in all inventories, accounting for 39 ± 0% of the total, followed by the transportation (29±1%), industry 

(19±1%), and residential (8±0%) sectors. The inventory for annual NOx emissions is 16±8% from 2015 to 2022 400 

across inventories. 

 

Solid fuel had been historically widely used in India’s residential sector, such as biomass for residential 

cooking and kerosene for lighting, which leads to high PM2.5 emission due to their inefficient and incomplete 

combustion (Chowdhury et al., 2019). The residential sector has recently benefited from mitigation efforts under 405 

the NCAP which has promoted the use of liquified petroleum gas (LPG) as a cleaner fuel replacing solid fuels 

(Bhaskar, 2019). This clean energy transition in the residential sector is not captured by any of the global 

inventories, in which residential emissions remain largely unchanged after 2017 (Figure 2). Therefore, we 

adopted a recently developed residential emission inventory that accounts for recent consumption pattern 

changes and cleaner fuel adoption in 2022 (Velamuri et al., 2024). As a result of incorporating the updated 410 

residential inventory, annual total residential emissions are reduced by 0.5 Tg for primary PM2.5 (33% relative 
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to EDGAR), reduced by 0.4 Tg for SO2 (82% relative to CEDS), and reduced by 0.7 Tg for NOx (80% relative 

to CEDS). 

 

In addition to update the residential emissions, we replace power sector emissions with our coal-fired power 415 

plant emission inventory described in Section 2.2.2. Our coal-fired plant emission inventory covers all 

operating units regulated by India’s Central Electricity Authority (CEA), using detailed plant-level generation 

reports archived by the CEA to improve the accuracy of activity data. We estimate annual total emissions from 

coal-fired power generation across India in 2022 to be 6.2±1.5 Tg for SO2, 4.6±0.3 Tg for NOx, and 0.8±0.1 Tg 

for primary PM2.5, with the range reflecting uncertainties in emission factors without mitigation as reflected in 420 

the literature (Supplementary Table 1). These total emissions, along with the estimated emission factors 

per unit of electricity generated, are comparable to those reported in four earlier studies focused on India’s 

coal-fired power plant emissions (Guttikunda and Jawahar, 2014; Cropper et al., 2021; Singh et al., 2024; 

Velamuri et al., 2024) (Supplementary Table 3). In addition, the spatial distributions of gridded power plant 

emissions among CEDS, EDGAR, and our inventory are similar (Supplementary Figure 1). As a result of 425 

incorporating our coal plant inventory, annual total emissions for the power sector are increased by 0.4 Tg for 

PM2.5 (90% relative to EDGAR), reduced by 0.6 Tg for SO2 (9% relative to CEDS), and increased by 0.4 Tg for 

NOx (10% relative to CEDS). The adoption of India-specific emission factors (Supplementary Table 1), 

informed by a literature review of India’s high-ash coal, may explain why our estimates of primary PM2.5 

emissions are substantially higher than those from EDGAR. A 2019 emission inventory developed by multiple 430 

Indian institutions reported an even higher annual primary PM2.5 emission of 1.7 Tg from the power sector 

(Venkataraman et al., 2024). 

 

In 2022, our updated emission inventory reports India total emissions at 9.5 Tg for SO2, 10.1 Tg for NOx, 

and 4.3 Tg for primary PM2.5. Compared with existing global inventories in 2022, our total SO2 emissions are 435 

1.4 Tg (13% relative to CEDS) lower, while total PM2.5 and NOx emissions are 0.04 Tg (1% relative to EDGAR) 

and 0.8 Tg (9% relative to CEDS) higher, respectively. These differences result from the updates in emissions 

from the residential, power, and transportation (i.e., road dust) sectors in 2022.  

 

3.2 Model evaluation for surface PM2.5 and aerosol optical depth (AOD) 440 

The improved WRF-Chem simulations capture the spatial distribution of annual mean surface PM2.5 

concentrations (calculated as the mean of January, April, July and October means) across India and adjacent 

regions well, achieving a Pearson correlation coefficient (R) of 0.71 between modeled and observed 

concentrations (Figure 3). Annual model bias across the entire domain (116 model grids and 288 measurement 

sites) is 0.2±16.9 μg/m3 (0±31%). Model biases in annual mean surface PM2.5 are within ±10 μg/m3 in 57% of 445 

the WRF-Chem grids which have measurement sites, whereas biases exceed ±30 μg/m3 in 9% of these grids. 

Across the Indo-Gangetic Plain (IGP), the region with the most severe PM2.5 pollution in India, simulated annual 

mean surface PM2.5 concentrations differ from observed concentrations by -1.9±21.2 μg/m3 (3±31%). 
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Specifically, in Delhi, the modeled annual mean surface PM2.5 concentration (100.2 μg/m3) is virtually the same 

as the observed mean (100.7 μg/m3). These results indicate the models’ ability to reproduce the spatial pattern 450 

of annual mean surface PM2.5 levels across India and nearby regions in 2022, providing large improvements over 

previous air quality modeling studies for India (Conibear et al., 2018; Reddington et al., 2019; Singh et al., 2021; 

Pai et al., 2022). Model simulations using the global emission inventories without improvements for Indian 

sectoral emissions and without improved near-surface mixing of pollutants show a significant overestimation of 

annual PM2.5 by 23.0±29.0 μg/m3 (42±53%) across the domain and by 92.5±40.9 μg/m3 (92±41%) in Delhi (The 455 

‘Default’ Simulation in Figure 4). 

 

 

Figure 3. Comparison of observed and modeled surface PM2.5 concentrations in 2022. Measurement stations with 

at least 80% valid hourly data during the four-month period (January, April, July, and October) are selected. Multiple 460 

measurements within a single WRF-Chem grid cell are averaged before comparison with WRF-Chem. a-d, 

comparison of annual mean surface PM2.5 concentrations between observations (OBS) and model simulations (MOD). 

Annual value is estimated by averaging PM2.5 concentrations during the four-month period. In a-c, N denotes the 

number of grid cells used for evaluation, and the other numbers represent the mean ± one standard deviation across 

all grid cells. The thick black line denotes the boundary of the Indo-Gangetic Plain (IGP). In d, R is the Pearson 465 

correlation coefficient between observed and modeled annual mean concentrations across all grid cells. e and g, 

comparison of daily mean surface PM2.5 concentrations between observations and WRF-Chem simulations in the IGP 
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(e) and Delhi (g). f and h are the same as e and g, but for annual mean PM2.5 diurnal variations. In e-h, red and black 

lines represent PM2.5 concentrations for observations and simulations, respectively, averaged across available grid 

cells in each region noted in the panel, with shaded areas indicating one standard deviation. Temporal R is the Pearson 470 

correlation coefficient between the red and black lines in each panel. See Supplementary Table 4 for PM2.5 model 

performance at state level. 

 

Beyond annual averages, WRF-Chem also effectively captures daily PM2.5 variations throughout the four-

month period (Figure 3e-h). In the IGP and Delhi, the Pearson correlation coefficients between modeled and 475 

observed regional mean daily PM2.5 concentrations are 0.93 and 0.81, respectively. In addition, the twin-peak 

pattern in diurnal PM2.5 concentrations are well reproduced by WRF-Chem, though the morning peak in Delhi 

is underestimated. In contrast, model simulations without the emission and near-surface mixing updates show 

much stronger diurnal variability in hourly PM2.5 concentrations than the observation, resulting from 

overestimated local emission fluxes and insufficient nighttime near-surface mixing (Figure 4). 480 

 

 

Figure 4. Comparison of PM2.5 performances among three emission and model configurations in 2022. The 

configurations are: (1) Default (in blue)— official WRF-Chem v4.6.1 with the GEOS-Chem simple SOA scheme, 

driven by the standard CEDS and EDGAR inventories as described in Section 2.2.1; (2) Default + Emission Updates 485 
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(in green)— configuration (1) plus sectoral updates for the residential and power sectors, as well as road dust, as 

described in Sections 2.2.1 and 2.2.2; (3) Default + Emission Updates + Mixing Updates (in red)— configuration (2) 

plus improved near-surface mixing of chemical species, this configuration is adopted by the Baseline simulation as 

mentioned in Table 1 and Figures 3 and 5. Model performance is evaluated using (a) monthly and annual mean bias 

across the entire domain, and (b–c) annual mean PM2.5 diurnal patterns for the Indo-Gangetic Plain (IGP) and Delhi, 490 

respectively. In a, box-whisker plots demonstrate the distribution of PM2.5 model bias across the entire domain 

simulated by three configurations. The boxes denote the 25th, 50th, and 75th percentiles, and the whiskers denote the 

5th and 95th percentiles of PM2.5 bias. In b-c, shaded areas indicate one standard deviation across available grid cells 

in each region noted in the panel. 

 495 

Despite the good model performance of the baseline simulation discussed above, notable biases remain in 

several regions (Figure 3b). Specifically, modeled annual mean surface PM2.5 concentrations exceed 

observations by more than 30 μg/m3 in West Bengal (e.g., Kolkata) and a few stations in Gujarat, Punjab, and 

Rajasthan, while modeled concentrations underestimate observations by more than 30 μg/m3 in a few stations in 

Bihar and Uttar Pradesh. We summarize the state-level model performance in Supplementary Table 4. We find 500 

the largest negative model bias in annual mean surface PM2.5 concentrations in Bihar (-19±12 μg/m3, -23±17%). 

Out of 10 WRF-Chem grids in Bihar containing measurement stations, 9 grids underestimate PM2.5, with 2 grids 

underestimating by more than 30 μg/m3. In contrast, the largest positive model bias occurs in West Bengal, where 

modeled annual mean surface PM2.5 concentrations exceed observations by 32±19 μg/m3 (61±47%). Model 

biases in January play a dominant role in these annual biases, contributing, on average, 51% (10 μg/m3) of the 505 

annual negative bias in Bihar and 57% (18 μg/m3) of the annual positive bias in West Bengal. However, PM2.5 

concentrations observed at CPCB stations in Kolkata (West Bengal) are systematically lower—by 60 μg/m3 

(39%) in January and 30 μg/m3 (44%) annually—compared to those recorded at the nearby US Air Now station. 

A model evaluation at Kolkata using only the US Air Now station data, instead of averaging across all available 

measurement stations, significantly reduces the positive model bias from 145% to 49% in January, and from 510 

147% to 45% annually. 

 

We then utilize satellite-derived AOD data to evaluate the model's performance in simulating the spatial 

distribution of aerosol column loadings across India. Satellite data provides greater spatial coverage than the 

surface PM2.5 measurement network. WRF-Chem reproduces the spatial pattern of AOD, with a Pearson 515 

correlation coefficient of 0.84 between annual modeled and observed AOD across India (Supplementary Figure 

2), and monthly correlations ranging from 0.72 to 0.82 (except for July when too much data is missing). However, 

WRF-Chem exhibits a consistent negative bias in AOD across India, with an annual mean bias (normalized mean 

bias) of -0.12 ± 0.06 (-29 ± 14%) compared to satellite observations. AOD underestimation persists even in 

regions where surface PM2.5 concentrations are significantly overestimated (e.g., West Bengal). Previous 520 

modeling studies have attributed similar AOD underestimation over India primarily to the underrepresentation 

of large particles (diameter > 2.5 µm) (David et al., 2018; Singh et al., 2021). Consistent with this, our simulation 
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shows significantly underestimated surface coarse particulate matter (PM_coarse; particles with 

diameters > 2.5 µm and ≤ 10 µm) compared to CPCB measurements (Supplementary Figure 3). This domain-

wide low bias in PMcoarse concentrations is likely due to missing PMcoarse emissions (e.g., urban dust and other 525 

underrepresented burning activities) in our updated emission inventory. 

 

3.3 Total surface PM2.5 concentrations and their source attribution across India in 2022  

We analyze the national and regional surface PM2.5 concentrations (both total and attributed to specific 

sources) using the PW mean metric (see Section 2.2.3 for PW mean calculation). PW mean concentrations reflect 530 

population exposure and is indicative of associated health risks. In addition, we investigate the spatial 

distribution of PM2.5 concentrations originating from various sources in order to identify local hotspots 

associated with specific emission sources. 

 

 535 
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Figure 5. Baseline annual PM2.5 concentrations in 2022 across India and their source attribution. In a, Annual 

results are calculated as the average of January, April, July, and October simulations. Spatial distribution of annual 

average PM2.5 concentrations across India are shown in color. National averages for Population-Weighted (PW) and 

spatial mean PM2.5 concentrations are given as inset values in the figure. Panel b shows 27km2 gridded population 

density across India. In a and b, the thick black line denotes the boundary of the Indo-Gangetic Plain (IGP). In c, 540 

WRF-Chem grids are aggregated by ranges of annual mean PM2.5 concentrations, with colored bars indicating source 

attribution (left Y axis). The red line and dots indicate the cumulative percentage of the population (right Y axis) living 

in areas where the annual mean PM2.5 concentration falls within or below a given concentration range. For example, 

36.6% (95.2%) of the Indian population was exposed to annual PM2.5 concentrations < 40 (80) μg/m3 in 2022). See 

monthly versions of panel c in Supplementary Figure 4. 545 

 

Our WRF-Chem simulation estimates a 2022 national PW mean annual surface PM2.5 concentration of 47.4 

μg/m3 (Figure 5a), similar to the 51.6 μg/m3 reported in a recent satellite-based machine learning study (Kawano 

et al., 2025). In 2022, 37% of India’s population lived in areas where annual PM2.5 concentrations met the 

national air quality standard of 40 μg/m3 (Figure 5c), representing an increase from 17% in 2016 (Apte and Pant, 550 

2019). This change indicates an improvement in India’s PM2.5 air quality from 2016 to 2022 under the NCAP, 

aided by favorable meteorological conditions that enhanced pollutant dispersion and removal (Xie et al., 2024). 

However, in 2022, only 29% of the national population was exposed to PM2.5 levels below the least stringent 

annual World Health Organization (WHO) standard (35 μg/m3), and less than 0.1% met the most stringent annual 

WHO standard (5 μg/m3). Regionally, the IGP experienced the highest annual PW mean PM2.5 concentration in 555 

2022 at 58.9 μg/m3, followed by Northwest India (58.3 μg/m3) and Central India (46.3 μg/m3). In contrast, 

Northeast India (28.1 μg/m3), South India (27.3 μg/m3) and the Himalayan states (25.3 μg/m3) had lower annual 

PW mean PM2.5 concentrations.  

 

At the national level, emissions originating within India accounted for 73% (34.5 μg/m3) of the annual PW 560 

mean PM2.5 concentration in 2022, while transboundary emission sources contributed the remaining 27% (12.8 

μg/m3) (Figure 6). We summarize the national and state-level PW mean PM2.5 concentrations attributed by 

source in Supplementary Table 5.   

 

Among domestic sources, the industrial sector was the leading contributor to the national annual PW mean 565 

PM2.5 concentration in 2022, accounting for 18% (8.6 μg/m3). Spatially, its contribution was particularly 

dominant in heavily polluted areas where annual PM2.5 levels exceeding 80 μg/m3 (twice the national standard) 

(Figure 5c). In some local hotspots within these areas—including major urban centers such those of Delhi and 

Mumbai—industrial emissions alone contributed more than 40 μg/m3 to simulated annual surface PM2.5 

concentrations (Figure 6), suggesting that to achieve national air quality standards in these hotspots it will be 570 

necessary to regulate industrial emissions. 
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India’s residential sector, which has been undergoing a clean energy transition toward LPG since 2016, was 

the second-largest domestic contributor (15%; 7.3 μg/m3) to the national PW mean PM2.5 concentration in 2022. 

Spatially, however, the residential sector remained the dominant PM2.5 source across large areas of the IGP, 575 

especially during winter (Figures 7). Consequently, ~500 million people in India lived in areas where residential 

emissions were the dominant source of annual PM2.5 pollution in 2022, the highest among all domestic sources. 

This highlights the continued substantial health burden associated with residential emissions, and the need to 

augment recent progress in adoption of cleaner cooking fuels. 

 580 

 

Figure 6. Spatial pattern of annual surface PM2.5 concentrations across India in 2022 attributed to a given 

source. Annual results are calculated as the average of January, April, July, and October simulations. In each panel, 

numbers outside parentheses indicate the annual Population-Weighted (PW) mean PM2.5 concentrations and spatial 

mean (Mean) PM2.5 concentrations across India. Numbers inside parentheses represent the source’s percentage 585 

contribution across India to total PM2.5. Uncertainty bounds represent one standard deviation across monthly values, 

and provide an indication of the seasonal variation of a given sector’s impact on surface PM2.5. See Supplementary 

Table 3 for source contribution to annual PW mean PM2.5 at each state. The thick black line denotes the boundary of 
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the Indo-Gangetic Plain (IGP). 

 590 

India’s power sector, based on our updated emission inventory, was the third-largest contributor to the 

national PW mean PM2.5 concentration in 2022 (13%; 6.1 μg/m3). Spatially, the power sector primarily 

influenced PM2.5 air quality in Central India, particularly in Chhattisgarh and Jharkhand (Figures 6 and 7). This 

is due to central India generating 52% of India’s annual coal-based electricity in 2022 and power plants typically 

having emission controls only on primary particulates and not on SO2 or NOx which contribute to the formation 595 

of secondary inorganic aerosols. About 270 million people lived in areas where power sector emissions were the 

largest domestic source for annual PM2.5 exposure. Notably, the spatial extent of power sector–dominated areas 

was the largest among all domestic emission sources.  

 

India’s transportation sector made a smaller contribution to the national annual PW mean PM2.5 concentration 600 

in 2022 (8%; 3.8 μg/m3), compared with the industry, residential, and power sectors. Spatially, its impact was 

most notable across much of the IGP and eastern Rajasthan, where it contributed moderately (~5 to 10 μg/m3) 

to annual PM2.5 (Figures 5). In Delhi, the transportation sector recorded its highest state-level contribution to 

annual PM2.5, reaching 11.6 μg/m3 (11%, Supplementary Table 5). However, transportation was not the 

dominant domestic source of annual PM2.5 in any of India’s populous regions in 2022 (Figures 6). 605 

 

 

Figure 7. Dominant domestic PM2.5 sources at monthly and annual timescales. Transboundary emission sources 

are excluded. Numbers in parentheses in the legend indicate the population (in millions) across India residing in areas 

where a specific domestic emission source dominated in 2022. The thick black line denotes the boundary of the Indo-610 

Gangetic Plain (IGP). 
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India’s agricultural sources contributed 8% (3.7 μg/m3) to the national annual PW mean PM2.5 concentration. 

This PM2.5 was primarily derived from secondary inorganic aerosols formed from NH3 emitted from fertilizer 

use and livestock as well as a minor source from NOx emitted from agricultural fields.  615 

 

India’s open burning emissions, derived from the FINN inventory and representing satellite- detectable 

burning of crop residues, municipal waste and wildfires, contributed 8% (3.6 μg/m3) to the annual PW mean 

PM2.5 concentrations across India in 2022. Their impacts were strongly seasonal, with elevated contributions of 

15% (8.3 μg/m3) and 10% (4.3 μg/m3) to the national PW mean PM2.5 in April and October, respectively. Spatially, 620 

the regional hotspots switched between months. In April, open burning is most influential in Central India and 

Northeast India (Figures 5). In October, open burning became the dominant source of PM2.5 in northeastern IGP, 

including Delhi, with significant monthly contributions exceeding 40 μg/m3 (Supplementary Figure 5). 

Previous studies have shown that groundwater conservation policies in the northeastern IGP—one of India’s 

major crop harvesting and residue burning regions—have shortened the turnover period between crop seasons 625 

and delayed agricultural burning (Balwinder-Singh et al., 2019). As a result, burning has shifted later in the year, 

often extending into late fall, when meteorological conditions are less favorable for pollutant dispersion, thereby 

amplifying the impact of open burning on surface PM2.5 concentrations (Liu et al., 2022). These earlier findings 

underscore the complexity of effectively controlling open burning emissions. 

 630 

Domestic natural dust emissions, derived from desert dust simulated by WRF-Chem, contributed 4% (1.9 

μg/m3) to the national annual PW mean PM2.5 concentration in 2022. Spatially, it had a substantial impact on 

PM2.5 levels in Northwest India, where grid-level annual contributions exceed 40 μg/m3 in its western part. 

However, due to the low population density in Northwest India and the limited impact of natural dust on surface 

PM2.5 outside this region (Figures 4b and 5), natural dust was not a major factor for PM2.5 exposure at the 635 

national level. Despite limited exposure among the population, the natural dust zones overlap substantially with 

India’s solar energy generation centers. This spatial coincidence may lower solar power generation efficiency 

due to aerosol-induced dimming and soiling, though the soiling impact can be mitigated if panels are cleaned on 

a regular basis (Li et al., 2020).  

 640 

Domestic biogenic emissions had a small but net negative contribution to annual PW mean PM2.5 

concentrations across India (-1%; -0.5 μg/m3). At the grid level, the net annual contribution was between -2 

μg/m3 to 0 μg/m3 across the country. We find a reduction in secondary inorganic PM2.5 components—sulfate, 

nitrate, and ammonium—as well as in the sulfate oxidation ratio and nitrate oxidation ratio, following the 

inclusion of domestic biogenic emissions in the WRF-Chem model (Supplementary Figure 6). The inclusion 645 

of biogenic VOCs reduced the atmospheric oxidation capacity by consuming OH and HO2 radicals, thereby 

decreasing the conversion of SO2 to sulfate and NO2 to nitrate, which also reduced ammonium and led to 

reductions in secondary inorganic PM2.5. 
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Transboundary sources (emissions from outside of India) accounted for 27% (12.8 μg/m3) of annual national 650 

PW mean PM2.5 in India in 2022, exceeding the contribution of any individual domestic emission source (Figure 

6). These transboundary sources include emissions from six anthropogenic sectors (i.e., power, industry, 

residential, transportation, agriculture, and open burning) and three natural sources (i.e., dust and biogenic) from 

outside India, representing emissions beyond the jurisdiction of the Indian government. Spatially, the influence 

of transboundary sources exhibits a northwest-to-southeast gradient. In 2022, transboundary sources contributed 655 

more than 20% to grid-level annual PM2.5 concentrations across most of India, with contributions exceeding 30% 

in western states such as Punjab, Haryana, Rajasthan, and Gujarat (Supplementary Figure 7). In Delhi, 

transboundary sources contributed 21 μg/m3, or 20%, to the annual PM2.5 concentration in 2022. 

 

3.4 Chemical components of total surface PM2.5 and their source attribution across India for 2022 660 

We analyze the contributions of individual PM2.5 components simulated by WRF-Chem to total PM2.5 

concentrations across India in 2022, along with their respective source attributions. Figure 8 shows the spatial 

distribution of annual concentrations of all components. Figure 9 and Supplementary Table 6 present the source 

contributions to national PW mean concentrations of PM2.5 components. 

 665 

 

Figure 8. Spatial pattern of annual concentrations of PM2.5 components across India in 2022. Annual results are 

calculated as the average of January, April, July, and October simulations. In each panel, numbers outside parentheses 

indicate the Population-Weighted (PW) mean concentrations and spatial mean (Mean) concentrations across India. 

Numbers inside parentheses represent the component’s percentage contribution to total PM2.5. Uncertainty bounds 670 

represent one standard deviation across four monthly values representing each season. The thick black line denotes 
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the boundary of the Indo-Gangetic Plain (IGP). 

 

Among components resolved by WRF-Chem, organic aerosols (including both primary and secondary) had 

the largest contribution to the national PW mean total PM2.5 concentrations in 2022, at 34% (16.1 μg/m3) (Figure 675 

8). Residential emissions from within India were the dominant source of population exposure to organic PM2.5, 

accounting for 6.6 μg/m3 of its annual national PW mean concentration (Figure 9). Transboundary (3.1 μg/m3) 

and industrial (2.6 μg/m3) sources were also significant contributors to organic PM2.5 levels across the country. 

Spatially, organic PM2.5 had a north-to-south gradient, with its dominance closely overlapping with regions 

where residential emissions were also dominant—particularly the IGP.  680 

 

 

Figure 9. Source contributions to population-weighted mean concentrations of PM2.5 components across India 

in 2022. Contributions are attributed to six domestic anthropogenic sectors (industry, residential, power, transportation, 

open burning, and agriculture), two domestic natural sources (dust and biogenic emissions), as well as sources from 685 

outside of India (transboundary emissions). Note that contributions below 0.1 μg/m3 for a given source–component 

pair are omitted from the figure. All contributions presented are positive, except those from biogenic sources, which 

are negative. Numbers in parentheses indicate the percentage share (rounded to the nearest integer) of each source or 

component in the total PM2.5 concentration. See Supplementary Table 6 for detailed values for each pair in this figure. 

 690 

The dust component, including both anthropogenic and natural sources, was the second-largest contributor 

to the national PW mean total PM2.5 concentration in 2022, at 26% (12.4 μg/m3) (Figure 8). Transboundary 

emissions dominated dust PM2.5 at the national level, contributing 5.0 μg/m3 to its annual PW mean concentration 

(Figure 9). In addition, industrial (2.0 μg/m3) and natural dust (1.8 μg/m3) emissions from within India were the 

other major contributors to dust PM2.5 across India. Spatially, dust PM2.5 exhibited a west-to-east gradient, with 695 
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annual concentrations exceeding 40 μg/m3 across most of Rajasthan and Gujarat (Figure 8). 

 

Sulfate PM2.5 was the third-largest contributor to the national PW mean total PM2.5 level in 2022, at 14% 

(6.8 μg/m3), and was the dominant component of secondary inorganic PM2.5 (including sulfate, nitrate, and 

ammonium) (Figure 8). India’s power sector, the largest domestic SO2 emitter, was the dominant source for 700 

sulfate, accounting for 2.8 μg/m3 of its annual PW mean concentration, followed by transboundary pollution and 

the industrial sector (Figure 9). Spatially, sulfate concentrations exhibited a relatively small gradient compared 

to organic and dust PM2.5, though highest concentrations were found in eastern India around Chhattisgarh and 

Jharkhand. 

 705 

Nitrate PM2.5 contributed 5.3 μg/m3 (11%) to national PW mean total PM2.5 concentration in 2022, smaller 

than that of sulfate PM2.5 (Figure 8). However, spatially nitrate PM2.5 was the dominant component among 

secondary inorganic PM2.5 across the IGP, especially in Bihar, Haryana, and Delhi. Unlike organic, dust, and 

sulfate PM2.5, nitrate PM2.5 exhibited highly nonlinear relationships between precursor (i.e., NOx) emissions and 

resulting concentrations. Specifically, the agriculture sector—contributing only 2% of national NOx but 80% of 710 

national NH3 emissions in 2022—were identified as the largest contributor (2.0 μg/m3) to nitrate PM2.5 in 2022 

(Figure 9). In the atmosphere, nitric acid (HNO3, from NOx oxidation) reacts with NH3 remaining after 

neutralizing sulfuric acid to form ammonium nitrate. Removing agricultural emissions reduced NH3 availability 

across India by 77%, cutting the national average NO3
- fraction of total NO3

-+HNO3 from 51% (baseline) to 25% 

and leading to the largest nitrate reduction among all simulations that removed individual sources (Figure 10).  715 

 

Ammonium PM2.5 contributed 4.0 μg/m3 (8%) to national PW mean total PM2.5 concentration in 2022, with 

spatial hotspots overlapping those of sulfate and nitrate (Figure 8). Like nitrate, ammonium’s response to 

precursor (NH3) emissions was highly nonlinear. Notably, we identified India’s power sector—emitting no NH3 

but 80% of national SO2 and 40% of national NOx emissions in 2022—resulted in the largest reduction (1.1 720 

μg/m3) of ammonium PM2.5 when this sector’s emissions were removed (Figure 9). While the power sector did 

not emit NH3 directly, its dominance in SO2 and NOx emissions within India increased the availability of sulfuric 

and nitric acids, which react with NH3 to form ammonium aerosols. Removing power sector emissions therefore 

left a larger fraction of total reduced nitrogen (NHx = NH3 + NH4
+) as NH3, leading to greater reductions in 

ammonium PM2.5 than any other single-source removal scenarios (Figure 10). In contrast, when removing 725 

agricultural emissions (dominant NH3 source domestically), transport of NH3 from outside India partially offset 

the decrease in NH3 supply, sustaining some ammonium formation and leading to smaller reductions in 

ammonium than the simulation in which power-sector emissions were removed. These findings illustrate how 

when source emissions are entirely removed, non-linear chemistry can yield results that deviate from 

attributional methods (e.g., tagging precursor emissions) (Koo et al., 2009). 730 

 

Black Carbon, primarily from the incomplete combustion of solid fuels, contributed 2.3 μg/m3 (5%) to 
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national PW mean total PM2.5 concentration in 2022, with India’s industrial sector the dominant source.  

 

Sodium and chloride together contributed only 0.4 μg/m3 (1%) to national PW mean total PM2.5 735 

concentration in 2022, primarily from transboundary sources. Previous observational studies reported relatively 

high chloride concentrations in particulate matter in Delhi (e.g., 15-month average of 8.6 μg/m3 during 2017-

2018), Kanpur (e.g., monthly average of 19.3 μg/m3 in January 2016), and Chennai (episodically), suggesting 

possible local emissions of hydrochloric acid from plastic-contained waste burning and industry (Gani et al., 

2019; Thamban et al., 2019; Gunthe et al., 2021). However, because the emission inventories used in this study 740 

(i.e., CEDS, EDGAR, and FINN) do not include anthropogenic emissions of chloride-containing species, such 

elevated chloride levels observed in these cities were not reproduced in our model simulations. A recent modeling 

study that incorporated anthropogenic chlorine emissions reported a spatial average increase of 3–4 μg/m³ in 

PM2.5 concentrations in the IGP during January–March 2018 (Patel et al., 2024). By comparison, our model 

simulated a spatial average of 88 μg/m³ for January 2022 and 56 μg/m³ for the annual mean in 2022 across the 745 

IGP, which suggests a relatively small impact of incorporating chlorine emissions into our source attribution 

studies. 

 

 

Figure 10. Partitioning between secondary PM2.5 components (NH4
+, SO4

2-, and NO3
-) and their relevant 750 

precursors (NH3, H2SO4 and HNO3) for the baseline simulation and following the removal of individual sectoral 

emissions. Annual spatial mean concentrations (in μmol/m3) across India in 2022 are shown for the baseline simulation 

(grey bars) and for scenarios where individual sector emissions (power, transportation, and agriculture) are removed 

completely or partially. Solid-line-outlined boxes indicate the concentrations of NH4
+, SO4

2-, and NO3
-, while the upper 

portions of each bar (above the outlined boxes) represent the concentrations of NH3, H2SO4, and HNO3. Numbers 755 

above each bar show the total concentration of the species group on the X-axis for the respective scenario. Percentages 

inside each outlined box indicate the share of NH4
+, SO4

2-, and NO3
- in the total concentration of NH4

++NH3, SO4
2-
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+H2SO4, and NO3
-+HNO3, respectively. 

 

 760 

4 Discussion 

India’s residential sector has undergone an energy transition with part of the sector moving from inefficient 

solid fuels to cleaner LPG, resulting in substantial reductions in primary PM2.5 emissions that would otherwise 

arise from biomass burning. The Pradhan Mantri Ujjwala Yojana (PMUY) program, launched in 2016, has 

played a central role by providing income support for LPG connections to rural and low-income households, and 765 

by December 2024 had reached over 103 million beneficiaries. Incorporating an updated residential inventory 

that captured this trend is key to our finding that the absolute and relative contributions of residential emissions 

to national population-weighted mean PM2.5 concentration are smaller than in two earlier studies for 2016 (Singh 

et al., 2021; Pai et al., 2022) (Table 2), though it remained the leading PM2.5 source in the IGP (Figure 11). In 

addition, our explicit separation of emissions from within and outside India further explains why our estimated 770 

residential contribution is smaller than in previous studies, which included transboundary residential sources 

when accounting for this sector (Conibear et al., 2018; Guo et al., 2018; Reddington et al., 2019; Chatterjee et 

al., 2023). However, recent research highlights challenges in sustaining LPG usage under PMUY, including high 

refill costs and subsidy delays (Asharaf and Tol, 2024; Gaikwad et al., 2025), which may result in backsliding 

to a continued reliance on solid fuels which may not be fully captured in the updated inventory.  775 

 

 
Figure 11. Source attribution of regional population-weighted mean annual PM2.5 concentrations in 2022 across 

Delhi and six regions of India. Inset numbers illustrate the percentage contribution from the largest three sources 

(including the transboundary source) in each region.  780 
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India’s industrial sector emerged as the largest domestic contributor to India’s PM2.5 pollution in 2022, 

resulting from rapid growth in activity and limited pollution controls. Specifically, its energy consumption nearly 

doubled from 7.8 EJ in 2010 to 13.6 EJ in 2022 with coal, biofuels, and waste being the dominant sources of 

energy (International Energy Agency, 2024), while emission regulations in this sector have primarily focused on 785 

improved energy efficiency with few new regulations focused on certain small-scale informal industries such as 

brick kilns (The Government of India, 2019; Tibrewal and Venkataraman, 2021). Consistent with these trends, 

the EDGAR global inventory reports an increase in primary PM2.5 emissions from the industrial sector from 1.4 

Tg/year in 2010 to 2.1 Tg/year in 2022. Our adoption of the EDGAR 2022 inventory for the industrial sector 

therefore results in higher estimated absolute and relative industrial contributions to national population-790 

weighted mean PM2.5 concentrations compared with earlier studies that focused on 2016 (Table 2). Notably, 

industrial sources contributed 33% of Delhi’s annual PM2.5 in our analysis (Figure 11), a sharp increase from 

14% in 2016 (Singh et al., 2021), underscoring the growing dominance of this sector in urban and national 

pollution burdens. 

 795 

Table 2. A comparison of source attribution to national population-weighted mean PM2.5 concentration in 

India across studies‡ 

  This Study (Singh et al., 2021) (Pai et al., 2022) 

Year - 2022 2016 2016 

Emission 

Inventory  

Anthropogenic 

(excl. open 

burning) 

CEDSv2024-07-08 for gas, 

EDGARv8.1 for aerosols; 

Improved upon the 

residential and power 

emissions 

Developed by the 

Greenhouse Gas and Air 

Pollution Interactions 

and Synergies (GAINS)-

Asia model 

CEDSv2018-08, with NOx and 

NH3 emissions scaled using 

satellite observations 

Open Burning  FINNv2.5.1 GFED4s 

Method  100% emissions off 20% emissions off 100% emissions off 

Source 

Attribution 

Industry 18% (8.6 μg/m3) 16%‡ 11% (6.8 μg/m3) 

Residential 15% (7.3 μg/m3) 31%‡ 21% (12.9 μg/m3) 

Power 13% (6.1 μg/m3) 7%‡ 19% (11.7 μg/m3) 

Transportation 8% (3.8 μg/m3) 7%‡ 12% (7.4 μg/m3) 

Agriculture 8% (3.7 μg/m3) <12%*‡ 14% (8.6 μg/m3) 

Open Burning 8% (3.6 μg/m3) 8%‡ 6% (3.7 μg/m3) 

Transboundary 27% (12.8 μg/m3) 20%‡ <28% (17.2 μg/m3)¶ 

‡In this table, we only include studies that investigated emissions from within India for a direct comparison with our 

results. 

*Agricultural NH3 emissions were aggregated with other emission source as ‘Others Source’ in this study. 800 

¶Transboundary sources were aggregated with natural emissions as ‘Background Source’ in this study. 
‡This study did not report national population-weighted mean PM2.5 concentration attributed to a given source. 
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India’s power sector has been heavily and increasingly relied on coal generation, with the challenges of 

implementing emission controls for SO2 and NOx. Coal-based electricity generation substantially increased from 805 

658 TWh in 2010 to 1307 TWh in 2022 (International Energy Agency, 2024). Although the Indian government 

introduced stringent emission standards for thermal power plants in 2015, compliance has been weak, with only 

about 3% of coal-based plants having installed flue gas desulfurization (FGD) systems by 2022 (National 

Environmental Engineering Research Institute, 2024). As a result, SO2 emissions from the power sector 

increased substantially between 2010 and 2022, with CEDS reporting a 34% rise and EDGAR a 71% rise, 810 

consistent with satellite-derived SO2 total column concentration trends across India during this period (Xie et al., 

2024). In addition, the adoption of NOx control technologies in India’s coal-fired plants are being tested but are 

not yet commercially deployed as India’s high-ash coals can adversely impact NOx control systems (Wiatros-

Motyka, 2019). Projections further suggest that with only limited adoption and operation of pollution-control 

technologies continuing, SO2 emissions from the power sector could rise by nearly 500% between 2020 and 815 

2050 (Venkataraman et al., 2018). These trends, combined with the recent suggested relaxation of FGD 

requirements for coal plants (Koshy, 2025), will likely increase secondary inorganic aerosol formation and will 

threaten to undermine national efforts to reduce PM2.5 pollution and protect public health. The plant-level 

database and emission inventory developed in this study provide a foundation to further evaluate the air quality 

and health benefits of a clean power transition for future studies. 820 

 

Import of pollution across national borders (transboundary sources) continued to be responsible on average 

for over 20% of surface PM2.5 pollution in 2022, similar to findings from 2016 (Table 2). These results 

underscore the persistent influence of transported pollution on India’s air quality. 

 825 

Our source attribution approach has inherent limitations due to the nonlinear chemistry of secondary aerosol 

formation and aerosol–meteorology feedbacks, similar to previous studies that employed the complete source 

removal method (Conibear et al., 2018; Pai et al., 2022; Chatterjee et al., 2023). For example, we identify the 

power sector as the largest contributors to ammonium PM2.5 in 2022, despite the fact that it did not emit NH3. 

This result is primarily driven by secondary inorganic aerosol chemistry (discussed in Section 3.4) and are 830 

consistent with findings from a previous study for 2016 (Pai et al., 2022). We also find a small but non-negligible 

contribution of agricultural emissions to national PW mean dust concentrations (0.15 μg/m3). This 

counterintuitive result reflects the impact of aerosol–meteorology feedbacks: when agricultural emissions are 

removed, reductions in secondary PM2.5 improve ventilation conditions by weakening aerosol–radiation 

interactions (Zhou et al., 2019), thereby lowering primary PM2.5 concentrations, even though their emissions 835 

themselves are unaffected. These examples illustrate the interpretive challenges inherent to source attributional 

results via complete emission removal. 

 

Nonlinear secondary aerosol chemistry limits the direct application of our results to real-world emission 
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regulations, particularly for sources dominated by PM2.5 precursor emissions whose reductions have a nonlinear 840 

effect on resulting PM2.5 concentrations, since policies typically involve partial rather than complete reductions. 

For sources dominated by primary PM2.5 components, such as the industrial and residential sectors, the 

differences between complete removal and scaled partial reductions are small: national spatial mean and 

population-weighted mean PM2.5 concentration reductions differ by less than 7% and 3%, respectively, between 

a 100% emission reduction and a fivefold scaling of 20% reductions (Supplementary Figure 8). However, for 845 

the agricultural sector, a 20% emission reduction results in 25% less national PM2.5 reduction (after a fivefold 

scaling) compared with a 100% emission reduction. This nonlinearity is primarily due to India’s overall NH3-

rich environment (Figure 10), where nitrate availability limits secondary inorganic aerosol formation. This 

suggests that partial removal of NH3 is less effective—defined as concentration decrease per unit emission 

reduction—in mitigating PM2.5 than substantial NH3 emission reductions. 850 

 

5 Conclusion and Implications 

We conduct the first WRF-Chem model evaluation and source attribution analysis for India for the year 2022, 

leveraging recent advances in India-specific residential and power sector emission inventories and the expansion 

of ground-based PM2.5 monitoring networks. Our simulations incorporate the 2022 CEDS and EDGAR global 855 

emission inventories  (released in 2024), a 2022 coal-fired power plant emission inventory developed in this 

work, and a revised 2022 residential emission inventory (Velamuri et al., 2024). We also incorporate the simple 

SOA scheme into WRF-Chem and improve model treatment of near-surface mixing of pollutants. We evaluate 

the baseline WRF-Chem simulation against observed PM2.5 concentrations from 288 surface monitoring sites 

across India and neighboring countries, demonstrating very good model performance across India that captures 860 

spatial and temporal variations of PM2.5 concentrations in 2022. Our findings, compared with earlier source 

attribution studies, highlight that residential emissions from within India are no longer the largest source of 

national population-weighted mean PM2.5 pollution, although they remained the second-largest domestic 

contributor nationally (Figures 6 and 9) and the leading contributor regionally in the Indo-Gangetic Plain 

(Figure 11). Instead, industrial emissions from within India emerged as the largest domestic contributor at the 865 

national scale, while the power sector within India ranks third, with 77% of its contribution arising from 

secondary inorganic PM2.5 formed from gaseous precursor emissions. Importantly, transboundary sources 

contributed more than any individual domestic source to surface PM2.5 concentrations in 2022 across India. 

 

Tracking India’s evolving air pollution and the shifting contributions of various sources is needed to inform 870 

regulatory mitigation strategies. This requires robust air quality modeling based on up-to-date emission 

inventories that incorporate real-world changes in activity, emission factors, technology adoption, and 

regulations. By combining information from both global and regional inventories, our study provides an 

improved understanding of PM2.5 pollution and its source attribution for 2022, with several implications. First, 

efforts to reduce primary PM2.5 emissions from the residential sector have been beneficial and should continue 875 

through initiatives such as the NCAP and the residential PMUY programs. In addition, electrification of the 
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residential sector coupled with decarbonization of the grid can further help reduce air pollution emissions (Zhou 

et al., 2022). Second, enforcement of new stringent emission regulations targeting both primary PM2.5 and SO2 

are needed for the fast-growing industrial sector, especially in densely populated urban areas. Continuing to 

improve energy efficiency for large and energy-intensive industries such as steel production under the Perform, 880 

Achieve, and Trade (PAT) scheme will also be beneficial for mitigating primary PM2.5 and SO2 emissions from 

the industrial sector (Ministry of Power, 2022). Third, SO2 controls in the coal dominated power sector should 

be enforced to prevent further deterioration of air quality particularly as new coal power comes on-line. Finally, 

more stringent regulations of local emissions are needed in areas heavily influenced by transboundary pollution 

in order to meet air quality standards. Collaborative efforts, including data sharing and cross-border source 885 

identification between India and its neighboring countries would be beneficial in identifying opportunities to 

improve air quality within South Asia. Future Indian PM2.5 pollution and its source attribution research will 

benefit from the development of a multi-year, India-specific emission inventory with recent coverage to better 

support long-term air quality management. 

 890 

 

Data and Code Availability 

Surface PM2.5 measurements from the India CPCB network are publicly available at: 

airquality.cpcb.gov.in/ccr/#/caaqm-dashboard-all/caaqm-landing. Continuous PM2.5 data from the U.S. AirNow 

network are no longer accessible, and the daily quality-controlled PM2.5 concentrations used in this study will 895 

be shared at the Princeton archive at LinkTBD upon accepted for publication. The WRF-Chem source code can 

be obtained from: github.com/wrf-model/WRF/releases. The CEDS emission inventory is available at: 

github.com/JGCRI/CEDS. The EDGAR emission inventory is available at: edgar.jrc.ec.europa.eu/dataset_ap81. 

The HTAP emission inventory is available at: edgar.jrc.ec.europa.eu/dataset_htap_v31. Meteorological data 

from ERA5 are available at: ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5. Gridded population data were 900 

retrieved from: earthdata.nasa.gov/data/catalog/sedac-ciesin-sedac-gpwv4-popdens-r11-4.11. Annual result for 

WRF-Chem output generated in this study will be publicly available via the Princeton archive at LinkTBD upon 

accepted for publication. The MATLAB Script for Sankey plot in Figure 9 is publicly available at 

https://www.mathworks.com/matlabcentral/fileexchange/128679-sankey-plot. Geographical boundaries used in 

all map plots are adopted from a global database (https://doi.org/10.1371/journal.pone.0231866). 905 
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