Supplementary Information for Surface PM_{2.5} Air Pollution in 2022 India:

Emission Updates, WRF-Chem Model Evaluation, and Source Attribution

Mi Zhou^{1,2}, Denise L. Mauzerall^{1,2}, Viswanath Velamuri³, Sri Harsha Kota³, Malini Nambiar², and Yuanyu Xie²

Correspondence to: Mi Zhou (miz@princeton.edu) and Denise L. Mauzerall (mauzerall@princeton.edu)

¹Department of Civil and Environmental Engineering, Princeton University, USA

²Center for Policy Research on Energy and the Environment, Princeton School of Public and International Affairs, Princeton University, USA

³Department of Civil and Environmental Engineering, Indian Institute of Technology Delhi, India

1. Detailed WRF-Chem configuration

1.1 Physical Schemes

We configure WRF-Chem with the following physical schemes: the Rapid Radiative Transfer Model for Global Circulation Models (RRTMG) scheme for both shortwave and longwave radiation, which simulates aerosol-radiation interactions (Iacono et al., 2008); the two-moment Morrison microphysics scheme, which simulates aerosol-cloud interactions (Morrison and Pinto, 2005); and the non-local mixing YonSei University (YSU) boundary layer scheme (Hong et al., 2006).

1.2 Mapping aerosol emissions to WRF-Chem variables

Emission inventories provide aerosol emissions of POC, BC, total primary PM_{2.5}, and total primary PM₁₀. While EDGAR provides all four types of aerosol emissions, CEDS only includes POC and BC emissions. Total primary PM_{2.5} emissions conceptually comprise primary organic aerosols (POA), BC, and other anthropogenic PM_{2.5} emissions (e.g., construction and urban dust), while total primary PM₁₀ emissions include PM_{2.5} and coarse PM emissions. As described in **Section 2.2.1**, we apply POC and BC emissions from CEDS and use PM_{2.5} and PM₁₀ emissions from EDGAR.

In the selected chemical option (i.e., chem_opt=9, CBMZ_MOSAIC_4BIN_AQ), WRF-Chem reads aerosol emissions as POA, BC, other anthropogenic PM_{2.5}, and coarse PM. To map emissions into WRF-Chem variables, we first convert POC to POA emissions using an POC-to-POA ratio of 1.9 for India (Venkataraman et al., 2018). Since we use separate sources for total primary PM_{2.5}, BC, and POC, we enforce the constraint PM_{2.5} \geq BC + POA. This ensures that the total PM_{2.5} emissions input into WRF-Chem do not exceed those estimated in the merged inventory and prevents negative emissions of other anthropogenic PM_{2.5}, which are calculated as PM_{2.5} – BC – POA. Coarse PM emissions for WRF-Chem are derived by subtracting PM_{2.5} emissions from PM₁₀ emissions.

When distributing aerosol species into the WRF-Chem MOSAIC aerosol bins, we use the default size distribution profiles in the WRF-Chem emission module, which distinguishes between two sources: (1) biomass burning and wildfire sources, and (2) all other sources.

1.3 Vertical distribution of emissions

Emissions are vertically distributed into WRF-Chem model by sources: (1) agricultural non-burning, residential, and transportation emission are placed at the model's first layer; (2) industrial emissions are distributed within the model's first three layers; (3) power sector emissions are placed within the model's first five layers; (4) natural dust and natural biogenic VOC emissions are placed at the model's first layer; (5) biomass burning emissions are placed vertically using WRF-Chem's online calculated plume rise height.

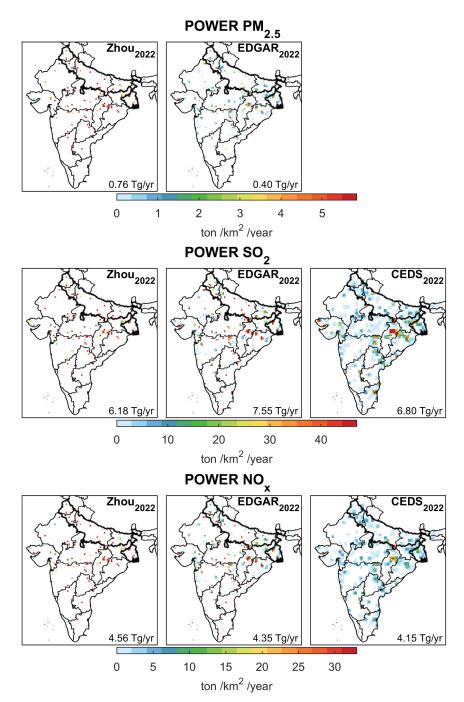


Figure S1. Spatial distribution of 2022 annual power plant emissions of PM_{2.5}, SO₂, and NO_x from the inventory developed in this study (Zhou), CEDS, and EDGAR. Our new inventory provides point-source emissions, whereas EDGAR and CEDS report gridded emissions at 0.1° and 0.5° resolution, respectively. For comparison, all inventories are interpolated to the 27 km WRF-Chem model grid. CEDS does not provide primary PM_{2.5} emissions. Numbers inset in each panel indicate annual power plant total emissions across India, and the thick black line denotes the boundary of the Indo-Gangetic Plain (IGP).

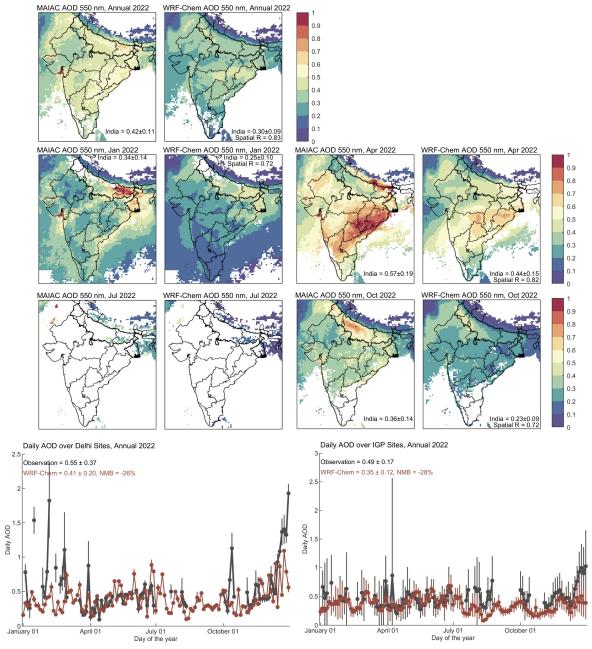


Figure S2. Comparison of WRF-Chem AOD against satellite-derived AOD at 550 nm in 2022. Daily WRF-Chem AOD is derived using mean AOD during 10:00 to 14:00 local time when same day MAIAC AOD is available. In map plots, annual and monthly comparison results are shown for grids with at least 50% valid co-sampled data. Inset numbers in each map plot show the mean \pm one standard deviation across India expect for July when there are very few available values. We calculate the Pearson correlation coefficient (Spatial R) between the observed AOD at 550 nm and simulated AOD at 550 nm across India expect for July. The thick black line denotes the boundary of the Indo-Gangetic Plain (IGP) in each map plot. In timeseries plots, we sample MAIAC and WRF-Chem AOD at grids with available PM_{2.5} measurements in each region, and present daily AOD data if at least 50% grids in that region have valid AOD data.

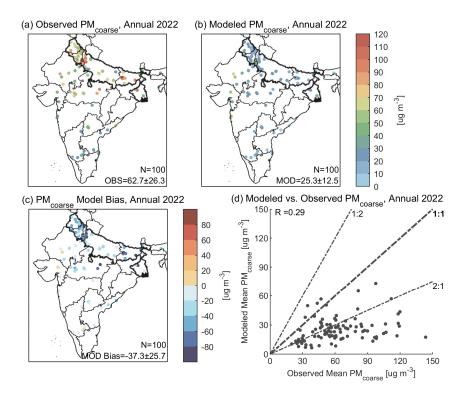


Figure S3. Comparison of observed and modeled surface PM_{coarse} concentrations in 2022 in the baseline simulation. Measurement stations with at least 80% valid hourly data during the four-month period (January, April, July, and October) are selected. Multiple measurements within a single WRF-Chem grid cell are averaged before comparison with WRF-Chem. Annual value is estimated by averaging $PM_{2.5}$ concentrations during the four-month period. In map plots, N denotes the number of grid cells used for evaluation, and the other numbers represent the mean \pm one standard deviation across all grid cells. The thick black line denotes the boundary of the Indo-Gangetic Plain (IGP). In the scatter plot, R is the Pearson correlation coefficient between observed and modeled annual mean concentrations across all grid cells.

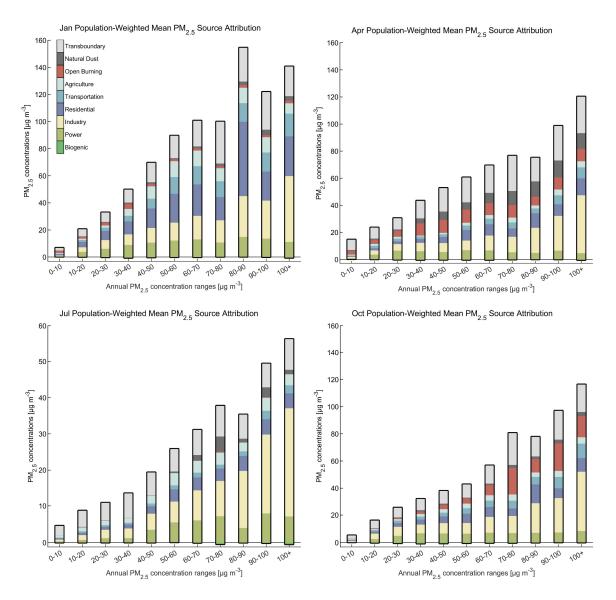


Figure S4. Monthly PM_{2.5} source attribution grouped by annual mean PM_{2.5} concentrations. WRF-Chem grids are aggregated by ranges of annual mean PM_{2.5} concentrations, with colored bars indicating source attribution. See Main Text Figure 5c for the annual version of this figure.

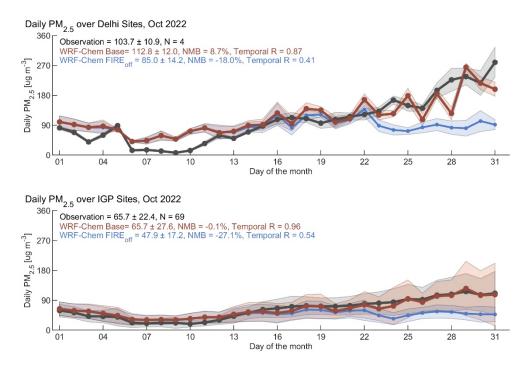


Figure S5. Comparison of observed and modeled (with and without fire emissions) surface PM_{2.5} concentrations in October 2022. Measurement stations with at least 80% valid hourly data are selected. Multiple measurements within a single WRF-Chem grid cell are averaged before comparison with WRF-Chem. N denotes the number of grid cells used for evaluation. Colored lines and dots represent daily and regional mean PM_{2.5} concentrations across available grid cells, with shaded areas indicating one standard deviation across daily mean PM_{2.5} concentrations across those cells. Temporal R is the Pearson correlation coefficient between the red (or blue) and black lines in each panel. NMB is normalized mean bias.

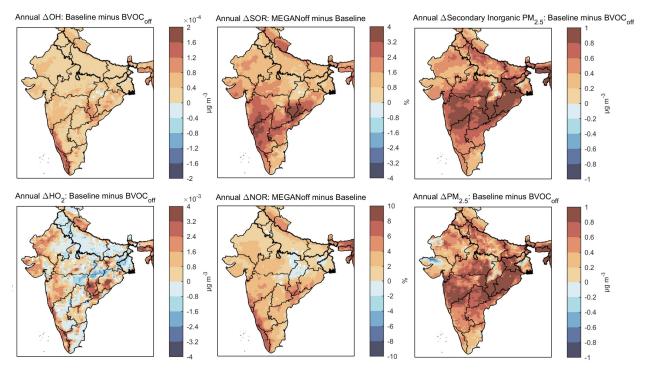


Figure S6. Impact of including BVOC emissions (via turning on the MEGAN module within India) on atmospheric chemistry. Annual results are calculated as the average of January, April, July, and October simulations. Sulfur Oxidation Ratio (SOR) and Nitrogen Oxidation Ratio (NOR) are calculated as $(SO_4^{2-} + H_2SO_4)/(SO_4^{2-} + H_2SO_4 + SO_2)$ and $(NO_3^{-} + HNO_3)/(NO_3^{-} + HNO_3 + NO_2)$, respectively. The thick black line denotes the boundary of the Indo-Gangetic Plain (IGP).

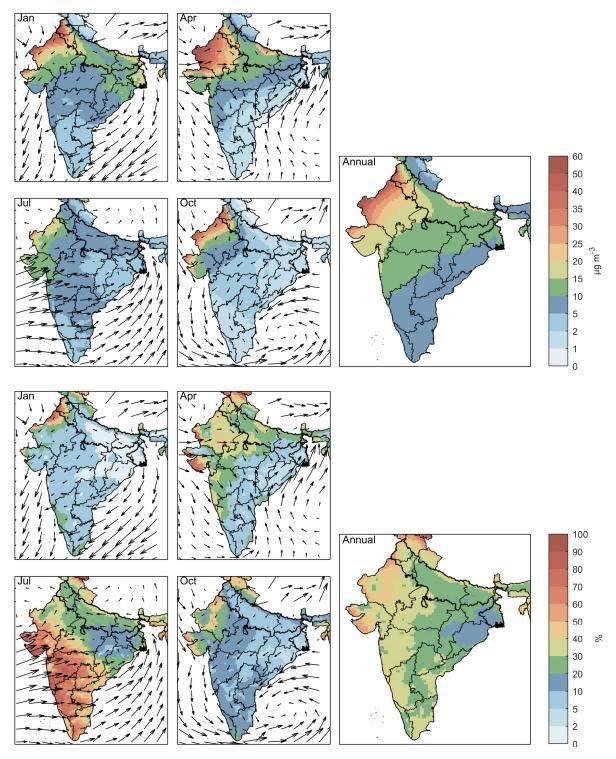


Figure S7. Absolute (upper panels) and percentage (lower panels) contribution of transboundary sources to monthly and annual PM_{2.5} concentrations in 2022. Monthly mean 10-meter wind vectors are also shown to indicate near-surface transport of PM_{2.5} and its precursors. The thick black line denotes the boundary of the Indo-Gangetic Plain (IGP).

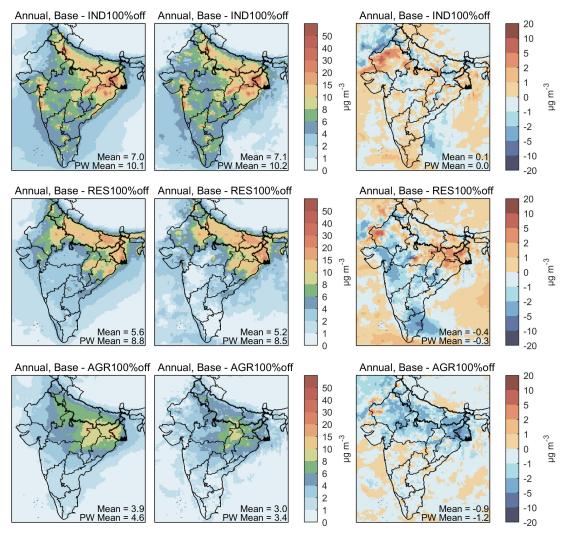


Figure S8. Comparison of PM_{2.5} concentration changes between a 100% emission reduction and a fivefold scaling of 20% reductions. We show results for three sectors: industry (IND), residential (RES), and agriculture (AGR). The thick black line denotes the boundary of the Indo-Gangetic Plain (IGP).

Table S1. Uncontrolled emission factors for coal from different regions and lignite used in India's power sector

Source Region	Fuel Classification	CO ₂ (g/kg fuel)	SO ₂ (g/kg fuel)	NOx as NO2 (g/kg fuel)	PM _{2.5} (g/kg fuel)
Assam		2328.98±232.90	10.84±1.08		1.81±0.18
Chhattisgarh		1204.70±272.69	6.59±0.12		11.37±1.26
Jharkhand		1493.66±408.28	6.84±2.12		9.70±2.24
Madhya Pradesh		1517.01±237.64	6.63±1.20		7.88±3.59
Maharashtra	Domestic	1501.35±93.04	10.90±7.32		8.13±2.69
Odisha	Coal	1062.78±184.29	5.59±1.51	604:060	12.66±1.35
Telangana	1	1396.70±139.67	6.42±0.64	6.04±0.60	12.18±1.22
Uttar Pradesh	1	1294.35±129.44	9.18±0.92		10.62±1.06
West Bengal	1	1810.35±245.88	6.26±1.77		8.49±3.19
Australia		2307.23±230.72	8.34±0.83		3.92±0.39
Indonesia	Imported Coal	1250.85±125.08	5.17±0.52		1.06±0.11
South Africa		2181.98±218.20	18.52±1.85		8.61±0.86
Gujarat, Rajasthan, and Tamil Nadu	Lignite	896.52±51.27	25.54±7.22	4.00±0.40	3.30±1.70

Source Data: (Kalenga et al., 2011; Mittal et al., 2012; Yunus et al., 2014; Cheepurupalli et al., 2015; Gogoi, 2018; The Singareni Collieries Company Limited, 2018; Dwivedi and Kumar, 2022; U.S. Environmental Protection Agency)

Table S2. Average contribution of sectoral emissions to national total anthropogenic emissions for each species in India across emission inventories during 2015 to 2022*

	NOx	SO ₂	PM _{2.5}	BC	OC	CO	PMcoarse [‡]	NH ₃
Agriculture [†]	5±0%	0±0%	1±0%	0±0%	0±0%	0±0%	3±0%	85±0%
Industry	19±1%	32±2%	41±5%	38±3%	30±3%	30±1%	37±5%	9±1%
Transportation	29±1%	1±0%	5±1%	13±4%	2±1%	10±1%	1±0%	0±0%
Power	39±0%	61±2%	11±1%	4±1%	4±1%	4±1%	13±9%	1±0%
Residential	8±0%	6±0%	42±2%	45±1%	64±3%	57±1%	46±14%	5±0%

^{*}Results in this table are derived from three global emission inventories: CEDS version 2024-07-08, EDGAR version 8.1, and Hemispheric Transport of Air Pollution (HTAP) version 3.1. Please see Methods for details of how each emission inventory is utilized.

[†]This excludes agricultural waste burning.

 $^{^{\}ddagger}PM_{coarse}$ emissions are estimated by subtracting $PM_{2.5}$ emissions from PM_{10} emissions.

Table S3. A summary of India's power sector emission inventories from this study and previous studies

							P : 1 P : (477)		
	Year of	Total Coal-	Total Coal-based Generation	Total E	missions (Tg/year)	Emission Factors (g/kWh)		
Inventory		based Capacity		DM	CO	NO_x	D) (SO_2	NO_x
	Inventory	(GW)	(TWh/year)	PM _{2.5}	SO_2	(as NO ₂)	PM _{2.5}	SO_2	(as NO ₂)
This Study*	2022	210.6 [†]	1121.7	0.76	6.18	4.56	0.68	5.51	4.07
(Velamuri et al., 2024)*	2022	210.0	1160.4	0.31	4.70	3.48 [‡]	0.27	4.05	3.00‡
(Singh et al., 2024)*	2019	175.0	948.6	0.58	6.52	4.85	0.61	6.88	5.11
(Cropper et al., 2021)*	2018	208.0	1093.2	0.57	4.86	4.57 [‡]	0.52	4.45	4.18‡
(Guttikunda and Jawahar, 2014)*	2010-2011	120.7	689.0	0.58	2.1	2.99‡	0.84	3.05	4.34 [‡]
EDGAR (v8.1) (Crippa et al., 2018)¶	2022	-	-	0.40	7.55	4.35	-	-	-
CEDS (v2024-07-08) (Hoesly et al., 2018)¶	2022	-	-	-	6.80	4.15	-	-	-
HTAP (v3.1) (Guizzardi et al., 2025)¶	2020	-	-	0.66	7.26	2.99	1	-	-
(Venkataraman et al., 2024)¶	2019	-	-	1.70	5.11	2.47	1	-	-
(Venkataraman et al., 2018)¶	2015	-	-	1.07	3.70	2.26	-	-	-

^{*}Inventories only include coal-fired power plants.

[¶]Inventories include coal, gas, and oil-fired power plants, with coal plants dominating total emissions.

[†]This value matches the total generation capacity of coal and lignite documented by the Central Electricity Authority (CEA) of India in July 2022.

 $^{^{\}ddagger}$ These inventories provide NO_x emissions without specifying the partition between NO and NO₂. We assume a composition of 95% NO and 5% NO₂ for the NO_x emissions reported in these inventories and convert them to NO₂ emissions

Table S4. Summary of model performance of annual PM_{2.5} simulation against surface measurements in each state[†]

	WRF-Chem	Observation	Mean Bias	Normalized Mean Bias	T	Number of
	Mean (μg/m³)	Mean (μg/m³)	$(\mu g/m^3)$	(%)	Temporal Correlation*	model grids
Andhra Pradesh	30.3±4.7	30.8±5.0	-0.4±5.4	0.35±18.87	0.9	4
Assam	35.8	48.2	-12.5	-25.46	0.54	2
Bihar	55.4±7.9	77.1±11.5	-21.7±11.2	-26.79±15.27	0.89	10
Chandigarh	44.2	47.7	-3.5	-7.3	0.65	1
Delhi	100.2±13.5	100.7±9.2	0.6±16.9	1.61±16.55	0.81	4
Foreign	69.0±30.6	75.1±31.4	-6.2±5.5	-8.25±6.09	0.86	5
Gujarat	66.5	47.5	19	50.92	0.54	3
Haryana	63.6±14.6	73.6±12.6	-10.1±10.9	-13.37±16.92	0.8	14
Karnataka	26.9±7.8	25.7±4.6	1.2±6.2	5.14±22.97	0.88	11
Kerala	20.6	17.9	2.7	14.8	0.6	1
Maharashtra	54.3±11.0	40.2±5.7	14.1±6.1	34.07±13.97	0.74	5
Madhya Pradesh	48.5±10.3	50.5±13.3	-2.0±6.9	-1.81±14.05	0.88	10
Nagaland	25.1	27	-2	-7.22	0.56	1
Punjab	58.3±12.9	48.9±9.0	9.4±17.8	24.41±42.20	0.77	7
Rajasthan	58.7±7.8	51.6±7.3	7.1±12.0	17.05±29.38	0.8	8

^{*}We first average results for all model grid within a given region, and then estimate the temporal Pearson correlation coefficient between observed and simulated daily $PM_{2.5}$, consistent with **Figure 3 e** and **g**.

Table S5. Source contribution to 2022 annual population-weighted mean $PM_{2.5}$ nationwide and in each state

(dominant domestic source is highlighted in red)

		Domesti	c Sources (see	the note after t	his table for ful	l names of each	source)		Transboundary
	POW	IND	RES	TRA	AGR	FIRE	DST	BOVC	Sources
National	6.1 (13%)	8.6 (18%)	7.3 (15%)	3.8 (8%)	3.7 (8%)	3.6 (8%)	1.9 (4%)	-0.5 (-1%)	12.8 (27%)
Andhra Pradesh	5.9 (21%)	6.7 (24%)	3.5 (12%)	1.4 (5%)	1.6 (6%)	1.4 (5%)	0.5 (2%)	-0.5 (-2%)	7.6 (27%)
Arunachal Pradesh	0.9 (6%)	1.7 (12%)	2.1 (15%)	0.5 (3%)	0.6 (4%)	3.6 (25%)	0.2 (1%)	-0.2 (-1%)	4.9 (34%)
Assam	1.9 (7%)	3.1 (11%)	7.9 (28%)	1.2 (4%)	1.3 (4%)	6.0 (21%)	0.3 (1%)	-0.7 (-2%)	7.7 (27%)
Bihar	7.0 (13%)	7.9 (14%)	12.5 (23%)	5.5 (10%)	4.8 (9%)	3.9 (7%)	0.5 (1%)	-0.4 (-1%)	13.7 (25%)
Chhattisgarh	13.5 (24%)	11.4 (20%)	7.0 (12%)	2.4 (4%)	6.0 (11%)	5.6 (10%)	1.1 (2%)	-0.4 (-1%)	10.3 (18%)
Delhi	7.8 (8%)	33.9 (33%)	12.9 (12%)	11.6 (11%)	5.9 (6%)	8.5 (8%)	2.1 (2%)	-0.4 (-0%)	21.0 (20%)
Goa	3.3 (13%)	5.4 (21%)	2.0 (8%)	1.5 (6%)	0.8 (3%)	2.1 (8%)	0.9 (3%)	-0.3 (-1%)	10.7 (41%)
Gujarat	4.1 (7%)	14.2 (25%)	6.2 (11%)	3.1 (6%)	2.3 (4%)	1.7 (3%)	7.2 (13%)	-0.3 (-1%)	17.9 (32%)
Haryana	6.1 (9%)	10.8 (16%)	6.8 (10%)	6.2 (9%)	5.0 (8%)	9.3 (14%)	2.5 (4%)	-0.4 (-1%)	20.4 (31%)
Himachal Pradesh	1.7 (7%)	3.4 (15%)	3.2 (14%)	1.3 (6%)	1.8 (8%)	1.9 (8%)	0.7 (3%)	-0.4 (-2%)	8.8 (39%)
Jammu and Kashmir	1.0 (4%)	1.8 (7%)	4.2 (18%)	1.2 (5%)	1.5 (6%)	0.4 (2%)	0.7 (3%)	-0.3 (-1%)	13.2 (56%)
Jharkhand	10.6 (18%)	13.9 (24%)	7.6 (13%)	4.3 (7%)	6.7 (11%)	4.3 (7%)	0.6 (1%)	-0.5 (-1%)	11.5 (19%)
Karnataka	4.9 (17%)	8.0 (28%)	2.1 (7%)	2.2 (8%)	1.5 (5%)	2.3 (8%)	0.8 (3%)	-0.5 (-2%)	7.9 (27%)
Kerala	3.2 (13%)	6.0 (25%)	3.5 (14%)	2.6 (11%)	0.9 (4%)	1.1 (5%)	0.4 (2%)	-0.4 (-1%)	6.9 (28%)
Ladakh	0.2 (2%)	0.3 (2%)	0.6 (5%)	0.4 (4%)	0.9 (8%)	0.1 (1%)	0.2 (2%)	-0.0 (-0%)	9.1 (77%)
Madhya Pradesh	7.5 (17%)	5.9 (13%)	3.6 (8%)	3.1 (7%)	4.6 (10%)	4.7 (10%)	2.8 (6%)	-0.4 (-1%)	13.5 (30%)
Maharashtra	6.4 (16%)	9.3 (23%)	2.9 (7%)	2.5 (6%)	2.4 (6%)	3.7 (9%)	1.8 (5%)	-0.7 (-2%)	12.0 (30%)
Manipur	2.2 (8%)	3.7 (13%)	3.1 (11%)	0.8 (3%)	1.6 (6%)	7.2 (26%)	0.3 (1%)	-0.8 (-3%)	9.9 (35%)
Meghalaya	2.3 (9%)	3.5 (13%)	4.6 (17%)	1.5 (6%)	1.6 (6%)	4.8 (18%)	0.3 (1%)	-0.9 (-3%)	9.2 (34%)
Mizoram	2.2 (9%)	2.3 (9%)	2.0 (8%)	0.6 (2%)	1.3 (5%)	4.0 (16%)	0.3 (1%)	-0.6 (-3%)	12.9 (52%)
Nagaland	1.8 (6%)	3.0 (10%)	4.6 (16%)	1.1 (4%)	1.4 (5%)	10.1 (34%)	0.3 (1%)	-0.7 (-2%)	7.7 (26%)

Odisha	8.8 (19%)	10.0 (22%)	8.2 (18%)	2.5 (5%)	4.9 (11%)	3.6 (8%)	0.5 (1%)	-0.8 (-2%)	8.3 (18%)
Punjab	3.4 (6%)	7.1 (12%)	6.2 (10%)	4.8 (8%)	3.6 (6%)	10.4 (17%)	1.5 (2%)	-0.4 (-1%)	23.5 (39%)
Rajasthan	4.4 (7%)	5.1 (8%)	7.5 (12%)	4.6 (8%)	4.1 (7%)	2.2 (4%)	10.3 (17%)	-0.4 (-1%)	22.2 (37%)
Sikkim	1.4 (8%)	2.1 (12%)	3.0 (17%)	1.2 (7%)	1.2 (7%)	1.3 (8%)	0.3 (1%)	-0.4 (-3%)	7.2 (42%)
Tamil Nadu	4.6 (21%)	5.2 (24%)	1.9 (9%)	1.5 (7%)	1.1 (5%)	0.9 (4%)	0.4 (2%)	-0.3 (-1%)	6.6 (30%)
Telangana	7.5 (21%)	7.7 (21%)	4.7 (13%)	1.8 (5%)	2.2 (6%)	2.5 (7%)	1.1 (3%)	-0.7 (-2%)	9.1 (25%)
Tripura	2.2 (6%)	2.3 (7%)	9.0 (25%)	1.9 (5%)	1.9 (5%)	3.7 (11%)	0.1 (0%)	-1.1 (-3%)	15.4 (43%)
Uttar Pradesh	6.5 (11%)	9.4 (16%)	10.2 (18%)	6.3 (11%)	5.2 (9%)	4.7 (8%)	1.0 (2%)	-0.4 (-1%)	14.7 (26%)
Uttarakhand	2.1 (7%)	3.4 (12%)	6.0 (21%)	1.8 (6%)	1.7 (6%)	5.1 (17%)	0.6 (2%)	-0.5 (-2%)	8.9 (31%)
West Bengal	7.8 (14%)	11.2 (20%)	15.3 (27%)	4.5 (8%)	5.0 (9%)	2.2 (4%)	0.3 (1%)	-0.3 (-1%)	10.9 (19%)

Abbreviations and their corresponding full names: POW=Power, IND=Industry, RES=Residential, TRA=Transportation, AGR=Agriculture, FIRE= Smoke from Open Burning, DST=Natural Dust, BVOC=Biogenic.

Table S6. Source contribution to 2022 national annual population-weighted mean PM_{2.5} component concentrations

(dominant domestic source is highlighted in red)

		Domestic Sources (see the note after this table for full names of each source)									
	POW	IND	RES	TRA	AGR	FIRE	DST	BOVC	Sources		
Organic	0.42	2.64	6.60	0.83	0.12	1.44	0.05	0.03	3.10		
BC	0.01	0.93	0.58	0.17	0.01	0.21	0.00	0.00	0.28		
Dust	0.99	2.09	0.13	0.61	0.15	1.45	1.84	0.00	5.05		
Sulfate	2.80	1.63	-0.01	0.38	0.32	0.10	-0.01	-0.29	1.96		
Nitrate	0.81	0.61	-0.01	1.28	2.00	0.29	-0.01	-0.08	1.12		
Ammonium	1.11	0.69	-0.01	0.57	0.97	0.15	0.00	-0.12	0.91		
Sodium and Chloride	-0.03	-0.01	0.00	-0.03	0.09	0.00	0.00	0.00	0.42		

Abbreviations and their corresponding full names: POW=Power, IND=Industry, RES=Residential, TRA=Transportation, AGR=Agriculture, FIRE=Smoke from Open Burning, DST=Natural Dust, BVOC=Biogenic.

Reference:

- [1] Cheepurupalli, N. R., Sharma, G. V. S., Singh, C. S., and Rao, E. N. D.: Petrographic Analysis and its Relationship with Calorific Values of Non- Coking Coals, Talcher Coalfield, Orissa, International Journal of Engineering Trends and Technology, 2015.
- [2] Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., van Aardenne, J. A., et al.: Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2, Earth System Science Data, 10, 1987-2013, 2018.
- [3] Cropper, M., Cui, R., Guttikunda, S., Hultman, N., Jawahar, P., Park, Y., et al.: The mortality impacts of current and planned coal-fired power plants in India, Proc Natl Acad Sci U S A, 118, 2021.
- [4] Dwivedi, A. and Kumar, A.: Investigations of the Ultimate and Proximate Analysis of Coal Samples from the Singrauli Coalfield, India, International Journal of Current Science Research and Review, 2022.
- [5] Gogoi, K.: Geochemical Characteristics of Tertiary Coals of Collieries of Makum Coalfield: Implication to Depositional Environment, Journal of Emerging Technologies and Innovative Research, 2018.
- [6] Guizzardi, D., Crippa, M., Butler, T., Keating, T., Wu, R., Kamiński, J. W., et al.: The HTAP_v3.1 emission mosaic: merging regional and global monthly emissions (2000–2020) to support air quality modelling and policies, 2025.
- [7] Guttikunda, S. K. and Jawahar, P.: Atmospheric emissions and pollution from the coal-fired thermal power plants in India, Atmos Environ, 92, 449-460, 2014.
- [8] Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., et al.: Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS), Geosci Model Dev, 11, 369-408, 2018.
- [9] Hong, S. Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with an explicit treatment of entrainment processes, Mon Weather Rev, 134, 2318-2341, 2006.
- [10] Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models, Journal of Geophysical Research: Atmospheres, 113, 2008.
- [11] Kalenga, P. M., Cukrowska, E., Tutu, H., and Chimuka, L.: Characterization of South African Coal for Metals, Inorganic and Organic Sulfur Compounds, S Afr J Chem-S-Afr T, 64, 254-262, 2011.
- [12] Mittal, M., Sharma, C., and Singh, R.: Estimates of emissions from coal fired thermal power plants in India, https://www.researchgate.net/publication/267687877 Estimates of Emissions from Coal Fired Thermal Power Plants in India, 2012.
- [13] Morrison, H. and Pinto, J. O.: Mesoscale modeling of springtime Arctic mixed-phase stratiform clouds using a new two-moment bulk microphysics scheme, Journal of the Atmospheric Sciences, 62, 3683-3704, 2005.
- [14] Singh, K., Peshin, T., Sengupta, S., Thakrar, S. K., Tessum, C. W., Hill, J. D., et al.: Air pollution mortality from India's coal power plants: unit-level estimates for targeted policy, Environmental Research Letters, 19, 2024.
- [15] THE SINGARENI COLLIERIES COMPANY LIMITED: The point wise replies for ADS, THE SINGARENI COLLIERIES COMPANY LIMITED, 2018.
- [16] U.S. Environmental Protection Agency: Bituminous And Subbituminous Coal Combustion,
- [17] Velamuri, V., Nayak, D. K., Sharma, S., Parmar, P. D., Nagar, P. K., Singh, D., et al.: India leads in emission intensity per GDP: Insights from the gridded emission inventory for residential, road transport, and energy sectors, Journal of Environmental Sciences, 2024.
- [18] Venkataraman, C., Brauer, M., Tibrewal, K., Sadavarte, P., Ma, Q., Cohen, A., et al.: Source influence on emission pathways and ambient PM2.5 pollution over India (2015-2050), Atmos Chem Phys, 18, 8017-8039, 2018.

- [19] Venkataraman, C., Anand, A., Maji, S., Barman, N., Tiwari, D., Muduchuru, K., et al.: Drivers of PM2.5 Episodes and Exceedance in India: A Synthesis From the COALESCE Network, Journal of Geophysical Research: Atmospheres, 129, 2024.
- [20] Yunus, M., Asadullah, M., A. Ghulman, H., Rahman, F., and Irfan, M.: Energy Based Analysis of a Thermal Power Station for Energy Efficiency Improvement, International Journal Of Modern Engineering Research, 2014.