
1 

 

Impact-based early warning of mass movements – A dynamic spatial 

modelling approach for the Alpine region  

 
Stefan Steger1, Raphael Spiekermann1, Mateo Moreno2, Sebastian Lehner1,3, Katharina Enigl1,3, Alice 

Crespi4, Matthias Schlögl1,5 5 

1GeoSphere Austria, Vienna, Austria 
2OpenGeoHub Foundation, Doorwerth, The Netherlands 
3Department for Meteorology and Geophysics, University of Vienna, Vienna, Austria 
4Center for Climate Change and Transformation, Eurac Research, Bozen/Bolzano, Italy 
5Department of Landscape, Water and Infrastructure, BOKU University, Vienna, Austria 10 

Correspondence to: Stefan Steger (stefan.steger@geosphere.at) 

Abstract. Early warning systems play a crucial role in mitigating the impacts of severe weather events and related hazards. 

Traditional systems typically focus on meteorological forecasts and often do not account for the potential consequences that 

may follow, unlike impact-based approaches. In densely populated mountainous regions, such as the Alps, heavy precipitation 

frequently causes damaging mass movements. Since mass movement impacts ultimately result from a complex interplay of 15 

meteorological, geo-environmental, and socio-economic factors, warnings based solely on precipitation may have limited 

effectiveness. This study introduces a dynamic, spatially explicit modelling framework for impact-based early warning of 

precipitation-induced mass movement processes, tailored to three movement types: slides, flows, and falls. The framework 

integrates predisposing, preparatory, and triggering conditions, combining geo-environmental, meteorological, and exposure 

data to estimate daily impact potential across the Alpine region (450,000 km²). Using Generalized Additive Mixed Models 20 

(GAMMs), the approach captures non-linear relationships between impacts and predictors, ensuring interpretability and 

operational relevance. Beyond accounting for meteorological, geo-environmental, and exposure information, further key 

elements of the approach include incorporation of potential runout paths while maintaining a basin-based landscape 

representation, focusing model training on relevant terrain and time-periods to avoid trivial predictions, generating 

interpretable outputs, and demonstrating applicability through time-series predictive maps derived from hindcasting and "what-25 

if" scenarios. Results highlight the strong operational potential of slide- and flow-type models, while the fall-type model 

exhibits limited usability for early warning, due to its low sensitivity to short-term weather conditions. Beyond early warning, 

the framework demonstrates broad applicability for analysing spatio-temporal patterns, conducting trend analyses, and 

assessing climate change impacts. This research advances the fields of landslide prediction and impact-based warning by 

providing a transferable and generalizable approach, offering actionable insights for disaster risk reduction and climate 30 

adaptation strategies. 
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1 Introduction 

Early warning systems play an important role in reducing the impacts of severe weather events and associated hazards. 

Traditionally, these systems have been focused on meteorological forecasts over large areas, predicting critical atmospheric 

conditions such as strong winds, hail or heavy precipitation (Alfieri et al., 2012; Sun et al., 2014; Weyrich et al., 2018; Sivle 35 

et al., 2022). While effective in identifying potentially hazardous meteorological conditions in advance, they do not address 

potential negative consequences that may follow. To improve risk management and motivate more appropriate response, it is 

essential to assess how critical weather conditions may impact lives, livelihoods and property (WMO, 2015; Casteel, 2016; 

Weyrich et al., 2020). Thus, several national meteorological and hydrological services incorporate impact-oriented or impact-

based warnings to better inform decision-makers and the public about the potential adverse effects of meteorological events 40 

(Uccellini and Hoeve, 2019; Kaltenberger et al., 2020; Potter et al., 2021; Sivle et al., 2022).  

Impact-oriented approaches primarily rely on meteorological data, emphasizing expected weather conditions while using 

expert judgment to infer potential impacts. In contrast, impact-based approaches offer a more quantitative perspective on 

potential negative consequences by explicitly integrating meteorological information with data on geo-environmental 

conditions and socio-economic factors (e.g., exposure and vulnerability). The transition from meteorologically focused to 45 

impact-based warnings is encouraged by the World Meteorological Organization and international frameworks, such as the 

Sendai Framework for Disaster Risk Reduction and the Early Warnings for All initiative of the United Nations, which advocate 

for integrated risk-oriented strategies (WMO, 2015; Potter et al., 2021). Approaches for deriving impact-based warnings have 

been demonstrated for various phenomena, such as hailstorms, windstorms, droughts and flood-related assessments (Merz et 

al., 2020; Alfieri et al., 2024; Najafi et al., 2024; Schmid et al., 2024; Oh and Bartos, 2025). However, to our knowledge, no 50 

operational examples currently exist where impact potential is spatially modelled at high temporal resolution for hillslope 

processes, such as mass movements across large areas. 

Even the step preceding impact-based forecasting, namely predicting the geomorphic phenomenon itself, remains a major 

challenge. Although some operational landslide warning systems exist, they are still widely considered complex and uncertain 

(Alfieri et al., 2012; Piciullo et al., 2018; Guzzetti et al., 2020). The complexity stems from the underlying intricate interplay 55 

between meteorological conditions and geo-environmental drivers, which is difficult to capture using available data over large 

areas. Their occurrence involves processes operating across different timescales, from static predisposing conditions to 

dynamic preparatory factors and short-term triggers (Crozier, 1989). For instance, slide-type movements are influenced by 

static factors, including slope morphology and subsurface material type, while preparatory factors, like antecedent rainfall or 

seasonal vegetation changes, can affect how a hillslope reacts to short-term disturbances, such as intense precipitation (Luna 60 

and Korup, 2022; Steger et al., 2023). Other mass movement types, like flow-type or fall-type movements, may be driven by 

distinct causal factors and therefore require tailored modelling approaches (Loche et al., 2022). Differentiating between 

movement types and their respective drivers is often overlooked in large-area assessments or, when acknowledged, remains 

difficult to address due to resource and data limitations (Günther et al., 2014; Caleca et al., 2025).  

https://doi.org/10.5194/egusphere-2025-4940
Preprint. Discussion started: 15 October 2025
c© Author(s) 2025. CC BY 4.0 License.



3 

 

A further challenge lies in assessing landslide impacts, as triggered landslides travel downslope and can damage assets located 65 

far from their release zones. Consequently, spatially explicit landslide runout models are essential for impact and risk 

evaluations (Horton et al., 2013; Mergili et al., 2015; Wichmann, 2017). However, many spatially explicit large-area landslide 

assessments focus primarily on release zones or do not distinguish between release areas and downslope movement paths. This 

limitation reduces the ability of conventional landslide susceptibility models to evaluate impacts within the potential reach of 

landslides, such as flat terrain at the base of hillslopes (Mergili et al., 2019; Lima et al., 2023; Marchesini et al., 2024).  70 

Beyond the widespread use of static landslide susceptibility models that indicate where landslides may occur (Reichenbach et 

al., 2018) and empirical rainfall thresholds that focus on critical precipitation conditions for their initiation (Brunetti et al., 

2010; Segoni et al., 2018; Peres and Cancelliere, 2021; Kaitna et al., 2025), recent efforts have increasingly focused on data-

driven space-time landslide modelling (Lombardo et al., 2020). These models dynamically estimate critical landslide 

conditions across space and time by integrating geo-environmental factors with dynamic conditions, most notably weather-75 

related variables (Stanley et al., 2021; Maraun et al., 2022; Ahmed et al., 2023; Moreno et al., 2024; Nocentini et al., 2024; 

Mondini et al., 2025). Most of these approaches focus on critical conditions within landslide release zones, without explicitly 

accounting for downslope landslide propagation or the assets located in potentially affected areas. Thus, despite being dynamic 

and spatially explicit, they lack key components essential for impact-based warning, such as information on elements at risk, 

which are explicitly addressed in landslide risk or exposure assessments (Dai et al., 2002; Corominas et al., 2013; Lin et al., 80 

2023; Marchesini et al., 2024; Caleca et al., 2025). So far, landslide risk or exposure assessments for large areas only 

occasionally incorporate dynamic factors, such as land cover changes or climate trends (Farvacque et al., 2019; Ozturk et al., 

2022; Lin et al., 2023). However, their utility for early warning is limited, as they fail to capture short-term meteorological 

variability and therefore cannot provide predictions at daily or sub-daily scales. 

From a technical viewpoint, flexible algorithms and software tools offer extensive capabilities for processing large and 85 

heterogeneous datasets to create space-time models over large areas. However, their effectiveness in assessing and predicting 

environmental hazards and risks often remains limited by the quality and completeness of the input data used to train these 

models (Ardizzone et al., 2002; Guzzetti et al., 2006; Reichenbach et al., 2018). In fact, data limitations are frequently identified 

as a key barrier to more detailed large-area landslide modelling (Günther et al., 2014; Broeckx et al., 2018; Caleca et al., 2025). 

For instance, data-driven landslide models often have limited explanatory power due to spatially incomplete and temporally 90 

inconsistent landslide training data, which can lead to biased results. Targeted sampling and modelling strategies are required 

to adequately address these challenges or, at the very least, careful model interpretation (Steger et al., 2021; Caleca et al., 2025; 

Luna et al., 2025). Avoiding a high raster resolution or using alternative landscape representations, such as slope units or 

basins, can help reduce the impact of inaccuracies in landslide inventories on modelling results (Alvioli et al., 2016; Woodard 

et al., 2024). However, such generalizations can obscure important details. For instance, in landslide risk or exposure 95 

assessments, infrastructure or populations located within a mapping unit but well beyond the actual reach of potential landslides 

may be erroneously counted as exposed, simply because the entire unit is considered susceptible (Caleca et al., 2025). 
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The sampling strategy used to represent typical landslide and non-landslide conditions strongly influences subsequent 

modelling results (Guo et al., 2024). Including data from irrelevant trivial terrain or trivial time periods, such as flat areas or 

dry conditions, can lead to landslide models that learn and reproduce overly simplistic patterns while inflating model 100 

performance scores. For example, such apparently well-performing models may mainly separate steep from flat areas or rainy 

from dry days, missing conditions critical for decision-making (Steger and Glade, 2017; Steger et al., 2023). 

Model interpretability becomes particularly important when outputs are used to support decision-making (Schlögl et al., 2025), 

especially in early warning contexts (Vinuesa and Sirmacek, 2021; Reichstein et al., 2025). Transparent and interpretable 

outputs facilitate effective communication with stakeholders and foster trust in model results (Schlögl et al., 2024). For 105 

modellers, interpretable outputs are equally valuable, as they support plausibility checks and iterative refinements throughout 

the development process (Lombardo et al., 2020; Collini et al., 2022; Nocentini et al., 2023; Caleca et al., 2024). 

In summary, many large-area landslide assessments remain of limited use for impact-based warning purposes. This is often 

due to their static nature, which fails to capture short-term meteorological variability, their exclusive focus on initiation zones 

while overlooking downslope runout areas and exposed assets, and limitations related to data availability and modelling design. 110 

This study addresses these gaps by developing and evaluating interpretable data-driven models to dynamically assess the 

impact potential of precipitation-induced mass movement processes across the Alpine region at daily scale. The models are 

designed to assess the impact potential of three movement types, namely slides, flows and falls, on infrastructure.  

 

Key features of the proposed approach include: 115 

 Integration of impact drivers: Capturing the interplay of meteorological, geo-environmental and exposure data by 

integrating predisposing, preparatory and triggering conditions. 

 Incorporation of runout paths: Accounting for movement paths while maintaining a generalized landscape representation 

by incorporating pixel-based mass movement runout information into basin-based model training. 

 Tailored sampling strategies: Avoiding oversimplified patterns by constraining model training to non-trivial terrain and 120 

time-periods. 

 Model interpretability: Generating explainable outputs that support process-oriented plausibility checks and effective 

communication of results. 

 Demonstrating suitability for impact-based warning systems: Producing maps and animations for hindcasting and scenario-

based examples. 125 

 

The modelling framework presented in this study is designed as a generalizable and transferable approach for dynamically 

estimating the impact potential of fast-onset hazards within an impact-based warning context. 
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2 Study area 

This study focuses on the Alpine Space as delineated by the Interreg Alpine Space Programme of the European Union (Fig. 130 

1), an area that encompasses approximately 450,000 km² across seven countries: Austria, France, Germany, Italy, 

Liechtenstein, Slovenia and Switzerland. 

 

Figure 1: Location and topography of the study area, the Alpine Space, as delineated by the Interreg Alpine Space Programme. 

The study area represents a distinctive and heterogeneous mountainous system within Europe, encompassing high alpine 135 

terrain, peri-alpine lowlands and densely populated valleys. Elevations range from sea level in the southern coastal areas to 

elevations of more than 4,800 m above sea level in the Western European Alps (Fig. 1). The considerable elevation gradient 

along the Alpine arc results in high relief energy, which plays a key role in conditioning slope instability.  

The hillslope basins in the Alpine Space are lithologically diverse (Donnini et al., 2020). Sandstone and claystone formations 

represent the dominant class within approximately 34% of the basins used in this study, followed by mixed carbonate rocks 140 

making up 28% and pure carbonate rocks approximately 23%. Igneous rocks, both acid and mafic types, cover 10%, while 

metamorphic rocks account for approximately 5%. This lithological diversity reflects the complex geological context of the 
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region and plays a significant role in shaping soil development, hydrological processes and slope stability (Donnini et al., 

2020; Sidle and Ochiai, 2006). 

Land cover also plays an important role in mass movement occurrence through various hydrological and mechanical effects 145 

(Crozier, 1989). Land cover data shows that the study area includes a considerable proportion of forested land, with broadleaf 

and coniferous tree cover accounting for approximately 38% of the area (Malinowski et al., 2020). Agricultural lands, including 

cultivated areas and vineyards, account for approximately 23%, while grasslands and shrub-dominated areas, including 

herbaceous vegetation, sclerophyllous cover and moorlands, comprise around 27%. Artificial surfaces, including urban 

infrastructure, represent a relatively small portion at 4%. Wetlands, bare natural surfaces, permanent snow-covered areas and 150 

water bodies together contribute around 8% (Malinowski et al., 2020).  

A range of climate-related factors contribute to mass movement occurrence, with precipitation and temperature being the most 

influential, while snowmelt, seasonal variability and specific weather types also play important roles (Gariano and Guzzetti, 

2016). Climatically, the region exhibits a high degree of variability in both temperature and precipitation. Temperature 

variations are pronounced due to the complex topography between valleys, ridges and mountain tops, as well as diverse 155 

climatic influences. These include maritime influences from the Atlantic Ocean and Mediterranean Sea, and continental effects 

from Eastern Europe. Precipitation is shaped mainly by the prevailing meandering westerly wind belt, moisture sources from 

the Atlantic and Mediterranean, and characteristic pathways of low-pressure systems. In addition, seasonal variations and local 

orographic effects also contribute to precipitation dynamics (Schär et al., 1998; Hofstätter and Chimani, 2012; Ménégoz et al., 

2020). 160 

Across the Alps, various elements at risk are exposed, such as population, infrastructure and critical assets (Alfieri et al., 2012; 

Günther et al., 2014; Keiler and Fuchs, 2016; Caleca et al., 2025). From a socio-economic perspective, the Alpine Space is 

home to over 80 million people and includes both major European metropolitan centres and remote rural regions. The area 

contains densely populated transport corridors, particularly within narrow valley systems where natural hazard-prone terrain 

overlaps with human settlements, leading to elevated exposure levels. Thus, development in the Alpine region is intrinsically 165 

coupled with natural hazard risk, with landslides representing an important component (Fuchs et al., 2017; Schlögl et al., 2019). 

3 Data 

Topographic information was sourced from a 20 m Digital Terrain Model (DTM) covering the entirety of Europe (Sonny, 

2023; Fig. 1). The DTM served as the foundation for delineating basins, for mapping potential landslide process paths and for 

deriving morphometric predictor variables. Lithological data was derived from the Alpine Geo-Lithological Map (Alpine-Geo-170 

LiM) developed by Donnini et al. (2020). This map offers a simplified and harmonized lithological classification of the Alpine 

arc at a scale of 1:1,000,000 and was derived from national geological maps of Austria, France, Germany, Italy, Slovenia and 

Switzerland. Information on land cover was obtained from the Pan-European land cover and land use map published by 

Malinowski et al. (2020). The dataset provides consistent land cover information for the year 2017 across Europe and is based 
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on an automated classification of multi-temporal Sentinel-2 imagery. Meteorological data for the period 2005 to 2020 were 175 

obtained from the Copernicus European Regional ReAnalysis (CERRA), which provides high-resolution (5.5 km) gridded 

climate data for Europe. Temperature variables were derived from CERRA, while precipitation variables were taken from its 

Land component (CERRA-Land) (Ridal et al., 2024). Temperature was available at 3 hourly temporal resolution from CERRA 

analysed fields. These were aggregated to daily min/mean/max fields and then reprojected to EPSG:32632. Precipitation data 

from CERRA-Land are available directly as daily analysed fields, hence no further preprocessing except for the reprojection 180 

was needed. This dataset has already demonstrated promising potential for linking meteorological conditions to landslide 

occurrence in the Alps (Crespi et al., 2025). Exposure data was sourced from building and infrastructure layers available in 

OpenStreetMap (OSM), a widely used source of volunteered geographic information that provides comprehensive and 

regularly updated cartographic data, with the highest data completeness observed in Europe (Goodchild, 2007; Zhou et al., 

2022). 185 

The datasets cover the entire Alpine Space, while mass movement event data for model training was available for Austria and 

South Tyrol, a region representative of the environmental variability across the Alpine Space. This training area comprises 

3,696 basins (Fig. 3; cf. Section 4.2.1) and, in addition to time-stamped event data, offers substantial diversity in geology, 

topography, land cover and precipitation, providing a robust basis for developing a model with spatial transferability across 

the Alpine Space. 190 

Mass movement data were compiled from national inventories and filtered to include only precipitation-induced events (2005–

2020) with known dates and documented infrastructure damage, ensuring relevance for impact-based analysis. Sources include 

the national GEORIOS inventory from GeoSphere Austria (Themessl et al., 2022), which provides time-stamped records of 

slides, flows and falls across Austria. From the event inventory of the Austrian Torrent and Avalanche Control (WLK), only 

flow-type events were extracted (BMNT, 2018; Heiser et al., 2019). The data for Northern Italy, encompassing slides, flows 195 

and falls, originate from the provincial implementation of the national landslide inventory IFFI (Inventario dei Fenomeni 

Franosi in Italia) and were accessed via the IdroGeo platform (Iadanza et al., 2021). While these inventories are subject to 

known limitations, they offer a valuable and comprehensive source of time-stamped mass movement occurrences enriched 

with contextual attributes. A notable characteristic, particularly limiting for purely process-oriented studies, is their tendency 

to underrepresent slope instabilities that did not cause damage (Trigila et al., 2010; Heiser et al., 2019; Steger et al., 2021). 200 

However, this focus on damage-causing events aligns well with the objectives of this study, which specifically targets an 

impact-based perspective. 

4 Methods 

4.1 Methodical framework 

This research developed three daily-scale impact-based models, each specifically tailored to slide-, flow- and fall-type mass 205 

movements. Figure 2 presents the methodological framework of this study, with further details provided in Sections 4.2 to 4.4. 

https://doi.org/10.5194/egusphere-2025-4940
Preprint. Discussion started: 15 October 2025
c© Author(s) 2025. CC BY 4.0 License.



8 

 

 

Figure 2: Methodical framework of this study.  

In summary, the study area was divided into 17,872 basins. Within each basin, areas potentially affected by a mass movement, 

hereafter referred to as potential process areas (PPAs), were delineated for each movement type to identify terrain where 210 

impacts are possible (Section 4.2.1). Movement type-specific binary response variables, representing presence and absence of 

impacts, were then generated using a spatio-temporal sampling scheme that restricts observations to relevant basins and 

relevant periods (Section 4.2.2). Predictor variables representing geo-environmental and exposure characteristics were 

aggregated within the PPAs of each basin, while daily meteorological data was aggregated to the basins using areal weighting 

(Section 4.2.3). Mass movement impacts were then modelled separately for each movement type as a function of 215 

meteorological, geo-environmental and exposure factors (Section 4.3). The data-driven models were evaluated using 

quantitative metrics and plausibility checks and then applied across the entire Alpine domain to generate daily impact 

predictions, visualized as maps and animations (Section 4.4). 

4.2 Data preparation 

4.2.1 Basin Delineation and Mapping of Potential Process Area 220 

The study area was first subdivided into 17,872 hydrological half-basins using the r.watershed module in GRASS GIS 8.4 

based on a resampled 50 m DTM (Neteler et al., 2012). Throughout the paper, these spatial units are referred to as basins. The 
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basins have a median size of 2,020 ha, with a lower threshold of 200 ha (Fig. 3). Polygons smaller than 200 ha were 

successively merged with adjacent units, first prioritizing the longest shared boundary, and subsequently the largest 

neighbouring area. Then, PPAs were delineated separately for each movement type to account for areas where mass movement 225 

impacts can reasonably be expected (Fig. 3a and 3b). This step was essential to focus the analysis within each basin on non-

trivial terrain, thereby excluding irrelevant features beyond the potential reach of mass movements. Given the Alpine-wide 

scale, the Gravitational Process Path (GPP) model (Wichmann, 2017) was used to identify potential runout paths based on the 

available 20 m DTM. Our approach combined the angle of reach concept with stochastic random walk routing along the surface 

of a DTM, balancing realism and computational efficiency to approximate areas potentially affected by mass movements. 230 

Although less precise than site-specific runout models, the derived PPAs were considered to serve as meaningful spatial 

constraints for further analyses. 

 

Figure 3: Basins (red) and potential process areas (PPA) for fall-type movements (brown) across the Alpine Space (a). Close-up of 

Bozen/Bolzano in northern Italy, showing process paths for fall-types that were used to delineate the PPA (b). Trivial terrain for 235 
fall-types (grey), the PPA for fall-types (white) and OSM building data (c). Note that geo-environmental and exposure variables 

https://doi.org/10.5194/egusphere-2025-4940
Preprint. Discussion started: 15 October 2025
c© Author(s) 2025. CC BY 4.0 License.



10 

 

were aggregated to the basins based on their distribution within the PPAs (white areas in c). Overview of all PPAs within the example 

basin (d). 

Parameterization for each movement type was derived from literature and the GPP model documentation. The angle of reach 

is an empirical parameter that primarily governs the resulting runout length, while runout behaviour was controlled by three 240 

parameters: slope weighting, divergence exponent and the persistence factor (Wichmann, 2017). For slide-type movements, 

an angle of reach of 22° was applied (D’Amboise et al., 2021), with a slope weighting of 30, a divergence exponent of 2.12 

and a persistence value of 1.75 (Wichmann, 2017). Flow-type movements used an angle of reach of 11° (Horton et al., 2013), 

with the same slope weighting, divergence exponent and persistence values as slide-types. For fall-type movements, an angle 

of reach of 29° was used (Menk et al., 2023), combined with a slope weighting of 60, a divergence exponent of 1.75 and a 245 

persistence of 1.3 (Wichmann, 2017).  

The GPP model also requires spatially explicit information on potential release areas to serve as starting points for process 

path simulations. The potential release areas were also defined based on literature using conservative slope thresholds selected 

to capture a broad extent of likely initiation-prone terrain. From each potential release pixel, five random walks were initiated 

to capture some variability in downslope routing. For slide-types, slopes between 5° and 50° were considered potential release 250 

locations (Steger et al., 2021). Flow-type release areas were delineated on terrain with slopes greater than 15° (Horton et al., 

2013), while fall-type release areas were mapped on slopes exceeding 35° (Dupire et al., 2020). 

4.2.2 Response variables: Representing occurrence and non-occurrence of mass movement impact 

For each movement type, a binary response variable representing the presence and absence of mass movement impact was 

created using a structured spatio-temporal sampling scheme. All observations, presences and absences, were limited to “non-255 

trivial” situations. Spatially, only basins where infrastructure overlapped with the PPA were considered and temporally, only 

days with at least moderate precipitation were included. Thus, subsequent modelling was constrained to observations 

representing conditions potentially relevant for impact-based warning. 

In detail, presence data were prepared using three data sources, GEORIOS, WLK and IFFI (Section 3). Initially, all records of 

deep-seated movements or those lacking documented infrastructure impact were excluded, based on available inventory 260 

attributes. The remaining presence data were grouped into slide-, flow- and fall-type movements and spatially joined to their 

corresponding basins. Further filtering was applied to retain only events with a known day of occurrence between 2005 and 

2020 that were associated with at least moderate precipitation conditions. Building on our previous work (i.e., Steger et al., 

2023), a rainfall filter was applied using precipitation data from the event day and the preceding day. The inclusion of the 

preceding day was important to account for cases where e.g., rainfall occurred in the late evening, resulting in a mass movement 265 

that was initiated/recorded on the following day. An arbitrary threshold of 10 mm for daily precipitation was used to define a 

day with moderate precipitation amounts, applied to either day. Note that the number of presence basins is lower than the total 

number of presence observations used for modelling, since multiple days with registered mass movement occurrences may 

have been recorded within a basin during the 16-year period. 
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Absence basins were randomly selected using a spatial distance constraint to minimize the selection of neighbouring basins 270 

and reduce spatial autocorrelation. Specifically, if basins had centroids within 10 km of each other, only one basin was selected. 

This was done while maintaining a one-to-one ratio between presence and absence basins for each movement type, which 

resulted in 2,028 basins for the slide-type (1,014 presences and 1,014 absences), 1,382 basins for the flow-type (691 each) and 

1,098 basin for the fall-type (549 each). 

Absence dates were sampled from both absence and presence basins. For each basin, 50 random dates between 2005 and 2020 275 

were initially drawn, creating a large pool of absence days. To reduce potential temporal autocorrelation, absence dates within 

the same basin were excluded if they fell within 30 days of any registered mass movement event. Additionally, if multiple 

absence dates within the same basin were less than 30 days apart, only one date was retained. Based on this, further 

downsampling was applied to distribute absence dates evenly across months and years, ensuring equal representation of all 

time periods, in analogy to Steger et al. (2023). From this pool of evenly distributed and temporally spaced absence dates, only 280 

days meeting the same rainfall threshold as the presence data were retained to create a sample of at least moderately rainy days 

not associated with recorded mass movement occurrences. In summary, the final datasets comprised 7,900 observations for 

the slide-type models (2,077 presences and 5,823 absences), 5,463 observations for flow-type models (1,386 presences and 

4,077 absences) and 4,069 observations for fall-type models (647 presences and 3,422 absences). 

4.2.3 Predictor variables: Characterizing potential drivers of mass movement impact 285 

A range of predictor variables was compiled to represent the geo-environmental, exposure-related and meteorological/climatic 

conditions used to estimate mass movement impact. The following table shows the variables used to describe these conditions, 

along with their classification, spatial aggregation methods and spatio-temporal characteristics. 

 

Table 1: Overview of predictor variables used for mass movement impact modelling, including their classification, spatial 290 
aggregation methods and spatio-temporal characteristics. Note that the variables in bold were included as candidates within the 

initial model setup (cf. Section 4.3). 

Category Variable (v) / Variable class 

(c) 

Spatial aggregation Type 

Geo-environmental 

(Morphometry) 

Slope angle (v) 

Convergence (v) 

Aspect (v) 

Mean in PPA 

Mean in PPA 

Mean in PPA 

Spatial & static 

Geo-environmental 

(Land cover) 

Land cover (v) 

Deciduous forest (c) 

Coniferous forest (c) 

Crop- & grassland (c) 

Bare surface & other (c) 

Dominant class in PPA 

Portion of class in PPA 

Portion of class in PPA 

Portion of class in PPA 

Portion of class in PPA 

Spatial & static 

 

Geo-environmental 

(Lithology) 

Lithology (v) 

Igneous (c) 

Metamorphic (c) 

Dominant class in PPA 

Portion of class in PPA 

Portion of class in PPA 

Spatial & static 
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Mixed carbonate (c) 

Pure carbonate (c) 

Sandstone–claystone (c) 

Portion of class in PPA 

Portion of class in PPA 

Portion of class in PPA 

Exposure Number of buildings (v) 

Transport infrastructure (v) 

Number of buildings in PPA 

Portion of “road” cells in 

PPA 

Spatial & static 

 

Meteorological 

(Precipitation) 

Short-term precipitation (v) 

Antecedent precipitation: 7-

day, 14-day, 21-day, 30-day 

precipitation (v) 

Mean annual precipitation 

2005-2020 (v) 

Area-weighted spatial 

averaging 

 

Spatial & daily 

 

 

Spatial & static 

Meteorological 

(Temperature) 

Mean daily temperature (v) 

Binary: Day crossing 0 °C (v) 

Binary: Day below 0 °C (v) 

Area-weighted spatial 

averaging 

 

Spatial & daily 

 

Others Day-of-Year (DOY) 

Sampling Year 

Sampling location (Basin-ID) 

- 

- 

- 

Non-spatial & daily 

Non-spatial & yearly 

Spatial & static 

 

The static geo-environmental variables related to basin morphology were derived using SAGA GIS (Conrad et al., 2015) and 

the 20 m DTM. These variables were aggregated from the pixel level to the basin scale based on the respective PPAs. As a 295 

result, parameters, such as mean slope angle or the number of potentially exposed buildings, vary within the same basin, 

depending on the underlying movement type. 

Land cover and lithology variables were based on reclassified versions of their original datasets (Donnini et al., 2020; 

Malinowski et al., 2020). The reduction in the number of classes aimed to increase the likelihood of obtaining interpretable 

and parsimonious models. Care was taken to ensure that each class was well represented within the training area, while also 300 

ensuring that no class occurring outside the training area lacked adequate representation in the training data. The four major 

land cover classes and five lithological classes are well represented within the training area and broadly distributed across the 

entire Alpine Space (Table 1). 

Variables representing exposure were obtained from OSM and include buildings and transportation infrastructure. For 

buildings, individual point data were aggregated for each basin by summing the number of buildings within each PPA (Fig. 305 

3c), resulting in approximately 19.8 million buildings within slide-type PPAs, 12.7 million in flow-type PPAs and 1.2 million 

in fall-type PPAs. Primary and secondary road networks and railways (e.g., highways, railways and paved roads) represented 

transport infrastructure, while trails and hiking paths were excluded. These data were aggregated for each basin by calculating 

the fraction of rasterised roads (20 m grid cells) within each PPA. 

Temperature variables were derived from the 3 hourly analysed CERRA fields, with precipitation data sourced from CERRA-310 

Land as daily fields. The 3 hourly temperature fields were aggregated to daily min/mean/max fields. These 5.5 km resolution 

data were aggregated to the basin level using spatial weights based on the degree of overlap between CERRA grid cells and 
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basin polygons. Following Steger et al. (2023), precipitation was represented using a short time window to capture “triggering” 

precipitation and longer time windows to account for antecedent precipitation. Triggering precipitation referred to the 

cumulative amount on the observation day and the preceding day, while antecedent precipitation was calculated over 7-, 14-, 315 

21- and 30-day periods preceding the triggering precipitation. Mean annual precipitation over the 2005 to 2020 training period 

was included as a static baseline describing long-term spatial variability in precipitation. Daily mean temperatures and two 

binary indicators were used to represent potential temperature effects. The binary variables represent (1) whether the 

temperature crossed 0 °C on a given day, serving as a potential indicator for freeze-thawing and (2) whether the temperature 

remained continuously below 0 °C on a day, indicating potential frozen ground conditions. Finally, additional variables such 320 

as Day-Of-Year (DOY), sampling year and sampling location were included to account for seasonal patterns and group-level 

differences between sampling units. 

4.3 Modelling 

The potential of mass movement impact was modelled as a function of geo-environmental, exposure-related and 

meteorological variables using Generalized Additive Mixed Models (GAMMs). Separate models were fitted for each 325 

movement type, using parameter sets specific to the associated PPAs (Fig. 3d). GAMMs extend Generalized Additive Models 

(GAMs) by incorporating random group-level effects, while retaining the strengths of GAMs in modelling complex non-linear 

relationships through smooth functions, accommodating diverse error distributions and maintaining high interpretability. 

These characteristics make GAMMs particularly well-suited to environmental modelling tasks (Zuur et al., 2009; Wood, 2017;  

Pedersen et al., 2019). Various versions of GAMs and GAMMs have been applied in data-driven landslide research (Goetz et 330 

al., 2015; Lombardo et al., 2018). In this study, the binary response was modelled using a binomial error distribution. The 

model was implemented using the bam() function from the mgcv package in R, which is specifically designed for modelling 

with large datasets (Wood et al., 2015; Wood, 2017). Variable selection was performed using an automated procedure based 

on double penalty shrinkage, which penalizes both the complexity of smooth terms to prevent overfitting and the null space to 

allow exclusion of non-informative predictors (Marra and Wood, 2011). 335 

The modelling process began with a comprehensive initial variable setup (cf. variables in bold in Table 1) and proceeded 

iteratively, using automated variable selection throughout. To account for the hierarchical structure of the data, random 

intercepts were included for sampling year and sampling location. In the initial model, care was taken to avoid including 

multiple variables representing the same underlying effect. Specifically, only one variable for antecedent precipitation (based 

on a 30-day accumulation window) was included, while land cover and lithology were represented as categorical variables 340 

based on their dominant class within the PPAs. The resulting reduced models served as the basis for the next step, in which 

categorical land cover and lithology variables were supplemented with their continuously scaled counterparts (cf. Table 1) to 

assess whether additional information on the proportion of specific classes added value, both in terms of statistical significance 

(p-value <0.05) and plausibility. For example, in the fall-type model, the proportion of bare surface was retained by the 
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automated selection procedure, contributing significantly and exhibiting a plausible positive relationship, as higher proportions 345 

of bare surface within the PPA can reasonably be associated with increased rockfall activity. 

The final step involved testing whether the initially selected 30-day accumulation window for representing antecedent 

precipitation was the best choice. This was evaluated using cross-validation (cf. Section 4.4.1), comparing the predictive 

performance of the 30-day model against alternative accumulation periods (7, 14 and 21 days), as well as against a null model 

that excluded antecedent precipitation entirely. As a result, one final model was selected for each movement type. For 350 

predictive mapping across the Alpine Space and performance assessment, predictions were based on fixed effects only, with 

random effects averaged (Wood, 2017). 

4.4 Model evaluation 

The modelling results were evaluated using a plurality of approaches. Model performance was assessed through cross-

validation (Section 4.4.1). Variable importance assessment and inspection of partial effects provided insights into model 355 

relationships and supported plausibility checks (Section 4.4.2). Finally, the models were applied across the entire Alpine 

domain to generate daily spatial predictions for each basin (Section 4.4.3). 

4.4.1 Assessing model performance 

The fitting performance of each model was evaluated on the training data by visualizing receiver operating characteristic 

(ROC) curves and calculating the area under the ROC curve (AUROC). The ROC curve illustrates the trade-off between the 360 

true positive rate (TPR) and the false positive rate (FPR) across different classification thresholds derived from predicted 

probabilities ranging from 0 to 1. The AUROC is a standard metric in binary classification that provides a single-number 

summary of the ROC curve, reflecting the ability of the model to distinguish between presence and absence observations. An 

AUROC of 1 indicates perfect discrimination, while a value of 0.5 corresponds to random guessing (Metz, 1978; Fawcett, 

2006). 365 

To evaluate predictive performance and identify the optimal antecedent rainfall time window, we employed 5-fold cross-

validation with basin-based partitioning, repeated 10 times. Specifically, in each fold, 80% of randomly selected basins were 

used as the training set to fit the model, while the remaining 20% served as the test set for deriving the AUROC. Within each 

repetition, every basin was used once as a test basin and four times as part of the training set. Repeating this process across 10 

independent random partitions resulted in 50 AUROC values per model (5 folds time 10 repetitions). 370 

4.4.2 Assessing modelled relationships 

To enable model interpretation and plausibility checks of the internal model behaviour, we used variable importance 

assessment alongside visualization of partial effects. Variable importance, which quantifies the relative contribution of each 

predictor, was assessed using a permutation-based approach implemented in the R package vip (Greenwell et al., 2020). 

Specifically, for each predictor, values were randomly shuffled across the dataset, breaking the relationship with the response 375 
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variable. The impact of this permutation on model performance was measured by the resulting decrease in AUROC. This 

procedure was repeated 100 times per predictor using Monte Carlo replications. Predictors causing a larger reduction in 

AUROC were interpreted as having higher relative importance in the model. 

Partial effects plots complement variable importance assessment by providing insights into the modelled relationships at the 

single-predictor level. In the context of GAMs, partial effect plots graphically represent the estimated smooth functions that 380 

describe the relationship between the response and predictor variables (Simpson, 2024). In our study, these plots illustrate how 

the modelled effect of each predictor varies across its observed range, showing the contribution of that predictor to the overall 

prediction. 

4.4.3 Creation of predictive maps 

A series of predictive maps and animations were generated by applying the three models across the Alpine Space. Model 385 

predictions, expressed as probability scores, were transferred to the basin level on a daily scale, excluding random effects and 

assigning a value of zero to trivial basins where no impacts are expected (i.e., where the PPA is absent or does not overlap 

with relevant infrastructure). In these maps, the probability scores do not represent absolute occurrence probabilities, but 

conditional probabilities influenced by the class balance in the training data (i.e., presence to absence ratio). Higher scores 

denote stronger resemblance to impact conditions, whereas lower scores indicate conditions typical of non-impact observations 390 

(cf. Section 6.4 for guidance on interpretation and relevance for operational implementation). As the model predictions are 

space- and time-specific, predictive maps were produced for selected constellations of dynamic variables. In this context, both 

“what-if” scenarios and hindcasting were employed to visualize model behaviour under hypothetical and real conditions, 

respectively. 

In analogy to Moreno et al. (2024), a range of “what-if” scenarios were produced to depict how the model responds when 395 

subjected to controlled, hypothetical input settings. Specifically, a stepwise increase in precipitation, introduced through 

spatially uniform alterations of daily precipitation amounts, was used to evaluate how the estimated probability of mass 

movement impact varies across the Alpine region. Hindcasting involves simulating and analysing past conditions using a 

model originally designed to predict future outcomes. It is commonly employed to validate predictive models by comparing 

their outputs with known historical situations, thereby assessing their reliability and plausibility (Clement, 2011; Ozturk et al., 400 

2021; Moreno et al., 2024). In our study, hindcasting was applied to well documented past events to explore model behaviour 

using historical input data and to demonstrate its potential for application in an impact-based early warning context. 

5 Results 

5.1 Model performance 

The ROC curves (Fig. 4a) indicate relatively high fitting performance for all three models, particularly if considering that easy-405 

to-classify observations were a-priori excluded. The flow-type model achieved the highest AUROC (0.90), followed by the 
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slide-type (0.87) and fall-type (0.82) models. Points along each curve indicate the closest point to the top-left of the ROC 

space, representing the optimal thresholds that balance misclassification rates and best separate the two classes (Schisterman 

et al., 2005). At these thresholds, the slide-type model reached a true positive rate (TPR) of 0.78 and a true negative rate (TNR) 

of 0.81, the flow-type model achieved a TPR of 0.85 and TNR of 0.78 and the fall-type model a TPR of 0.78 and TNR of 0.72. 410 

 

Figure 4: Model fitting performance and optimal cut-points based on the closest point to the top-left corner of the ROC space (a). 

Predictive performances from basin-based cross-validation across different antecedent precipitation time windows are shown for 

the slide-type model (b), flow-type model (c) and fall-type model (d). Final models were constructed using the best-performing time 

windows: 30 days for slide-type, 21 days for flow-type and 14 days for fall-type. 415 
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Cross-validation (Figs. 4b–d) was used to evaluate predictive performance and the influence of different antecedent 

precipitation time windows (7, 14, 21 and 30 days), alongside a null model without this variable. Median AUROCs were only 

slightly lower than their corresponding fitting performance (Fig. 4a), indicating a high predictive skill and limited model 

overfitting. For the slide-type and flow-type models, AUROC values increased more markedly with the inclusion of antecedent 

precipitation, whereas the fall-type model exhibited minimal variation across time windows, suggesting a weaker sensitivity 420 

to antecedent precipitation conditions. 

The optimal time windows selected for the final models were 30 days for the slide-type model (median AUROC = 0.86), 21 

days for the flow-type model (median AUROC = 0.89) and 14 days for the fall-type model (median AUROC = 0.80). 

Variability in predictive performance, expressed as the interquartile range (IQR) of AUROCs for the final models, can serve 

as an indicator of model stability, with higher IQRs denoting less consistent performance and greater uncertainty in 425 

generalization (Petschko et al., 2014). This variability was lowest for the flow-type models (IQR = 0.02), followed by the 

slide-type models (IQR = 0.03) and highest for the fall-type models (IQR = 0.05). While generally low across all three models, 

the variability indicates greater uncertainty in fall-type predictions while underscoring the relatively higher stability of the 

flow- and slide-type models. 

5.2 Modelled relationships 430 

Permutation-based variable importance assessment revealed distinct patterns in the key factors influencing mass movement 

impact across the three models. The slide-type and flow-type models emphasize a combination of meteorological variables 

and static characteristics related to terrain morphology and exposure, whereas the fall-type model was dominated by static 

spatial variables, especially those related to exposure (Fig. 5). 
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 435 

Figure 5: Permutation-based variable importance for the final three models, expressed as the decrease in AUROC after permuting 

each variable 100 times. 

For the slide-type and flow-type models, short-term precipitation, which served as a proxy for triggering rainfall, was the most 

influential variable, followed by mean annual precipitation. For the slide-type model, the next most important variables were 

mean slope angles, antecedent precipitation, the number of buildings in the PPA and the dominant lithology class within it. 440 

The flow-type model ranked mean daily temperature as the third most important predictor, followed by slope angle, antecedent 

precipitation and the number of buildings in the respective PPA. In contrast, the fall-type model showed a markedly different 

pattern, with static spatial factors dominating the top five ranks and short-term precipitation emerging only as the sixth most 

important variable. The most important predictors were exposure related, particularly the number of buildings and the extent 

of transport infrastructure within the fall-type PPA. Additionally, lithology, slope angle and the portion of bare surface were 445 

identified as relatively important factors. 

https://doi.org/10.5194/egusphere-2025-4940
Preprint. Discussion started: 15 October 2025
c© Author(s) 2025. CC BY 4.0 License.



19 

 

Partial effect plots provided detailed insights into the modelled relationships between individual predictors and estimated 

impact potential at the single-predictor level (Fig. 6, 7, 8). When interpreting these plots, it is important to consider the relative 

importance of each predictor within the model (Fig. 5), distinguishing variables that are highly influential from those with 

lesser impact. For the slide-type model, the most important variable, namely short-term precipitation, showed a positive, non-450 

linear association with estimated mass movement impact (Fig. 6a). The increase was steep and approximately linear up to 100 

mm, after which the effect began to level off. The smooth term for antecedent precipitation indicated that lower precipitation 

amounts within the previous 30 days were associated with reduced estimated impact probabilities (Fig. 6b). Very high 

antecedent precipitation amounts exceeding 400 mm did not correspond to further increases in impact probability. Consistent 

with Steger et al. (2024), a clear negative relationship with mean annual precipitation was observed (Fig. 6c), indicating that 455 

basins with generally drier conditions tend to respond more strongly to potential triggering events than basins adapted to wetter 

conditions. The potential for slide-type impact was higher in basins characterised by steeper terrain (Fig. 6d) and high exposure 

(Fig. 6e, f), indicated by the number of buildings and density of transport infrastructure within the potential slide-type terrain 

(PPA). Seasonal variation, modelled using a circular DOY effect, indicated that periods with reduced vegetation effects (i.e., 

winter, early spring) were associated with higher impact probabilities (Fig. 6g), noting that temperature and precipitation 460 

effects are accounted for by other variables in the model. Temperature variables revealed that particularly cold conditions 

below 0 °C corresponded to a lower impact potential, whereas hot days with mean daily temperatures exceeding 20 °C were 

associated with increased impact probabilities, suggesting that warmer “rainy” days, when convective events are more likely 

due to increased potential instability (Giorgi et al., 2016), may increase impact likelihood (Fig. 6h, k). Land cover and lithology 

showed partially significant differences among their classes, with basins dominated by deciduous forest and mixed carbonate 465 

lithology estimated to be more prone to slide-type impacts (Fig. 6i, j). 
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Figure 6: Partial effects for the slide-type model showing estimated smooth functions for continuous predictors and factor effects 

for categorical predictors, illustrating how each variable relates to modelled slide-type impact potential. Shaded bands indicate 95% 

confidence intervals for smooth terms, while points with lines represent estimated effects and confidence intervals for factor levels. 470 
All effects are centered around zero. Higher values indicate a higher estimated likelihood of class membership (impact = yes), 

meaning that the higher the value, the higher the estimated probability of a slide-type impact. 

The flow-type models showed several patterns similar to those of the slide-type models. There was a clear positive relation 

between short-term precipitation and landslide impact (Fig. 7a), increased impact potential with higher antecedent precipitation 

(Fig. 7b) and a negative association with mean annual precipitation (Fig. 7c). Steeper slope angles and a higher number of 475 

buildings within the potential flow-type terrain (PPA) were further associated with higher impact potential (Fig. 7d, f). Seasonal 

effects, possibly related to vegetation periods, were again apparent (Fig. 7g). Notably, analogous to the slide-type model, mean 

daily temperature, the second most important predictor in the flow-type model, showed a strong positive relationship, likely 

reflecting the influence of rainfall-type, with warmer convective days increasing flow-type impact likelihood (Fig. 7h). 
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 480 

Figure 7: Partial effects for the flow-type model showing estimated smooth functions for continuous predictors and factor effects for 

categorical predictors. Shaded bands indicate 95% confidence intervals for smooth terms, while points with lines represent estimated 

effects and confidence intervals for factor levels. 

The fall-type model showed generally plausible relationships with meteorological variables (Fig. 8), although these variables 

were previously identified as less influential (Fig. 5). The two most important variables were static exposure factors, both 485 

exhibiting a positive relationship with estimated impact potential: when few buildings or a low density of transport 

infrastructure are present within the potential fall-type terrain (PPA), estimated impact probabilities are generally low (Fig. 8g, 

h). Slope angles within the fall-type PPAs were considerably steeper than those in the slide- or flow-type PPAs (cf. x-axis 

ranges in Figs. 8d vs. 6d and 7d). For fall-type models, impact potential increased continuously with slope steepness, whereas 

slide- and flow-type models showing a saturation effect at higher slope angles. Basins dominated by igneous and metamorphic 490 

rocks were estimated to be most prone to fall-type impacts (Fig. 8j) and a higher proportion of bare surface within PPAs further 

increased impact potential (Fig. 8f). 
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Figure 8: Partial effects for the fall-type model showing estimated smooth functions for continuous predictors and factor effects for 

categorical predictors. Shaded bands indicate 95% confidence intervals for smooth terms, while points with lines represent estimated 495 
effects and confidence intervals for factor levels. 

5.3 Maps and visualizations 

To explore model behaviour under controlled hypothetical conditions, “what-if” scenarios were visualized. The maps in Fig. 

9 show model responses to spatially uniform increases in short-term precipitation of 20 mm, 40 mm, 80 mm and 160 mm, 

while all other dynamic variables were held constant. The zoom-ins provide a more detailed view of the predictions at basin 500 

level. In line with the effects described in Section 5.2, slide-type and flow-type models responded strongly to increasing short-

term precipitation (Fig. 9 top and middle rows). The fall-type model was comparatively less sensitive to this effect, with spatial 

patterns remaining relatively similar across precipitation scenarios (Fig. 9 bottom row). Because each basin was assigned the 

same short-term precipitation amount, the resulting prediction patterns reflect spatial differences in potential mass movement 

impact driven by geo-environmental and exposure characteristics. Across all models, the highest potential is concentrated 505 

along the Alpine arc, particularly where steep terrain coincides with higher densities of exposed assets. Slide-type models 

generally indicate the largest spatial extent of potentially impacted areas, covering not only the higher-relief Alpine core, but 

also extensive parts of the Alpine foreland, where relief energy is moderate (Fig. 9d). Flow-types affect smaller areas overall 

and were more confined to steep valleys within the Alpine arc (Fig. 9i). Potential impact areas due to fall-type movements 

were geographically the most restricted, with elevated values concentrated in the high-relief zones of the Western and Central 510 

Alps, with additional localised hotspots visible in the Eastern Alps (e.g., Dolomites) (Fig. 9n). 
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Figure 9: Visualization of “what-if” scenarios for slide-type model (a–e), flow-type model (f–j) and fall-type model (k–o) under 

spatially uniform increases in short-term precipitation. Shown are model predictions for “triggering” precipitation amounts of 20 

mm, 40 mm, 80 mm and 160 mm, with all other dynamic variables held constant (antecedent precipitation = 50 mm, mean daily 515 
temperature = 20 °C, Day-of-year = 200, binary temperature = “Above 0 °C” and “Not crossing 0 °C”). The zoom-in panels depict 

the 80 mm “triggering” precipitation scenario. Animations showing precipitation increases in 10 mm increments from 10 to 200 mm 

are provided in the supplementary material for each movement type (S1-S3 at: https://doi.org/10.6084/m9.figshare.30271795.v1). 

Hindcasting was used to analyse model predictions under known conditions and to demonstrate their potential for impact-

based early warning. Storm Vaia (October 27 to 29, 2018) served as an example of a severe, large weather event that affected 520 

multiple European countries. During the storm, heavy rain and strong winds caused extensive forest damage, flooding, and 

numerous damage-causing mass movements across the Alpine region (Cavaleri et al., 2019; Giovannini et al., 2021; Antonetti 

et al., 2022). 

Figure 10 shows the model predictions for October 29 and for the storm aftermath on November 2, along with precipitation 

variables. On October 29, the potential for slide-type (Fig. 10a) and flow-type impacts (Fig. 10b) was particularly high in 525 

northern Italy (Trentino-Alto Adige, Veneto, Liguria) and, to a lesser extent, in western Austria (Eastern Tyrol), southern 

Switzerland, southeastern France and northwestern Slovenia (Cavaleri et al., 2019; Menegatto et al., 2024). The precipitation 

maps indicate that this pattern was primarily driven by widespread, high precipitation amounts, with short-term precipitation 

being the dominant driver (Fig. 10d). Across most of the study area, the 30-day antecedent precipitation did not show 

exceptionally high values on October 29, except in the southwestern part (e.g., Liguria), where the precipitation front initially 530 

arrived (Fig. 10e). Notably, during this event, the highest precipitation occurred over mountainous terrain prone to mass 
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movement impact, while in low-susceptibility areas, such as flat areas in Germany, localized heavy rainfall (Fig. 10d) did not 

raise impact potential (Fig. 10a, b, c), illustrating that the model accounts not only for rainfall amounts alone. 

By November 2, the estimated mass movement impact potential had generally decreased across the Alpine region, with more 

localised precipitation (Fig. 10i) still driving elevated predicted values in the southwest (Fig. 10f, g). Many basins in the center 535 

of the study area no longer received high precipitation. However, they still exhibited moderate impact potential, primarily due 

to very high antecedent precipitation (Fig. 10j), used as a proxy for soil moisture conditions. Comparing both days for the fall-

type model (Fig. 10c and 10h) continued to demonstrate its relatively low sensitivity to weather dynamics. 

 

Figure 10: Hindcast example for storm Vaia. Model predictions for October 29 (top row) and the aftermath on November 2 (bottom 540 
row) for three movement types: slide-type (a, f), flow-type (b, g) and fall-type (c, h). Corresponding precipitation variables for the 

same dates are shown, including short-term precipitation as used within all models (d, i) and antecedent 30-day precipitation as used 

for the slide-type model (e, j). Hindcast animations of this event are provided in the supplementary material (S4-S6 at: 

https://doi.org/10.6084/m9.figshare.30271795.v1). 

In comparison to the storm Vaia, a more localised yet severe event struck the southeastern Alpine forelands from June 23 to 545 

26, 2009. Triggered by thunderstorms associated with a low-pressure system over the Adriatic, the event led to more than 

3,000 mass movements of the slide- and flow-type, severely affecting transportation infrastructure and prompting the 

evacuation of several houses. The Austrian district Südosteiermark, at the centre of the affected area, sustained extensive 

damage, leading to the declaration of a state of emergency. Disaster response and reconstruction costs for the state of Styria 

exceeded €13.4 million (Hornich and Adelwöhrer, 2010; Maraun et al., 2022). Figure 11 shows the hindcast of this event for 550 

the slide-type model, along with the districts associated with the highest number of private damage reports. 
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Figure 11: Hindcast example of a severe event in Styria, Austria. Model predictions from the slide-type model for June 25, 2009, are 

shown for the focus area of the event (a) and the entire Alpine Space (b), together with the variables representing short-term 

precipitation (c) and 30-day antecedent precipitation (d). Black polygons in (a) delineate the districts of Styria, with labels showing 555 
the districts linked to the most private damage reports: Südoststeiermark (SO, 600 reports), Leibnitz (LB, 324), Weiz (WZ, 287), 

Graz-Umgebung (GU, 205), Deutschlandsberg (DL, 95) and Fürstenfeld (FF, 62) according to Hornich and Adelwöhrer (2010). 

Hindcast animations of this event are provided in the supplementary material (S7 at: 

https://doi.org/10.6084/m9.figshare.30271795.v1). 

According to Maraun et al. (2022), the precipitation event itself was severe, but not extreme. The exceptional mass movement 560 

occurrence has been attributed to the compounding effect of heavy rainfall combined with pre-moistening during the preceding 

winter and spring (Hornich and Adelwöhrer, 2010; Maraun et al., 2022; Mishra et al., 2023). Previous event-based landslide 

modelling for this area revealed that a five-day rainfall variable was the strongest predictor, suggesting that also shorter-term 

antecedent conditions contributed to the observed mass movements (Knevels et al., 2020). Figure 11 shows the slide-type 

model hindcast for June 25, with high estimated impact potential in the affected area largely matching the reported damage 565 

(Fig. 11a). For this model prediction, both high short-term precipitation (Fig. 11c) and elevated accumulated precipitation over 

the preceding 30 days (Fig. 11d) were key factors. Unlike the region-specific analyses by Maraun et al. (2022) the model did 

not capture pre-moistening at time scales beyond 30 days. Nonetheless, elevated wet conditions in June 2009 along the northern 

Alpine front led to widespread soil saturation and extensive flooding (Godina and Müller, 2009), likely influencing this mass 

movement event as well. 570 

6 Discussion 

The discussion subsections 6.1 to 6.4 follow the main goals outlined in the introduction, while Section 6.5 addresses the general 

transferability of the approach and its potential application beyond impact-based early warning. 
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6.1 Capturing the interplay of impact drivers 

The models were designed to estimate mass movement impact potential by integrating predisposing, preparatory and triggering 575 

conditions represented through meteorological, geo-environmental and exposure data. Separate models were generated for 

each movement type, because different landslide types are driven by distinct sets of conditions (Loche et al., 2022). 

Regarding dynamic variables, the slide- and flow-type models are highly sensitive to daily changes, whereas fall-type models 

are heavily governed by static spatial variables. For slide- and flow-type models, the most important predictor of potential 

impact to infrastructure is short-term “triggering” precipitation. Antecedent precipitation, DOY, and temperature also have an 580 

important contribution, reflecting soil moisture, seasonality, and temperature effects. For instance, in the flow-type model, 

mean daily temperature ranked as the second most important predictor, with hot days showing the highest impact potential, 

likely due to an increased potential of convective activity (Giorgi et al., 2016), while days below 0°C were associated with the 

lowest impact likelihoods, possibly reflecting frozen ground effects on slope stability. The range of dynamic variables shows 

that the models captured effects across multiple temporal scales. This finding is in line with previous studies that show mass 585 

movement occurrence depends not only on conditions on the day of the event, but also on antecedent conditions over longer 

periods (Crozier, 1999; Mirus et al., 2018; Rosi et al., 2021; Maraun et al., 2022; Smith et al., 2023). 

In this context, daily precipitation and temperature variables represented immediate conditions, antecedent precipitation 

captured cumulative effects over preceding weeks, and the DOY variable reflected seasonal influences, primarily related to 

vegetation (Steger et al., 2023), since other season-related meteorological effects were already accounted for. Although model 590 

performance was generally high (Fig. 4), better capturing environmental dynamics could further improve their explanatory 

power. For example, instead of relying on proxies, soil moisture data derived from simulations or hydrological modelling 

could better capture actual soil wetness conditions (Maraun et al., 2022), while incorporating information on sediment 

availability may further enhance the model (Heiser et al., 2023). Precipitation data at sub-daily resolution would likely capture 

actual rainfall triggering conditions more accurately, particularly for rapid flow-like events (Marra et al., 2016). In such case, 595 

sub-daily mass movement occurrence data should ideally be available to match this high-resolution data. When such detailed 

observations are lacking, aggregating sub-daily rainfall to daily scales by using e.g., the maximum three-hour rainfall intensity 

on a day, has been shown to be of value (Knevels et al., 2020; Smith et al., 2023). 

Depending on the modelling context, potential enhancements in the dynamic component include snowmelt, vegetation 

seasonality, season-dependent precipitation windows, functional precipitation representations, and interactions with other geo-600 

environmental variables (Krøgli et al., 2018; Schmaltz et al., 2019; Moreno et al., 2025). In addition, modellers could also treat 

land cover and exposure as dynamic variables to capture long-term changes, such as forest disturbance or construction activities 

(Pisano et al., 2017; Pittore et al., 2017; Sebald et al., 2019; Pacheco Quevedo et al., 2023). Yet, while many opportunities 

exist to better represent dynamic processes, early warning applications benefit from parsimony, not least because suitable input 

data are often limited (Stähli et al., 2015; Kaltenberger et al., 2020; Potter et al., 2021). In our context, relying on scalar 605 
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precipitation variables and a date-derived proxy (DOY) strikes a practical balance, ensuring feasibility and computational 

efficiency, as well as compatibility with the lead times of existing precipitation nowcasts and forecasts. 

All models relied on several static spatial variables, with the fall-type model being the most strongly influenced by them (Fig. 

5). Consequently, for the fall-type model, it was generally easier to estimate where impacts might occur than when. Given the 

scale of this investigation, this result is plausible, as potential impact locations for fall-types are generally confined to basins 610 

with steep terrain and downslope exposed assets. In contrast, the timing of a fall-type movements is inherently complex to 

predict, particularly at these scales and when relying solely on meteorological variables. Accordingly, rock fall warning often 

relies on locally installed sensors or remote sensing techniques that monitor rock faces for precursors of failure (Stähli et al., 

2015). For the fall-type model, the two most influential predictors were exposure-related, with the number of buildings clearly 

dominant. While slope angle might intuitively be expected to dominate at this scale, its effect was largely accounted for by the 615 

PPA delineation (Fig. 3). 

To move from a purely process-oriented to an impact-based perspective, exposure information was incorporated in two steps, 

allowing the modelling framework to move beyond conventional spatially explicit landslide early warning approaches 

(Guzzetti et al., 2020). First, the modelling domain was limited to basins where PPAs coincided with infrastructure. Second, 

within these basins, exposure variables based on building counts and road networks were included. Across all models, the 620 

relationships consistently confirmed that higher exposure increases potential impact. However, a key component of risk, 

namely the vulnerability of infrastructure to the mass movement processes, is missing in our approach. At this scale, 

incorporating structural vulnerability is challenging (Caleca et al., 2025), as event data lack damage and hazard intensity 

information, and the model outputs and exposure data are insufficient to apply damage functions. Furthermore, technical 

mitigation measures, such as torrent control structures (e.g., check dams and rockfall netting), which are widely implemented 625 

in alpine regions to mitigate gravitational natural hazards, were not accounted for in this analysis. By stabilizing slopes and 

regulating water and sediment flow, these structures play a vital role in reducing hazard intensity and protecting downstream 

infrastructure. Their absence in the analysis may result in an overestimation of potential impacts (Schlögl et al., 2021). 

Besides exposure-related effects, all models showed the highest estimated impact potential in basins with relatively steep 

terrain (slides and flows) or very steep terrain (falls), particularly in generally drier areas with low mean annual precipitation. 630 

The negative relationship with precipitation was most pronounced in the slide- and flow-type models, consistent with previous 

modelling results (Steger et al., 2024). This suggested that landscapes with higher long-term precipitation (e.g., 2000 mm/year) 

may be better adapted to wet conditions and therefore less responsive to individual events, unlike drier basins (e.g., 500 

mm/year). These results provide quantitative support for the landscape equilibrium hypothesis (Renwick, 1992; Smith et al., 

2023). 635 

6.2 Accounting for mass movement runout paths while maintaining a generalized landscape representation 

Data preparation aimed to balance landscape generalization with sufficient detail. This involved the delineation of basins and 

the definition of process-relevant terrain (i.e., PPA) within each. Pixel-based runout information was incorporated into the 
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basin-based model framework to combine the stability and reduced noise of basin-scale units (Alvioli et al., 2016; Loche et 

al., 2022; Woodard et al., 2024) with the spatial detail relevant to capture mass movement propagation and impact. 640 

Basins were chosen as the main investigation unit to overcome limitations of high-resolution raster representations. Basin-

based units can mitigate uncertainties in landslide positional accuracy, reduce computational demands for large-area prediction 

tasks, and allow flexible aggregation of input variables (e.g., averages, dominant classes, or coverage proportions) (Alvioli et 

al., 2016; Woodard et al., 2024). Such units can also reduce the impact of errors or changes in predictor data. For instance, 

moderately pronounced changes in variables like forest cover or building counts are likely to have little effect on aggregated 645 

basin values, whereas in pixel-based models, individual cells and therefore subsequent model predictions may deviate 

substantially. 

However, this increased generalization also has potential drawbacks. Aggregating properties across entire basins can obscure 

important details, as predictor variables may no longer reflect conditions where processes are most relevant. For instance, 

phenomena linked to very steep terrain, such as rockfalls, may not be captured by a mean slope over a basin. Similarly, in 650 

exposure or risk assessments, assets beyond the actual reach of mass movements may be incorrectly counted as exposed or 

contributing to risk (Caleca et al., 2025). We argue that pixel-based representations, despite having some disadvantages, also 

offer advantages in capturing fine-scale spatial variability. This study aimed to combine the benefits of both approaches, 

preserving sufficient landscape generalization while retaining the spatial detail suitable for capturing mass movement 

propagation and impact. Delineating PPAs separately for each movement type enabled integration of pixel-based runout 655 

information into basin-level representations (Fig. 3), providing a more realistic depiction of process-relevant geo-

environmental conditions and particularly of potentially exposed assets. Nonetheless, the approach remains constrained by 

uncertainties inherent in the simplified runout modelling procedure and does not replace site- or catchment-specific analyses 

(Mergili et al., 2015; Wichmann, 2017). In summary, this innovative method mitigates several drawbacks recently highlighted 

in large-area landslide susceptibility, exposure, and risk assessments (Lima et al., 2021; Loche et al., 2022; Lin et al., 2023; 660 

Marchesini et al., 2024; Caleca et al., 2025). 

6.3 Avoiding oversimplified patterns through tailored sampling 

A wealth of studies on data-driven mass movement modelling highlight that the quality of input data is directly reflected in 

the quality of the resulting models, reinforcing the widely recognized maxim of ‘garbage in, garbage out’ (van Westen et al., 

2008; Petschko et al., 2014; Steger et al., 2016b; Reichenbach et al., 2018; Lima et al., 2022; van Natijne et al., 2023). A less 665 

frequently addressed and equally important issue concerns how available input data should be sampled before being included 

in a data-driven model (Dornik et al., 2022; Rabby et al., 2023; Guo et al., 2024)Data sampling design plays a decisive role in 

ensuring that models capture relationships beyond those that could be anticipated by common sense. Designing such strategies 

is a non-trivial task, particularly in the context of space-time modelling, where computational feasibility, data considerations 

(e.g., group-effects, autocorrelation) and content-related aspects need to be considered (Steger et al., 2024). 670 

https://doi.org/10.5194/egusphere-2025-4940
Preprint. Discussion started: 15 October 2025
c© Author(s) 2025. CC BY 4.0 License.



29 

 

In space-time mass movement modelling, sampling design must carefully account for both spatial and temporal dimensions. 

Spatially, this entails selecting appropriate locations from which training data are drawn. Temporally, sampling must ensure 

periods are captured that are relevant to the processes under study. If, for example, the present study had relied on a pixel-

based approach with random sampling of absences without further restriction, the resulting models would likely have reflected 

trivial distinctions, separating flat terrain from hillslopes or dry from rainy days, rather than the conditions most relevant for 675 

decision-making (Steger et al., 2023, 2024). Previous studies show that such “oversimplified” models may appear to perform 

well statistically, as distinguishing mass movement presences from randomly drawn, largely irrelevant absences can be 

straightforward. Guo et al. (2024) showed that sampling absences far from known mass movements, using larger buffer 

distances, increases dissimilarity between presence and absence observations, thereby boosting measured model performance 

and suggesting improved model quality. However, from our viewpoint, such findings point to the opposite conclusion: large-680 

distance sampling does not enhance the quality of modelling results, as it systematically forces absences into trivial terrain, 

artificially inflating performance and promoting oversimplified models with limited decision-making value (Steger and Glade, 

2017).  

In this study, we avoided sampling in terrain irrelevant to mass movement impacts. Presence and absence observations were 

restricted to basins where exposed assets (buildings, roads) fall within PPAs, focusing the modelling on areas with realistic 685 

impact potential. For instance, fall-type sampling targeted steeper Alpine basins, while slide-type sampling was less 

constrained, covering much of the Alpine foreland. Similar considerations guided the temporal sampling. To reduce trivial 

temporal contrasts, sampling was restricted to days with at least moderate rainfall, defined using an arbitrary threshold of 10 

mm/day. In our earlier studies (Moreno et al., 2024; Steger et al., 2024), a much lower threshold was used (1.1 mm/day) to 

include only rainy days while accounting for data uncertainty. Focusing on at least moderate rainfall aimed to better align the 690 

models to decision-making contexts, where light precipitation is less relevant. Threshold choice also affects the similarity 

between presence and absence samples, influencing estimated modelled relationships and model performance scores. For 

example, limiting absence sampling to heavy rainfall days (>40 mm/day) would likely reduce the discriminative power of 

short-term precipitation predictors, lowering variable importance and overall model performance. More broadly, the distinction 

between relevant and irrelevant input data depends on modelling objectives while associated implications apply to both spatial 695 

and temporal sampling.  

Literature contains numerous examples of exceptionally well-performing data-driven landslide susceptibility models. While 

there are valid cases of well performing models with appropriate sampling strategies, we assume that in many instances, models 

rely on oversimplified classification tasks, arising either from unrestricted random sampling or from sampling that even forces 

absences to overrepresent trivial observations (Zhu et al., 2019; Rabby et al., 2023; Guo et al., 2024). Scepticism toward 700 

apparently well-performing landslide models is not new (Hearn and Hart, 2019; Steger et al., 2016a). We assume that, in 

essence, the root causes of this criticism can often be traced to the underlying sampling design, which leads models to make 

overly simplistic distinctions that provide limited practical value for decision support. In space-time modelling, this issue can 

be amplified, as trivial observations may be sampled not only across space, but also over time or simultaneously in both. 
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6.4 Model interpretability and model suitability for impact-based warning 705 

Another important aspect for enhancing model utility is interpretability, particularly when results are intended to support 

decision making. Many machine learning studies in landslide research emphasize performance metrics, often at the expense 

of geomorphic plausibility and interpretability. This can limit operational uptake, since end-users benefit more from models 

that are interpretable, plausible, and trustworthy (Lombardo et al., 2020; Collini et al., 2022; Nocentini et al., 2023; Caleca et 

al., 2024). Using inherently interpretable models or techniques that make results explainable (Maier et al., 2024; Molnar, 2025) 710 

is valuable for communicating findings to users and internal plausibility checks, as well as model refinement. From an 

application perspective, we argue that prioritizing predictive performance is not always ideal, as less performant but more 

interpretable models can be more useful in practice (cf. Section 6.3). In this study, particular attention was given to model 

interpretation, using GAMMs to visualize non-linear relationships between predictors and the response, alongside variable 

importance assessments. Combined with hindcasts and “what-if” scenario analyses, this facilitated a clearer understanding of 715 

model response. 

In terms of applicability in impact-based warning contexts, the slide- and flow-type models showed clear potential for large-

area applications. The fall-type model, by contrast, is less sensitive to short-term variations in weather conditions, thus its 

value for precipitation-driven early warning appears limited. Potential operational uptake of the models also depends on the 

meteorological input data. All models were trained on a consistent set of inputs derived from CERRA reanalysis (Ridal et al., 720 

2024). Regarding applicability, it should be noted that precipitation data from reanalyses used to train the models may differ 

from the data available in nowcasting or forecasting systems. Such potential biases should be addressed prior to operational 

implementation, for example through bias correction or the use of alternative meteorological inputs, to reduce discrepancies 

between model training and operational datasets. Ideally, data perfectly consistent with nowcasting or high-resolution 

forecasting would be used for model training. In practice, however, such data often lack long-term historical coverage or 725 

exhibit temporal inconsistencies due to changes in operational forecasting systems, limiting their suitability for model training 

over extended periods. Nevertheless, building the model on precipitation data with higher-than-daily temporal resolution could 

further improve the models, as discussed in Section 6.1. 

Another important consideration refers to the interpretation of the spatially transferred model predictions, namely the 

probability scores. These scores represent conditional probabilities influenced by the class balance in the training data. 730 

Consequently, when absences outnumber presences, as in our case, predicted probabilities are shifted toward lower values. 

Misunderstanding this concept may hinder user uptake and reduce trust, as a value of 0.7 does not imply a 70% chance of a 

mass movement impact occurring on that day in that basin. In this study, higher scores simply indicate greater similarity to 

observed impact conditions, while lower scores reflect higher similarity to absence observations. For operational use, these 

continuous scores would likely need to be converted into warning thresholds (e.g., red, orange, yellow). Thresholding 735 

approaches that account for true positive and false alarm rates exist (Steger et al., 2024), but for effective user uptake and 
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communication, thresholds are best developed in collaboration with end-users and by considering local contexts to ensure 

tailored decision-support products (Budimir et al., 2025). 

6.5 Transferability of the approach and applications beyond impact-based early warning 

The methodological framework presented in this study can be adapted to develop dynamic, spatially explicit impact models 740 

for other phenomena and regions. Beyond mass movement impacts, it may also be applicable to other rapid-onset hillslope 

processes, such as flash floods or snow avalanches, as well as to hazards like wildfires or hail, where impacts result from 

multiple drivers acting across scales. Key aspects include a tailored yet generalized landscape representation that accounts for 

spatial uncertainty in input data, for process propagation dynamics, and integration of meteorological, geo-environmental, and 

exposure/vulnerability information. Targeted sampling to avoid trivial observations is emphasized to ensure meaningful model 745 

patterns, while model interpretability can support plausibility checks and effective result communication. 

Beyond impact-based early warning, this framework can also support the analysis of spatio-temporal patterns and trends over 

extended areas and periods. For instance, the models developed in this study are intended to produce thousands of daily 

hindcasts at the basin scale, supporting multi-decadal analyses of patterns. Averaging these hindcasts at the basin level can 

extend conventional landslide susceptibility and exposure assessments, which typically do not capture the spatio-temporal 750 

dynamics of meteorological drivers. A large number of hindcasts can also be used to analyse the frequency of threshold 

exceedance per basin or to conduct trend analyses, revealing systematic shifts in impact potential over time. In the context of 

climate impact assessment, the models can, in principle, be adapted to digest climate projection data. Since the models can 

also be adapted to work with sub-daily inputs, the ongoing tendency in climate modelling toward producing sub-daily 

information over extended areas and periods (Fosser et al., 2015, 2024) might open avenues for sophisticated climate impact 755 

analysis. Nevertheless, potential limitations, such as the “drizzle bias” (overestimation of weak and underestimation of heavy 

precipitation in climate models) and the spatial skill scale, must be considered when applying climate projection data in high-

resolution spatio-temporal modelling (Benestad et al., 2019; Lazoglou et al., 2024). 

7 Conclusion 

This study introduces a comprehensive, dynamic, and spatially explicit modelling framework for impact-based early warning 760 

of different mass movements in the Alpine region. By addressing key limitations of traditional static susceptibility models, the 

framework integrates geo-environmental, exposure and dynamic meteorological data into a cohesive and robust approach. 

Models tailored to slide-, flow-, and fall-type movements effectively capture spatio-temporal dynamics and provide 

interpretable outputs to support informed decision-making. While the slide- and flow-type models show strong potential for 

operational applications in an early warning context, the fall-type model exhibits limited sensitivity to short-term weather 765 

conditions, bearing more the character of a large area, almost static spatial assessment. To the best of our knowledge, these 

models represent the first globally available impact-based mass movement models, being explicitly process-specific and 
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integrating geo-environmental, exposure, and weather information across scales. Their adaptability to other hazards, 

compatibility with climate data, and applicability across regions highlight the versatility of the underlying methodological 

framework and its broad utility for disaster risk reduction and climate impact assessments worldwide. 770 

 

8 Supplementary material 

Animations for the “what-if” scenarios (Fig. 9) and the hindcasts (Figs. 10 and 11) are available at: 

https://doi.org/10.6084/m9.figshare.30271795.v1. 

9 Code and data availability 775 

The R code for model training and basic visualizations, along with the associated training data, the outline of the Alpine Space 

and the basin delineation, will be made publicly available on GitHub upon publication: 

https://github.com/StefanSteger/LandslideImpact_AlpineSpace_NHESS. To ensure long-term accessibility and proper 

citation, the GitHub repository will be tagged and assigned a persistent identifier via Zenodo. 
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