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Abstract. We develop a high-resolution dual-species greenhouse gas (GHG) top-down inversion framework by integrating 

the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem v4.4) and the Data Assimilation Research 

Testbed (DART v9.8.0). This framework jointly performs the assimilation of near-surface CO2 and CH4 concentrations 

alongside standard meteorological data across the Korean Peninsula. To improve the simulation of GHG turbulent dispersion 15 

in the atmospheric boundary layer over complex terrain, we incorporate surface heterogeneity parameterizations (roughness 

sublayer and canopy height) into the model physics in the inversion system. The system assimilates continuous in situ 

observations from three World Meteorological Organization/Global Atmosphere Watch (WMO/GAW) stations and produces 

dynamically consistent updates of CO2 and CH4 emissions. Prior flux estimates include anthropogenic emissions (EDGAR 

v8.0), biogenic exchanges (the region-optimized VPRM), biomass burning (FINN v2.5 data), and oceanic CO2 exchanges 20 

(SeaFlux data). In a 2020 case study, the top-down estimates improve the agreement with ground observations, reducing root-

mean-square errors by 30–60 % and correcting bias error of 1-10 ppm and 30-60 ppb for surface CO2 and CH4 concentrations 

at the high-precision surface observatory respectively. Independent aircraft profiles suggest consistency between the boundary 

and prior CH4 emissions. The posterior anthropogenic emissions show decreases over the Seoul Metropolitan Area and western 

coastal sources for CO2 and increases over agricultural areas for CH4, indicating potential areas that need to refine the global 25 

emission inventories. The posterior annual national total emissions for CO2 and CH4 fall within the ranges reported in the 

Republic of Korea’s Biennial Transparency Report of Korea). This case study demonstrates the utility of an observation-

constrained top-down framework in supporting the Measurement-Monitoring-Reporting-Verification (MMRV) framework for 

national and sub-national assessments of GHG emissions and provide a scalable path toward multi-platform (satellite, aircraft, 

shipborne) integration. 30 
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1 Introduction  

Anthropogenic emissions of greenhouse gases (GHGs) originate predominantly from fossil fuel combustion, land-use change, 

agricultural practices, and waste management. These emissions are the principal drivers of contemporary climate change. 

Reliable and continuous monitoring of anthropogenic GHG emissions is essential for the development of effective climate 35 

mitigation strategies, compliance with international climate agreements, and the formulation of informed policy decisions 

(IPCC, 2021; Friedlingstein et al., 2025). Under the Paris Agreement, national inventories serve as the principal reporting 

mechanism, delineating Nationally Determined Contributions (NDCs) and facilitating periodic stocktakes (UNFCCC, 2015). 

These inventories are a standard method within the Measurement-Monitoring-Reporting-Verification (MMRV) framework 

and rely on bottom-up methodologies based on activity data and emission factors within a tiered framework established by the 40 

Intergovernmental Panel on Climate Change (IPCC) (Ogle et al., 2013). However, their accuracy is often limited by incomplete 

or outdated activity data, coarse spatio-temporal resolution, diffusive GHG emissions, and systemic delays in updating or 

reporting inventories (Rogelj et al., 2016; Pauw et al., 2018). Even nations with advanced inventories encounter challenges in 

capturing rapid emission changes, fine-scale spatial heterogeneity, and localized sources, which undermines the inventory 

credibility and comparability of inventories (Denison et al., 2019; Nisbet et al., 2019; WMO, 2025).  45 

Top-down approaches, which are based on atmospheric inverse modeling or atmospheric data assimilation (DA), offer 

independent assessments of emissions by constraining surface fluxes through atmospheric concentration measurements 

(Enting, 2002; Gurney et al., 2002; Weiss and Prinn, 2011; Oda et al., 2019; Janssens-Maenhout et al., 2020; Elguindi et al., 

2020; Mueller et al., 2021; Deng et al., 2022; WMO, 2025). These methodologies are increasingly incorporated into MMRV 

frameworks (WMO, 2022; 2025). By reconciling observed atmospheric concentrations with emission fluxes, top-down 50 

approaches can identify unreported or misrepresented emission sources, detect biases, and provide spatially explicit, policy-

relevant emission information (Mueller et al., 2021; Janssens-Maenhout et al., 2020). Recent advancements in observational 

infrastructure, including dense atmospheric observation networks, satellite platforms, and airborne measurements, have 

enabled top-down systems to resolve emission patterns at urban and sub-national scales, thereby enhancing the fidelity and 

applicability of MMRV systems (Lauvaux et al., 2020; Byrne et al., 2023; Velasco et al., 2023).  55 

Atmospheric inverse modeling frameworks for GHGs typically employ either Lagrangian or Eulerian methodologies. 

Lagrangian-based inversion frameworks track air parcels backward from receptor sites, offering computationally efficient 

source attribution (e.g., Henne et al., 2016; Pisso et al., 2019; Sijikumar et al., 2023; Brunner et al., 2025; Bukosa et al., 2025). 

However, they depend on external meteorological fields and background GHG concentrations, which limits their capability to 

accurately represent complex boundary-layer dynamics (Bréon et al., 2015; Lauvaux et al., 2016; Dekker et al., 2017; Super 60 

et al., 2017; Gaudet et al., 2021; Nalini et al., 2022; Bukosa et al., 2025). Conversely, Eulerian frameworks solve advection-

diffusion equations directly on fixed spatial grids, allowing for a physically consistent coupling of meteorology and tracer 

transport, particularly when integrated with ensemble-based DA techniques such as the Ensemble Adjustment Kalman Filter 

(EAKF) (Anderson, 2001; Kang et al., 2012; Gaudet et al., 2021). Notable examples of operational Eulerian systems include 
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the NOAA (National Oceanic and Atmospheric Administration) CarbonTracker (van der Velde et al., 2018) and ECMWF 65 

(European Centre for Medium-Range Weather Forecasts)’s CAMS (Copernicus Atmosphere Monitoring Service) global 

reanalysis (Agustí-Panareda et al., 2023); however, these systems typically operate at relatively coarse resolutions of about 1° 

which limits their effectiveness in capturing fine-scale emission heterogeneity in urban or mountainous regions (Gurney et al., 

2002; Locatelli et al., 2013; Zhang et al., 2014; Feng et al., 2019; Gaudet et al., 2021).  

These limitations necessitate the development of high-resolution Eulerian DA frameworks capable of the simultaneous 70 

assimilation of multiple greenhouse gas species, especially in complex terrains and regions characterized by heterogeneous 

land use and land cover. The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) provides high-

resolution, online coupling of meteorology and chemistry, while the Data Assimilation Research Testbed (DART) offers a 

robust ensemble-based DA platform for dynamically updating meteorological and chemical states resolution. Accordingly, the 

WRF-Chem coupled with the DART has been used in CO2 concentration, regional meteorology and air quality studies (e.g., 75 

Mizzi et al., 2018; Ma et al., 2020; Zhang et al., 2021a). Despite its successful applications in regional meteorology and air 

quality, the application of WRF-Chem and DART to dual-species (CO2 and CH4) greenhouse gas inversions remains limited, 

particularly at the fine spatial scales necessary for policy support and effective integration into national MMRV systems over 

complex landscapes.  

This study advances the WRF-Chem (v.4.4) and DART (v.9.8.0) modeling framework by implementing a high-resolution 80 

(9 km) dual-species inversion system for the simultaneous assimilation of meteorology and CO2 and CH4 concentrations. 

Notably, we integrate model physics parameterizations and land information into the inversion system, explicitly tailored to 

the complex terrain and clustered emission patterns of the Korean Peninsula. The distinctive geographical and climatological 

attributes of Korea, including complex topography, densely populated urban environments, concentrated industrial sources, 

and pronounced seasonal monsoon variability pose significant challenges for the quantification and verification of emissions 85 

using conventional inventories, micrometeorological measurements and lower-resolution inversion methodologies (e.g., Hong 

and Kim, 2011; Hong et al., 2019; Hong et al., 2020; Lee et al., 2021; Kim et al., 2024). We describe the developed dual 

inversion framework, then evaluate the 2020 application through quantitative assessments of concentration/flux error 

reductions and intercomparisons with multiple emissions datasets, demonstrating the framework’s utility for sub-national 

monitoring and MMRV. 90 

2 Description of CO2 and CH4 inversion framework 

2.1 Atmospheric modeling system 

Our GHG inversion framework integrates a regional Eulerian atmospheric chemistry model with an ensemble-based data 

assimilation system. Specifically, this framework employs the Weather Research and Forecasting model coupled with 

Chemistry (WRF-Chem v4.4; Grell et al., 2005) and the Data Assimilation Research Testbed (DART v9.8.0) (Anderson et al., 95 

2009) for sequential data assimilation. WRF-Chem solves the fully compressible, nonhydrostatic Eulerian equations on a fixed 
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spatial grid, and simulates atmospheric dynamics, physical and chemical processes, and chemical transport within a unified 

framework.  

In the inversion system, WRF-Chem generates ensemble forecasts by simulating meteorology with surface fluxes and 

atmospheric transport processes of GHGs.  Given the long atmospheric lifetime of GHGs, they have been simulated as passive 100 

tracers in mesoscale models (Dekker et al., 2017; Super et al., 2017; Zhao et al., 2023). WRF-Chem includes the module to 

simulate passive tracer transport of GHGs since WRF-Chem v3.4 (Beck et al., 2012). In WRF-Chem, distinct variables 

represent background, anthropogenic, biomass-burning, oceanic (CO2 only), and biogenic components of CO2 and CH4. The 

model simulates their fluxes, transport, and diffusion processes driven by the meteorological field to obtain a three-dimensional 

concentration field on an hourly basis. The total concentrations are represented as the sum of the component variables, 105 

facilitating comparison with observed concentrations.  

Notably, for better simulations of GHG transport over complex terrain, we used the revised WRF-Chem by replacing the 

default WRF canopy height with high-resolution (1km) spaceborne lidar-retrieved canopy height data (GLAS/ICESat) for a 

better representation of surface characteristics (Lee and Hong, 2016). To simulate realistic transport and dispersion of GHG in 

the PBL, we further adapted roughness sublayer (RSL) parameterization of Lee et al. (2020), which incorporated the RSL 110 

function from the unified theory of Harman and Finnigan (2007, 2008) and Harman (2012), into the revised MM5 surface 

layer scheme (Jiménez et al., 2012) and Noah land surface model in WRF. Hereafter, we refer to this modified WRF-Chem 

v4.4 as the WRF-Chem GHG.  

Our study area consists of a single model domain with 9-km horizontal spacing of 97 136 grid points and 51 terrain-

following vertical levels stretching from the surface up to 50 hPa at the upper boundary (Fig. 1). The model employed specific 115 

physics parameterization schemes (Kim et al., 2024 and references therein), including the WSM-6 microphysics, RRTMG 

shortwave and longwave radiation schemes, the Yonsei University scale-aware PBL scheme, Kain-Fritsch cumulus scheme, 

and the Unified Noah Land Surface Model (LSM).  

 

 120 

Figure 1. The WRF-Chem domain configuration used in this study. 
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2.2 DART data assimilation for GHG inversion 

DART serves as a modular DA system designed to interface with various atmospheric models and observational datasets. 

The integration of WRF-Chem and DART enables the simultaneous assimilation of meteorological variables and chemical 

species, making physically consistent updates across the coupled system (Mizzi et al., 2016; Mizzi et al., 2018). The system 125 

operates as an ensemble of WRF-Chem forecasts, with each member representing a perturbed version of the state vector that 

accounts for observational and model uncertainties. At each analysis cycle, ensemble perturbations are utilized to estimate 

flow-dependent background error covariance, enabling the Ensemble Adjustment Kalman Filter (EAKF) to adjust both 

meteorological and tracer fields simultaneously in a dynamically balanced manner. This ensemble-based structure allows for 

uncertainty propagation, progressive enhancement of prior estimates, and the maintenance of consistency between state 130 

variables during sequential assimilation. Hereafter, we refer to the WRF-Chem GHG coupled with DART (v.9.8.0) as the 

WRF-Chem/DART.  

Our work extends the DA system to facilitate the simultaneous assimilation of observed CO2 and CH4 concentrations with 

meteorological data at a spatial resolution of 9 km over the Korean Peninsula. Notably, meteorological and GHG tracer fields 

evolve within the coupled modeling framework, eliminating the need for externally prescribed meteorological fields or offline 135 

drivers. This approach generates dynamically consistent reanalysis fields and emission estimates tailored to the regional 

transport environment. The assimilated data include continuous in situ CO2 and CH4 concentrations, alongside standard 

meteorological observations from National Centers for Environmental Prediction automated data processing upper air and 

surface observations (PREPBUFR observations). All variables are jointly updated within the ensemble state vector, thereby 

allowing for the dynamic co-evolution of GHG concentrations and meteorological fields. This update process facilitates 140 

feedback between meteorology and tracer transport and improve the physical consistency and estimation skill of ensemble 

members, thereby enhancing the quality of transport and flux estimation in the WRF-Chem/DART framework accordingly. 

Analyses are produced every six hours (at 00, 06, 12, 18 UTC), using observations within a ±3 h window centered on the 

analysis time. Observation values are rejected if they exceed three standard deviations of the background ensemble. The 

analysis ensemble is then advanced with WRF-Chem for a six-hour forecast, which provides the background for the next cycle. 145 

Prior uncertainty is represented by Gaussian perturbations of ±5 % (1σ) to chemical initial and lateral boundary conditions and 

± 30 % to anthropogenic fluxes. Covariance localization uses a Gaspari–Cohn polynomial with a horizontal half-width of 

0.025 rad (~ 150 km) and a vertical half-width of 10 km, constraining increments primarily to the lower troposphere and 

reducing under-sampling error (Gaspari and Cohn, 1999; Anderson, 2012; Kang et al., 2012). Cross-species covariances are 

not applied; CO2 and CH4 tracers are updated independently. 150 

https://doi.org/10.5194/egusphere-2025-4938
Preprint. Discussion started: 29 October 2025
c© Author(s) 2025. CC BY 4.0 License.



6 

 

 

Figure 2. Locations of GHG monitoring stations (AMY, GSN, ULD) over terrain height (a) and annual anthropogenic emissions of 

CO2 (b) and CH4 (c) in the model domain in 2020 from EDGAR (v8.0).  Main emission source regions in the model domain are 

boxed: (SMA: the Seoul Metropolitan Area, MWI: Mid-Western Industrial Area, SEI: SouthEastern Industrial Area, SCI: South 

Coast Industrial Area, CLA: Central Livestock Area, NEC: NorthEastern China).  

 155 

3 Observation data of GHG concentrations and meteorological conditions for data assimilation 

High-precision, continuous ground-based GHG measurements are essential for resolving fine-scale spatio-temporal variability 

in atmospheric composition and evaluating surface fluxes near major source regions. To constrain CO2 and CH4 fields in our 

inversion system, the inversion framework assimilates in situ measurements of CO2 and CH4 concentrations from World 

Meteorological Organization (WMO) Global Atmosphere Watch (GAW) affiliated monitoring stations at Anmyeondo (AMY), 160 

Gosan, Jeju Island (GSN), and Ulleungdo (ULD) operated by the Korea Meteorological Administration (Fig. 2a). Depending 

on wind direction and atmospheric stability, they sample background inflow and downwind plumes from key emission source 

regions (Fig. 2b and 2c). In addition, we simultaneously assimilate standard meteorological observations from the National 

Centers for Environmental Prediction (NCEP) PREPBUFR datasets which includes surface pressure, air temperature, wind 

speed and direction, specific humidity, sea surface temperature, and satellite-derived upper-air profiles.  165 
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Each site employs a harmonized measurement system based on cavity ring-down spectroscopy (CRDS, Picarro Inc., USA), 

paired with a custom cryogenic drying system jointly developed by KMA and the Korea Research Institute of Standards and 

Science (KRISS). This setup ensures high-precision CO2 and CH4 measurements with minimal water vapor interference, 

critical for ensuring data quality under Korea’s seasonally variable meteorological conditions. Data are collected at 1-minute 

intervals, processed hourly into Level-2 quality-assured products, and include intake heights of 40 m (AMY), 12 m (GSN), 170 

and 10 m (ULD). Further details on instrument calibration, QA/QC protocols, and traceability to international standards for 

CO2 and CH4 observations at WMO/GAW sites in Korea can be found in Lee et al. (2019) and Lee et al. (2023).  

4 Initial and boundary conditions for meteorological variables and GHG concentrations 

Meteorological initial and boundary conditions are obtained from ERA5 global reanalysis hourly single and pressure-level 

data at 0.25° × 0.25° resolution (Hersbach et al., 2020; Hersbach et al., 2023a, 2023b). The initial and boundary conditions are 175 

preprocessed by WRF Preprocessing System (WPS) at the model grids and then perturbed by WRF Data Assimilation System 

(WRFDA) based on previous studies (Barker et al., 2012; Mizzi et al., 2016; Liu et al., 2017; Zhang et al., 2021b).  

Initial and boundary conditions of CO2 and CH4 are provided by the ECMWF CAMS global greenhouse-gas reanalysis 

(EGG4 hereafter) data (Inness et al., 2019; Agustí-Panareda et al., 2023). EGG4 applies 4D-Var data assimilation of in situ 

networks and satellite retrievals within the ECMWF’s Integrated Forecast System (IFS Cycle 47R1) and currently covers the 180 

period of 2003–2020. The dataset provides atmospheric mixing ratio of CO2 and CH4, along with meteorological and chemical 

variables on regular 0.75° × 0.75° grid on 25 pressure levels and 60 hybrid σ-pressure vertical levels at 3-hourly intervals. 

EGG4 data as initial and lateral boundary conditions helps to ensure that large-scale seasonal and regional variability and the 

growing season CO₂ drawdown is represented in the background fields (not shown here).   

Overall errors in CO2 and CH4 concentrations are within 10 ppm and 40 ppb near the earth surface (Agustí-Panareda et al., 185 

2023). Validation of EGG4 data against Total Carbon Column Observing Network (TCCON) measurement shows standard 

deviations of the difference of 1.18 ppm for XCO2 and 11.3 ppb for XCH4 (Wang et al., 2023). Notably, it has been reported 

that EGG4 data have positive bias of CO2 concentration in high emission regions, and its mean bias is about 7.46 ppm in Asia 

(Custódio et al., 2022). A negative bias of about 30 ppb in CH4 concentration has been reported at the NOAA flask site in the 

mid-western industrial region (MWI) (Segato et al., 2025).  190 

5 Prior fluxes 

5.1 Anthropogenic emissions 

Within the domain, WRF-Chem simulates GHG transport and adds contributions from local surface emissions and sinks. 

Anthropogenic CO2 and CH4 emissions as prior information are regridded from EDGAR global GHG emission inventory 

version 8.0 (Crippa et al., 2023). EDGAR provides anthropogenic emissions data in accordance with IPCC-compliant 195 
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methodologies based on international activity data and emission factors (Janssens-Maenhout et al., 2019, Crippa et al., 2024). 

Annual spatial distributions of CO2 and CH4 emissions across the domain are shown in Fig. 2. To consider temporal variability 

in CO2 emission by human activities, we apply the monthly and diel scaling factor reported by the EDGAR and the gridded 

Temporal Improvements for Modelling Emissions by Scaling (TIMES) factors, respectively, which account for building 

heating/cooling usage patterns, traffic volume fluctuations, sectoral contributions (residential, commercial, transportation 200 

emission), and weekdays-weekend differences at 0.25°  0.25° resolutions (Nassar et al., 2013). For ocean grid cells EDGAR 

emission are near zero excluding shipping lanes.  

The spatial distribution of annual anthropogenic CO2 and CH4 emissions highlights main source regions within the model 

domain (Fig. 2b and 2c). Strong CO2 emission in the Seoul Metropolitan Area (SMA) reflects aggregated contributions from 

power plants, traffic and building emissions in urban area. Industrial processes and power generation dominate emissions in 205 

the MWI and south and southeastern coast industrial corridors (SCI and SEI) over the Korean Peninsula. Strong CO2 emission 

in northeastern China (NEC) is related to power industry and combustion for manufacturing (Fig. S1). CH4 sources are 

generally coincident with strong CO2 emission regions due to waste management in high populated area but exhibits more 

spatially confined peaks with hotspots over the high-density urban area (SMA) (wastewater and landfills), central livestock 

area (CLA) (enteric fermentation and manure management), and northeastern region in China (NEC) (wastewater, landfills, 210 

and agricultural soil) (Fig. S2).  

 

5.2 Biomass burning emissions 

Biomass burning emissions of CO2 and CH4 are taken from the Fire Inventory from NCAR (FINN version 2.5). This data 

estimates biomass burning emissions using burned-area calculations, year-specific land cover and vegetation datasets, fuel 215 

loading and emission factors, and the use of multiple fire-detection satellites such as MODerate resolution Imaging 

Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) (Schroeder et al., 2014). The FINN 

dataset provides 1 km spatial and daily temporal resolution emissions (Wiedinmyer et al., 2011; Callewaert et al., 2022; 

Wiedinmyer et al., 2023). The site-specific emission data is extracted into the model grid for the WRF-Chem GHG simulations 

by the NCAR fire-emission preprocessing tool. Biomass burning emissions show strong spatial and seasonal variability across 220 

East Asia (Fig. S3 for CO2 and Fig. S4 for CH4). Biomass burning emission over the Korean Peninsula is negligible compared 

to other sources and sinks. The peaks in northeastern China during the spring (March–May) are related with agricultural residue 

burning and land-clearing practices.  

 

5.3 Ocean CO2 exchanges 225 

Air-sea CO2 exchange is obtained from the latest SeaFlux Ocean Carbon Dioxide Flux product (v2023.02) (Roobaert et al., 

2018; Fay et al., 2021; Roobaert et al., 2019). This dataset combines five meteorological reanalysis data with six ocean surface 
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CO2 datasets, making a total of 30 combinations of the data products. These data provide monthly ocean CO2 fluxes on a 1°x1° 

grid for 1990-2022. For this study, ensemble-mean monthly exchanges are used for oceanic CO2 fluxes. Monthly distribution 

of oceanic CO2 exchanges over East Asia shows that the Yellow Sea (average depth ~50 m) and nearby shelves exhibit seasonal 230 

reversals in oceanic CO₂ fluxes (i.e., net uptake during winter and spring and a source in summer) (Fig. S5)(Gregor and Fay, 

2021). In contrast, the deeper East Sea (average depth ~1500 m) acts as a persistent CO2 sink. Although these patterns reflect 

known contrasts between shallow shelves and deep basins, the oceanic flux magnitude in this domain is small relative to 

dominant anthropogenic and terrestrial biogenic CO2 sources and sink. 

 235 

5.4 VPRM-based estimation of terrestrial ecosystem fluxes 

Terrestrial ecosystem carbon fluxes are estimated with the Vegetation Photosynthesis and Respiration Model (VPRM) coupled 

with the WRF-Chem. (Ahmadov et al., 2007; Mahadevan et al., 2008). VPRM simulates net ecosystem exchange (NEE) of 

CO2 using meteorological drivers and satellite-derived surface indices, specifically the Enhanced Vegetation Index (EVI) and 

Land Surface Water Index (LSWI) from MODIS Terra surface reflectance 8-Day 500m product (MOD09A1). During model 240 

integration, VPRM dynamically computes the sum of gross primary production (GPP) and respiration (RES) for eight land-

cover categories using EVI, LSWI, 2 m air temperature, and downward shortwave radiation simulated by the WRF-Chem. 

Vegetation inputs (plant functional type, EVI, and LSWI) are derived from the 1-km SYNMAP global land cover data and 

MOD09A1 and are preprocessed using the VPRM preprocessor (Jung et al., 2006). VPRM-derived terrestrial CO2 fluxes are 

sensitive to parameters linking EVI, LSWI, temperature, and radiation to GPP and RES (Hilton et al., 2013; Dayalu et al., 245 

2018; Li et al., 2020). Because each vegetation type has distinct responses to environmental drivers, parameter calibration is 

critical to reduce NEE biases with plant function types. In this study, we adopt the parameter values from Li et al. (2020) 

calibrated for East Asian land-cover conditions to better capture seasonal and ecological variations across the Korean Peninsula. 

Terrestrial biogenic CO2 fluxes from the VPRM shows strong seasonality driven by photosynthetic activity and temperature-

dependent respiration (Fig. 3). Croplands, deciduous and mixed forests dominate in the model domain and contribute most to 250 

net carbon uptake during the growing summer season (Fig. 3). Savanna and shrubland play minor roles in total uptake due to 

their limited areal extent. Monthly NEE shows clear net carbon uptake (negative values) in summer growing season (May to 

September) with the strongest uptake (i.e., most negative NEE) in July when GPP exceeds RES with relatively larger 

uncertainties in biogenic CO2 fluxes. The monthly mean diurnal cycles of GPP, RES, and NEE further highlights daytime GPP 

peaks in summer mainly driven by higher incoming shortwave radiation and by more gradual, temperature-driven RES with 255 

the seasonal march of the summer monsoon (Fig. S6) (Hong et al., 2011). For 2020, the domain-integrated NEE over South 

Korea is −43 Mt CO2 (5% of national anthropogenic GHG emissions) and broadly consistent with the national inventory 

estimate of the LULUCF sink (−39 Mt CO2; Ministry of Environment, Republic of Korea, 2025), indicating that the VPRM 

biogenic fluxes reasonably represent the terrestrial carbon sink in this system. 

 260 
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Figure 3. (a) Monthly net ecosystem exchange (NEE) contributions by vegetation class over the model domain in 2020. Bars show 

class totals (g C m⁻² month⁻¹), computed as spatial averages over grid cells of the corresponding vegetation type; negative values 

indicate net carbon uptake. (b) Spatial distribution of dominant vegetation classes used in WRF-Chem/VPRM; each grid cell is 

assigned the class with the largest vegetation fraction. Colors are consistent across panels. 265 

6 Evaluation of the top-down estimates for 2020 case study 

We evaluated inversion results for 2020 using the WRF-Chem/DART system with full DA, in which both meteorological and 

GHG observations were assimilated. Each monthly run was initiated at 00 UTC on the last day of the preceding month, 

followed by a 24-hour spin-up prior to the start of assimilation.  

6.1 GHG concentrations at ground stations  270 

Monthly distributions of prior, posterior, and observed CO2 and CH4 concentrations at the three WMO/GAW surface stations 

are summarized with box plots for comparison of seasonal variability and site-to-site statistics (Fig. 4 and Table 1). Prior CO2 

concentrations overestimate the in situ observations at the AMY by about 12 ppm but underestimate at the remote stations 

(ULD and GSN) by 2-3 ppm. Prior CH4 concentrations underestimate at all the stations especially during summer season by 

15 ppb. These biases are well matched with uncertainties in the boundary data from the EGG4. The top-down estimates of 275 

GHG concentrations show markedly improved agreement with observations relative to the prior, thus demonstrating the 

efficacy of the EAKF assimilation in adjusting surface GHG concentrations. At the observation locations, the posterior 

estimates generally fall between the prior and the observations and across all sites and both species, posterior estimates 

consistently reduce MBE (mean bias error), RMSE (root mean square error) (Table 1). Mean bias of posterior surface CO2 and 

CH4 concentrations are in the range of 1-2 ppm and 20-30 ppb, respectively. The largest error improvements of CO2 and CH4 280 

concentrations are at AMY and GSN, and their corresponding error reductions are 10.9 ppm and 57 ppb, respectively. Error 
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reductions are most pronounced in summer, consistent with corrections to low-biased boundary inflow for CH4 and to 

underrepresented seasonal regional fluxes (e.g., anthropogenic and biogenic contributions) when seasonal gradients are largest.  

Notable differences are evident in the skewness of the monthly distributions of observed CO2 and CH4 concentrations across 

the sites. At AMY, both prior and posterior CO2 and CH4 exhibit strong positive skew and higher variability (elongated upper 285 

whiskers in Fig. 4a and 4d), depending on wind around nearby large point sources (i.e., power and industrial plants in the 

MWI). In contrast, GSN and ULD show more symmetric, compact distributions, suggesting weaker local source influence on 

these remote stations. All three stations exhibit a pronounced summertime dip in CH4 concentration, especially in August, 

consistent with enhanced OH-driven atmospheric oxidation under warm, humid, and high-radiation conditions (East et al., 

2024). This seasonal signal is stronger at the lower-latitude sites (AMY, GSN), where oxidation capacity becomes stronger. 290 

Similar dips appear in the EGG4 data used as lateral boundary forcing in WRF-Chem GHG (see Fig. S9), indicating that the 

seasonal CH4 decline is largely imposed by large scale features.  

 

  

Figure 4. Monthly boxplots of CO2 (a–c) and CH4 (d–f) concentrations at AMY (a,d), ULD (b,e), and GSN (c,f) in 2020. Prior (green), 295 
posterior (blue), and observations (red) are shown for each site. Boxes denote the interquartile range (25th–75th percentiles); 

horizontal lines indicate medians. Filled symbols denote means (prior: circle; posterior: triangle; observation: square). 
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Table 1. Mean bias error (MBE) and root-mean-square error (RMSE of the top-down estimates to the observations at AMY, ULD, 

and GSN in 2020. Statistics are computed from 6-hourly averages. 300 

Station name Latitude Longitude GHG variable MBE 

 

RMSE 

 

AMY  36.53°N 126.32°E Prior CO2 

Posterior CO2 

Prior CH4 

Posterior CH4 

12.1 ppm 

1.2 ppm 

-52 ppb 

-23 ppb 

35.2 ppm 

13.9 ppm 

163 ppb 

111 ppb 

ULD 37.48°N 130.90°E Prior CO2 

Posterior CO2 

Prior CH4 

Posterior CH4 

-2.4 ppm 

-1.2 ppm 

-72 ppb 

-30 ppb 

7.7 ppm 

5.4 ppm 

124 ppb 

60 ppb 

GSN 33.29°N 126.16°E Prior CO2 

Posterior CO2 

Prior CH4 

Posterior CH4 

-3.4 ppm 

-2.3 ppm 

-88 ppb 

-31 ppb 

10.0 ppm 

7.4 ppm 

179 ppb 

109 ppb 

 

6.2 Validation against aircraft observations  

To independently evaluate the performance of the inversion system, posterior CO2 and CH4 concentrations are compared with 

aircraft-based in situ observations collected over the Yellow Sea near the AMY station in 2020 using a Beechcraft King Air 

350. The aircraft was equipped with a CRDS (G2401, Picarro Inc., USA) for measuring CO2, CH4, CO, and H2O, at a sampling 305 

rate of 1.5 Hz. Sample air was dried upstream, and inlet ports were located near the front fuselage to minimize contamination. 

Typical operating altitudes reached 10 km with cruising speeds of 70–120 m s⁻¹, supporting both routine profiling and regional 

transport characterization. Ten vertical profile flights near the AMY were available in 2020 (not used in the data assimilation) 

(Fig. S7). After quality control, the profiles were aggregated into 1 km altitude bins (±500 m). For each bin, we computed 

mean observed concentrations and observational uncertainties (quadrature of sampling variability and reported measurement 310 

uncertainty) alongside the corresponding posterior values. 

Figure 5 presents vertical profiles for CO2 and CH4 concentrations from both the inversion system and aircraft. Posterior 

CO2 concentration is in good agreement with the observed profile with biases of 1-5 ppm even in the upper troposphere, 
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whereas posterior CH4 concentration profile shows systematic negative bias of 40–50 ppb from the boundary layer to the mid-

troposphere. We speculate that the persistence of these CH4 bias is associated with the negative bias of the EGG4 data over 315 

the Korean Peninsula and discrepancies in oceanic emissions between the EGG4 and EDGAR datasets. Although EGG4 and 

EDGAR report comparable total annual inland CH4 emission for the South Korea (1.81 and 1.87 Tg CH4, respectively), its 

total emission within the total model domain is larger in EGG4 (6.83 Tg CH4) than in EDGAR (4.51 Tg CH4), largely due to 

a maritime baseline in EGG4 (~0.001 Tg grid⁻¹ yr⁻¹) whereas EDGAR is near zero over the ocean excluding shipping lanes. 

These differences likely contribute to the observed variations in ocean-grid concentrations. Our findings suggest that the 320 

underlying mechanisms for the maritime CH4 source in EGG4 necessitate further investigation and additional observational 

constraints help to improve CH4 budgets over the Korean Peninsula.  

 

 

Figure 5. Mean vertical profiles of CO2 and CH4 from 10 CM-01 flights over South Korea in 2020. Profiles are aggregated into 1 km 325 
altitude bins (±500 m). Symbols and error bars show mean concentrations and associated uncertainties per bin: observations (red) 

and posterior (blue). Observation uncertainties combine measurement precision and sampling variability.  

 

6.3 Uncertainty reduction in concentrations and fluxes  

Figures 6 and 7 illustrate spatial distributions of ensemble spreads for CO2 and CH4 concentrations and the corresponding 330 

emission uncertainties respectively, showing prior uncertainties (left panels) and uncertainty reductions after the DA (right 
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panels). Unless noted, “reduction” denotes (posterior spread / prior spread − 1) × 100 % over grid cells. Domain-averaged flux 

uncertainty over land decreases by 25-35 % for CO2 and about 20 % for CH4, with local reductions up to 50 % near the 

observation sites. Prior uncertainties in both concentrations and anthropogenic fluxes are elevated over strong source regions 

in urban region (SMA), large-scale power plants along the MWI, and mid- and SCI and SEI for CO2. Elevated uncertainties 335 

for CH4 are observed in landfills around the SMA, and rice cultivation area and livestock farms (CLA) and coal-related 

emission region in northeastern China (NEC) (compare Fig. 2 with Fig. 6 and 7). Posterior uncertainties in GHG concentrations 

decrease substantially within an influence radius of about 90 km (e-folding distance) from all the stations. CH4 certainty 

reduction reaches up to 40 % around the station and has a larger relative decrease than CO2. This is consistent with negative 

bias in CH4 concentration discussed above.  340 

The spatial patterns of prior flux uncertainties closely resemble those for concentrations. Overall uncertainties for CO2 

emission decrease by about 7 % after the DA. CO2 emission uncertainties decrease sharply within the influence radius of the 

AMY station along the western coasts, particularly for CO2, where strong anthropogenic GHG sources are located (Fig. 7). 

Smaller reductions around ULD/GSN (< 5 %) reflect distance from major southeastern sources and prevailing winds. CH4 

emission uncertainties show the similar pattern with those of CO2 except that the error reduction is relatively smaller than that 345 

of CO2. Posterior flux uncertainty around the AMY produces a relatively smaller reduction in CH4 compared to CO2, primarily 

because major CH4 sources are located more easterly than those of CO2. These findings propose an observation network 

priority for additional CO2 measurements in the southeastern industrial corridor and enhanced CH4 coverage over central 

inland hotspots.  

 350 

6.4 Posterior fluxes and concentrations of CO2 and CH4  

Figures 8 and 9 show spatial distribution of CO2 and CH4 concentrations from EGG4 and from the inversion system, 

respectively. Both EGG4 and posterior GHG concentrations capture large-scale gradients and regional enhancements induced 

by both long-range transport and upwind source regions. Elevated CO2 and CH4 concentrations are apparent in heavy industry 

area and dense urbanized areas (boxed areas in Fig. 2). Over the Korean Peninsula, enhancements appear along the SMA, the 355 

west coast and southern industrial corridor (MWI, SCI, and SEI in Fig. 2) where power plants, traffic and industrial activities 

are major CO2 emission sources and over central-western Korea (CLA in Fig. 2c) and northeastern region in China (NEC in 

Fig. 2c) where agriculture, landfills, and fossil fuel infrastructure are major CH4 sources. Monthly EGG4 and posterior 

concentrations show persistent enhancements over the western Korean Peninsula and eastern China with winter accumulation 

and summer dilution (Fig. S8-S11). A comparison of the EGG4 concentration with the posterior concentrations shows notable 360 

spatial mismatch around the major hotspots of CO2 and CH4 emissions possibly because of wind bias and coarse resolution in 

EGG4. These results motivate a high-resolution regional inversion combining local priors, mesoscale meteorology, and 

continuous in situ observations, as implemented here. The SMA and MWI are major anthropogenic emission hotspots in the 

EDGAR and the top-down estimates, whereas EGG4 shows relatively smaller concentration of CO2 and CH4 in these regions 
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(Fig. 8a and 9a). Elevated CH4 concentrations over the CLA appear more spatially diffuse in the EGG4 data. But the EGG4 365 

data give wider and higher CO2 and CH4 concentrations in the north Korean Peninsula and NEC. Previous studies based on 

satellite products of the GOSAT and TROPOMI report the similar mismatch of CO2 and CH4 concentrations in coarse 

resolution global products in South Korea (Shim et al., 2019; Moon et al., 2024). Despite its representing regional gradients 

and seasonality of GHG concentrations, the 0.75° × 0.75° resolution of EGG4 is not enough to resolve the sharp urban-

industrial emission heterogeneity and fine scale sources and sink of GHGs across Korea. They motivate the use of high-370 

resolution regional inversion over complex terrain implemented here with the WRF-Chem/DART framework developed here, 

which combines local priors, mesoscale meteorology, and continuous in situ observations to constrain emissions with greater 

spatial fidelity.  

The overall spatial distribution of posterior CO2 and CH4 emissions aligns with the prior estimates, retaining key hotspots 

in the Korean Peninsula and northeast China (See Fig. 2b and 2c) (Fig. 10a and 10c). Local increments of anthropogenic CO2 375 

and CH4 emissions (defined as the difference between posterior and prior anthropogenic fluxes) are evident after the ensemble 

adjustment on emission to better align with atmospheric observations. Negative increments of CO2 emissions are concentrated 

in densely populated and traffic-heavy regions (SMA and MWI) and positive increments for CO2 emission are observed along 

the east coast and in the southeastern industrial corridor (i.e., SCI and SEI) (Fig. 10b). Notably, positive increments for CH4 

emission are widespread across inland emission regions of rice paddy, livestock facilities, landfills, and power industry, 380 

suggesting possible underestimation of prior CH4 emission inventory (Fig. 10d).  

Increment patterns demonstrate the WRF-Chem/DART diagnoses and corrects regional inconsistencies between bottom-up 

fluxes and atmospheric observations and depend on combined influences of observation density, inventory quality, and 

atmospheric transport. Accordingly, it is important to approach this issue with caution, as this adjustment may represent an 

artifact related to the persistent underestimation of CH4 concentrations in the EGG4 product previously discussed. Because 385 

boundary data for CH4 concentrations appears low-biased, data assimilation can compensate it by increasing posterior 

emissions, especially near surface stations within the localization radius when boundary fields are not adjusted directly. Further 

investigation is required for better understanding of the effect of expanding high-precision in situ and upper-air observation 

network, bias of boundary conditions, and inflation parameters.  

Figure 11 presents a comprehensive summary of total anthropogenic CO2 and CH4 emissions in South Korea in 2020, 390 

comparing posterior estimates from our inversion system with several widely utilized bottom-up inventories. In the case of 

CO2, the comparison encompass various open-source reference emission datasets from the Open-source Data Inventory for 

Anthropogenic CO2 (ODIAC) (Oda et al., 2018), the Fossil Fuel Data Assimilation System (FFDAS) (Rayner et al., 2010), the 

Gridded Daily Fossil CO2 Emissions Dataset (GRACED) (Dou et al., 2023), EDGAR, and the national total anthropogenic 

emissions (excluding the Land Use, Land Use Change and Forestry sector) as reported in the Biennial Transparent Report of 395 

the Republic of Korea (ROK-BTR, hereafter). Despite methodological discrepancies including proxy choice, point-source 

treatment, spatial disaggregation, native resolution, and sectoral attribution making significant portion of the inter-inventory 

variation, the posterior estimates agree with the ROK-BTR at the national scale within the bounds of uncertainty for both 

https://doi.org/10.5194/egusphere-2025-4938
Preprint. Discussion started: 29 October 2025
c© Author(s) 2025. CC BY 4.0 License.



16 

 

species (Fig. 11). Importantly, it is observed that the posterior CH4 emissions diverge from the bottom-up estimates in contrast 

to the posterior CH4 emissions.   400 

 

 

Figure 6. Annual prior concentration uncertainty (ensemble spread) (a,c) and its reduction after assimilation (b,d) for CO2 (a,b) and 

CH4 (c,d) in 2020. 
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 405 

 

Figure 7. Annual prior flux uncertainty (a and c) and flux-uncertainty reduction (b and d) for CO2 (a and b) and CH4 (c and d) in 

2020. 
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Figure 8. Annual mean surface concentrations of CO2 (a) and CH4 (b) over the Korean Peninsula in 2020 from the EGG4. 410 

    

Figure 9. Annual mean surface posterior concentrations of CO2 (a) and CH4 (b) over the Korean Peninsula in 2020 from the WRF-

Chem/DART inversion system. Wind vectors at 10m illustrate prevailing flow conditions that shape annual concentration gradients.  
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 415 

Figure 10. Annual-mean posterior surface fluxes (a and c) and assimilation increments (posterior minus prior) (b and d) for CO2 (a 

and b) and CH4 (c and d) from the WRF-Chem/DART system. Red (blue) shading indicates an increase (decrease) in the posterior 

relative to the prior.  
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 420 
Figure 11. Annual total anthropogenic CO2 and CH4 emissions over South Korea in 2020 from multiple datasets. CO2 comparisons 

include ODIAC, FFDAS, GRACED, EDGAR, ROK-BTR, and the posterior (six sources). CH4 comparisons include EDGAR, ROK-

BTR, and the posterior. Error bars denote posterior uncertainty. (FFDAS was scaled using the 2015–2020 gross emission growth 

rate from ROK-BTR because FFDAS is available only through 2015) 

7 Summary and Conclusion  425 

This study presents a high-resolution dual-species GHG (CO2 and CH4) inversion framework using the coupled WRF-

Chem/DART system that assimilate continuous high-precision in situ observations of GHG concentrations. The system 

provides spatially explicit, observation-constrained emission estimates and dynamically consistent temporal state updates 

through ensemble data assimilation. This top-down estimate framework combines the model parameterizations for complex 

landscapes with the fully coupled treatment of meteorology and chemistry and facilitates dynamically consistent temporal state 430 

updates via ensemble data assimilation. The incorporation of precise high-frequency in situ observations further helps better 

representation of near-surface gradients, thereby enhancing anthropogenic flux sensitivity. The system complements the 

inventories by identifying spatial information and constraining its uncertainties. 

Application to calendar year of 2020 produces reliable spatio-temporal variations of CO2 and CH4 emissions and reduces 

mismatch with the observed CO2 and CH4 concentrations at all high-precision observation sites. There are overall reductions 435 

in uncertainties and errors of the top-down estimates of GHG concentration and emission. The top-down system produces that 

mean bias error of surface CO2 and CH4 concentrations are much smaller than the EGG4 reanalysis data (1.2 ppm and 30 ppb) 
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at the high-precision surface observatory. We also find out that various CH4 emission data should be checked especially over 

the ocean. Posterior national totals are consistent with the national inventory estimates of Korea (Republic of) within 

uncertainty, while revealing their regional discrepancies relative to the prior particularly in densely populated, industrial and 440 

agricultural areas. Posterior increments suggest that prior CO2 emissions are likely overestimated over the Seoul Metropolitan 

Area and the western coastal region, while CH4 emissions are underestimated in inland agricultural areas. These results provide 

an aggregate-level consistency check and underscore the value of top-down constraints for sub-national inventory refinement. 

Our high-resolution, dual-species WRF-Chem/DART inversion framework together with surface heterogeneity-aware 

parameterizations delivers spatially explicit emission estimates for policy assessments, operational monitoring, and 445 

verification within the national MMRV and international climate commitments across national, subnational, and city scales. 
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