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Abstract. Ground-based Sun-sky photometers have been widely used to measure aerosol optical and microphysical properties, 

yet the conventional numerical inversion schemes are often computationally expensive. In this study, we developed an 

explainable Ensemble Machine Learning (EML) model that simultaneously retrieves aerosol single scattering albedo (SSA), 10 

scattering asymmetry parameter (g), effective radius (𝑟𝑒𝑓𝑓 ), and fine-mode fraction (FMF) from direct and diffuse solar 

radiation measurements, with feature importance quantified using SHapley Additive exPlanations (SHAP). The EML model 

was trained and validated on a dataset of 110,000 samples simulated using the T-matrix particle scattering model and the 

VLIDORT radiative transfer model, encompassing diverse aerosol, atmospheric, and surface conditions. The algorithm 

demonstrated robustness through ten-fold cross validation, achieving correlation coefficients of 0.94, 0.95, 0.92, and 0.90 for 15 

SSA, g, 𝑟𝑒𝑓𝑓 , and FMF on the validation set, respectively. SHAP-based feature importance analysis confirmed the physical 

interpretability of the model, highlighting its effective use of multi-band radiance information and the stronger dependence of 

SSA retrieval on aerosol optical depth (AOD) relative to g and 𝑟𝑒𝑓𝑓. Retrieval uncertainties estimated from repeated noise 

perturbation experiments were 0.03 for SSA, 0.02 for g, 0.08 for 𝑟𝑒𝑓𝑓 , and 0.09 for FMF. Applied to 132,067 sets of raw 

photometer measurements, the EML-based retrieval produced forward radiance fitting residuals comparable to those of the 20 

AERONET official inversion products. Moreover, compared with numerical algorithms, the EML model eliminates the need 

for a priori assumptions and smoothness constraints, while improving computational efficiency by more than five orders of 

magnitude. 
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1 Introduction 25 

Ground-based Sun-sky photometers are widely used remote sensing instruments for observing column-averaged aerosol 

optical and microphysical properties. The system typically measures direct solar irradiance, diffuse sky radiance, and the 

degree of linear polarization across multiple atmospheric window channels, spanning a broad range of scattering angles. They 

enable retrievals of aerosol optical depth (AOD), single scattering albedo (SSA), and particle size distribution, which are 

critical for characterizing aerosol loading, type, and radiative effects. The AErosol RObotic NETwork (AERONET, Holben et 30 

al., 1998) is the most successful global photometer network, operated by the National Aeronautics and Space Administration 

(NASA). Each AERONET site is equipped with a Cimel Electronique CE-318 photometer, which operates in three primary 

sky-scanning modes: Almucantar, Principal Plane, and Hybrid. In the Almucantar scan, the viewing zenith angle (VZA) is set 

equal to the solar zenith angle (SZA), whereas in the Principal Plane scan, the viewing azimuth angle is fixed to the solar 

azimuth angle. The Hybrid scan combines both approaches, beginning with Almucantar and then switching to Principal Plane 35 

scanning, thereby ensuring adequate scattering angle coverage even when SZA exceeds 50°. Since its establishment in the 

early 1990s, AERONET has provided long-term, high-quality aerosol observations that have been extensively used for satellite 

data validation (Chu et al., 2002; Kahn et al., 2005; Levy et al., 2010; Omar et al., 2013; Fan et al., 2023), air quality monitoring 

(Dubovik et al., 2002; van Donkelaar et al., 2010; El-Nadry et al., 2019), and aerosol climate forcing studies (García et al., 

2012; Mao et al., 2019; Logothetis et al., 2021), among other applications. 40 

AERONET has a standardized official inversion algorithm that utilizes Almucantar radiance observations at four wavelengths 

(440, 675, 870, and 1020 nm) to derive aerosol optical and microphysical parameters, including SSA, scattering asymmetry 

parameter (g), and effective radius (𝑟𝑒𝑓𝑓), among others. The core of this algorithm is a numerical optimization process that 

iteratively adjusts the aerosol size distribution and complex refractive index until the observed radiance is reproduced via a 

radiative transfer model (RTM). (Dubovik and King, 2000; Dubovik et al., 2002). SSA, g, and other aerosol optical parameters 45 

are subsequently calculated from the retrieved microphysical properties using Mie theory for spherical particles and the T-

matrix approach for non-spherical particles (Dubovik et al., 2006). Similar networks have been established worldwide, 

providing complementary and more detailed information on regional aerosol characteristics. Examples include SKYNET in 

Asia and Europe (Takamura et al., 2004; Nakajima et al., 2003), the AERosol CANada (AEROCAN) in Canada (Bokoye et 

al., 2001), the Aerosol Ground Station Network (AGSNet) in Australia (Mitchell and Forgan, 2003), and the China Aerosol 50 

Remote Sensing Network (CARSNET) in China (Che et al., 2008, 2015). The main instrument of SKYNET is a sky radiometer, 

with observation wavelengths and scanning geometries similar to those of Sun–sky photometers. SKYNET aerosol retrievals 

are performed using the Skyrad Pack, which follows an inversion philosophy similar to that of the official AERONET 

algorithm. AEROCAN, AGSNet, and CARSNET employ the same Cimel photometers and inversion algorithms as AERONET. 

While the AERONET-type inversion algorithm achieves relatively high accuracy, it suffers from the need for a priori 55 

assumptions and limited computational efficiency. Retrieving aerosol size distribution from diffuse sky radiance is an ill-posed 

inverse problem: solutions are non-unique and unstable with respect to measurement noise. To regularize the inversion, the 
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algorithm imposes a priori assumptions and smoothness constraints, which suppress unphysical oscillations in the spectral 

dependence of the retrieved parameters (Dubovik and King, 2000). However, the choice of these constraints and their strengths 

is partly subjective and can introduce artificial biases. Furthermore, the computational cost of the numerical algorithm depends 60 

strongly on the initial guess and noise level. When the initial state is far from the truth and/or the observations are noisy, the 

inversion requires more radiative transfer calculations to reach convergence, thereby consuming significantly more time and, 

in some cases, even failing to converge. Previous improvements to the AERONET-type algorithm have mainly targeted 

forward radiative transfer calculations, including transitioning RTMs from scalar to polarized formulations, updating solar flux 

spectra and gas absorption databases, and accounting for non-spherical aerosols. However, these efforts cannot fully address 65 

the inherent limitation of low computational efficiency in numerical inversion algorithms (Sinyuk et al., 2020). Recently, rapid 

advances in machine learning have offered promising alternatives for remote sensing of atmospheric composition. Machine 

learning methods not only capture nonlinear relationships more effectively and operate far faster than numerical approaches, 

but also eliminate the need for initial guesses and prior constraints. 

In the past few years, the field of aerosol remote sensing also experienced a bloom in machine learning algorithms. For satellite-70 

based aerosol retrieval, machine learning approaches can be broadly divided into two categories according to the source of the 

training data: (1) those that pair satellite observations with AERONET aerosol products (Vucetic et al., 2008; Liang et al., 

2020; Chen et al., 2022; Cao et al., 2023; Dong et al., 2024; She et al., 2024;), and (2) those that rely on RTM simulations 

tailored to the measurement configurations of satellite sensors (Sun et al., 2020; Qi et al., 2022; Tao et al., 2023). The first 

approach benefits from training data that closely represent real atmospheric conditions but is constrained by limited data 75 

volume and site representativeness. The second approach enables coverage of diverse atmospheric and aerosol types and 

supports the generation of large training datasets; however, models trained solely on simulations often face a substantial 

domain gap when applied to real observations, leading to a sharp performance drop. By comparison, only a few ML algorithms 

have been developed for ground-based aerosol retrieval, and most existing efforts use AERONET products as truth for training. 

For example, Cazorla et al. (2009) trained a neural network with AERONET AOD as reference to retrieve AOD from All-Sky 80 

Imager measurements. Huttunen et al. (2016) applied four machine learning models to estimate AOD from CM21 pyranometer 

measurements, but their validation against AERONET data was limited to the Thessaloniki site in Greece. Taylor et al. (2014) 

employed multi-band AOD, water vapor, and absorption AOD as inputs to a neural network to infer daily aerosol complex 

refractive index, SSA, and size distribution, thereby extending the scope of satellite remote sensing products. However, they 

did not use satellite or ground-based radiation measurements. 85 

To date, no machine learning approach has been widely adopted for ground-based Sun-sky photometer inversions. This study 

develops an Ensemble Machine Learning (EML)-based aerosol retrieval algorithm that simultaneously retrieves SSA, g, 𝑟𝑒𝑓𝑓 , 

and fine-mode fraction (FMF) from CE-318 photometer measurements. We employ SHapley Additive exPlanations (SHAP) 

to quantify feature importance and provide physical insights into the retrieval process (Hou et al., 2022; Zhang et al., 2024). 

Instead of relying on co-located instrument measurements and products derived from existing algorithms, the training set is 90 

generated through forward radiative transfer simulations. The remainder of this paper is organized as follows. Sect. 2 describes 
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the architecture of the proposed EML-based aerosol retrieval algorithm and the construction of the training, validation, and 

test datasets. Sect. 3 presents the results, including model fitting on simulated data, retrievals from raw measurements, SHAP-

based feature importance analysis, and uncertainty evaluation. Finally, Sect. 4 summarizes the key features of the algorithm 

and discusses its advantages and potential applications in future aerosol remote sensing. 95 

2 Data and Algorithm 

Our proposed EML-based aerosol inversion algorithm is designed for the ground-based CE-318 Sun-sky photometer. The 

algorithm performs a joint retrieval at four observational wavelengths (440, 675, 870, and 1020 nm), simultaneously deriving 

SSA, g, 𝑟𝑒𝑓𝑓 , and FMF. It requires three types of inputs: (1) spectral AODs, (2) diffuse sky radiances from Almucantar scans 

at four wavelengths, and (3) geometric observation parameters, including SZA, VZA, and relative azimuth angle (RAA). An 100 

overview of the retrieval framework is shown in Fig. 1. The model is trained and validated on a large synthetic dataset generated 

through forward radiative transfer simulations, ensuring sufficient sample size and diversity. Independent testing is performed 

using photometer observations from AERONET sites, enabling assessment of both retrieval accuracy on real measurements 

and consistency with the official AERONET algorithm. In the following subsections, we describe (1) AERONET AOD and 

diffuse sky radiance measurements along with the associated inversion products, (2) the setup of forward radiative transfer 105 

simulations, (3) the design and implementation of the EML-based algorithm and the SHAP analysis, and (4) the methodology 

for estimating retrieval errors and uncertainties. 
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Figure 1. Flowchart of the EML-based aerosol retrieval algorithm for ground-based Sun-sky photometers. Colored 110 

oblong diamonds indicate models or algorithms, round-cornered rectangles represent input/output data, and regular rectangles 

denote processing steps. 

2.1 AERONET Photometer Measurements and Aerosol Inversion Products 

The ground-based Sun-sky photometer measures both direct and diffuse solar radiation. Direct solar irradiance is observed 

across ultraviolet, visible, and near-infrared bands, and AOD is retrieved from these measurements using the Beer–Lambert 115 

law after accounting for Rayleigh scattering and gaseous absorption. During Almucantar scans, diffuse sky radiance is recorded 

at 30 RAAs (2°, 2.5°, 3°, 3.5°, 4°, 5°, 6°, 7°, 8°, 10°, 12°, 14°, 16°, 18°, 20°, 25°, 30°, 35°, 40°, 45°, 50°, 60°, 70°, 80°, 90°, 

100°, 120°, 140°, 160°,180°). AOD and radiance measurements at RAA greater than 7° are used to retrieve aerosol parameters 

including SSA, g, size distribution, and refractive index (Dubovik and King, 2000). AERONET inversion products are 

classified into Level 1.0 (unscreened), Level 1.5 (cloud-screened and quality-controlled), and Level 2.0 (quality-assured). 120 

Level 2.0 data are produced through uniform instrument calibration and rigorous manual inspection, with quality control 

criteria such as AOD > 0.4, SZA > 50°, and sky residual < 5%, which considerably reduces data volume but ensures high 

reliability. The uncertainties of Level 2.0 retrievals are typically about 0.03 for SSA and 0.02 for g (Giles et al., 2019; Sinyuk 

et al., 2020). 

We downloaded coincident Level 2.0 AOD and aerosol inversion products, along with the corresponding raw Almucantar 125 

radiance measurements, from AERONET global sites to construct a testing set of 132,067 cases. This dataset was used to 

evaluate the retrieval capability of the proposed EML-based algorithm on real observations. To supplement aerosol types under 

low-AOD conditions, Level 1.5 inversion products were also collected and matched with their corresponding radiance and 

AOD observations, yielding an additional 87,144 cases. Aerosol size distributions, refractive indices, and surface albedo from 

the Level 2.0 and Level 1.5 inversion products were resampled and randomly combined to generate aerosol inputs for the 130 

forward radiative transfer simulations (Sect. 2.2), ensuring both parameter validity and statistical consistency with observed 

aerosol properties. In addition, radiation measurements were analyzed to characterize observational noise, which was then 

added to the training and validation sets (Sect. 2.3). 

2.2 Forward Radiative Transfer Simulation 

We employed VLIDORT v2.8.1, a linearized vector radiative transfer model, to simulate Almucantar observations from the 135 

photometer (Sect. 2.1), thereby generating a comprehensive training and validation dataset. VLIDORT computes the full 

Stokes vector [I, Q, U, V] for any specified viewing geometry and optical depth (Spurr, 2006). Here, I denotes radiance intensity, 

while Q and U represent linear polarization components. The model solves the radiative transfer equation for multilayer 

multiple scattering, requiring inputs such as solar spectral irradiance (SSI) at the top of atmosphere, surface albedo, and 

atmospheric and aerosol profiles. Its accuracy and flexibility make it well suited for simulating radiative measurements under 140 

diverse aerosol and atmospheric conditions. 
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SSI is obtained from the Solar Spectral Irradiance Climate Data Record, which provides the solar energy flux reaching the top 

of Earth’s atmosphere for different wavelengths. Observations indicate that SSI variability under stable solar conditions is very 

small (less than 0.3% on daily to annual timescales), with an even smaller impact on ground-based measurements. Therefore, 

a fixed SSI was adopted, with values of 1824.85, 1487.16, 970.44, and 689.27 W/m² at 440, 675, 870, and 1020 nm, 145 

respectively. Surface reflectance is treated as a Lambertian boundary, since ground-based observations are dominated by 

downward solar radiation, with minimal contribution from surface reflection. In our algorithm, surface reflectance is neither 

an inverted nor an input variable. It is only used in radiative transfer simulations, with values sampled from AERONET 

inversion products (Sect. 2.1). 

Radiative transfer is also controlled by both the column loading and vertical distribution of aerosols and gas molecules. The 150 

aerosol particle size distribution is assumed to follow a bimodal lognormal volume distribution: 

𝑑𝑉

𝑑𝑙𝑛𝑟
=

𝐶𝑉𝑓

√2𝜋𝑙𝑛𝜎𝑓
exp (−

(𝑙𝑛𝑟−𝑙𝑛𝑟𝑣𝑓)2

2𝑙𝑛2𝜎𝑓
) +

𝐶𝑉𝑐

√2𝜋𝑙𝑛𝜎𝑐
exp (−

(𝑙𝑛𝑟−𝑙𝑛𝑟𝑣𝑐)2

2𝑙𝑛2𝜎𝑐
)                                                                                             (1) 

where C𝑉, 𝑟𝑉 and σ denote the volume concentration, volume mean radius and geometric standard deviation, respectively, and 

the subscripts f and c represent fine and coarse modes. Many studies have shown that the scattering properties of particles can 

be fully characterized using only their 𝑟𝑒𝑓𝑓  and effective standard deviation (Hansen and Travis, 1974; Davies, 1974; Whitby, 155 

1978; Ott, 1990; Mishchenko et al., 2004). The effective radius 𝑟𝑒𝑓𝑓  and FMF are calculated as: 

𝑟𝑒𝑓𝑓 =
∫ 𝑟3𝑑𝑁(𝑟)

𝑑𝑙𝑛𝑟

𝑟𝑚𝑎𝑥
𝑟𝑚𝑖𝑛

𝑑𝑙𝑛𝑟

∫ 𝑟2𝑑𝑁(𝑟)

𝑑𝑙𝑛𝑟

𝑟𝑚𝑎𝑥
𝑟𝑚𝑖𝑛

𝑑𝑙𝑛𝑟
                                                                                                                                                                (2) 

FMF =  
∑

𝑑𝑉

𝑑𝑙𝑛𝑟
𝑑𝑙𝑛𝑟

1μm
rmin

∑
𝑑𝑉

𝑑𝑙𝑛𝑟
𝑑𝑙𝑛𝑟

rmax
rmin

                                                                                                                                                                  (3) 

Many aerosol types, particularly dust, are non-spherical, which significantly affects their scattering properties. To account for 

this, we employed the randomly oriented rotating ellipsoid model, a simple extension of the spherical model characterized by 160 

an additional axis ratio parameter. The T-matrix algorithm (Mishchenko and Travis, 1994) computes SSA, the scattering phase 

matrix, and other optical properties for ensembles of ellipsoidal particles. In radiative transfer simulations, aerosol parameters 

are averaged over various shapes, making the exact geometry of individual particles less critical; the optical characteristics are 

primarily determined by the overall axis ratio distribution (Mugnai and Wiscombe, 1986; Bohren and Singham, 1991; 

Mishchenko et al., 1997). The ellipsoid axis ratios were sampled according to the probability distribution observed for typical 165 

dust events (Dubovik et al., 2006). The aerosol extinction coefficient, β, decays exponentially with height: 

𝛽(ℎ) = 𝛽0𝑒−ℎ/𝐻                                                                                                                                                                          (4) 

where ℎ is the altitude and 𝐻 is the extinction scale height, ranging from less than 1 km in winter to more than 2 km on turbid 

summer days (Turner et al., 2001). Atmospheric profile information was obtained from the ERA5 (European Centre for 
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Medium-Range Weather Forecasts Reanalysis Version 5) monthly mean data (2020–2024) on pressure levels, including 170 

temperature, specific humidity, and ozone mass mixing ratio. Data from low- to mid-latitude land areas were extracted and 

spatially thinned to a 5° × 5° grid to serve as the sampling database. Based on these meteorological fields, Rayleigh scattering 

and gas absorption were calculated. The Rayleigh scattering optical thickness 𝜏𝑅  at a specific visible wavelength λ was 

computed using the empirical formula of Dutton et al. (1994):  

𝜏𝑅(𝜆) =
𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒

1013.25 ℎ𝑃𝑎
× 0.00877 × 𝜆−4.05                                                                                                                                     (5) 175 

which strictly applies under an exponentially decreasing atmospheric density. Water vapor and ozone absorption coefficient 

were calculated using the High-resolution Transmission Molecular Absorption Database (HITRAN). A Voigt line shape 

(Armstrong et al., 1967), accounting for both Doppler and pressure broadening, was applied to accurately model gas absorption 

under varying temperature and pressure conditions. 

2.3 Inversion Architecture Using Ensemble Machine Learning 180 

The EML has emerged as a powerful approach for capturing complex nonlinear relationships among variables by integrating 

multiple machine learning models, thereby leveraging their strengths while compensating for individual limitations. In this 

study, three base learners were adopted to construct the EML-based retrieval algorithm: Random Forest, Gradient Boosting, 

and Multi-Layer Perceptron. Random Forest represents a bagging approach that aggregates predictions from multiple decision 

trees trained on randomly sampled subsets of data and features (Breiman, 2001). Gradient Boosting is a boosting technique 185 

that builds weak learners sequentially, with each learner focusing on the residuals of its predecessors, which enables high 

predictive accuracy through iterative refinement (Ma, 2018). The Multi-Layer Perceptron is a feedforward neural network 

composed of multiple layers of interconnected neurons with nonlinear activation functions, offering strong fitting ability and 

architectural flexibility for capturing complex relationships (Hornik et al., 1989). 

To enhance robustness, Gaussian white noise was injected into the training dataset. Proper noise perturbation is essential: too 190 

little noise reduces resistance to real-world observational errors, while too much can obscure true patterns. Noise characteristics 

were derived by comparing raw Almucantar observations with corresponding VLIDORT simulations based on AERONET 

inversion products (Sect. 2.1). From these differences, the signal-to-noise ratio was calculated to estimate the mean amplitude 

and standard deviation of the noise. Because solar radiation strongly depends on wavelength and angle, noise parameters vary 

with wavelength and RAA. Moreover, diffuse sky radiance spans a wide dynamic range, from about 10−1 W/m2/sr at large 195 

angles to over 102 W/m2/sr at small angles. To address this, all input and output variables were standardized to the interval 

[−1, 1]. 

Ten-fold cross-validation (CV) was performed on the 100,000-sample training set to assess the EML model’s generalization 

performance, with results summarized in Table 1 and discussed in Sect. 3.1. In this procedure, the training set is partitioned 

into ten equal subsets, and the model is iteratively trained on nine subsets while validated on the remaining one, repeating the 200 
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process until each subset has served as the validation set once. After CV, the final EML model was trained on the entire training 

set to fully leverage all available data. 

To ensure physical interpretability, the EML-based inversion algorithm incorporates SHAP, a game-theoretic method that 

attributes model outputs to individual features while accounting for feature interactions (Zhao et al., 2019; Hou et al., 2022; 

Wang et al., 2023; Zhang et al., 2024). The SHAP value for a feature 𝑋𝑗 is defined as: 205 

𝜙𝑗 = ∑
|𝑆|!(𝑝−|𝑆|−1)!

𝑝!
[𝑓(𝑆 ∪ {𝑗}) − 𝑓(𝑆)]𝑠∈𝑁                                                                                                                                (6) 

where 𝑝 is the total number of features, 𝑁 is the set of all feature subsets excluding 𝑋𝑗, S is a subset of 𝑁, 𝑓(𝑆) denotes the 

model prediction based on features in 𝑆, and 𝑓(𝑆 ∪ {𝑗}) is the prediction when 𝑋𝑗  is added. The difference  [𝑓(𝑆 ∪ {𝑗}) −

𝑓(𝑆)] represents the marginal contribution of 𝑋𝑗  for that subset, and the SHAP value 𝜙𝑗 is the weighted average of these 

contributions across all subsets. A larger SHAP value indicates a stronger influence of the feature on the model’s predictions. 210 

2.4 Model Evaluation and Uncertainty Estimation 

Six statistical metrics were used to evaluate the predictive performance of the EML-based retrieval algorithm: correlation 

coefficient (R), coefficient of determination (𝑅2), root mean square error (RMSE), mean absolute deviation (MAD), linear 

bias, and error envelope (EE). These metrics quantify the agreement between the true values y and the predicted values 𝑦̂: 

𝑅 =
Covariance(y,ŷ)

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑦)𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑦̂)
                                                                                                                                                           (7) 215 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

                                                                                                                                                                   (8) 

RMSE = √
1

n
∑ (𝑦𝑖 − 𝑦̂𝑖)

2n
i=1                                                                                                                                                         (9) 

MAD =
1

n
∑ |𝑦𝑖 − 𝑦̂𝑖|

n
i=1                                                                                                                                                              (10) 

Bias =
1

n
∑ (𝑦̂𝑖 − 𝑦𝑖)n

i=1                                                                                                                                                               (11) 

𝐸𝐸 =
#{ y | |ŷ − y| < ±uncertainty }

n
                                                                                                                                       (12) 220 

where n is the number of cases. The uncertainty thresholds for EE follow the standards of existing ground-based aerosol 

inversion algorithms (Dubovik et al., 2000), with reference values of 0.03 for SSA, 0.02 for g, 0.1 for 𝑟𝑒𝑓𝑓 , and FMF. 

The total inversion uncertainty σ was decomposed into systematic error 𝜎𝑠 and propagation error 𝜎𝑝. Systematic error arises 

from the ill-posed nature of the inversion problem and the inherent limitations of the retrieval algorithm, and was quantified 

by applying the algorithm to the noise-free validation set, thereby excluding propagation effects. Propagation error results from 225 

the forward propagation of observational uncertainties and was evaluated through perturbation experiments. Gaussian 
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perturbations (100 realizations) were applied to the model input variables to simulate random observational errors, and the 

standard deviation of the resulting outputs was taken as 𝜎𝑝. Perturbation magnitudes were scaled according to the uncertainty 

of each variable: geometric angles were assumed exact, AOD was assigned an absolute uncertainty of 
1

𝑚
 (where m is the optical 

air mass), and radiance was assumed accurate to within 5% across all wavelengths (Holben et al., 1998; Eck et al., 1999). The 230 

total uncertainty σ was then calculated as the quadratic mean of 𝜎𝑠 and 𝜎𝑝: 

σ = √σs
2 + σp

2                                                                                                                                                                            (13) 

In theory, if the aerosol parameters retrieved by the algorithm are sufficiently accurate, they can be input into the RTM to 

reproduce the raw photometer measurements. The discrepancy between the simulated sky radiance y from the RTM and the 

observed radiance 𝑦∗, expressed in logarithmic scale, is defined as the optical residual: 235 

Residual (%) = √
∑ (𝑙𝑛𝑦∗−𝑙𝑛𝑦)2𝑁

𝑖=1

𝑁
∗ 100                                                                                                                                   (14) 

where N denotes the total number of sky radiance observations in a single Almucantar scan. In this study, N=64, corresponding 

to radiance measurements at four wavelengths with RAAs greater than 20°. 

In addition, the relative deviation is defined as the difference between the observed radiance 𝑦∗ and the simulated radiance y 

at a specific angle within a given band: 240 

Relative Deviation =
𝑦∗−𝑦

𝑦∗ ∗ 100%                                                                                                                                         (15) 

This metric is used in Sect. 3.4 and illustrated in Fig. 7. Since the algorithm does not directly retrieve the complete aerosol size 

distribution required for radiative transfer calculations, the distribution was reconstructed using six-dimensional nearest-

neighbor interpolation. The look-up table was generated from 110,000 sets of aerosol parameters prepared during the 

construction of the training and validation dataset. Its six search dimensions consist of g at four wavelengths, 𝑟𝑒𝑓𝑓 , and FMF. 245 

3 Results 

3.1 Model Fitting and Validation 

The training and validation of our model are entirely based on the simulated dataset generated using the forward RTM. This 

design avoids dependence on instrument measurements or existing inversion products, and instead anchors the algorithm in 

radiative transfer theory for aerosol-laden atmospheres under clear-sky conditions. The performance of the EML model in the 250 

ten-fold CV is summarized in Table 1. The prediction scores remain highly consistent across folds, with variations within 0.01, 

which highlights the stability and robustness of the algorithm. This consistency further indicates that the algorithm maintains 

reliable predictive skill regardless of data partitioning. The average 𝑅2 , RMSE, and MAD are 0.773, 0.43, and 0.282, 

respectively. While the RMSE appears larger than the typical inversion uncertainties reported for individual aerosol parameters 
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(e.g., 0.03 for SSA and 0.02 for g), this is expected because these metrics aggregate deviations across all retrieved variables, 255 

rather than assessing each parameter independently. 

 

Table1. Prediction Scores of EML Model via Ten-fold CV 

Fold 1 2 3 4 5 6 7 8 9 10 Average 

R2 0.768 0.773 0.773 0.766 0.774 0.773 0.778 0.778 0.773 0.769 0.773 

RMSE 0.433 0.428 0.426 0.435 0.429 0.434 0.433 0.426 0.425 0.429 0.430 

MAD 0.284 0.281 0.280 0.284 0.283 0.282 0.280 0.283 0.227 0.227 0.282 

 

The inversion performance on the validation set is presented in Fig. 2. As noted in Sect. 2.1, the validation dataset contains 

10,000 independent cases generated by forward radiative transfer simulations, excluded from training but constructed with the 260 

same noise characteristics. The results confirm that the EML-based algorithm retrieves SSA, g, 𝑟𝑒𝑓𝑓 , and FMF simultaneously 

across four wavelengths with high accuracy and without evidence of overfitting. The scatter points are tightly distributed 

around the 1:1 line, indicating minimal systematic bias. Among the retrieved parameters, SSA achieves the strongest 

performance, with an EE of about 90%, an RMSE near 0.02, and R above 0.90. For SSA and g, the reported error statistics 

(e.g., RMSE) are wavelength-averaged. The asymmetry parameter g exhibits a slightly lower EE (~70%), which can be 265 

attributed to its stricter uncertainty threshold and increased bias at longer wavelengths. Nevertheless, g still achieves reasonable 

accuracy, with R around 0.95 and RMSE around 0.018. For the microphysical parameters 𝑟𝑒𝑓𝑓  and FMF, the EE values are 

approximately 75% and 66%, respectively, with both parameters showing R above 0.9. Overall, these results suggest that the 

algorithm achieves satisfactory retrieval performance across the validation set, with errors generally within acceptable bounds. 

 270 
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Figure 2. Aerosol parameters retrieved by the trained EML model versus the ground truth on the validation set. The 

color of the scatter points indicates point density. The four rows correspond to the four retrieved variables: SSA, g, 𝑟𝑒𝑓𝑓 , and 

FMF. The four columns represent the observation bands at 440, 675, 870, and 1020 nm. The gray shaded area denotes the 

uncertainty range, and the red solid line is the linear regression line. The bottom-right corner of each panel shows the statistical 275 

evaluation metrics, where N is the total number of scatter points. 

3.2 Retrieval Results on Raw Photometer Measurements 

To further test the real-world applicability of our EML-based retrieval algorithm, we applied the model to ground-based 

photometer observations and compared the retrieved parameters with those from AERONET. This testing set comprises 

132,067 cases derived from AERONET Level 2.0 inversion products paired with raw Almucantar sky radiance measurements, 280 

entirely excluded from model training and validation. Figure 3 shows the comparison results, with data points diluted by one-
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tenth to improve visualization. The EML-retrieved parameters exhibit strong agreement with the AERONET products. Except 

for g at 440 nm, the R for all variables exceeds 0.9. The RMSEs of SSA and g are within 0.03, while those for 𝑟𝑒𝑓𝑓  and FMF 

are approximately 0.1. A notable advantage of the EML-based algorithm is its computational efficiency. It requires only 0.18 

milliseconds to invert a single measurement, whereas traditional numerical retrieval algorithms often take several minutes per 285 

case. Dubovik et al. (2011) attempted to accelerate numerical inversion by optimizing forward radiative transfer calculations, 

such as reducing terms in the phase matrix expansion and quadrature integration. However, the time required for a complete 

retrieval still remained at the minute scale. In contrast, by eliminating iterative radiative transfer calculations, our algorithm 

increases the retrieval speed by a factor of ~10⁵ compared with conventional numerical inversion schemes.  

Regarding wavelength dependence, the retrieval accuracy for SSA decreases with increasing wavelength λ in both the 290 

validation set (Fig. 2) and the testing set (Fig. 3), whereas the accuracy for g improves. As λ increases, the aerosol size 

parameter (x =
2𝜋𝑟

𝜆
) decreases, leading to weaker single scattering and stronger multiple scattering in the total radiation field 

at longer wavelengths (Moosmüller et al., 2009; Moosmüller and Sorensen, 2018), which makes SSA more difficult to 

constrain. The relatively poorer performance of SSA retrieval at 440 nm observed in Fig. 3 may be attributed to the higher 

AOD uncertainty at this wavelength, which serves as input for both our EML-based algorithm and the AERONET official 295 

algorithm. Specifically, the AOD uncertainty is approximately ±0.01 for λ > 440 nm and ±0.02 for λ ≤ 440 nm (Holben et al., 

1998; Eck et al., 1999). The improved retrieval accuracy of g at longer wavelengths can be explained by two mechanisms. 

First, the sensitivity of the radiative transfer equation to g, as quantified by the magnitude or norm of the Jacobian matrix (
𝜕𝐼

𝜕𝑔
), 

increases with wavelength (Hasekamp and Landgraf, 2005; Kokhanovsky, 2013). At longer wavelengths, the range of retrieved 

g values broadens noticeably, as illustrated in Fig. 2 and Fig. 3. Second, the influence of aerosol size distribution on g becomes 300 

more pronounced at longer wavelengths. The forward-scattering peak of the phase function broadens with increasing λ, 

enhancing sensitivity to coarse-mode particles (Osborne et al., 2008; Kalashnikova and Sokolik, 2013). Consequently, retrieval 

errors for g decrease from about ±0.05 in the visible to ±0.02 in the near-infrared (Dubovik et al., 2006). This trend is also 

reflected in Fig. 3, where the RMSE of g decreases from 0.039 at 440 nm to 0.025 at 1020 nm. 

Retrieving aerosol microphysical parameters is generally more challenging than deriving optical properties, and the retrieval 305 

accuracy of 𝑟𝑒𝑓𝑓  slightly decreases in the testing set relative to the validation set. Both 𝑟𝑒𝑓𝑓  and FMF are frequently recognized 

as key indicators of aerosol size distribution: fine-mode aerosols, such as sulfates, nitrates, and biomass burning particles, 

dominate when  𝑟𝑒𝑓𝑓  < 0.3 μm and FMF > 0.5, whereas coarse-mode aerosols, typically originating from natural sources like 

mineral dust and sea salt, prevail when  𝑟𝑒𝑓𝑓  > 1.0 μm and FMF < 0.3. In Fig. 3, FMF exhibits two distinct peaks near 0.3 and 

0.7, corresponding to 𝑟𝑒𝑓𝑓  values of 0.6 and 0.28 μm, representing the coarse and fine modes, respectively. These results 310 

indicate that our algorithm can provide a basic classification of aerosols based on their retrieved optical properties (SSA and 

g) and size distribution (𝑟𝑒𝑓𝑓  and FMF). 
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Figure 3. Aerosol parameters retrieved by the EML-based algorithm compared with AERONET Level 2.0 inversion 315 

products on the testing set. The plot configuration is the same as in Fig. 2. The testing set contains 132,067 raw Sun–sky 

photometer measurements, and the scatter points have been thinned by a factor of ten for visualization. 

3.3 Feature Importance Analysis 

The normalized feature importance of input variables on the predicted outputs was quantitatively assessed using SHAP values, 

as shown in Fig. 4. First, the EML model effectively extracts and utilizes band-specific observational data for aerosol parameter 320 

retrieval at the corresponding wavelengths, as evidenced by the fact that radiance at a given wavelength exhibits the highest 

SHAP value when inverting SSA or g at the same wavelength. For instance, the radiance at 440 nm shows the highest feature 

importance for retrieving SSA at 440 nm (20.3%), which is markedly greater than its contribution to SSA at other wavelengths. 

Similarly, when retrieving g at 440 nm, its feature importance reaches 31.8%, again clearly exceeding its importance for g at 

other wavelengths. Second, the SHAP values for each retrieved parameter indicate that the EML model also leverages 325 
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observations across all wavelengths, particularly for g and 𝑟𝑒𝑓𝑓 , reflecting the physical relationship between aerosol properties, 

such as particle size, and the spectral dependence of scattered radiation. Third, when inverting SSA, AOD shows the highest 

feature importance, consistently exceeding 40%. This is expected because SSA is defined as the ratio of scattering to total 

extinction (scattering plus absorption), making accurate AOD essential for SSA retrieval from sky diffuse radiation 

measurements. In contrast, the importance of AOD diminishes when predicting 𝑟𝑒𝑓𝑓  and FMF, whereas sky diffuse radiance 330 

across multiple bands and SCAs becomes more influential. According to Mie scattering theory, scattering phase functions 

differ substantially between fine- and coarse-mode aerosols, which increases the sensitivity of measured scattered radiation to 

particle size. For ground-based observations, diffuse radiance predominantly arises from aerosol forward scattering and 

stronger diffuse radiance indicates greater forward-backward scattering asymmetry, suggesting a larger column-averaged 

aerosol radius. Finally, auxiliary observation geometry information (SZA, VZA, and RAA) also plays a critical role in 335 

retrieving all aerosol parameters. These variables control both the magnitude and angular distribution of the measured radiance, 

thereby directly affecting the radiative transfer pathlength and scattering regime characterization. Consequently, the 

importance associated with observation geometry remain stable at around 10% across all retrieval targets. Overall, the SHAP-

based feature importance analysis demonstrates that the EML-based retrieval model successfully captures the underlying 

physical processes governing aerosol scattering of solar radiation, supporting its applicability for broader aerosol retrieval 340 

practices. 
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Figure 4. Importance analysis of input features based on SHAP values. The four rows correspond to the four retrieved 

aerosol parameters: SSA, g, 𝑟𝑒𝑓𝑓 , and FMF. The four columns represent the observation wavelengths of 440, 675, 870, and 345 

1020 nm. All 120 input features of the EML model are grouped into categories. Observation geometry includes the cosine of 

SZA and the scattering angle from the Almucantar scanning mode. AOD denotes the aerosol optical depth at the four 

wavelengths. Radiance refers to measured sky radiances from 23 observation geometries. 

3.4 Error evaluation and Uncertainty Analysis 

We quantify the uncertainties in retrieving SSA, g, 𝑟𝑒𝑓𝑓 , and FMF with the EML-based aerosol retrieval algorithm using the 350 

method described in Sect. 2.4. Systematic errors are defined as the RMSE of retrievals from the noiseless validation set, 

whereas propagation errors are estimated from the standard deviation of retrieval variability across 100 noise-perturbed 

realizations of AOD and radiance. As shown in Fig. 5, the two types of errors are comparable in magnitude for SSA, while for 

the other parameters the systematic errors exceed the corresponding propagation errors. The total absolute uncertainties for 

SSA and g both tend to increase with wavelength. Specifically, for SSA the uncertainties are 0.0154, 0.0198, 0.0222, and 355 
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0.0307 at 440, 675, 870, and 1020 nm, respectively, while for g they are 0.0149, 0.0147, 0.0191, and 0.0222 at the same 

wavelengths. For the microphysical parameters, the total uncertainties are 0.082 for 𝑟𝑒𝑓𝑓  and 0.096 for FMF. These levels are 

comparable to those reported for existing aerosol inversion algorithms. For example, the official AERONET algorithm reports 

uncertainties of 0.02–0.03 for SSA and about 0.02 for g (Dubovik et al., 2002), while relative uncertainties in 𝑟𝑒𝑓𝑓  can exceed 

20% due to the complexity of aerosol mixing states (Andrews et al., 2017). The 95% confidence interval (CI) coverage 360 

measures the probability that the true parameter value lies within the model-predicted uncertainty range for a single noise-

perturbed inversion case, whereas the EE denotes the fraction of cases that satisfy the predefined uncertainty criteria. Both 

metrics decrease in the order SSA > g > 𝑟𝑒𝑓𝑓  > FMF, indicating that, compared to aerosol optical parameters, the retrieval of 

microphysical parameters generally requires higher observation data quality and greater algorithmic accuracy. 

 365 

 

https://doi.org/10.5194/egusphere-2025-4936
Preprint. Discussion started: 15 October 2025
c© Author(s) 2025. CC BY 4.0 License.



18 

 

Figure 5. Heatmap of aerosol inversion uncertainties using the EML-based retrieval algorithm. The color scale does not 

represent absolute values; instead, lighter colors indicate better model performance for the corresponding variable based on 

the indicators in each column. The correlation coefficient and bias values are directly taken from Fig. 2. 

 370 

We further evaluated the capability of our EML-based retrieval algorithm by using the aerosol parameters it retrieves to 

reproduce photometer observations. The accuracy of these retrieved parameters is reflected in the optical residual, which 

quantifies the discrepancy between the RTM-simulated radiance and the observed photometer measurements (see Sect. 2.4 for 

the detailed definition). Smaller optical residuals indicate higher retrieval accuracy, providing a quantitative measure of the 

retrieval quality. This assessment was performed using the testing set described in Sect. 2.1. Site-averaged retrieval residuals 375 

from our algorithm were compared with those from the AERONET official algorithm in Fig. 6. Across most sites, the residual 

magnitudes of the two algorithms are consistent, with differences generally within ±4% (Fig. 6c). From the perspective of 

algorithm design, the AERONET-type numerical algorithm minimizes the optical residual as a convergence criterion, whereas 

the EML model is trained to minimize the RMSE between predicted aerosol parameters and their reference values. That the 

EML-based algorithm achieves residual magnitudes comparable to the physics-based AERONET algorithm underscores its 380 

reliability. 

Spatially, both algorithms exhibit similar residual distribution patterns: smaller residuals are observed over North and South 

America, East Asia, and Europe, whereas larger residuals occur over dust source regions such as North Africa and the Arabian 

Peninsula. Interestingly, the spatial pattern of residual differences between the two algorithms mirrors that of the mean 𝑟𝑒𝑓𝑓  

retrieved by the EML model. Notably, the spatial pattern of residual differences between the two algorithms closely resembles 385 

that of the mean 𝑟𝑒𝑓𝑓  retrieved by the EML model, highlighting that the model’s performance is less certain in regions 

dominated by coarse, non-spherical particles and pointing to potential areas for improvement. Sites in North Africa, South 

Asia, and inland China—where coarse-mode aerosols such as dust prevail—exhibit higher retrieval uncertainties. This effect 

is most pronounced at the shortest wavelength (440 nm, Fig. A1), where aerosol scattering exerts the strongest influence. 

Although both algorithms account for non-spherical particle scattering, neither fully resolves this complexity, indicating that 390 

further algorithmic refinement is needed. Additionally, some stations display substantially higher residuals relative to 

neighboring sites. At these locations, observational data are often sparse, potentially due to limited instrument maintenance or 

calibration. In certain cases, such as at some European sites, consistently low aerosol loading means the AOD rarely exceeds 

the 0.4 threshold required for AERONET Level 2.0 inversion products, contributing to larger residuals (Fig. B3). 

 395 
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Figure 6. Site-averaged optical residuals for our EML-based and AERONET official aerosol inversion algorithms on 

the testing set. The residuals for all cases at each site were averaged, and the difference is calculated as the EML inversion 

product residual minus the AERONET level 2.0 product residual. The 𝑟𝑒𝑓𝑓  values were retrieved using the EML-based aerosol 

retrieval model developed in this study and subsequently averaged at each site. 400 

 

Figure 7 shows the relative deviation between radiances simulated from the inversion results and those observed by the 

photometer, plotted as a function of RAA. Across all four observation wavelengths, the relative deviation exhibits a similar 

dependence on RAA. Minimal deviations (< 10%) and peak correlation coefficients (> 0.95) are observed at RAAs between 

20° and 100°, indicating optimal agreement within this angular range. The current AERONET V3 retrieval algorithm excludes 405 

measurements with RAA < 20° to minimize cloud contamination and forward-scattering effects (Giles et al., 2019). Similarly, 

the SKYNET algorithm prioritizes radiance observations within SCAs of 20°–70° for aerosol property retrieval (Nakajima et 

al., 1996, 2020). For a SZA of 60°, RAAs between 20° and 100° correspond to SCAs of approximately 17°–83°. These SCA 

ranges align closely with those designed for passive visible-light remote sensing sensors, such as MODIS (Levy et al., 2013), 

VIIRS (Hsu et al., 2019), and POLDER (Deschamps et al., 1994). 410 

Physically, a broader SCA range generally provides more information for the inversion of aerosol optical and microphysical 

properties. However, very small RAAs increase the likelihood of interference from direct solar radiation, and Sun-sky 

photometer measurements with RAA < 7° are often overexposed or saturated. Conversely, as RAA approaches 180°, the 
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photon flux along single-scattering paths diminishes, leading to a sharp drop in the measured radiance and a lower signal-to-

noise ratio.  415 

 

 

Figure 7. Relative deviation between radiance simulated from EML-based retrieval results and photometer 

observations. Box colors indicate different RAAs, and the numbers inside each box show the corresponding correlation 

coefficient. 420 

4 Summary 

This study presents a novel aerosol retrieval algorithm based on an EML model to infer both optical and microphysical 

properties from ground-based Sun–sky photometer measurements. The algorithm simultaneously retrieves four key 

parameters—SSA and g at four observation wavelengths, as well as 𝑟𝑒𝑓𝑓  and FMF—achieving accuracy comparable to that of 

the AERONET official algorithm and products. Compared with traditional numerical inversion methods, the EML-based 425 

algorithm offers three major advantages: it is five orders of magnitude faster by avoiding iterative radiative transfer calculations; 

it does not rely on prior assumptions or smoothing constraints; and it eliminates convergence issues inherent in statistical 

optimization methods, reducing missing data caused by non-convergence.  

Our EML model is trained on data generated from forward radiative transfer simulations using a combination of T-matrix and 

VLIDORT models, independent of existing inversion algorithm products and instrument measurements with errors. The 430 
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simulations span a comprehensive range of aerosol types and atmospheric conditions, ensuring the model’s universality and 

portability. Systematic and propagation errors were evaluated, yielding total retrieval uncertainties of 0.03 for SSA, 0.02 for 

g, 0.08 for 𝑟𝑒𝑓𝑓 , and 0.09 for FMF. Application to raw photometer measurements demonstrates strong agreement with 

AERONET products in both retrieved parameters and optical residuals. SHAP-based feature importance analysis verifies the 

physical interpretability of the model: SSA retrieval shows a stronger dependence on AOD compared to the other retrieved 435 

parameters, while g retrieval is primarily influenced by sky diffuse radiance across all observation wavelengths. Auxiliary 

observation geometry also plays a critical role. Finally, error analysis indicates that measurements with RAAs in the range 

20°–100° and higher AOD values provide more favorable conditions for accurate aerosol retrieval. 

Despite these promising results, certain limitations remain. The EML model occasionally produces physically unrealistic 

values, such as SSA exceeding 1 or g falling below 0; currently, these anomalies are handled through value truncation, which 440 

is a practical but suboptimal solution. Moreover, the algorithm presently retrieves only 𝑟𝑒𝑓𝑓  and FMF, without providing full 

aerosol size distributions or complex refractive index information. Nevertheless, our results highlight the substantial potential 

of machine learning approaches for addressing ill-posed and nonlinear retrieval problems. Looking forward, ongoing advances 

in artificial intelligence, coupled with increasingly comprehensive ground-based and satellite observations, are expected to 

facilitate the development of next-generation aerosol retrieval algorithms and products. 445 

Appendix A: Optical Residual of 440nm 

According to the method described in Sect. 2.4, we calculated the residuals for each individual wavelength, using the same 

plotting approach as in Fig. 6. At 440 nm, our inversion algorithm exhibits smaller residuals. Moreover, the differences 

between the residuals of the two algorithms, as well as the spatial pattern of 𝑟𝑒𝑓𝑓 , are more pronounced at this wavelength.  

 450 
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Figure A1. Optical residual at 440 nm of our EML-based and AERONET official inversion algorithms on the testing 

set. The method is the same as Fig. 6, with only the shortest wavelength (440 nm) selected for radiance. 

Appendix B: Application of the EML-Based Retrieval Algorithm to Low-AOD Photometer Observations with Level 

1.5 Inversion Products 455 

We applied our EML-based aerosol retrieval algorithm to raw sky photometer observations with low AOD (< 0.4), and the 

inversion results are shown in Figure B1. This dataset comprises 87,144 cases, none of which have corresponding AERONET 

level 2.0 inversion products. Compared with the results in Fig. 3, these retrievals exhibit larger deviations from the AERONET 

level 1.5 inversion products, particularly for SSA and FMF (Fig. B1). However, applying an additional filter to select cases 

with 440 nm AOD > 0.3 improves the agreement between the two datasets, as illustrated in Fig. B2. 460 
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Figure B1. Aerosol parameters retrieved by the EML-based inversion algorithm compared with AERONET Level 1.5 

inversion products. All cases correspond to 440 nm AOD < 0.4. The configuration is the same as in Fig. 2. This dataset 

comprises 81,744 raw Sun-sky photometer measurements, and the scatter points have been thinned to one tenth for clarity. 465 
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Figure B2. Aerosol parameters retrieved by the EML-based inversion algorithm compared with AERONET Level 1.5 

inversion products. All cases correspond to 440 nm AOD between 0.3 and 0.4. The configuration is the same as in Fig. 2. 

This dataset comprises 7,264 raw Sun–sky photometer measurements, and the scatter points have been thinned to one tenth 470 

for clarity. 

 

To further examine retrieval accuracy under varying aerosol loading conditions, we calculated the optical residuals for these 

87,144 low-AOD cases and combined them with the 132,067 cases in the testing set (Fig. 2, 440 nm AOD > 0.4). The residuals 

were grouped according to 440 nm AOD, with the horizontal axis in Fig. B3 binned in intervals of 0.1. The results indicate 475 

that when AOD is below 0.4, residuals are significantly higher than for cases with AOD > 0.4. Within the intermediate range 

of 0.3–1.5, residuals decrease monotonically as AOD increases. At both extremes of the AOD spectrum, retrieval uncertainties 
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tend to rise: low AOD corresponds to weak aerosol signals, which limit retrieval accuracy, whereas high AOD involves more 

complex aerosol mixtures, increasing inversion uncertainty. 

 480 

 

Figure B3. Optical sky residuals binned by 440 nm AOD. Scatter points represent individual cases inverted using the EML-

based aerosol retrieval algorithm from raw AERONET site photometer measurements. The vertical dashed line at 440 nm 

AOD = 0.4 indicates a commonly used quality-control threshold for selecting AERONET Level 2.0 inversion products. 

 485 
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