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Abstract. Ground-based Sun-sky photometers have been widely used to measure aerosol optical and microphysical properties,
yet the conventional numerical inversion schemes are often computationally expensive. In this study, we developed an
explainable Ensemble Machine Learning (EML) model that simultaneously retrieves aerosol single scattering albedo (SSA),
scattering asymmetry parameter (g), effective radius (r.;.), and fine-mode fraction (FMF) from direct and diffuse solar
radiation measurements, with feature importance quantified using SHapley Additive exPlanations (SHAP). The EML model
was trained and validated on a dataset of 110,000 samples simulated using the T-matrix particle scattering model and the
VLIDORT radiative transfer model, encompassing diverse aerosol, atmospheric, and surface conditions. The algorithm
demonstrated robustness through ten-fold cross validation, achieving correlation coefficients of 0.94, 0.95, 0.92, and 0.90 for
SSA, g, 7err, and FMF on the validation set, respectively. SHAP-based feature importance analysis confirmed the physical
interpretability of the model, highlighting its effective use of multi-band radiance information and the stronger dependence of
SSA retrieval on aerosol optical depth (AOD) relative to g and . Retrieval uncertainties estimated from repeated noise
perturbation experiments were 0.03 for SSA, 0.02 for g, 0.08 for 7., and 0.09 for FMF. Applied to 132,067 sets of raw
photometer measurements, the EML-based retrieval produced forward radiance fitting residuals comparable to those of the
AERONET official inversion products. Moreover, compared with numerical algorithms, the EML model eliminates the need
for a priori assumptions and smoothness constraints, while improving computational efficiency by more than five orders of
magnitude.
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1 Introduction

Ground-based Sun-sky photometers are widely used remote sensing instruments for observing column-averaged aerosol
optical and microphysical properties. The system typically measures direct solar irradiance, diffuse sky radiance, and the
degree of linear polarization across multiple atmospheric window channels, spanning a broad range of scattering angles. They
enable retrievals of aerosol optical depth (AOD), single scattering albedo (SSA), and particle size distribution, which are
critical for characterizing aerosol loading, type, and radiative effects. The AErosol RObotic NETwork (AERONET, Holben et
al., 1998) is the most successful global photometer network, operated by the National Aeronautics and Space Administration
(NASA). Each AERONET site is equipped with a Cimel Electronique CE-318 photometer, which operates in three primary
sky-scanning modes: Almucantar, Principal Plane, and Hybrid. In the Almucantar scan, the viewing zenith angle (VZA) is set
equal to the solar zenith angle (SZA), whereas in the Principal Plane scan, the viewing azimuth angle is fixed to the solar
azimuth angle. The Hybrid scan combines both approaches, beginning with Almucantar and then switching to Principal Plane
scanning, thereby ensuring adequate scattering angle coverage even when SZA exceeds 50< Since its establishment in the
early 1990s, AERONET has provided long-term, high-quality aerosol observations that have been extensively used for satellite
data validation (Chu et al., 2002; Kahn et al., 2005; Levy et al., 2010; Omar et al., 2013; Fan et al., 2023), air quality monitoring
(Dubovik et al., 2002; van Donkelaar et al., 2010; EI-Nadry et al., 2019), and aerosol climate forcing studies (Garc & et al.,
2012; Mao et al., 2019; Logothetis et al., 2021), among other applications.

AERONET has a standardized official inversion algorithm that utilizes Almucantar radiance observations at four wavelengths
(440, 675, 870, and 1020 nm) to derive aerosol optical and microphysical parameters, including SSA, scattering asymmetry
parameter (g), and effective radius (r.sr), among others. The core of this algorithm is a numerical optimization process that
iteratively adjusts the aerosol size distribution and complex refractive index until the observed radiance is reproduced via a
radiative transfer model (RTM). (Dubovik and King, 2000; Dubovik et al., 2002). SSA, g, and other aerosol optical parameters
are subsequently calculated from the retrieved microphysical properties using Mie theory for spherical particles and the T-
matrix approach for non-spherical particles (Dubovik et al., 2006). Similar networks have been established worldwide,
providing complementary and more detailed information on regional aerosol characteristics. Examples include SKYNET in
Asia and Europe (Takamura et al., 2004; Nakajima et al., 2003), the AERosol CANada (AEROCAN) in Canada (Bokoye et
al., 2001), the Aerosol Ground Station Network (AGSNet) in Australia (Mitchell and Forgan, 2003), and the China Aerosol
Remote Sensing Network (CARSNET) in China (Che et al., 2008, 2015). The main instrument of SKYNET is a sky radiometer,
with observation wavelengths and scanning geometries similar to those of Sun—sky photometers. SKYNET aerosol retrievals
are performed using the Skyrad Pack, which follows an inversion philosophy similar to that of the official AERONET
algorithm. AEROCAN, AGSNet, and CARSNET employ the same Cimel photometers and inversion algorithms as AERONET.
While the AERONET-type inversion algorithm achieves relatively high accuracy, it suffers from the need for a priori
assumptions and limited computational efficiency. Retrieving aerosol size distribution from diffuse sky radiance is an ill-posed

inverse problem: solutions are non-unique and unstable with respect to measurement noise. To regularize the inversion, the
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algorithm imposes a priori assumptions and smoothness constraints, which suppress unphysical oscillations in the spectral
dependence of the retrieved parameters (Dubovik and King, 2000). However, the choice of these constraints and their strengths
is partly subjective and can introduce artificial biases. Furthermore, the computational cost of the numerical algorithm depends
strongly on the initial guess and noise level. When the initial state is far from the truth and/or the observations are noisy, the
inversion requires more radiative transfer calculations to reach convergence, thereby consuming significantly more time and,
in some cases, even failing to converge. Previous improvements to the AERONET-type algorithm have mainly targeted
forward radiative transfer calculations, including transitioning RTMs from scalar to polarized formulations, updating solar flux
spectra and gas absorption databases, and accounting for non-spherical aerosols. However, these efforts cannot fully address
the inherent limitation of low computational efficiency in numerical inversion algorithms (Sinyuk et al., 2020). Recently, rapid
advances in machine learning have offered promising alternatives for remote sensing of atmospheric composition. Machine
learning methods not only capture nonlinear relationships more effectively and operate far faster than numerical approaches,
but also eliminate the need for initial guesses and prior constraints.

In the past few years, the field of aerosol remote sensing also experienced a bloom in machine learning algorithms. For satellite-
based aerosol retrieval, machine learning approaches can be broadly divided into two categories according to the source of the
training data: (1) those that pair satellite observations with AERONET aerosol products (Vucetic et al., 2008; Liang et al.,
2020; Chen et al., 2022; Cao et al., 2023; Dong et al., 2024; She et al., 2024;), and (2) those that rely on RTM simulations
tailored to the measurement configurations of satellite sensors (Sun et al., 2020; Qi et al., 2022; Tao et al., 2023). The first
approach benefits from training data that closely represent real atmospheric conditions but is constrained by limited data
volume and site representativeness. The second approach enables coverage of diverse atmospheric and aerosol types and
supports the generation of large training datasets; however, models trained solely on simulations often face a substantial
domain gap when applied to real observations, leading to a sharp performance drop. By comparison, only a few ML algorithms
have been developed for ground-based aerosol retrieval, and most existing efforts use AERONET products as truth for training.
For example, Cazorla et al. (2009) trained a neural network with AERONET AOD as reference to retrieve AOD from All-Sky
Imager measurements. Huttunen et al. (2016) applied four machine learning models to estimate AOD from CM21 pyranometer
measurements, but their validation against AERONET data was limited to the Thessaloniki site in Greece. Taylor et al. (2014)
employed multi-band AOD, water vapor, and absorption AOD as inputs to a neural network to infer daily aerosol complex
refractive index, SSA, and size distribution, thereby extending the scope of satellite remote sensing products. However, they
did not use satellite or ground-based radiation measurements.

To date, no machine learning approach has been widely adopted for ground-based Sun-sky photometer inversions. This study
develops an Ensemble Machine Learning (EML)-based aerosol retrieval algorithm that simultaneously retrieves SSA, g, 7fy,
and fine-mode fraction (FMF) from CE-318 photometer measurements. We employ SHapley Additive exPlanations (SHAP)
to quantify feature importance and provide physical insights into the retrieval process (Hou et al., 2022; Zhang et al., 2024).
Instead of relying on co-located instrument measurements and products derived from existing algorithms, the training set is

generated through forward radiative transfer simulations. The remainder of this paper is organized as follows. Sect. 2 describes
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the architecture of the proposed EML-based aerosol retrieval algorithm and the construction of the training, validation, and
test datasets. Sect. 3 presents the results, including model fitting on simulated data, retrievals from raw measurements, SHAP-
based feature importance analysis, and uncertainty evaluation. Finally, Sect. 4 summarizes the key features of the algorithm
and discusses its advantages and potential applications in future aerosol remote sensing.

2 Data and Algorithm

Our proposed EML-based aerosol inversion algorithm is designed for the ground-based CE-318 Sun-sky photometer. The
algorithm performs a joint retrieval at four observational wavelengths (440, 675, 870, and 1020 nm), simultaneously deriving
SSA, g, .55, and FMF. It requires three types of inputs: (1) spectral AODs, (2) diffuse sky radiances from Almucantar scans
at four wavelengths, and (3) geometric observation parameters, including SZA, VZA, and relative azimuth angle (RAA). An
overview of the retrieval framework is shown in Fig. 1. The model is trained and validated on a large synthetic dataset generated
through forward radiative transfer simulations, ensuring sufficient sample size and diversity. Independent testing is performed
using photometer observations from AERONET sites, enabling assessment of both retrieval accuracy on real measurements
and consistency with the official AERONET algorithm. In the following subsections, we describe (1) AERONET AOD and
diffuse sky radiance measurements along with the associated inversion products, (2) the setup of forward radiative transfer
simulations, (3) the design and implementation of the EML-based algorithm and the SHAP analysis, and (4) the methodology
for estimating retrieval errors and uncertainties.
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Figure 1. Flowchart of the EML-based aerosol retrieval algorithm for ground-based Sun-sky photometers. Colored
oblong diamonds indicate models or algorithms, round-cornered rectangles represent input/output data, and regular rectangles

denote processing steps.

2.1 AERONET Photometer Measurements and Aerosol Inversion Products

The ground-based Sun-sky photometer measures both direct and diffuse solar radiation. Direct solar irradiance is observed
across ultraviolet, visible, and near-infrared bands, and AOD is retrieved from these measurements using the Beer—Lambert
law after accounting for Rayleigh scattering and gaseous absorption. During Almucantar scans, diffuse sky radiance is recorded
at 30 RAAs (2255335545556 7<8%10<12< 14< 16< 18< 20< 25< 30< 35< 40< 45<,50< 60< 70< 80< 90<
100< 120< 140< 160<1809. AOD and radiance measurements at RAA greater than 7 “are used to retrieve aerosol parameters
including SSA, g, size distribution, and refractive index (Dubovik and King, 2000). AERONET inversion products are
classified into Level 1.0 (unscreened), Level 1.5 (cloud-screened and quality-controlled), and Level 2.0 (quality-assured).
Level 2.0 data are produced through uniform instrument calibration and rigorous manual inspection, with quality control
criteria such as AOD > 0.4, SZA > 50< and sky residual < 5%, which considerably reduces data volume but ensures high
reliability. The uncertainties of Level 2.0 retrievals are typically about 0.03 for SSA and 0.02 for g (Giles et al., 2019; Sinyuk
et al., 2020).

We downloaded coincident Level 2.0 AOD and aerosol inversion products, along with the corresponding raw Almucantar
radiance measurements, from AERONET global sites to construct a testing set of 132,067 cases. This dataset was used to
evaluate the retrieval capability of the proposed EML-based algorithm on real observations. To supplement aerosol types under
low-AOD conditions, Level 1.5 inversion products were also collected and matched with their corresponding radiance and
AOD observations, yielding an additional 87,144 cases. Aerosol size distributions, refractive indices, and surface albedo from
the Level 2.0 and Level 1.5 inversion products were resampled and randomly combined to generate aerosol inputs for the
forward radiative transfer simulations (Sect. 2.2), ensuring both parameter validity and statistical consistency with observed
aerosol properties. In addition, radiation measurements were analyzed to characterize observational noise, which was then

added to the training and validation sets (Sect. 2.3).

2.2 Forward Radiative Transfer Simulation

We employed VLIDORT v2.8.1, a linearized vector radiative transfer model, to simulate Almucantar observations from the
photometer (Sect. 2.1), thereby generating a comprehensive training and validation dataset. VLIDORT computes the full
Stokes vector [1, Q, U, V] for any specified viewing geometry and optical depth (Spurr, 2006). Here, | denotes radiance intensity,
while Q and U represent linear polarization components. The model solves the radiative transfer equation for multilayer
multiple scattering, requiring inputs such as solar spectral irradiance (SSI) at the top of atmosphere, surface albedo, and
atmospheric and aerosol profiles. Its accuracy and flexibility make it well suited for simulating radiative measurements under

diverse aerosol and atmospheric conditions.
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SSl is obtained from the Solar Spectral Irradiance Climate Data Record, which provides the solar energy flux reaching the top
of Earth’s atmosphere for different wavelengths. Observations indicate that SSI variability under stable solar conditions is very
small (less than 0.3% on daily to annual timescales), with an even smaller impact on ground-based measurements. Therefore,
a fixed SSI was adopted, with values of 1824.85, 1487.16, 970.44, and 689.27 W/m=at 440, 675, 870, and 1020 nm,
respectively. Surface reflectance is treated as a Lambertian boundary, since ground-based observations are dominated by
downward solar radiation, with minimal contribution from surface reflection. In our algorithm, surface reflectance is neither
an inverted nor an input variable. It is only used in radiative transfer simulations, with values sampled from AERONET
inversion products (Sect. 2.1).

Radiative transfer is also controlled by both the column loading and vertical distribution of aerosols and gas molecules. The

aerosol particle size distribution is assumed to follow a bimodal lognormal volume distribution:

av _ Cyf _ (Inr—Inryf)? Cyec (_ (ln‘r—lnrvc)z)
dinr V2mina ¢ €xp ( 2in2af + V2nlno, €xp 2inZ0, (1)

where Cy, 1, and o denote the volume concentration, volume mean radius and geometric standard deviation, respectively, and
the subscripts f and c represent fine and coarse modes. Many studies have shown that the scattering properties of particles can

be fully characterized using only their 7, and effective standard deviation (Hansen and Travis, 1974; Davies, 1974; Whitby,
1978; Ott, 1990; Mishchenko et al., 2004). The effective radius r.r, and FMF are calculated as:

me'ax 34N iy
r — Tmin dinr (2)
eff meax r2 dN(T)dmr
Tmin dinr

FMF = % (3)

Many aerosol types, particularly dust, are non-spherical, which significantly affects their scattering properties. To account for
this, we employed the randomly oriented rotating ellipsoid model, a simple extension of the spherical model characterized by
an additional axis ratio parameter. The T-matrix algorithm (Mishchenko and Travis, 1994) computes SSA, the scattering phase
matrix, and other optical properties for ensembles of ellipsoidal particles. In radiative transfer simulations, aerosol parameters
are averaged over various shapes, making the exact geometry of individual particles less critical; the optical characteristics are
primarily determined by the overall axis ratio distribution (Mugnai and Wiscombe, 1986; Bohren and Singham, 1991;
Mishchenko et al., 1997). The ellipsoid axis ratios were sampled according to the probability distribution observed for typical

dust events (Dubovik et al., 2006). The aerosol extinction coefficient, g, decays exponentially with height:

B(R) = poe~"/M (4)

where h is the altitude and H is the extinction scale height, ranging from less than 1 km in winter to more than 2 km on turbid

summer days (Turner et al., 2001). Atmospheric profile information was obtained from the ERA5 (European Centre for
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Medium-Range Weather Forecasts Reanalysis Version 5) monthly mean data (2020-2024) on pressure levels, including
temperature, specific humidity, and ozone mass mixing ratio. Data from low- to mid-latitude land areas were extracted and
spatially thinned to a 5°>5<grid to serve as the sampling database. Based on these meteorological fields, Rayleigh scattering
and gas absorption were calculated. The Rayleigh scattering optical thickness t at a specific visible wavelength 4 was

computed using the empirical formula of Dutton et al. (1994):

__ pressure —4.05
TR (1) = 22 % 0.00877 X A (5)

which strictly applies under an exponentially decreasing atmospheric density. Water vapor and ozone absorption coefficient
were calculated using the High-resolution Transmission Molecular Absorption Database (HITRAN). A Voigt line shape
(Armstrong et al., 1967), accounting for both Doppler and pressure broadening, was applied to accurately model gas absorption

under varying temperature and pressure conditions.

2.3 Inversion Architecture Using Ensemble Machine Learning

The EML has emerged as a powerful approach for capturing complex nonlinear relationships among variables by integrating
multiple machine learning models, thereby leveraging their strengths while compensating for individual limitations. In this
study, three base learners were adopted to construct the EML-based retrieval algorithm: Random Forest, Gradient Boosting,
and Multi-Layer Perceptron. Random Forest represents a bagging approach that aggregates predictions from multiple decision
trees trained on randomly sampled subsets of data and features (Breiman, 2001). Gradient Boosting is a boosting technique
that builds weak learners sequentially, with each learner focusing on the residuals of its predecessors, which enables high
predictive accuracy through iterative refinement (Ma, 2018). The Multi-Layer Perceptron is a feedforward neural network
composed of multiple layers of interconnected neurons with nonlinear activation functions, offering strong fitting ability and
architectural flexibility for capturing complex relationships (Hornik et al., 1989).

To enhance robustness, Gaussian white noise was injected into the training dataset. Proper noise perturbation is essential: too
little noise reduces resistance to real-world observational errors, while too much can obscure true patterns. Noise characteristics
were derived by comparing raw Almucantar observations with corresponding VLIDORT simulations based on AERONET
inversion products (Sect. 2.1). From these differences, the signal-to-noise ratio was calculated to estimate the mean amplitude
and standard deviation of the noise. Because solar radiation strongly depends on wavelength and angle, noise parameters vary
with wavelength and RAA. Moreover, diffuse sky radiance spans a wide dynamic range, from about 10~* W/m?/sr at large
angles to over 102 W/m?/sr at small angles. To address this, all input and output variables were standardized to the interval
-1, 1].

Ten-fold cross-validation (CV) was performed on the 100,000-sample training set to assess the EML model’s generalization
performance, with results summarized in Table 1 and discussed in Sect. 3.1. In this procedure, the training set is partitioned
into ten equal subsets, and the model is iteratively trained on nine subsets while validated on the remaining one, repeating the
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process until each subset has served as the validation set once. After CV, the final EML model was trained on the entire training
set to fully leverage all available data.

To ensure physical interpretability, the EML-based inversion algorithm incorporates SHAP, a game-theoretic method that
attributes model outputs to individual features while accounting for feature interactions (Zhao et al., 2019; Hou et al., 2022;
Wang et al., 2023; Zhang et al., 2024). The SHAP value for a feature X; is defined as:

¢) = Zoen EEL (S U G — £(9)] (6)

where p is the total number of features, N is the set of all feature subsets excluding X;, S is a subset of N, f(S) denotes the
model prediction based on features in S, and f(S U {j}) is the prediction when X; is added. The difference [f(S U {j}) —
f(S)] represents the marginal contribution of X; for that subset, and the SHAP value ¢; is the weighted average of these

contributions across all subsets. A larger SHAP value indicates a stronger influence of the feature on the model’s predictions.

2.4 Model Evaluation and Uncertainty Estimation

Six statistical metrics were used to evaluate the predictive performance of the EML-based retrieval algorithm: correlation
coefficient (R), coefficient of determination (R?), root mean square error (RMSE), mean absolute deviation (MAD), linear

bias, and error envelope (EE). These metrics quantify the agreement between the true values y and the predicted values j:

Covariance(y,y)

. (7)

~ variance (y)Variance(y)

e -1- B ®
RMSE = [157, (v, - 9)? ©)
MAD = S L1y; = i (10)
Bias = % i=1(Ji = ») (11)
EE = #{y | 1§ — yl < funcertainty } (12)

n

where n is the number of cases. The uncertainty thresholds for EE follow the standards of existing ground-based aerosol
inversion algorithms (Dubovik et al., 2000), with reference values of 0.03 for SSA, 0.02 for g, 0.1 for 7., and FMF.
The total inversion uncertainty ¢ was decomposed into systematic error g, and propagation error a,,. Systematic error arises

from the ill-posed nature of the inversion problem and the inherent limitations of the retrieval algorithm, and was quantified
by applying the algorithm to the noise-free validation set, thereby excluding propagation effects. Propagation error results from

the forward propagation of observational uncertainties and was evaluated through perturbation experiments. Gaussian

9
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perturbations (100 realizations) were applied to the model input variables to simulate random observational errors, and the
standard deviation of the resulting outputs was taken as a,,. Perturbation magnitudes were scaled according to the uncertainty
of each variable: geometric angles were assumed exact, AOD was assigned an absolute uncertainty of i (where m is the optical

air mass), and radiance was assumed accurate to within 5% across all wavelengths (Holben et al., 1998; Eck et al., 1999). The

total uncertainty o was then calculated as the quadratic mean of o, and a,,:

o =,/of+ 0} (13)

In theory, if the aerosol parameters retrieved by the algorithm are sufficiently accurate, they can be input into the RTM to
reproduce the raw photometer measurements. The discrepancy between the simulated sky radiance y from the RTM and the

observed radiance y*, expressed in logarithmic scale, is defined as the optical residual:

N )2
Residual (%) = /Zl:l(ln+my) * 100 (14)

where N denotes the total number of sky radiance observations in a single Almucantar scan. In this study, N=64, corresponding
to radiance measurements at four wavelengths with RAAs greater than 20<
In addition, the relative deviation is defined as the difference between the observed radiance y* and the simulated radiance y

at a specific angle within a given band:

Relative Deviation = y;_y * 100% (15)

*

This metric is used in Sect. 3.4 and illustrated in Fig. 7. Since the algorithm does not directly retrieve the complete aerosol size
distribution required for radiative transfer calculations, the distribution was reconstructed using six-dimensional nearest-
neighbor interpolation. The look-up table was generated from 110,000 sets of aerosol parameters prepared during the

construction of the training and validation dataset. Its six search dimensions consist of g at four wavelengths, 7, and FMF.

3 Results
3.1 Model Fitting and Validation

The training and validation of our model are entirely based on the simulated dataset generated using the forward RTM. This
design avoids dependence on instrument measurements or existing inversion products, and instead anchors the algorithm in
radiative transfer theory for aerosol-laden atmospheres under clear-sky conditions. The performance of the EML model in the
ten-fold CV is summarized in Table 1. The prediction scores remain highly consistent across folds, with variations within 0.01,
which highlights the stability and robustness of the algorithm. This consistency further indicates that the algorithm maintains
reliable predictive skill regardless of data partitioning. The average R?, RMSE, and MAD are 0.773, 0.43, and 0.282,

respectively. While the RMSE appears larger than the typical inversion uncertainties reported for individual aerosol parameters

10
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(e.g., 0.03 for SSA and 0.02 for g), this is expected because these metrics aggregate deviations across all retrieved variables,

rather than assessing each parameter independently.

Tablel. Prediction Scores of EML Model via Ten-fold CV

Fold 1 2 3 4 5 6 7 8 9 10 Average
R? 0.768 0773 0773 0.766 0.774 0773 0778 0.778 0773 0.769 0.773
RMSE 0433 0428 0426 0435 0429 0434 0433 0426 0425 0.429 0.430
MAD 0284 0281 0280 0284 0283 0.282 0280 0.283 0.227 0.227 0.282

The inversion performance on the validation set is presented in Fig. 2. As noted in Sect. 2.1, the validation dataset contains

10,000 independent cases generated by forward radiative transfer simulations, excluded from training but constructed with the

same noise characteristics. The results confirm that the EML-based algorithm retrieves SSA, g, 7., and FMF simultaneously

across four wavelengths with high accuracy and without evidence of overfitting. The scatter points are tightly distributed

around the 1:1 line, indicating minimal systematic bias. Among the retrieved parameters, SSA achieves the strongest

performance, with an EE of about 90%, an RMSE near 0.02, and R above 0.90. For SSA and g, the reported error statistics

(e.g., RMSE) are wavelength-averaged. The asymmetry parameter g exhibits a slightly lower EE (~70%), which can be

attributed to its stricter uncertainty threshold and increased bias at longer wavelengths. Nevertheless, g still achieves reasonable

accuracy, with R around 0.95 and RMSE around 0.018. For the microphysical parameters 7. and FMF, the EE values are

approximately 75% and 66%, respectively, with both parameters showing R above 0.9. Overall, these results suggest that the

algorithm achieves satisfactory retrieval performance across the validation set, with errors generally within acceptable bounds.

11
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Figure 2. Aerosol parameters retrieved by the trained EML model versus the ground truth on the validation set. The
color of the scatter points indicates point density. The four rows correspond to the four retrieved variables: SSA, g, 7.y, and
FMF. The four columns represent the observation bands at 440, 675, 870, and 1020 nm. The gray shaded area denotes the
275 uncertainty range, and the red solid line is the linear regression line. The bottom-right corner of each panel shows the statistical

evaluation metrics, where N is the total number of scatter points.

3.2 Retrieval Results on Raw Photometer Measurements

To further test the real-world applicability of our EML-based retrieval algorithm, we applied the model to ground-based
photometer observations and compared the retrieved parameters with those from AERONET. This testing set comprises
280 132,067 cases derived from AERONET Level 2.0 inversion products paired with raw Almucantar sky radiance measurements,

entirely excluded from model training and validation. Figure 3 shows the comparison results, with data points diluted by one-
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tenth to improve visualization. The EML-retrieved parameters exhibit strong agreement with the AERONET products. Except
for g at 440 nm, the R for all variables exceeds 0.9. The RMSEs of SSA and g are within 0.03, while those for 7, ., and FMF
are approximately 0.1. A notable advantage of the EML-based algorithm is its computational efficiency. It requires only 0.18
milliseconds to invert a single measurement, whereas traditional numerical retrieval algorithms often take several minutes per
case. Dubovik et al. (2011) attempted to accelerate numerical inversion by optimizing forward radiative transfer calculations,
such as reducing terms in the phase matrix expansion and quadrature integration. However, the time required for a complete
retrieval still remained at the minute scale. In contrast, by eliminating iterative radiative transfer calculations, our algorithm
increases the retrieval speed by a factor of ~10° compared with conventional numerical inversion schemes.

Regarding wavelength dependence, the retrieval accuracy for SSA decreases with increasing wavelength 1 in both the

validation set (Fig. 2) and the testing set (Fig. 3), whereas the accuracy for g improves. As 1 increases, the aerosol size
parameter (x = 2%) decreases, leading to weaker single scattering and stronger multiple scattering in the total radiation field

at longer wavelengths (Moosmiler et al., 2009; Moosmuler and Sorensen, 2018), which makes SSA more difficult to
constrain. The relatively poorer performance of SSA retrieval at 440 nm observed in Fig. 3 may be attributed to the higher
AOD uncertainty at this wavelength, which serves as input for both our EML-based algorithm and the AERONET official
algorithm. Specifically, the AOD uncertainty is approximately +0.01 for A > 440 nm and +0.02 for A <440 nm (Holben et al.,

1998; Eck et al., 1999). The improved retrieval accuracy of g at longer wavelengths can be explained by two mechanisms.
First, the sensitivity of the radiative transfer equation to g, as quantified by the magnitude or norm of the Jacobian matrix (:—;),

increases with wavelength (Hasekamp and Landgraf, 2005; Kokhanovsky, 2013). At longer wavelengths, the range of retrieved
g values broadens noticeably, as illustrated in Fig. 2 and Fig. 3. Second, the influence of aerosol size distribution on g becomes
more pronounced at longer wavelengths. The forward-scattering peak of the phase function broadens with increasing 4,
enhancing sensitivity to coarse-mode particles (Osborne et al., 2008; Kalashnikova and Sokolik, 2013). Consequently, retrieval
errors for g decrease from about #0.05 in the visible to #0.02 in the near-infrared (Dubovik et al., 2006). This trend is also
reflected in Fig. 3, where the RMSE of g decreases from 0.039 at 440 nm to 0.025 at 1020 nm.

Retrieving aerosol microphysical parameters is generally more challenging than deriving optical properties, and the retrieval
accuracy of ., slightly decreases in the testing set relative to the validation set. Both ... and FMF are frequently recognized
as key indicators of aerosol size distribution: fine-mode aerosols, such as sulfates, nitrates, and biomass burning particles,
dominate when 7,7 < 0.3 um and FMF > 0.5, whereas coarse-mode aerosols, typically originating from natural sources like
mineral dust and sea salt, prevail when 7.¢¢ > 1.0 um and FMF < 0.3. In Fig. 3, FMF exhibits two distinct peaks near 0.3 and
0.7, corresponding to 7, values of 0.6 and 0.28 um, representing the coarse and fine modes, respectively. These results

indicate that our algorithm can provide a basic classification of aerosols based on their retrieved optical properties (SSA and
0) and size distribution (r,; and FMF).

13



315

320

325

https://doi.org/10.5194/egusphere-2025-4936
Preprint. Discussion started: 15 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

(a) 440nm SSA {b) 675nm SSA (c) 870nm SSA (d) 1020nm SSA

c 1.0 — 1.0 7 1 1.0 1.0 e
2 — y=0.94x+0.05 — y=1.02x-0.02; —— y=1.00x-8. — y=1.07x~—
i 094 ——- 1:1 Line 094 ——- 1:1 Line e ‘o9 1:1 Line’ - R 09 1:1 Line”
& +0.03 Range 3 +0.03 Range 3 . +0.03 Rangg, N N +0.03 Range;
E o3, Wi 0.8 L 0.8 * .| 084
k] 3 . s : .
0 . - . N . : by -.v - e
2074 N=13207 | 0.71 7. N=13207 | 0.71 o N =13207 | 0.71 N = 13207
2 % R = 0.908 R=0936. o - R=0926 .+ R=0923
S 06 RMSE = 0.019 | ¢ . | ¢ RMSE = 0.017 | ol - . RMSE = 0.022 | 4 ¢ | RMSE = 0.026
e Bias = 0.002 ’ Bias = 0.000 . . Bias = -0.004°| T |. Bias = -0.006
H EE (+0.03) = 89.53% EE (+0.03) = 94.53% g EE (+0.03) = 88.27% y EE (+0.03) = 81.70%

0.5 + T T T T 0.5 + T T T T 0.5 T T T T 0.5 T T T T

05 06 07 08 09 10 05 06 07 08 09 1.0 05 06 07 08 09 10 05 06 07 08 09 10
(e) 440nm g (f) 675nm g (g) 870nm g (h) 1020nm g
c 09 — 0.9 = 0.9 - = 0.9 —=
S — y=0.51x+0.33 — y=0.75x+0.16 | — y=0.84x+0.10 — y=0.82x+0.11
g 087 oot 1:1Line | : gl | 087 1:1 Line 0.8 ... 1:1 Line 4 0.87 ... 1:1 Line
] v on .
E 071 +0.02 Range 071 +0.02 Ran_qe.- ; | 071 +0.02 Ran P 071
£ Y R
§ 0.6 bl 0.6 7 0.6 0.6
. . . s " Y

5 7 N=13207 N = 13207 . N = 13207 % N =13207
< 0.59 R=0.749 | 057 y R=0929 | 057 S5 R=0951 | 057 R = 0.959
s RMSE = 0.039 RMSE = 0.025 . RMSE = 0.024 ; RMSE = 0.025
wo4q Bias = -0.028 | 047 Bias = 20.011 | 047 .- © Bias=-0.005 | 047 7 Bias = 0.000
E EE (£0.02) = 42.83% EE (+£0.02) = 61.45% EE (+0.02) = 64.95% EE (+0.02) = 65.22%
o 7 - : ¥

0.3 T T T 0.3 T T T 0.3 T T T 0.3 T T T

0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8
. . . e . AERONET Inversion level 2.0 Product AERONET Inversion level 2.0 Product
(i) Effective Radius (j) Fine Mode Fraction

c 20 — 1.0 - —
2 — y=0.88x+0.06 .~ —— y=0.88x+0.00 & .
% ————— 1:1 Line 084 —- 1:1 Line . :-" .
:‘:- 151 +0.10 Range g
E : 0.6 -
£ 101 @
& 0.4 =
< ; ALk g
5 051 70 RMSE ='0.123 | g, R g
w i Bias = 0.018 i . Bias = -0.066 -
E v EE (+0.10) = 76.03% - EE (+0.10) = 67.32%
6 g0k . ; ]

.0 0.0
0.0 0.5 1.0 1.5 20 00 02 04 06 08 10
AERONET Inversion level 2.0 Product AERONET Inversion level 2.0 Product

Figure 3. Aerosol parameters retrieved by the EML-based algorithm compared with AERONET Level 2.0 inversion
products on the testing set. The plot configuration is the same as in Fig. 2. The testing set contains 132,067 raw Sun-sky

photometer measurements, and the scatter points have been thinned by a factor of ten for visualization.

3.3 Feature Importance Analysis

The normalized feature importance of input variables on the predicted outputs was quantitatively assessed using SHAP values,
as shown in Fig. 4. First, the EML model effectively extracts and utilizes band-specific observational data for aerosol parameter
retrieval at the corresponding wavelengths, as evidenced by the fact that radiance at a given wavelength exhibits the highest
SHAP value when inverting SSA or g at the same wavelength. For instance, the radiance at 440 nm shows the highest feature
importance for retrieving SSA at 440 nm (20.3%), which is markedly greater than its contribution to SSA at other wavelengths.
Similarly, when retrieving g at 440 nm, its feature importance reaches 31.8%, again clearly exceeding its importance for g at
other wavelengths. Second, the SHAP values for each retrieved parameter indicate that the EML model also leverages
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observations across all wavelengths, particularly for g and 7, ¢, reflecting the physical relationship between aerosol properties,
such as particle size, and the spectral dependence of scattered radiation. Third, when inverting SSA, AOD shows the highest
feature importance, consistently exceeding 40%. This is expected because SSA is defined as the ratio of scattering to total
extinction (scattering plus absorption), making accurate AOD essential for SSA retrieval from sky diffuse radiation
measurements. In contrast, the importance of AOD diminishes when predicting 7., and FMF, whereas sky diffuse radiance
across multiple bands and SCAs becomes more influential. According to Mie scattering theory, scattering phase functions
differ substantially between fine- and coarse-mode aerosols, which increases the sensitivity of measured scattered radiation to
particle size. For ground-based observations, diffuse radiance predominantly arises from aerosol forward scattering and
stronger diffuse radiance indicates greater forward-backward scattering asymmetry, suggesting a larger column-averaged
aerosol radius. Finally, auxiliary observation geometry information (SZA, VZA, and RAA) also plays a critical role in
retrieving all aerosol parameters. These variables control both the magnitude and angular distribution of the measured radiance,
thereby directly affecting the radiative transfer pathlength and scattering regime characterization. Consequently, the
importance associated with observation geometry remain stable at around 10% across all retrieval targets. Overall, the SHAP-
based feature importance analysis demonstrates that the EML-based retrieval model successfully captures the underlying
physical processes governing aerosol scattering of solar radiation, supporting its applicability for broader aerosol retrieval

practices.
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Figure 4. Importance analysis of input features based on SHAP values. The four rows correspond to the four retrieved
aerosol parameters: SSA, g, r.rr, and FMF. The four columns represent the observation wavelengths of 440, 675, 870, and
1020 nm. All 120 input features of the EML model are grouped into categories. Observation geometry includes the cosine of
SZA and the scattering angle from the Almucantar scanning mode. AOD denotes the aerosol optical depth at the four

wavelengths. Radiance refers to measured sky radiances from 23 observation geometries.

3.4 Error evaluation and Uncertainty Analysis

We quantify the uncertainties in retrieving SSA, g, 7., and FMF with the EML-based aerosol retrieval algorithm using the
method described in Sect. 2.4. Systematic errors are defined as the RMSE of retrievals from the noiseless validation set,
whereas propagation errors are estimated from the standard deviation of retrieval variability across 100 noise-perturbed
realizations of AOD and radiance. As shown in Fig. 5, the two types of errors are comparable in magnitude for SSA, while for
the other parameters the systematic errors exceed the corresponding propagation errors. The total absolute uncertainties for
SSA and g both tend to increase with wavelength. Specifically, for SSA the uncertainties are 0.0154, 0.0198, 0.0222, and
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0.0307 at 440, 675, 870, and 1020 nm, respectively, while for g they are 0.0149, 0.0147, 0.0191, and 0.0222 at the same
wavelengths. For the microphysical parameters, the total uncertainties are 0.082 for r. ;- and 0.096 for FMF. These levels are
comparable to those reported for existing aerosol inversion algorithms. For example, the official AERONET algorithm reports
uncertainties of 0.02-0.03 for SSA and about 0.02 for g (Dubovik et al., 2002), while relative uncertainties in ., can exceed
20% due to the complexity of aerosol mixing states (Andrews et al., 2017). The 95% confidence interval (CI) coverage
measures the probability that the true parameter value lies within the model-predicted uncertainty range for a single noise-
perturbed inversion case, whereas the EE denotes the fraction of cases that satisfy the predefined uncertainty criteria. Both
metrics decrease in the order SSA > g > 1, > FMF, indicating that, compared to aerosol optical parameters, the retrieval of

microphysical parameters generally requires higher observation data quality and greater algorithmic accuracy.
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Figure 5. Heatmap of aerosol inversion uncertainties using the EML-based retrieval algorithm. The color scale does not
represent absolute values; instead, lighter colors indicate better model performance for the corresponding variable based on

the indicators in each column. The correlation coefficient and bias values are directly taken from Fig. 2.

We further evaluated the capability of our EML-based retrieval algorithm by using the aerosol parameters it retrieves to
reproduce photometer observations. The accuracy of these retrieved parameters is reflected in the optical residual, which
quantifies the discrepancy between the RTM-simulated radiance and the observed photometer measurements (see Sect. 2.4 for
the detailed definition). Smaller optical residuals indicate higher retrieval accuracy, providing a quantitative measure of the
retrieval quality. This assessment was performed using the testing set described in Sect. 2.1. Site-averaged retrieval residuals
from our algorithm were compared with those from the AERONET official algorithm in Fig. 6. Across most sites, the residual
magnitudes of the two algorithms are consistent, with differences generally within #4% (Fig. 6¢). From the perspective of
algorithm design, the AERONET-type numerical algorithm minimizes the optical residual as a convergence criterion, whereas
the EML model is trained to minimize the RMSE between predicted aerosol parameters and their reference values. That the
EML-based algorithm achieves residual magnitudes comparable to the physics-based AERONET algorithm underscores its
reliability.

Spatially, both algorithms exhibit similar residual distribution patterns: smaller residuals are observed over North and South
America, East Asia, and Europe, whereas larger residuals occur over dust source regions such as North Africa and the Arabian
Peninsula. Interestingly, the spatial pattern of residual differences between the two algorithms mirrors that of the mean 7,
retrieved by the EML model. Notably, the spatial pattern of residual differences between the two algorithms closely resembles
that of the mean 7 retrieved by the EML model, highlighting that the model’s performance is less certain in regions
dominated by coarse, non-spherical particles and pointing to potential areas for improvement. Sites in North Africa, South
Asia, and inland China—where coarse-mode aerosols such as dust prevail—exhibit higher retrieval uncertainties. This effect
is most pronounced at the shortest wavelength (440 nm, Fig. Al), where aerosol scattering exerts the strongest influence.
Although both algorithms account for non-spherical particle scattering, neither fully resolves this complexity, indicating that
further algorithmic refinement is needed. Additionally, some stations display substantially higher residuals relative to
neighboring sites. At these locations, observational data are often sparse, potentially due to limited instrument maintenance or
calibration. In certain cases, such as at some European sites, consistently low aerosol loading means the AOD rarely exceeds
the 0.4 threshold required for AERONET Level 2.0 inversion products, contributing to larger residuals (Fig. B3).
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Figure 6. Site-averaged optical residuals for our EML-based and AERONET official aerosol inversion algorithms on
the testing set. The residuals for all cases at each site were averaged, and the difference is calculated as the EML inversion
product residual minus the AERONET level 2.0 product residual. The 7, values were retrieved using the EML-based aerosol

retrieval model developed in this study and subsequently averaged at each site.

Figure 7 shows the relative deviation between radiances simulated from the inversion results and those observed by the
photometer, plotted as a function of RAA. Across all four observation wavelengths, the relative deviation exhibits a similar
dependence on RAA. Minimal deviations (< 10%) and peak correlation coefficients (> 0.95) are observed at RAAs between
20<and 100< indicating optimal agreement within this angular range. The current AERONET Va3 retrieval algorithm excludes
measurements with RAA < 20 °to minimize cloud contamination and forward-scattering effects (Giles et al., 2019). Similarly,
the SKYNET algorithm prioritizes radiance observations within SCAs of 20<=-70<for aerosol property retrieval (Nakajima et
al., 1996, 2020). For a SZA of 60< RAAs between 20=and 100 °correspond to SCAs of approximately 17-83< These SCA
ranges align closely with those designed for passive visible-light remote sensing sensors, such as MODIS (Levy et al., 2013),
VIIRS (Hsu et al., 2019), and POLDER (Deschamps et al., 1994).

Physically, a broader SCA range generally provides more information for the inversion of aerosol optical and microphysical
properties. However, very small RAAs increase the likelihood of interference from direct solar radiation, and Sun-sky

photometer measurements with RAA < 7<are often overexposed or saturated. Conversely, as RAA approaches 180< the
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photon flux along single-scattering paths diminishes, leading to a sharp drop in the measured radiance and a lower signal-to-

noise ratio.
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Figure 7. Relative deviation between radiance simulated from EML-based retrieval results and photometer
observations. Box colors indicate different RAAs, and the numbers inside each box show the corresponding correlation
coefficient.

4 Summary

This study presents a novel aerosol retrieval algorithm based on an EML model to infer both optical and microphysical
properties from ground-based Sun-sky photometer measurements. The algorithm simultaneously retrieves four key
parameters—SSA and g at four observation wavelengths, as well as r,.;, and FMF—achieving accuracy comparable to that of
the AERONET official algorithm and products. Compared with traditional numerical inversion methods, the EML-based
algorithm offers three major advantages: it is five orders of magnitude faster by avoiding iterative radiative transfer calculations;
it does not rely on prior assumptions or smoothing constraints; and it eliminates convergence issues inherent in statistical
optimization methods, reducing missing data caused by non-convergence.

Our EML model is trained on data generated from forward radiative transfer simulations using a combination of T-matrix and

VLIDORT models, independent of existing inversion algorithm products and instrument measurements with errors. The
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simulations span a comprehensive range of aerosol types and atmospheric conditions, ensuring the model’s universality and
portability. Systematic and propagation errors were evaluated, yielding total retrieval uncertainties of 0.03 for SSA, 0.02 for
g, 0.08 for r,zr, and 0.09 for FMF. Application to raw photometer measurements demonstrates strong agreement with
AERONET products in both retrieved parameters and optical residuals. SHAP-based feature importance analysis verifies the
physical interpretability of the model: SSA retrieval shows a stronger dependence on AOD compared to the other retrieved
parameters, while g retrieval is primarily influenced by sky diffuse radiance across all observation wavelengths. Auxiliary
observation geometry also plays a critical role. Finally, error analysis indicates that measurements with RAAs in the range
20=100<and higher AOD values provide more favorable conditions for accurate aerosol retrieval.

Despite these promising results, certain limitations remain. The EML model occasionally produces physically unrealistic
values, such as SSA exceeding 1 or g falling below 0; currently, these anomalies are handled through value truncation, which
is a practical but suboptimal solution. Moreover, the algorithm presently retrieves only 7, and FMF, without providing full
aerosol size distributions or complex refractive index information. Nevertheless, our results highlight the substantial potential
of machine learning approaches for addressing ill-posed and nonlinear retrieval problems. Looking forward, ongoing advances
in artificial intelligence, coupled with increasingly comprehensive ground-based and satellite observations, are expected to

facilitate the development of next-generation aerosol retrieval algorithms and products.

Appendix A: Optical Residual of 440nm

According to the method described in Sect. 2.4, we calculated the residuals for each individual wavelength, using the same
plotting approach as in Fig. 6. At 440 nm, our inversion algorithm exhibits smaller residuals. Moreover, the differences

between the residuals of the two algorithms, as well as the spatial pattern of 7., are more pronounced at this wavelength.
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Figure Al. Optical residual at 440 nm of our EML-based and AERONET official inversion algorithms on the testing

set. The method is the same as Fig. 6, with only the shortest wavelength (440 nm) selected for radiance.

Appendix B: Application of the EML-Based Retrieval Algorithm to Low-AOD Photometer Observations with Level
1.5 Inversion Products

We applied our EML-based aerosol retrieval algorithm to raw sky photometer observations with low AOD (< 0.4), and the
inversion results are shown in Figure B1. This dataset comprises 87,144 cases, none of which have corresponding AERONET
level 2.0 inversion products. Compared with the results in Fig. 3, these retrievals exhibit larger deviations from the AERONET
level 1.5 inversion products, particularly for SSA and FMF (Fig. B1). However, applying an additional filter to select cases

with 440 nm AOD > 0.3 improves the agreement between the two datasets, as illustrated in Fig. B2.
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Figure B1. Aerosol parameters retrieved by the EML-based inversion algorithm compared with AERONET Level 1.5
inversion products. All cases correspond to 440 nm AOD <0.4. The configuration is the same as in Fig. 2. This dataset

comprises 81,744 raw Sun-sky photometer measurements, and the scatter points have been thinned to one tenth for clarity.
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Figure B2. Aerosol parameters retrieved by the EML-based inversion algorithm compared with AERONET Level 1.5
inversion products. All cases correspond to 440 nm AOD between 0.3 and 0.4. The configuration is the same as in Fig. 2.
This dataset comprises 7,264 raw Sun—sky photometer measurements, and the scatter points have been thinned to one tenth

for clarity.

To further examine retrieval accuracy under varying aerosol loading conditions, we calculated the optical residuals for these
87,144 low-AOD cases and combined them with the 132,067 cases in the testing set (Fig. 2, 440 nm AOD > 0.4). The residuals
were grouped according to 440 nm AOD, with the horizontal axis in Fig. B3 binned in intervals of 0.1. The results indicate
that when AOD is below 0.4, residuals are significantly higher than for cases with AOD > 0.4. Within the intermediate range

of 0.3-1.5, residuals decrease monotonically as AOD increases. At both extremes of the AOD spectrum, retrieval uncertainties
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tend to rise: low AOD corresponds to weak aerosol signals, which limit retrieval accuracy, whereas high AOD involves more

complex aerosol mixtures, increasing inversion uncertainty.
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Figure B3. Optical sky residuals binned by 440 nm AOD. Scatter points represent individual cases inverted using the EML-
based aerosol retrieval algorithm from raw AERONET site photometer measurements. The vertical dashed line at 440 nm
AOD = 0.4 indicates a commonly used quality-control threshold for selecting AERONET Level 2.0 inversion products.
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