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Abstract. Sea ice is vital in the global climate system, ecological balance and polar navigation. Arctic sea ice concentration 10 

(SIC) exhibits significant spatial heterogeneity and complex evolutionary patterns. In response to address these challenges, 

this study proposes a predictive model named sea ice concentration U-Net (SICUNet). SICUNet is a data-driven U-Net 

model that integrates attention mechanisms and residual structures for short-term prediction of SIC in the Arctic region. The 

model enhances the perception of multi-scale features through spatial-channel attention mechanisms. Meanwhile, it 

integrates residual structures to alleviate the vanishing gradient and improve training stability. SICUNet is trained and 15 

validated using SIC data from 1988 to 2020 and evaluated during the testing phase using data from 2021 to 2024. To 

accurately capture seasonal variations in SIC, each year is divided into a melting season and a freezing season. Model 

training and prediction are conducted separately for each season. The model input is a 448×304 tensor with 7 channels built 

from daily SIC data over seven consecutive days. It then predicts SIC for the subsequent 7 days. SICUNet is trained and 

validated based on this input-output structure, and further applied to recursive prediction of SIC. During the 2021–2024 20 

testing period, SICUNet effectively predicts SIC for the upcoming 7 days and maintains stable and accurate performance 

across multiple recursive steps. It outperforms traditional U-Net, U2Net and numerical simulation methods, showing robust 

results under extreme SIC conditions. 

1 Introduction 

The Arctic sea ice extent (SIE) has exhibited a persistent declining trend since the 20th century (Olonscheck et al., 2019; 25 

Parkinson and DiGirolamo, 2021). This decline has had profound impacts on the Arctic marine ecosystem (Lannuzel et al., 

2020; Tittensor et al., 2019). It may also trigger adjustments in atmospheric circulation (Chripko et al., 2021; Smith et al., 

2022), thereby influencing global weather and climate patterns. Furthermore, the melting of sea ice plays a crucial role in 

facilitating Arctic navigation (Chen et al., 2020; Melia et al., 2016). This development offers the potential to significantly 

shorten maritime routes between Asia and Europe. The reduction in SIE poses significant challenges to ecosystems, climate 30 
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systems and maritime navigation. This underscores the urgent need for reliable predictions of sea ice concentration (SIC). 

Therefore, developing high-precision forecasting methods capable of predicting Arctic SIC is crucial for both scientific 

research and practical applications. 

Currently, prediction methods for Arctic SIC can be broadly classified into three categories: numerical model simulations, 

statistical forecasting approaches and deep learning (DL). Numerical simulations predict SIC using physical equations 35 

(Adcroft et al., 2019; Mu et al., 2019). Representative numerical models include the Arctic Cap Nowcast/Forecast System 

(Hebert et al., 2015), the Global Ice-Ocean Prediction System (Smith et al., 2016) and the Seasonal Ice Sea Prediction 

System (Yang et al., 2019). Nevertheless, these models require substantial computational resources (Siahaan et al., 2022). 

Additionally, they face significant challenges in parameter initialization. Representation errors of physical processes within 

model structures may introduce systematic biases (Gelbrecht et al., 2023). Statistical approaches such as the vector 40 

autoregression model (Wang et al., 2016) and Markov models (Wang et al., 2019; Yuan et al., 2016) have been applied to 

SIC prediction. However, these approaches are limited in their ability to capture the nonlinear dynamics of the SIC (Lindsay 

et al., 2008). Moreover, applying statistical models at the pan-Arctic scale requires building separate models for each grid 

cell. This approach makes it difficult to generate spatially continuous forecasts (Guemas et al., 2016). 

In recent years, DL have been widely applied in oceanographic research (Ge et al., 2025; Zhou et al., 2025) and have 45 

attracted increasing attention in cryospheric studies (Ma et al., 2025; Park et al., 2020; Petrou et al., 2019; Wang et al., 2025), 

providing strong support for advancing our understanding of the earth system (Reichstein et al., 2019; Xiao et al., 2025; 

Zhou et al., 2024). In 2017, Chi and Kim (2017) used a long short-term memory neural network to predict monthly SIC, 

achieving performance comparable to that of the sea ice prediction network. Subsequently, Kim et al. (2020) proposed a 

convolutional neural network for predicting SIC one month in advance. More recently, the DL framework IceNet has been 50 

trained on both climate simulations and observational data. It has achieved significant improvements in SIC prediction 

accuracy, outperforming traditional dynamical models (Andersson et al., 2021). The U-Net architecture enhanced with 

attention and residual modules has been effectively employed for forecasting SIC in the Arctic melt season (Ren et al., 2022). 

Moreover, DL has been applied to improve short-term SIC forecast outputs from physical models (Palerme et al., 2024). 

Despite these advances, most existing DL-based approaches remain limited to one-month or melt-season predictions, or 55 

produce probabilistic outputs instead of deterministic forecasts. 

To address these challenges, this study proposes the sea ice concentration U-Net (SICUNet) model. It integrates residual and 

attention mechanisms to enable daily-scale SIC prediction. The predictive performance of SICUNet is then evaluated. The 

structure of this paper is organized as follows: Section 2 describes the data used in this study. The architecture, modeling 

process and evaluation metrics of the SICUNet are introduced in Section 3. Section 4 evaluates the predictive performance 60 

of the model. Section 5 investigates the impact of incorporating SIC-derived input data on prediction accuracy.  Conclusions 

are presented in Section 6. 
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2 Data 

2.1 Sea ice concentration data 

The daily SIC is sourced from the National Snow and Ice Data Center (NSIDC). The data is derived from Scanning 65 

Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave 

Imager/Sounder (SSMIS), with a spatial resolution of 25km × 25km (Meier et al., 2024). To ensure consistency between 

model inputs and outputs and maintain data integrity, SIC samples with missing dates were excluded. Their corresponding 

input-output tensors were also removed from the dataset. 

2.2 Forecast data for sea ice concentration 70 

The TOPAZ5 numerical forecasts from the Copernicus Marine Environment Monitoring Service (CMEMS) are used to 

evaluate the prediction accuracy of SICUNet. TOPAZ5 provides 10-day forecasts of SIC for the Arctic region at a spatial 

resolution of 6.25 km × 6.25 km (Melsom et al., 2012; Sakov et al., 2012). The system is based on a coupled ocean–sea ice 

model. The sea ice component utilizes the CICEv5.1 model with ice thickness categories, and the ocean component employs 

the Hybrid Coordinate Ocean Model (Bleck, 2002; Hunke and Dukowicz, 1997). TOPAZ5 performs weekly assimilation of 75 

multi-source sea ice and ocean observations using the ensemble Kalman filter method. In this study, the TOPAZ5 forecast 

data were resampled onto the grid of the SIC data with a spatial resolution of 25 km × 25 km. 

3 Methodology 

3.1 SICUNet structure 

 80 

https://doi.org/10.5194/egusphere-2025-4935
Preprint. Discussion started: 2 December 2025
c© Author(s) 2025. CC BY 4.0 License.



4 
 

Figure 1: SICUNet neural network structure and input–output data. 

 

Figure 2: Structure of ResNetCBAM in SICUNet. 

SICUNet consists of five modules: input, encoder, decoder, skip connections and output, as illustrated in Fig. 1. The 

encoders first capture spatiotemporal information based on historical SIC sequence. They then progressively downsample 85 

the features to obtain spatial representations with reduced dimensions. The connections modules then integrate multi-scale 

feature information between the encoder and decoder to enhance feature transmission. Next, the decoder gradually recovers 

spatial resolution through progressive upsampling layers. This process restores the features to the original input scale. Finally, 

the output layer applies convolution to the final feature map of the decoder to generate the predicted SIC values. 

The encoders and decoders employ ResNetCBAM modules to extract features. These modules combine attention 90 

mechanisms with residual structures. In the encoding phase, downsampling is performed using 2×2 max pooling layers. 

During the decoding phase, upsampling is achieved through bilinear interpolation. The output layer consists of a 1×1 

convolutional layer followed by a sigmoid activation function. 

ResNetCBAM integrates the residual convolutional neural network (ResNet) (He et al., 2016) with the convolutional block 

attention module (CBAM) (Woo et al., 2018). The ResNetCBAM consists of two convolutional layers and a residual 95 

connection. The residual connection adds the input features to the output of the second convolutional layer. This design 

enhances feature propagation and stabilizes gradient flow. The CBAM module is embedded after the second convolutional 

layer to enhance attention to spatial and channel features (Fig. 2(a)). 
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The structural details of CBAM are depicted in Fig. 2(b). The input tensor is sequentially processed by the channel attention 

and spatial attention modules to generate corresponding channel and spatial weights. These weights are then applied to the 100 

input tensor. The channel attention module first applies global average pooling and max pooling along the spatial dimensions 

of the input features. This process generates two separate channel feature vectors. These vectors are then fed into a shared 

multilayer perceptron (MLP). The MLP combines the vectors through weighted fusion and outputs the channel weights via a 

sigmoid activation function. Then, the spatial attention module applies average pooling and max pooling across the channel 

dimension of the input features. The resulting two-dimensional maps are concatenated along the channel dimension. This 105 

feature is subsequently fed into a convolutional layer with a sigmoid activation to produce the spatial weights. 

3.2 Modelling process 

The 37-year dataset (1988–2024) is divided into three subsets: a training set (1988–2018), a validation set (2019–2020) and a 

test set (2021–2024). Arctic sea ice coverage demonstrates two primary phases of seasonal evolution: melting (April to 

September) and freezing (October to March of the following year). Based on this characteristic, SICUNet divides each year 110 

into two stages for training and prediction. Since future SIC is predicted based on the preceding 7 days of SIC, this study 

adopts a 7-day sliding window mechanism to progressively generate input and output tensors along the time series. 

The performance of SICUNet depends not only on input and output data but also on hyperparameter settings. In this study, a 

batch size of 8 and an initial learning rate of 0.0001 are used. SICUNet parameters are updated using the Adam optimization 

algorithm. An early stopping strategy is applied during training. SICUNet is trained using a supervised learning approach, 115 

with the training workflow shown in Fig. 3. 
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Figure 3: Flowchart of establishing a SIC prediction model. 

3.3 Assessment indicators 

This study adopts mean absolute error (MAE), Nash-Sutcliffe efficiency (NSE) and binary accuracy (BACC) as performance 120 

evaluation metrics for SICUNet. MAE is used to assess the error in SIC values over ocean regions, reflecting the deviation 

between predicted and observed SIC. The fitting accuracy of SICUNet is assessed using the NSE. BACC is based on the 

integrated ice edge error (IIEE) and measures the accuracy of sea ice edge predictions (Goessling et al., 2016). The equations 

for calculating the MAE, NSE and BACC are as follows: 
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where n denotes the number of ocean grid cells, 
iobservedSIC  and 

ipredictedSIC  indicate the observed and predicted SIC, 

15%predictedSICarea  and 15%observedSICarea  denote the predicted and observed regions where SIC exceeds 15%,   denotes the 

symmetric difference operator, and the area of the active grid cell region refers to the area where the observed daily SIE 130 

reaches its maximum (SIC > 0.15). 

3.4 Loss function 

Given the limitations of MAE in capturing spatial features, this study introduces the normalized integrated ice-edge error 

(NIIEE) (Ren and Li, 2023) as a spatial loss metric. This study employs a weighted combination of MAE and NIIEE as the 

loss function to balance numerical accuracy and spatial distribution characteristics, which can be formulated as: 135 
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where 
predictedSICarea  and 

observedSICarea  represent the predicted and observed SIC regions,   and   indicate intersection 

and union operators, respectively. 

4 Results and Analysis 140 

4.1 Overall prediction performance of SICUNet 

During the testing phase, the prediction system generates 7-day SIC forecasts at a daily frequency. During the testing phase, 

this study employs a non-overlapping sliding window with a 7-day time step. This approach enables an objective evaluation 

of the accuracy of 7-day continuous SIC predictions. The prediction accuracy of SICUNet during the testing period is 

presented in Table 1. The evaluation metrics exhibit slight fluctuations across different years. However, the overall variation 145 

remains minimal, with annual differences not exceeding 0.1%. The mean values of MAE, BACC and NSE for the model are 

1.22%, 97.28% and 98.11%, respectively. These results indicate that SICUNet attains low prediction error and high 

forecasting accuracy, reflecting its favorable performance in prediction. 

Table 1: Statistical table of the prediction accuracy of SICUNet during the 2021–2024 testing period (Unit: %) 

Metrics 2021 2022 2023 2024 Mean 

MAE 1.22 1.21 1.21 1.24 1.22 

BACC 97.25 97.40 97.27 97.21 97.28 

NSE 98.18 98.21 98.09 97.96 98.11 

Figures 4(a)–(d) display the daily MAE and the spatially averaged predicted and observed SIC over all non-land regions 150 

during the testing period. During the melting season, the SIC predicted by SICUNet closely aligns with observations. The 

model accurately captures the melting trend, the minimum point and the transition from melting to freezing phases. In the 

freezing season, SICUNet forecasts generally follow the observed trend, though some numerical deviations remain. The 

MAE exhibits a 7-day periodic fluctuation, ranging from 0.26% to 2.63%. This periodic variation reflects an increasing error 

trend with longer forecast lead times (Figs. 4(a)–(d)). The spatial distribution of average MAE is shown in Figs. 4(e)–(h). At 155 

each grid cell, the MAE represents the annual mean over the testing period. In most areas, the MAE is below 4%. High local 

errors with MAE exceeding 10% are observed only at the SIC marginal zones in the eastern Greenland and Barents Seas. 

These results demonstrate that SICUNet provides accurate and stable daily SIC forecasts up to seven days in advance. 
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Figure 4: Prediction performance of SICUNet during the testing period. (a)–(d): SIC predictions, observations and MAE during 160 
the testing phase; (e)–(h): spatial distribution of annual mean MAE during the 2021-2024 test period. 

4.2 Stability of predictions 

To further evaluate the prediction stability of SICUNet, this study analyzes its forecasting performance during periods of 

annual minimum Arctic SIE in the testing years. Based on satellite data, the SIE reached its annual minimum on September 

12, 2021 (4.68×10⁶ km²), September 15, 2022 (4.56×10⁶ km²), September 11, 2023 (4.10×10⁶ km²) and September 19, 2024 165 

(4.02×10⁶ km²). To ensure a complete prediction sequence, this study evaluates the predicted SIC from September 9 to 

September 15 of each year. This period covers a full 7-day recursive forecasting step. The results are shown in Figs. 5 and 6 

and Table 2. 

The weekly performance of the model during the SIE minimum phase of the forecast period is summarized in Table 2. The 

findings show that the MAE remains below 1%, BACC exceeds 97.8%, and absolute SIE error (SIEE) are mostly under 170 

1×10⁵ km². The spatial distribution of MAE is presented in Fig. 5. Across most areas, the differences between predictions 

and observations remain below 5%. The regions with greater discrepancies primarily occur at sea ice edges. This is attributed 

to the rapid changes in SIC and the increased challenge in forecasting these zones. 

Figure 6 illustrates the distribution of differences between predicted and observed SIC. The findings show that discrepancies 

predominantly range between −5% and 5%. These differences correspond to an average probability density exceeding 175 

https://doi.org/10.5194/egusphere-2025-4935
Preprint. Discussion started: 2 December 2025
c© Author(s) 2025. CC BY 4.0 License.



10 
 

67.55%. As for forecasts made one day in advance, this proportion exceeds 75%. As the forecast lead time increases, the 

residual distribution slightly broadens but remains primarily within the (−10%, 10%) range, with a probability density 

exceeding 81.56%. In the case of one-day-ahead predictions, the proportion reaches over 91%. Moreover, the probability 

density distribution of residuals reveals that over 40% fall within the 0%–1% range. This indicates that SICUNet maintains 

high forecasting accuracy and stability under extreme sea ice conditions. 180 

Table 2: Statistical table of the average prediction accuracy of SICUNet from September 9 to September 15 during the testing 
period 

Metrics 2021 2022 2023 2024 Mean 

MAE (%) 0.87 0.66 1.00 0.59 0.78 

BACC (%) 97.84 98.65 97.89 98.73 98.28 

NSE (%) 97.21 98.35 95.89 98.51 97.49 

SIEE (105 km2) 0.09 0.08 1.01 -0.32 0.21 

 

https://doi.org/10.5194/egusphere-2025-4935
Preprint. Discussion started: 2 December 2025
c© Author(s) 2025. CC BY 4.0 License.



11 
 

Figure 5: Spatial distribution of mean absolute error from September 9 to September 15 for each year during the testing period. 
(a1)-(g1), (a2)-(g2), (a3)-(g3) and (a4)-(g4) represent the spatial distribution of MAE from September 9 to September 15 in 2021, 185 
2022, 2023 and 2024, respectively. 

 

Figure 6: Histogram of differences between predicted and observed SIC. 

4.3 Recursive forecasts ranging from 7 to 35 days 

SICUNet is capable of performing recursive multi-week SIC predictions. This study further evaluates its effectiveness in 190 

such recursive forecasting tasks. For a two-week forecast, the predicted SIC from the first week is fed back into the trained 

SICUNet as input to generate the forecast for the second week. Following this approach, this study accomplished recursive 

forecasting from two weeks (14 days) up to five weeks (35 days). 

As the number of recursive steps increases, the MAE of the model gradually rises, while BACC and NSE show a decreasing 

trend (Table 3). This characteristic of performance degradation with increasing forecast lead time is also common in 195 

numerical and statistical models. Nonetheless, the MAE of the model stays below 2% even when predicting 28 days ahead. 

At the maximum forecast lead time of 35 days, the BACC of SICUNet remains above 95%. This indicates that SICUNet 

continues to demonstrate strong accuracy and stability in short-term SIC prediction tasks. 

Table 3: Overall prediction performance of SICUNet under various recursive prediction scenarios (Unit: %) 
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Recursive Step 
Output Lengh 

(days) 
MAE BACC NSE 

0 7 1.22 97.28 98.11 

1 14 1.51 96.60 97.20 

2 21 1.72 96.08 96.43 

3 28 1.86 95.74 95.88 

4 35 2.06 95.30 95.13 

The prediction capabilities of SICUNet under extreme SIC conditions at 0 and 2 recursive steps are further assessed in this 200 

study, as presented in Figs. 7 and 8. During the period when SIE reaches its annual minimum, the sea ice edge predicted by 

the 7-day forecast closely aligns with observations. In the 21-day recursive forecast, the ice edge shows some deviation but 

overall demonstrates good boundary fitting performance. The finding corresponds to the relatively minor variations in 

absolute SIEE at different recursive steps depicted in Fig. 8. Under multiple recursive step conditions, the MAE for extreme 

sea ice coverage remains below 1.75%, with the absolute value of SIEE within 0.3×10⁶ km². The fluctuation of this error is 205 

consistent with that observed in the zero-step recursive case (Fig. 8). These results indicate that SICUNet can maintain high 

predictive accuracy under extreme SIC conditions during multi-step recursive forecasting, demonstrating good stability. 
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Figure 7: Sea ice edge from observations and SICUNet predictions at 0-step and 2-step recursive forecasts. (a1)-(g1), (a2)-(g2), 
(a3)-(g3) and (a4)-(g4) represent the sea ice edge from September 9 to September 15 in 2021, 2022, 2023 and 2024, respectively. 210 
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Figure 8: Mean absolute error and sea ice extent error of SICUNet at lead times of at 0 and 2 recursive steps. (a) and (c) show the 
mean absolute error and sea ice extent error at 0 recursive step, while (b) and (d) correspond to 2 recursive steps. 

4.4 Comparison with deep learning models 

To evaluate the roles of residual structures and attention mechanisms in SICUNet, this study compared SICUNet with 215 

several DL models, including U-Net, Residual U-Net, Attention U-Net and U2Net. SICUNet outperforms the other models 

across all evaluation metrics (Table 4). This demonstrates its superior performance in daily-scale SIC prediction tasks. 

Furthermore, the results show that in end-to-end prediction scenarios, the U-Net architecture outperforms U2Net. Compared 

with U-Net, both Residual U-Net and Attention U-Net demonstrate improved prediction performance. This suggests that 

residual structures contribute to greater training stability, while attention mechanisms enhance the capacity of SICUNet to 220 

capture critical features. The integration of both further enhances the ability of SICUNet to capture variations in SIC, thereby 

effectively improving the accuracy and stability of SIC predictions. This improvement contributes to higher accuracy and 

greater stability in SIC predictions. 

Table 4: Average prediction accuracy (%) for various deep learning models (Unit: %) 

Model MAE BACC NSE 

SICUNet 1.22 97.28 98.11 

U2Net 1.38 96.98 97.80 

U-Net 1.29 97.15 97.93 

Residual U-Net 1.25 97.24 98.06 

Attention U-Net 1.27 97.21 98.00 

4.5 Comparison with numerical models 225 

For additional evaluation, the predictive capability of SICUNet is compared with that of the numerical model TOPAZ5. 

Since the TOPAZ5 forecast data begins in July 2021 (Hackett et al., 2025), this study selected data from three complete 

years (2022–2024) for comparison. This ensures the stability and representativeness of the results when evaluating the 

numerical model. The findings show that the MAE of TOPAZ5 exceeds that of SICUNet by more than 2%, while its BACC 

and NSE values are over 5% lower than those of SICUNet (Table 5). Even at the longest forecast lead time (35 days), 230 

SICUNet still outperforms TOPAZ5. This highlights its advantages and stability in short-term SIC prediction. 

Table 5: Prediction accuracy statistics of SICUNet and numerical simulation (Unit: %) 

Model MAE BACC NSE 

SICUNet 1.22 97.30 98.09 
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TOPAZ5 3.88 91.14 89.40 

4.6 Stability analysis of SICUNet during seasonal transitions 

Since SICUNet is trained and predicted separately for the melting and freezing seasons, this study further evaluates its 

predictive stability during seasonal transitions. The transitional period is defined as March 25 to April 7 (from the freezing 235 

season to the melting season) and September 23 to October 7 (from the melting season to the freezing season) each year. The 

results show that the MAE during seasonal transitions exhibits a persistent 7-day periodic fluctuation. No significant decline 

in prediction accuracy is observed, and the maximum fluctuation remains within approximately 1% (Fig. 9). This periodic 

fluctuation is mainly attributed to the feature variation caused by the 7-day forecasting interval used in SICUNet. 

Furthermore, the maximum and minimum MAE values during this period did not reach the extremes observed across the 240 

entire test set. In summary, SICUNet maintains stable and reliable predictive performance during seasonal transitions in 

year-round continuous forecasting tasks. 

 

Figure 9: Mean absolute error during seasonal transitions. (a)-(d): mean absolute error during the transition from freezing to 
melting seasons from 2021 to 2024; (e)-(h): mean absolute error during the transition from melting to freezing seasons from 2021 245 
to 2024. 
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5 Discussion 

The influence of SIC-derived variables on the forecasting performance of SICUNet is further examined in this study. Two 

types of derived data were constructed: SIC anomalies from the previous week (SIC_Anom) and SIC from the corresponding 

season of the previous year (SIC_Last_Year). These derived variables were combined with the original SIC data and input 250 

into the model separately to analyze their impact on prediction performance. The results indicate that when both SIC and 

SIC_Anom are used as inputs, the predictive performance of the model is slightly inferior to that achieved using SIC alone. 

This suggests that SIC_Anom does not substantially contribute to improving prediction accuracy. By comparison, 

incorporating SIC_Last_Year leads to a notable rise in prediction error. This suggests that SIC information from the same 

period in the previous year may introduce redundancy, thereby disrupting model performance and diminishing precision (Fig. 255 

10). 

Table 6: Prediction accuracy with different SIC-derived data inputs (Unit: %) 

Input Variables MAE BACC NSE 

SIC 1.22 97.28 98.11 

SIC, SIC_Anom 1.25 97.23 98.06 

SIC, SIC_Anom, SIC_Last_Year 1.39 96.92 97.73 
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Figure 10: Prediction accuracy with different SIC-derived data inputs. (a): mean absolute error; (b): binary accuracy. 

6 Conclusion 260 

This study develops a fully data-driven model for Arctic SIC forecasting, capable of producing continuous daily predictions 

throughout the entire year. The model is built on a U-Net framework that integrates residual structures and CBAM. Through 

end-to-end training, it efficiently captures the spatial and temporal dependencies of Arctic SIC, enabling short-term 

predictions ranging from 7 to 35 days. The testing outcomes indicate that SICUNet performs outstandingly on various 

evaluation metrics, with a BACC of 97.28%, MAE of 1.22%, and NSE reaching 98.11%. SICUNet exhibits significant 265 

improvements in overall forecasting accuracy relative to conventional U-Net models, U2Net and numerical simulation 

approaches. Additionally, the model maintains robustness under conditions of extreme sea ice coverage. These findings 

confirm the efficacy and dependability of SICUNet in Arctic SIC forecasting, offering a precise method for numerical 

prediction of polar SIC. 
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