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Abstract. The southern rim of the Indian Himalayas is highly susceptible to floods during the summer monsoon, making 

accurate streamflow modelling critical yet difficult due to complex terrain, climate variability, and sparse ground 

observations. This study uses a conceptual, semi-distributed hydrological model – enhanced with both static and dynamic 

glacier modules – to reproduce streamflow into the Alaknanda River at Rudraprayag gauge (~8600 km²), a representative 

basin in northern India. The model was calibrated using multi-variable data, including satellite-based glacier water loss and 15 

actual evapotranspiration, also to address bias in the precipitation input. Despite inherent data uncertainties and simplified 

process conceptualization, the tailored hydrological modelling captured key features of observed streamflow and produced 

internally consistent water balance estimates. Multi-variable calibration improved the simulation of hydrological fluxes and 

highlighted the value of using complementary satellite-based information in data-poor mountain regions. Parsimonious 

precipitation adjustment approaches are proven effective for hydrological applications. However, input data errors such as 20 

unaccounted-for heavy precipitation events limited short-term streamflow prediction accuracy. The study demonstrates that a 

viable, parsimonious modelling strategy can still be developed for data-scarce, monsoon-dominated Himalayan basins, 

offering insights into the spatiotemporal dynamics of streamflow generating processes, the inter-seasonal redistribution of 

precipitation, the role of cryosphere contributions, and flood simulation. The approach is transferable to other monsoon-

dominated, glacier-influenced, and data-limited mountain catchments facing increasing hydroclimatic risks. 25 

1 Introduction 

Advancing knowledge of hydrological processes in the Himalayas is essential because of the regional inherent vulnerability 

to water-induced hazards, complex dynamics, and lack or shortage of data. In the southern rim of the Indian Himalayas, 

basins characterized by high mountains and densely populated valleys are prone to flash floods and other river flow-related 

disasters, due to heavy rains triggered by the interaction between the complex orography and the Indian Summer Monsoon 30 

(ISM) (e.g., Kumar et al., 2018a; Dimri et al., 2016, 2021). In these basins, a complex interplay of meteorological, 
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topographical, and runoff generation factors controls streamflow variability, whose accurate forecast is pivotal for effective 

flood risk management. However, the peculiarity of the Himalayan region poses significant challenges to understanding and 

simulating streamflow response. 

Investigating the dynamics of hydrological variables in the Himalayan basins is limited by their high spatiotemporal 35 

heterogeneity and by the lack of ground-based observations. Not only does the availability of measurements decrease 

dramatically with altitude and topographic complexity, but gauge precipitation data are also often underestimated due to the 

wind-induced undercatch of snowfall (e.g., Adam and Lettenmaier, 2003). Furthermore, precipitation products from 

meteorological models or remote sensing observations also suffer from large uncertainties in complex mountainous terrain 

(e.g., Azam et al., 2021; Dimri et al., 2021; Girotto et al., 2024; Azimi et al., 2025). In Himalayan basins, several studies 40 

have highlighted an underestimation of precipitation data when compared with observed streamflow volume (e.g., 

Immerzeel et al., 2012; Savéan et al., 2015; Dahri et al., 2016; Li et al., 2020; Ghatak et al., 2018; Saddique et al., 2022). 

Furthermore, available precipitation datasets are lacking in detecting and characterizing highly localized and short 

occurrence events such as cloudbursts (Dimri et al., 2016, 2017), which are as impactful in terms of flash flooding as elusive 

both for sparse ground stations and for remote sensors and meteorological models at coarse scale (e.g., Jena et al., 2020; 45 

Garg et al., 2023). Finally, glacier melting also contributes to the streamflow generation, although in monsoon climates it 

remains a minor component (e.g., Collins et al., 2013; Nie et al., 2021), localized in the season of high flows. Accurate 

quantification of the ice melt is hampered by the difficulty of monitoring changes in glacier mass. As very few and sparse 

glaciological field measurements are available, remotely sensed multi-year difference in glacier surface elevation offers a 

valid alternative for studying ice storage variations (e.g., La Frenierre and Mark, 2014; Dorigo et al., 2021). More generally, 50 

using independent datasets (including satellite-derived ones) for additional hydrological variables can provide valuable 

information in this high-altitude, data-poor region, but it remains difficult to close the water balance at the basin scale due to 

inconsistencies with precipitation (e.g., Shafeeque et al., 2019; Li et al., 2020; Miao et al., 2024). 

Process-oriented hydrological modelling can bridge this gap, taking advantage of multiple data sources to address 

uncertainties in model forcings and provide a consistent representation of basin behaviour. Conceptual and semi-distributed 55 

models can be particularly well-suited for basins with complex dynamics and limited data availability, resulting comparable 

to more advanced models for specific application purposes (e.g., Kobierska et al., 2013; Addor et al., 2014; Ragettli et al., 

2014; Orth et al., 2015; Finger et al., 2015). Under sub-optimal conditions of data scarcity and limited understanding of the 

system, highly complex models may indeed provide performance that is not necessarily improved, as well as insights based 

on inadequate assumptions, resulting in less robustness than simple but efficient models designed to represent the main 60 

hydrological processes, with a degree of sophistication functional for targeted modelling (e.g., Burlando et al., 2002; Orth et 

al., 2015; Horton et al., 2022). In this perspective, model selection or development should be ‘fit-for-purpose’ (Beven and 

Young, 2013), looking for the most appropriate structure and complexity in relation to application requirements, 

hydrological system characteristics, and data availability (e.g., Efstratiadis and Koutsoyiannis, 2010; Fenicia et al., 2011).  

https://doi.org/10.5194/egusphere-2025-4933
Preprint. Discussion started: 15 October 2025
c© Author(s) 2025. CC BY 4.0 License.



3 

 

Low-complexity models are commonly used for flood simulation in large basins, implemented at appropriately short 65 

temporal resolution, including hourly time-step (e.g., Viviroli et al., 2009; Horton et al., 2022), and at low spatial resolution, 

assuming that the downstream impact of any inadequate capture of small-scale processes can be sufficiently limited (e.g., 

Momblanch et al., 2019; Wang et al., 2024). For example, advanced methods for glacier-related hydrologic processes are 

typically applied to small basins (e.g., Naz et al., 2014; Pesci et al., 2023), while at larger scales a simplified representation 

generally prevails (e.g., Lutz et al. 2013; Yang et al., 2025). Then, hydrological modelling over large domains must properly 70 

address the spatial and temporal heterogeneity of processes that influence streamflow generation (e.g., Horton et al., 2022, 

van Tiel et al., 2023), representing different contributions with a level of accuracy also informed by the basin size 

(Momblanch et al., 2019). The basins of the southern rim of the Indian Himalayas are monsoon-dominated in the high flow 

regime (e.g., Thayyen and Gergan, 2010; Lutz et al., 2014; Dimri et al., 2021), with relative meltwater contributions 

diminishing with decreasing altitude (e.g., Singh et al., 2016a; Wang et al., 2024; Yang et al., 2025). While parsimonious 75 

approaches are generally suitable due to the limited availability and quality of data at relevant scales, the complexity of the 

system representation should be adjusted to consider how rainfall, snow and ice melt contribute differently to the 

downstream river flow regime. Therefore, in medium to large basins encompassing high mountain and valley environments, 

with rainfall dominating over snowfall as source of precipitation and low proportion of glacier area, flood-oriented 

modelling can properly emphasize the representation of rainfall-runoff transformation, simplifying that of glacier and snow 80 

dynamics in the upper reaches. 

Furthermore, to address data scarcity and limit sensitivity to input errors, it may be particularly useful to enhance the 

calibration strategy of conceptual models by using multiple reference variables, complementary to conventional streamflow 

measurements (e.g., La Frenierre and Mark, 2014; van Tiel et al., 2020), rather than increase the model complexity (e.g., 

Finger et al., 2015; Tarasova et al., 2016). Constraining the hydrological model with additional data can also improve the 85 

reliability of calibrated parameters and limit the model’s tendency to compensate for errors (e.g., an underestimation of high-

altitude precipitation input being compensated by an overestimation of modelled glacier melt). However, a more realistic 

representation of internal processes does not necessarily lead to better streamflow performance (e.g., Mayr et al., 2013; 

Finger et al., 2015; van Tiel et al., 2020). 

In this perception, the objective of this study is to develop and evaluate a parsimonious, semi-distributed hydrological 90 

modelling approach for simulating streamflow under high flow regime in the data-scarce, monsoon-dominated basins in the 

Indian Himalayas. The approach is based on the one hand on the integration, within a conceptual model well-suited for 

rainfall-induced floods, of tailor-made snow and glacier modules with low complexity and minimal data requirements. On 

the other hand, a multi-variable calibration is considered, involving supplementary satellite-based data on actual 

evapotranspiration and glacier mass loss, to improve the representation of the water balance. The study also explores the 95 

impact of precipitation input uncertainties by comparing different adjustment approaches and evaluates the contribution of 

ice melt in streamflow generation using simplified glacier representations. The modelling approach was tested in the 

Alaknanda River basin in northern India, where the ISM causes frequent flash floods, sometimes with disastrous effects 
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(e.g., Joshi and Kumar, 2006; Rautela et al., 2023a, 2023b). Although this study is somewhat preliminary due to the scarcity 

and high uncertainty of the data, the findings offer practical insights into the challenges of modelling hydrological fluxes in 100 

high-altitude, monsoon-dominated basins with glacierized headwaters, and contribute to the understanding of the flood 

generating processes in similar Himalayan environments. 

2 Data and methods 

2.1 Study basin and streamflow gauge data 

The Alaknanda River basin is located in the Uttarakhand state in northern India. The study area coincides with the sub-basin 105 

subtended by the Rudraprayag gauge, upstream the confluence with the Mandakini River. Further downstream, the 

Alaknanda River joins the Bhagirathi River forming the Ganges River. The study basin lies between 78°58′ to 80°15′ E and 

29°59′ to 31°05′ N and extends over an area of 8602 km2. It is characterized by heterogeneity in topography, climate, and 

runoff production mechanisms (Yadav et al., 2020). The elevation range is extremely wide (i.e., from 600 to 7700 m above 

sea level, approximately), with the upper portions of the basin being dominated by snow and glaciers and lying under steep 110 

slopes, which reduce gradually in the lower parts. In the high mountain areas, a significant portion of precipitation occurs as 

snowfall during the late winter and spring months due to western disturbances, while at lower altitudes most of the 

precipitation is associated with the ISM. Consequently, streamflow is highly seasonal, being governed by rainfall during 

monsoon months from June to September and influenced by snow melt in the pre-monsoon season (Chakrapani and Saini, 

2009).  115 

Streamflow data was collected daily at regular times by the Central Water Commission (CWC). The study period includes 

2001-2020 water years (June-May). Digital elevation model data (NASADEM at 30-m resolution) were used to delineate the 

main drainage network and 19 sub-basins (Fig. 1), with areas ranging between 160 and 778 km2. 

The Alaknanda River basin has faced devastating floods in last decades, resulting in severe loss of life and extensive 

damages (e.g., Joshi and Kumar, 2006; Rana et al., 2013). Repeated flash floods are caused by heavy rainfall events, even 120 

localized and short-lived (i.e., a few hours), including cloudbursts (Dimri et al., 2016, 2017; Kumar et al., 2018a; Singh and 

Kansal, 2022), which occur frequently in the monsoon months at altitudes of 1000–2000 m (Mishra et al., 2022; Singh et al., 

2023a). The basin is also prone to flash floods triggered or exacerbated by other local events. For instance, on 15-17 June 

2013 very severe rainfall resulted in devastating flash floods, landslides, and debris flows, but most fatalities and destruction 

were caused by the Chorabari glacial lake outburst above the village of Kedarnath, which led to catastrophic flooding 125 

downstream (e.g., Allen et al., 2016; Mehta et al., 2016). 
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Figure 1: Study basin: river network and topography are shown along with the location of glaciers. 

2.2 ERA5-Land reanalysis data 130 

The ERA5-Land reanalysis dataset was used as meteorological forcings (Muñoz-Sabater et al., 2021). ERA5-Land provides 

hourly information of land surface variables, available globally at 0.1° grid resolution, consistent with atmospheric fields 

from the ERA5 climate reanalysis. Besides the commonly used meteorological inputs (i.e., precipitation P and air 

temperature T), other variables were considered to estimate the reference evapotranspiration ET0 with the FAO’s Penman-

Monteith formulation (Allen et al., 1998). Hourly ET0 was computed following the procedure in Singer et al. (2021) and 135 

using separate values of the denominator constant for daytime and nighttime (Allen et al., 2006). The spatial patterns shown 

in Fig. S2-S4 in the Supplement describe the highly heterogeneous climatic conditions within the basin. 

The ERA5-Land dataset was shown to capture precipitation patterns adequately in the Himalayas (e.g., Chen et al., 2021; 

Kumar et al., 2021; Khadka et al., 2022; Singh et al., 2025). However, difficulties in reproducing processes at fine spatial 

and temporal scales were highlighted (Khadka et al., 2022; Singh et al., 2025), together with an effect of elevation and 140 

season on its performance (Paul et al., 2024; Singh et al., 2025). A wet bias was found during the monsoon by Chen et al. 

(2021) and Khadka et al. (2022), while according to Kumar et al. (2021) ERA5-Land showed a low bias in tracking large 

storms (i.e., longer than 5 days).  

2.3 GLEAM actual evapotranspiration data 

Actual evapotranspiration (AET) was obtained from the GLEAM dataset v3.8a at 0.25° spatial resolution (Miralles et al., 145 

2011; Martens et al., 2017). Potential evapotranspiration (PET) was computed with a Priestley-Taylor equation and then 
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converted into AET considering an evaporative stress factor. In ice- and snow-covered regions, a Priestley-Taylor equation 

adapted for ice and super-cooled waters was considered. GLEAM algorithm employs several forcing datasets, such as 

reanalysis radiation and air temperature, a combination of gauge-based, reanalysis and satellite-based precipitation, and 

satellite-based vegetation optical depth, as well as it assimilates satellite-based surface soil moisture. 150 

2.4 Glacier outlines and stored water loss 

Glacier outlines dating back to approximately the year 2000 were obtained from the global Randolph Glacier Inventory, RGI 

(RGI 7.0 Consortium, 2023). The glaciers have an area of 1042 km2, corresponding to about 12% of the total area of the 

basin, with some sub-basins exceeding 30% (Fig. 1). 

Changes in glacier volume were analysed in several local studies (e.g., Remya et al., 2022; Mishra et al., 2023; Bhambri et 155 

al., 2023; Bhattacharya et al., 2023; Singh and Pandey, 2024), generally reporting a negative mass balance in recent decades. 

For this work, the study by Bandyopadhyay et al. (2019) was taken as a reference. Geodetic glacier mass balance data over 

the period 2000-2014 were calculated from the elevation changes, evaluated on RGI outlines through multi-annual high-

resolution satellite-based digital elevation models. The estimated mass balance was validated using reported observations on 

select glaciers. Summary data at the river basin scale were provided for the two main tributaries (Dhauliganga and Pindar) 160 

and the Upper Alaknanda (upstream of the confluence with Dhauliganga). Here, glacier stored water loss estimates were 

used as independent reference in the model calibration, for the corresponding three groups of sub-basins. To be consistent 

with Bandyopadhyay et al. (2019), an ice density of 850 kg m−3 was assumed, appropriate for converting geodetic glacier 

volume changes (Huss, 2013). 

2.5 Hydrological model 165 

The conceptual and semi-distributed MISDc-2L model was used (Massari et al., 2018), already applied in different versions 

to a multitude of basins with heterogeneous characteristics (e.g., Brocca et al., 2011, 2012; Masseroni et al., 2017; Camici et 

al., 2020; Nguyen et al., 2020; De Santis et al., 2021). The model was modified here with a tailored snow module and the 

addition of a static and a dynamic glacier module, integrated for the first time in its structure. Since the study basin is 

monsoon-dominated in the high flow regime, a simplified conceptualization of the snow and glacier contribution to 170 

streamflow was considered, adopting commonly used empirical and parsimonious methods with meteorological forcings at a 

coarse resolution (e.g., Li et al., 2014; Pohl et al., 2015; Su et al., 2016; Chen et al., 2017a; Ghatak et al., 2018; Chawla and 

Mujumdar, 2020; Huang et al., 2022; Yang et al., 2022; Nazeer et al., 2022; Laha et al., 2023).  

The model was applied at hourly time-step and sub-basin scale. MISDc-2L schematizes the soil in two storage layers, within 

a soil water balance module that generates surface and subsurface runoff. While these modules were implemented in a 175 

lumped way, the input processing was performed at a higher spatial resolution and then averaged across the sub-basin. 

Specifically, rainfall-snowfall separation, snowpack evolution, snow and ice melting were simulated at every ERA5-Land 

grid point. Ice melting was simulated only on grid points classified as having afferent glaciers. At sub-basin scale, the 
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glacier-sourced meltwater flux, averaged on the classified grid points, was multiplied by the glacierized fraction of sub-basin 

area. The main features of the snow and glacier modules are explained below, while in the Section S1 of the Supplement 180 

further details are provided on the hydrological model and its implementation, which includes other changes mainly related 

to the parameterization compared to the previous formulations. 

2.5.1 Snow and glacier modules 

An air temperature threshold was used for rainfall-snowfall partitioning and snow melting, with the snowpack acting as 

temporary water storage. Snow melting was simulated with the well-known degree-day method according only to hourly air 185 

temperature, and similarly the ice melting over glacierized areas: 

𝑀snow/ice = {
DDFsnow/ice ∙ (𝑇 − 𝑇0)/24 𝑇 > 𝑇0

0 𝑇 ≤ 𝑇0
 ,        (1) 

where M is the melt rate from snowpack or glaciers [mm h-1], T0 is the threshold temperature [°C], and DDF is the degree-

day-factor [mm °C-1 d-1] differentiated for ice- and snow-covered surfaces. DDFsnow tends to be lower than DDFice, due to 

higher albedo of snow compared to ice. Here, a linear proportionality was assumed between DDFsnow and DDFice: 190 

DDFice = 𝑘ice ∙ DDFsnow ,           (2) 

with kice>1. 

The degree-day method exploits the high correlation of temperature with various components of the surface energy balance, 

which more properly describes the melting processes (Hock, 2005). A spatial variability of the DDF value is to be expected, 

given topographic effects (e.g., slope and aspect) and other concurring meteorological variables (e.g., radiation and albedo) 195 

(Hock, 2005). Here, the dependence of DDF with altitude was considered, due to the latter’s wide variability within the 

basin. DDF is expected to increase with elevation (e.g., Hock, 2003; Ismail et al., 2023), as confirmed in Himalayas by 

several studies (e.g., Kayastha et al., 2003; Deng and Zhang, 2018). For example, different DDF values were proposed for 

altitudes below and above 5000 m in Central Himalaya (Kayastha et al., 2020; Khadka et al., 2020). In this study, a more 

flexible relationship between DDF and elevation Z was proposed: 200 

DDF(𝑍) = [tan−1 (
𝑍−𝑍thr

scale
)](

DDFmax−DDFmin

𝜋
) +

DDFmax+DDFmin

2
 ,      (3) 

where DDFmax and DDFmin parameters constitute the range bounds, Zthr [m] is a location parameter at which the average 

value of the DDF range is obtained, and the scale parameter [m] controls the smoothness of the DDF transition along Z. 

Equation (3) is hereinafter referred to snow, but due to Eq. (2) holds also for ice. The current version of the model does not 

consider either sublimation or meltwater refreezing, nor does it distinguish between debris-free and debris-covered glaciers. 205 

To counteract overparameterization issues, 4 of the 6 interdependent parameters were set a priori. Specifically, T0 was 

assumed to be equal to 0 °C (e.g., Schaefli et al., 2005, 2014), Zthr and scale were set at 5000 and 50 m, respectively, to 
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mimic the threshold tested by Kayastha et al. (2020), and finally kice was set at 1.3, following field experiments by Singh et 

al. (2000) in a nearby glacier. DDFsnow,max and DDFsnow,min parameters were obtained through calibration. This specific setup, 

although limiting in terms of flexibility, considers that the modelling was not constrained in this study by reference snow 210 

dynamics data. 

Ice melting is assumed to occur once the seasonal snowpack is locally depleted and refers to the fraction of the sub-basin 

covered by glaciers. Melting dynamics influence the geometry, including the area, and the actual water storage of glaciers, 

impacting flow generation. In this study, a static glacier module was firstly considered, without simulating changes in area 

and volume (e.g., Terink et al., 2015; Nepal et al., 2017; Gao et al., 2017; Laha et al., 2023). To deal with the assumption of 215 

infinite ice storage (e.g., Schaefli et al., 2005, 2014; Savéan et al., 2015; Pohl et al., 2015), the model was constrained to 

glacier mass balance data (e.g., Konz and Seibert, 2010; Jost et al., 2012).  

To provide a more realistic conceptual representation of the process, a simplified dynamic glacier module was also tested as 

a variant. Several formulations have been proposed to simulate glacier evolution with relatively simple representations 

within hydrological models (e.g., Huss et al., 2010; Wortmann et al., 2019). The use of a volume-area (V-A) scaling 220 

relationship can be particularly practical since it directly considers estimates of ice melting to reproduce extent changes for a 

large set of glaciers (e.g., Luo et al., 2013; Lutz et al., 2013; Su et al., 2016; Van Beusekom and Viger, 2016; Valentin et al., 

2018; Chen et al., 2018; Cui et al., 2023; Nunchhani et al., 2024). Here, a novel implementation of the V-A scaling 

relationship was adopted at the sub-basin scale and applied with parameters set to global values from literature. The dynamic 

glacier module is described in Appendix A. 225 

2.6 Datasets consistency analysis and precipitation adjustment 

A preliminary data assessment revealed a significant water budget imbalance, with streamflow and AET far exceeding 

precipitation and glacier melt. Focusing on ERA5-Land precipitation and CWC streamflow data, the runoff-to-precipitation 

ratio at the annual scale ranges between 0.78 and 1.33, except for water year 2014 when it is slightly greater than 2. This 

spurious value may be related to the disastrous flood of June 2013, with observed streamflow resulting persistently high even 230 

in the months following the event. For this reason, streamflow data in water year 2014 were excluded from the analysis.  

Similar inconsistencies between precipitation and streamflow data have been described in previous works in Himalayan 

basins (e.g., Lutz et al., 2014; Savéan et al., 2015; Li et al., 2020; Ghatak et al., 2018; Shafeeque et al., 2019; Saddique et al., 

2022; Miao et al., 2024), while Goteti and Famiglietti (2024) attributed the observed imbalance in Indian basins to 

underestimation in precipitation datasets rather than to change in basin water storage, inter-basin groundwater flow, and 235 

anthropogenic influences. Streamflow measurements (together with other water budget terms) are typically assumed as a 

benchmark, and precipitation is adjusted for biases (e.g., Duethmann et al., 2013, 2015; Lutz et al., 2014; Savéan et al., 2015; 

Wortmann et al., 2018). Explicit correction parameters for precipitation input are commonly applied in hydrological 

modelling in high-altitude regions, also to consider bias due to gauge undercatch and limited representativeness, as well as 
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further implicit adjustment of meteorological forcings occurs through the tuning of altitudinal gradients (e.g., Mayr et al., 240 

2013; Van Beusekom and Viger, 2016; Wang et al., 2021; Ruelland, 2024).  

Here, different systematic error structures were assumed and lumped parameters were estimated simultaneously with those 

of the hydrological model. The proposed approaches are parsimonious but omit the spatial and temporal bias variability 

typical of precipitation data, as well as they are ineffective in the case of missing (or severely underestimated) events in the 

meteorological dataset. 245 

First, the use of a multiplicative, time-invariant coefficient CF was considered for adjusting precipitation: 

𝑃adj,1 = CF ∙ 𝑃             (4) 

In a second case (Padj,2), seasonal CF values were assumed for two different 6-month periods (i.e., from May to October and 

from November to April), which include summer monsoon and western disturbance systems respectively. 

As a third alternative, a two-parameter, time-invariant adjustment formulation was used (e.g., Bannister et al., 2019): 250 

𝑃adj,3 = CFCOE ∙ 𝑃
CFEXP            (5) 

2.7 Calibration setup and evaluation strategy 

Warmup, calibration, and validation periods cover water years 1999-2000, 2001-2014, and 2015-2020, respectively. The 

calibration period was set to approximately match the time coverage of the glacier mass balance data. In the comparison 

between observed and simulated streamflow, 2014 was excluded as explained above.  255 

A multi-variable and multi-response objective function (Efstratiadis & Koutsoyiannis, 2010) was defined to summarizes the 

features that the model should best fit with respect to the given data (e.g., van Tiel et al., 2020). Specifically, four 

performance metrics were aggregated into a scalar function, and a single-objective global optimization algorithm was 

applied, the Covariance Matrix Adaptation Evolution Strategy (Hansen et al., 2003). Despite some disadvantages 

(Efstratiadis & Koutsoyiannis, 2010), such an embedded multi-criteria calibration approach is widely used (e.g., Gao et al., 260 

2017; van Tiel et al., 2018; Mei et al., 2023), adopting suitable weights for an acceptable trade-off in the simulation of the 

individual components of interest. In this regard, the practice of weight refinement during optimization tests was followed 

here (e.g., Viviroli et al., 2009; Tarasova et al., 2016; Sleziak et al., 2020; Ruelland, 2024). 

The model calibration was developed considering the following scenarios:  

- Scenario 1 (baseline): the model was calibrated against reference streamflow (considering two metrics, one of 265 

which is specific for high flows in terms of annual peaks), AET and glacier water loss data simultaneously, 

adopting the static glacier module and the multiplicative, time-invariant precipitation adjustment (Padj,1). 

- Scenario 2: same as in 1, but the model was not calibrated for glacier water loss, with the latter not being simulated. 

- Scenario 3: same as in 2, but the model was no longer calibrated against reference AET. 
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- Scenario 4: same as in 3, but only one metric was considered in the calibration against reference streamflow, 270 

excluding the specific one for peak flows. 

- Scenario 1B: same as in 1 but considering different coefficients for precipitation adjustment depending on the 

period of the year (Padj,2). 

- Scenario 1C: same as in 1 but considering a two-parameter, time-invariant approach for precipitation adjustment 

(Padj,3). 275 

- Scenario 1D: same as in 1 but considering the dynamic glacier module based on a V-A scaling relationship 

(Appendix A). 

In Scenario 1 (and its variants 1B, 1C, and 1D), the overall objective function Φ to be minimized therefore involves a 

weighted combination of four efficiency indices φi: 

Φ = ∑ 𝑤𝑖(1 − 𝜙𝑖)𝑖  ,           (6) 280 

𝜙1 = KGE ,            (7) 

𝜙2 = 1− APFB ,            (8) 

𝜙3 = 1−
|AETsim−AETref|

AETref
 ,           (9) 

𝜙4 = 1−
∑ |IMV𝑗,sim−IMV𝑗,ref|𝑗

∑ IMV𝑗,ref𝑗
 .          (10) 

KGE is the Kling-Gupta efficiency index (Gupta et al., 2009), computed between observed and simulated streamflow, while 285 

APFB is the annual peak flow bias proposed by Mizukami et al. (2019). AETsim and AETref indicate the simulated and 

reference AET volume at basin scale, while IMVj,sim and IMVj,ref are the simulated and reference glacier-sourced meltwater 

volume for the j-th sub-basin aggregate. In the following, the terms φ2, φ3, and φ4 are more intuitively referred to as EffAPFB, 

EffAET, and EffIMV, respectively. The weights vector w is equal to [0.65, 0.1, 0.1, 0.15]. In Scenarios 2, 3, and 4, EffIMV, 

EffAET, and EffAPFB were progressively omitted from the objective function during calibration (see Tab. 1). Then, ice melting 290 

was not modelled in these alternative scenarios. This is motivated by i) the difficulty in realistically reproducing the process 

without using specific constraints (mainly due to underestimation of precipitation), and ii) the small glacier-sourced supply 

in the water budget at basin scale. The same 13 parameters are calibrated in all scenarios, except in 1B and 1C which have a 

different formulation for precipitation adjustment. 

 295 
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Scenario 

1 2 3 4 1B 1C 1D 

Calibration criteria 

  

KGE  x x x x x x x 

EffAPFB  x x x  x x x 

EffAET  x x   x x x 

EffIMV  x    x x x 

Glacier module Static x    x x  

Dynamic       x 

None  x x x    

Precipitation bias 

adjustment 

Padj,1 x x x x   x 

Padj,2     x   

Padj,3      x  

Table 1. Scenarios configuration. 300 

Other performance metrics were also considered for the evaluation of modelled streamflow (see Sect. 3.2). Specifically, the 

three components of KGE index were analysed, i.e., the Pearson correlation coefficient r, and the ratios σsim/σobs and μsim/μobs, 

where σsim and μsim are the standard deviation and the mean of simulated streamflow, while σobs and μobs are those of observed 

streamflow. Then, the KGE index based on a root squared transformation of streamflow time series (KGEsqr) was assumed 

informative for average flow conditions (Garcia et al., 2017), while the inverse transformed streamflow (KGEinv) was 305 

considered to emphasize low flows (Santos et al., 2018). In addition, to overcome the effect of streamflow seasonality on the 

performance metrics (e.g., van Tiel et al., 2020) and give even more relevance to the high flow regime, KGE index was 

recalculated considering only the monsoon period from June to September (KGEJJAS). Finally, the well-known Nash-

Sutcliffe efficiency index (NSE) was computed. Furthermore, the internal model behaviour was assessed in terms of reliable 

spatiotemporal patterns and reasonable representation of the hydrological processes (see Sect. 3.3). 310 

3 Results 

3.1 Calibration and validation analysis 

The values of the calibrated parameters in the different scenarios are reported in Tab. S1 in the Supplement, whereas Tab. 2 

shows the efficiency indices in the objective function evaluated during the calibration and validation periods. 

In the calibration phase, the baseline scenario produced an acceptable KGE of 0.88, which progressively improved up to 0.91 315 

moving along Scenarios 2-4, due to the reduction of the competing criteria. Regarding the baseline variants, the more 

realistic representation of glacier dynamics in Scenario 1D did not increase the KGE. Conversely, a more flexible adjustment 

of precipitation was able to improve the streamflow simulation. Specifically, the precipitation adjustment that includes two 
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seasonal parameters (Scenario 1B) provided a KGE equal to 0.90 and enhanced the glacier melting simulation, whereas the 

adoption of a more complex structure in Scenario 1C resulted in the largest KGE (0.93), at the expense of the other objective 320 

metrics. 

In the validation phase, KGE decreased overall, following a similar behaviour between scenarios with some exceptions. 

Scenario 1D performed better than Scenario 1 and both outperformed Scenario 2. Scenario 1B - and not only 1C - showed 

higher KGE than Scenarios 3 and 4, despite the greater relative weight of this metric in the latter during calibration. The 

improvements in streamflow across the different scenarios obtained during the calibration phase but not confirmed in the 325 

validation one (Scenarios 2-4) can be indicative of a poor representation of physical processes and hydrological behaviour of 

the basin when additional data are not considered for parameter tuning. 

Furthermore, during calibration, the model captured almost perfectly both the mean annual peak flow and the reference AET 

volume, if the EffAPFB and EffAET metrics were incorporated into the objective function. Otherwise, AET was underestimated, 

due to a smaller adjustment in precipitation (Scenarios 3 and 4). EffAPFB showed a value of 0.94, with an overestimation of 330 

mean annual peak flow, when not integrated in the calibration (Scenario 4). In the validation phase, a worsening of EffAPFB 

and, to a less significant extent, of EffAET was generally observed. In Scenario 2, EffAPFB was lower than in Scenario 1, 

despite the greater relative weight during calibration. Scenarios 1B and 1C also performed worse than the baseline, whereas 

Scenario 1D had a slightly higher EffAPFB, resulting lower than Scenario 3 only, where the criterion for peak flows had its 

maximum relative weight in calibration. In Scenarios 3, 1B, and 1C, the model slightly underestimated the mean annual peak 335 

flow during the validation period, whereas in the other scenarios an overestimation was observed. 

The efficiency index for the glacier stored water loss, EffIMV, has a higher relative complexity since it incorporates spatially 

explicit information on 3 sub-basin aggregates, whereas in the model only 2 lumped parameters were calibrated to reproduce 

snow and ice melt dynamics at different altitudes. Nevertheless, in the scenarios where glacier melting was simulated, 

efficiencies ranged from 0.982 to 0.995, thus capturing the independently estimated and spatially variable stored water loss 340 

during calibration.  

Regarding precipitation adjustment, an increase of 29% was achieved in Scenario 1 (and similarly in 1D). In Scenario 2, 

where the omitted contribution of glacier melt had to be compensated, this correction was slightly higher (32.5%), while in 

Scenarios 3 and 4 it dropped to just over 20%, no longer being constrained to support the reference AET volume. In Scenario 

1B, winter precipitation, which mainly occurs as snowfall due to western disturbances and represents a more significant 345 

contribution at high altitudes, increased compared to summer precipitation (53% vs 16%). Scenario 1C enhanced hourly 

precipitation below approximately 1.4 mm and decreased the higher rates, which are more common in the valley areas 

during the ISM. Therefore, precipitation adjustments suggest that the underestimation is not primarily related to monsoon 

rainfall, particularly for the more intense events identified in the coarse scale meteorological dataset. 

PET was estimated to be generally close to ET0 in scenarios having calibration constrained against AET. The exception was 350 

Scenario 1B, where the seasonal precipitation adjustment involved a reduced water input in the summer months resulting in 

lower soil water content, with the latter modulating the AET-to-PET ratio. This translated in a higher evapotranspiration 
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demand (which is at its maximum in the ISM period) to provide an AET volume equal to the reference. In Scenarios 3 and 4, 

without constraints, the model underestimated both PET (reduced by approximately 40%) and AET (35%) and its ability to 

capture this process was limited by the bias in precipitation not corrected sufficiently. 355 

The parameters used in the snow and glacier modules assumed consistent values between the different scenarios in which ice 

melting was simulated, i.e., Scenario 1 and its variants, with DDFsnow varying approximately between 2.5 and 3.8 mm °C-1 d-

1 depending on altitude, according to Eq. (3). In the other scenarios, these values significantly increased (on average from 4.3 

to 8 mm °C-1 d-1 depending on altitude), with the accelerated snow melt functional to an effective reproduction of the rising 

limb of the seasonal hydrograph (see Sect. 3.2). Furthermore, the enhancement of melting factors compensated for 360 

occurrences of modelled snow accumulation at high altitudes due to a locally low positive degree-day sum. 

Finally, the remaining parameters operate in the processes of runoff generation, convolution at sub-basin outlet, and 

propagation in the downstream network. The complex interactions of these processes make it more difficult to identify 

parameters across scenarios, which does not exclude the possibility of equifinality issues. However, a particularly fast 

response time generally emerged in the surface runoff convolution, as shown by the low values of calibrated parameter γGIUH 365 

(Tab. S1), which appears compatible with the river network flashiness due to the steep slopes. 

 

Period φ 
Scenario 

1 2 3 4 1B 1C 1D 

CAL KGE 0.882 0.894 0.907 0.911 0.904 0.930 0.878 

EffAPFB 1.000 1.000 1.000 0.940 1.000 0.999 1.000 

EffAET 1.000 1.000 0.651 0.642 1.000 0.999 1.000 

EffIMV 0.993 0 0 0 0.995 0.982 0.993 

VAL KGE 0.828 0.823 0.856 0.860 0.873 0.918 0.831 

EffAPFB 0.966 0.955 0.982 0.935 0.952 0.951 0.968 

EffAET 0.998 0.998 0.648 0.640 0.999 1.000 0.998 

Table 2. Efficiency indices considered for the objective function, during the calibration (CAL) and validation (VAL) periods, for 

the different scenarios. In bold the values of the metrics optimized during the calibration. 

3.2 Streamflow 370 

Additional performance metrics provided complementary information on the model’s ability to reproduce observed 

streamflow at the outlet (Tab. 3). The simulated streamflow tends to have a larger variability than the observed one in the 

validation phase, whereas all scenarios maintain a very low bias in terms of mean streamflow. In Scenarios 1B and 1C, the 

more complex precipitation adjustments better address streamflow bias issues. The omission of the glacier melting process 

(Scenarios 2-4) coincides with the largest overestimation of the mean streamflow in validation. The slight improvement in 375 

KGE in Scenario 1D compared to the baseline is attributed to the two bias terms being close to the target value, also due to 
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the glacier shrinkage resulting in lower ice melt volume. NSE follows similar patterns to KGE, albeit with lower values. The 

model does not present criticalities in reproducing the average flow conditions (with KGEsqr higher than 0.90 and 0.89 during 

calibration and validation, respectively), but rather in the monsoon period (KGEJJAS) and, to a lesser extent, in the low flow 

regime (KGEinv). Regarding the latter, both modelling choices and calibration strategies were aimed to capture high flow 380 

conditions, and despite this, KGEinv not lower than 0.77 and 0.81 was achieved during calibration and validation, 

respectively. Nevertheless, performances during the monsoon are less accurate, with a larger decrease in the validation 

period than that of the KGE over all seasons. The use of additional data in the calibration framework appears more 

penalizing on the KGE than in the overall period, while the selection of the precipitation adjustment scheme results to be 

more effective: for example, in the validation phase, when switching from Scenario 1 to 1C, the efficiency index changes 385 

from 0.60 to 0.80.  

Such localized shortcomings appear to be attributable to two factors. The first is errors on individual events not well captured 

in the precipitation dataset, for example during the transition from the pre-monsoon to the monsoon periods (May-June). The 

second is a delay in the reproduction of the rising and falling limbs of the hydrograph on a seasonal scale, which depends on 

the modelling scenario. Figure 2 presents observed and simulated streamflow time series for the baseline scenario, for which 390 

both issues can be detected, whereas Fig. 3 shows the corresponding empirical cumulative distribution functions and 

scatterplots. The model provides a quite good streamflow reproduction both for calibration and validation periods (Fig. 2) 

and adequately captures the distribution of observed values (Fig. 3a and 3c), especially in calibration and in any case 

reproducing well the maximum ones (as also quantified by the EffAPFB index). However, the scatterplots (Fig. 3b and 3d) 

highlight a concentration of systematic deviations in specific streamflow ranges, attributable to delays in the simulation in 395 

the onset and end of the monsoon season. In this regard, the role of modelling setup is shown in Fig. S5 and S6 in the 

Supplement, for Scenarios 1-4 and for the variants of Scenario 1, respectively. The systematic shift does not emerge 

significantly in Scenarios 3 and 4, where the calibration was only against streamflow. In Scenario 1, the constrained 

modelling of glacier melt leads to lower DDF values, as shown in Tab. S1, i.e., snow melting is slowed down to maintain 

snowpack coverage, whereas the observed streamflow begins to increase seasonally in a way that cannot be supported by 400 

simultaneous rainfall inputs alone. Of all the scenarios where glacier melting is modelled, in 1C no temporal shift in 

streamflow is evident, due to the greater flexibility of the precipitation adjustment scheme in modulating the inflow 

distribution. In Scenario 2, a residual delay can still be noticed in the simulated streamflow, where supporting an increased 

AET results in a different partition between surface and subsurface runoff compared to Scenarios 3 and 4. More specifically, 

there is a lower and delayed production of baseflow, with the latter being more effective in capturing the seasonal cycle in 405 

observed streamflow than the surface component. This is due to the model’s tendency to maintain water availability in the 

topsoil storage to meet the higher evapotranspiration demand, which also implies increased surface runoff generation during 

monsoon rains. 

 

https://doi.org/10.5194/egusphere-2025-4933
Preprint. Discussion started: 15 October 2025
c© Author(s) 2025. CC BY 4.0 License.



15 

 

Period Metric 
Scenario 

1 2 3 4 1B 1C 1D 

CAL r 0.885 0.895 0.907 0.911 0.905 0.930 0.882 

σsim/σobs 1.021 1.011 0.996 0.996 1.002 1.001 1.015 

μsim/μobs 0.987 0.990 0.999 1.002 0.987 1.006 0.975 

KGEsqr 0.912 0.921 0.931 0.934 0.924 0.946 0.907 

KGEinv 0.780 0.783 0.792 0.783 0.788 0.872 0.777 

KGEJJAS 0.707 0.735 0.766 0.777 0.760 0.814 0.699 

NSE 0.765 0.788 0.815 0.823 0.809 0.860 0.759 

VAL r 0.885 0.896 0.915 0.918 0.905 0.929 0.880 

σsim/σobs 1.127 1.142 1.113 1.109 1.083 1.041 1.119 

μsim/μobs 1.015 1.026 1.027 1.027 1.003 1.001 1.000 

KGEsqr 0.891 0.896 0.920 0.926 0.917 0.940 0.890 

KGEinv 0.815 0.830 0.841 0.832 0.830 0.892 0.810 

 KGEJJAS 0.597 0.601 0.680 0.690 0.678 0.800 0.591 

 NSE 0.724 0.742 0.797 0.805 0.787 0.850 0.718 

Table 3. Complementary performance metrics for the analysis of streamflow simulation, during the calibration (CAL) and 410 
validation (VAL) periods, for the different scenarios.  
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Figure 2: Time series of observed (grey) and simulated (red) streamflow obtained for Scenario 1, in calibration (a) and validation 

(b) periods. Represented data are normalized with respect to the maximum observed streamflow value. 415 
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Figure 3: Comparison between observed (green) and simulated (red, dotted) streamflow obtained for Scenario 1, in terms of 

empirical cumulative distribution function in calibration (a) and validation (c), and scatterplot in calibration (b) and validation 

(d). Represented data are normalized with respect to the maximum observed streamflow value. 420 
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3.3 AET, glacier melting, and water budget assessment 

The model was able to reproduce AET in terms of overall volume at the basin scale, when reference data are considered in 

the calibration. Figure 4 presents monthly timeseries of simulated and reference lumped AET for Scenario 1, showing a good 

agreement with a root mean square error equal to 3.3 mm month-1. Figure 5 illustrates spatial distributions of mean annual 

AET at sub-basin and pixel scales for MISDc-2L and GLEAM data, respectively. AET patterns are consistent, although the 425 

reference dataset is characterized by slightly greater variability in magnitude between headwaters and downstream areas 

compared to the hydrological model. This can be attributed to transitions in land cover from snow- or ice-dominated to 

vegetated surfaces, which are considered in GLEAM and not in the hydrological model (the latter being based on a lumped 

parameter to compute PET from ET0). 

 430 

 

Figure 4: Comparison between simulated (in red) and reference (in blue) monthly AET data at basin scale in the study period for 

Scenario 1. 

 

 435 

Figure 5: Comparison between simulated and reference mean annual AET in the water years 2001-2020, for Scenario 1. 
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A similar additional analysis was also performed for glacier melt, where reference data are available only in the calibration 

period and on a spatial scale consisting of three sub-basin aggregates. Table 4 reports reference and simulated glacier water 

loss data, for Scenarios 1 and 1D. The sub-basins outlined here were aggregated as per Bandyopadhyay et al. (2019), 

considering in addition also the small glaciers in the middle course of the Alaknanda River, between the confluence with 440 

Dhauliganga and that with Pindar rivers. Compared to the reference, the model accurately reproduces water loss volumes, 

with a non-negligible deviation only in the Pindar River basin, although consistent with the uncertainty value (about 60 

Mm3) locally indicated in Bandyopadhyay et al. (2019). This may be partly related to the formulation adopted for EffIMV, 

which focuses on absolute and not relative errors, and therefore favours accuracy on sub-basin aggregates with higher ice 

melt volume within lumped parameters calibration. The model calibrated from the geodetic glacier mass change over the 445 

period 2000-2014 was used to reconstruct an annual distribution of stored water losses (Fig. 6), with ice melting which 

overall shows considerable interannual variability. A model-based representation of the spatial patterns of glacier stored 

water loss was also provided, in terms of cumulative volume over the study period (Fig. 7). Overall, high heterogeneity in 

the estimated glacier melt contribution to streamflow is observed, due to the variability in snowpack dynamics and 

temperature conditions, as well as in glaciated areas distribution.  450 

Scenario 1D reproduces the glacier runoff contribution in the period and areas involved in the calibration with 

spatiotemporal patterns similar to those of the baseline scenario, while elsewhere the dynamic module returns lower glacier 

loss estimates (Tab. 4). During the validation period, overall changes in glacier extent result in an 8% reduction in meltwater 

compared to the baseline scenario. At the basin scale over the 2001-2020 period, the simulation provides a reduction in 

glacier areas of about 62 km2, with a variation of the ice-covered fraction equal to 0.7% (from 12.1% to 11.4% of the total 455 

basin area). This decrease varies in the different sub-basins, exceeding 1.7% in some cases.  

The modelled glacier melting for the validation period was compared with previous studies. Here, for the baseline scenario, 

the simulated water loss rate at basin scale is higher in the calibration period (614 Mm3 y-1 on average) in comparison to the 

validation one (580 Mm3 y-1), mainly due to variations in the Upper Alaknanda River basin (from 128 to 102 Mm3 y-1). This 

can be explained by the difference in temperature conditions in the high-altitude areas of the basin and especially in the 460 

north-western part (Fig. S7 in the Supplement). However, according to satellite-based analysis (Bhambri et al., 2023; 

Bhattacharya et al., 2023), in the same area the rate of glacier mass loss observed in the period 2015–2020 appears to have 

increased significantly compared to 2000–2015. Similarly, an acceleration in glacier retreat was also detected in the 

Dhauliganga River basin between 2013-2020 compared to 2000-2013 (Singh and Pandey, 2024). These discrepancies 

highlight the limitations of a simplified and large-scale modelling of glacier dynamics, which, although functional for 465 

hydrological purposes, did not appear in validation to be able to reproduce as accurately the remote sensing observations 

already captured in calibration.  
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Period Data  Sub-basin aggregate 

Upper 

Alaknanda  
Dhauliganga Pindar 

Middle 

Alaknanda 

CAL Model - Scenario 1 1796 5037 1017 740 

Model - Scenario 1D 1795 5030 1014 612 

Geodetic reference 1795 5037 965 N/A 

VAL Model - Scenario 1 614 2094 461 310 

Model - Scenario 1D 577 1995 436 183 

Table 4. Glacier water loss data in Mm3, for Scenarios 1 and 1D. 470 

 

 

Figure 6: Annual distribution of simulated glacier water loss, for different sub-basin aggregates according to Scenario 1. 
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 475 

Figure 7: Simulated glacier melting in the water years 2001-2020 at sub-basin scale, attributed to the glacier areas represented 

therein, for Scenario 1. 

Additional information on the spatial patterns of the simulated streamflow is reported in Fig. S8 in the Supplement, showing 

the highly variable distribution of runoff coefficient and generation at sub-basin scale, with maximum runoff coefficient at 

mid-altitudes (where streamflow is enhanced by increased ice melt, in conditions of low PET) and minimum streamflow 480 

generation at the extreme altitudes (due to low precipitation). Then, Fig. 8 summarises the analysis of the modelled water 

balance at the basin scale, for the baseline scenario. The following formulation has been considered for the water balance: 

𝑅 + 𝑆𝑓 + 𝐼melt − 𝑄base −𝑄surf − 𝐴𝐸𝑇 = ∆𝑆soil + ∆𝑆snow ,       (11) 

where terms include adjusted rainfall (R) and snowfall (Sf), ice melting (Imelt), subsurface (Qbase) and surface (Qsurf) runoff, 

AET, and changes in soil (ΔSsoil) and snowpack (ΔSsnow) water storages. Net of a certain interannual variability, the study 485 

period showed an annual mean of around 1980 mm of adjusted precipitation (through a 29% increase), of which more than 

75% as rainfall. Simulations outflows are about 1575 and 435 mm per year on average for streamflow and AET, 

respectively. The water balance closes with approximately 70 mm of modelled glacier melting and 40 mm of snowpack 

accumulation (the latter due to some areas in ERA5-Land dataset with low positive degree-day sum). The variation of 

simulated soil water storage over the study period is almost zero. Finally, Fig. 9 shows the seasonal variability of both 490 
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rainfall, snow and ice melt inputs, and AET, subsurface and surface runoff outputs of the hydrological system. It emerges the 

well-known ISM-driven rainfall and runoff seasonal patterns with peaks in July and August. Furthermore, the model shows 

that ice melt mainly occurs between July and September with the maximum in August, and snow melt generates the 

maximum water input in June and July, while in May (before the onset of the monsoon) it provides a contribution 

approximately equivalent to that of rainfall. 495 

 

 

Figure 8: Simulated water balance for the study basin, according to Eq. (11), for Scenario 1. 

 

 500 

Figure 9: Monthly distribution of subsurface (Qbase) and surface (Qsurf) runoff generation, AET, snow melting (Smelt), ice melting 

(Imelt), and rainfall (R), at basin scale over the study period, for a selection of scenarios (from left to right: 1, 1B, 1C, and 4). 
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4 Discussion 

4.1 Precipitation errors 

Errors in hydrological model forcings, particularly in precipitation data, are confirmed as main limiting factors in predictive 505 

skills and processes understanding (e.g., Lundquist et al., 2019; Tang et al., 2023; Wang et al., 2024). In the study area, 

precipitation is originated by different weather systems during the year, whose interactions with the highly rugged 

topography give rise to complex and difficult to capture generation mechanisms. Although meteorological models are a 

viable option for hydrological input in complex mountainous terrain (Lundquist et al., 2019), orographic rainfall and 

snowfall remain difficult to simulate (e.g., Viviroli et al., 2011; Azam et al., 2021), thus also limiting the evaluation of the 510 

representation of high-elevation processes in hydrological models. At the same time, the latter may be used to benchmark the 

quality of meteorological forcings for hydrological applications (e.g., Duethmann et al., 2013; Evin et al., 2024). 

Here, precipitation data were adjusted using different parsimonious formulations, with increasing flexibility resulting in 

improved hydrological performance. Scenario 1C, adopting a two-parameter formulation, showed the best results in terms of 

streamflow, together with a consistent representation of the underlying processes. Model-derived indications can be drawn 515 

regarding possible systematic errors of the ERA5-Land data within the study basin. Simulations suggest that precipitation 

required an average increase of nearly 30%, with the model tending to attribute this underestimation to winter and/or low 

intensity data, rather than to the high summer rainfall that mainly affects the valley areas. In this sense, more flexible 

precipitation adjustments (Scenarios 1B and 1C) as well as calibration based only on streamflow (e.g., Scenario 4) tend to 

reduce the inflow in the months from July to September compared to the baseline scenario (Fig. 9). Although these 520 

corrections may be affected by compensation for model errors, the results are consistent with the ERA5-Land validation 

analyses described in Sect. 2.2 and with other studies indicating more generally larger precipitation biases in winter and at 

higher altitudes (e.g., Shafeeque et al., 2019; Pritchard, 2021; Saddique et al., 2022).  

While more complex and targeted bias adjustment schemes could be beneficial, such systematic corrections are not effective 

on heavy rainfall events that were not well detected in the coarse meteorological dataset, and that proved to be detrimental 525 

on hydrological prediction in high flow regime. It is noteworthy that these coarse scale errors are generally not corrected by 

statistical downscaling methods (typically employed in hydrological studies over the more demanding dynamical ones), 

since they do not consider the non-stationarity of spatial precipitation patterns (e.g., Lundquist et al., 2019), particularly at 

the storm-specific time scale. Finally, input errors not only impact hydrological performance but also the behaviour of the 

conceptual model. The latter is expected to compensate for inaccuracies in precipitation (e.g., Magnusson et al., 2011; 530 

Duethmann et al., 2013; van Tiel et al., 2020; Tang et al., 2023), erroneously adjusting the parameters and misrepresenting 

underlying processes. For example, the possibility of missing or underestimated rainfall events during the transition from the 

pre-monsoon to the monsoon periods was highlighted in Sect. 3.2, that can be compensated by the model through accelerated 

snow melt (Scenarios 2 to 4, where snowpack dynamics are not constrained against glacier loss data).  
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4.2 Hydrological model skills and value of additional calibration data 535 

The proposed conceptual model, with limited data requirements and complexity and tailored to represent specific hydrologic 

conditions, was combined with a multi-variable calibration strategy and tested in a representative basin in the Indian 

Himalayas. The use of non-physical parameters, while on the one hand can increase the flexibility in simulating target 

outputs, on the other hand can hinder reproduction of the internal processes. In this sense, the model was expected to 

compensate for errors, simulating the streamflow dynamics well but without implicitly capturing other fluxes, unless they are 540 

used as constraints. Therefore, supplementary multi-variable data derived by advanced modelling and remote sensing were 

considered to overcome limitations in the conceptualization of processes, as well as to handle potential biases in precipitation 

forcing. However, a more realistic representation of internal processes may have some negative effects on streamflow 

simulation. Different scenarios (1-4) were therefore analysed to explore the role of constraining data for model calibration 

and to characterize the benefits and trade-offs in performance. 545 

Similarly to other studies (e.g., Mayr et al., 2013; Finger et al., 2015; Tarasova et al., 2016; Chen et al., 2017a; Zhang et al., 

2025), the use of additional variables led to a reduction in streamflow performance metrics, which was largely offset by 

improvements in underlying process characterization. The latter were both in terms of accuracy in the representation of 

individual processes, with AET being underestimated when not constrained, and prevention of internal process 

compensation, with glacier melting otherwise appropriately switched off due to the underestimation of precipitation. It is 550 

noteworthy that there are few hydrological studies in cold environments that integrate AET into the calibration (van Tiel et 

al., 2020), although it is a significant component of the water budget for basins in the monsoon regime (e.g., Fugger et al., 

2024). 

Specifically, in Scenarios 1 and 2, although few lumped parameters were optimized, a satisfactory representation of 

magnitude and patterns of AET (both scenarios) and glacier storage change (Scenario 1) was obtained during calibration 555 

period, proving that the model structure was able to accommodate this additional information. While the reference AET was 

also captured in validation, for glacier water loss the simplified approaches did not reproduce the increasing rates retrieved 

from satellite data in other studies, and which have no correlation with temperature in the meteorological dataset (see Sect. 

4.2.1). However, the impact of this error on streamflow at the basin scale remains marginal. This acceptable reproduction of 

AET and glacier loss was found to potentially hinder the simulation of significant streamflow characteristics, such as the 560 

timing of rising limb in the seasonal hydrograph. Specific modelling issues behind this shortcoming are commented in Sect. 

3.2. Furthermore, since melting dynamics are influential on the seasonal hydrograph (e.g., Mackay et al., 2018), possible 

inadequacies in the conceptualization of the process, in the attribution of a priori parameters and in the spatialization of the 

forcings may have played a role. The effect of data inconsistency cannot be ruled out either, with calibration criteria 

directing the model to compensate for them in a competitive manner. However, using a two-parameter, time-invariant 565 

precipitation adjustment formula (Scenario 1C) was sufficient to adequately reproduce the seasonal hydrograph together with 

additional reference data. Finally, in Scenarios 3 and 4, the model simulated well the streamflow response, but having 
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omitted the contribution of glacier melt and significantly underestimating AET due to a poor precipitation adjustment. These 

latter scenarios are therefore not indicative for understanding the basin behaviour and for correctly quantifying the main 

terms of the water balance. It should be noted that these are the only scenarios in which the calibration returns a parameter – 570 

related to the processing of model forcings – that collapses to the boundaries of the range (Tab. S1). 

Overall, despite the inherent data uncertainties and the simplified processes conceptualization, the model has shown potential 

to reproduce several key features of the streamflow dynamics. In this regard, the magnitude of the average annual flood 

peaks was well simulated, which is not trivial in the Himalayan basins (e.g., Singh et al., 2016b; Khadka et al., 2020; Wang 

et al., 2021; Saddique et al., 2022; Nazeer et al., 2022). Specifically, the efficiency index used for flow peaks does not drop 575 

below 0.94 between calibration and validation, even in the Scenario 4 where it was not integrated into the objective function. 

Ultimately, the assumptions underlying the hydrological modelling are supported to some extent by the overall satisfactory 

performances, while the calibration experiments indicate to properly evaluate the modelling configuration, also considering 

pros and cons of adding specific data and processes in relation to the application objectives.  

4.2.1 Glacier water loss simulation 580 

The probable discrepancy between modelled and observed rate of glacier mass loss during validation period may be due to 

inaccuracies in climate forcings, oversimplification in melting conceptualization relying on temperature-based approach, as 

well as the control of non-climatic factors, such as glacier topographic and morphological attributes (e.g., Singh et al., 2016a; 

Barandun and Pohl, 2023). Focusing on modelling, not only the conceptualization itself, but also its specific implementation 

(e.g., the coarse spatial resolution) played a role, including a priori setting of sensitive parameters. For example, the 585 

threshold temperature T0 can prevent ablation regardless of the actual net shortwave radiation, which is the dominant driver 

for glacier melting and could be appropriately integrated in the model (Hock, 2003, 2005), while at high altitudes the air 

temperature tends to be less informative about the incoming energy inputs (e.g., Barandun and Pohl, 2023).  

While on the one hand assessing glacier changes and their hydrological impacts would therefore require a more complex 

representation, on the other hand ice melt remains a minor component of streamflow in the study basin (Fig. 8-9). Here, two 590 

simplified and parsimonious conceptualizations were implemented to simulate glacier-sourced runoff. The first one 

considers static glacier areas, while in the second one an analytical implementation of the V-A scaling relationship was 

proposed, suitable for hydrological modelling and not computationally and data demanding. Similar to other studies (e.g., 

Naz et al., 2014; Duethmann et al., 2015; van Tiel et al., 2018; Tsuruta and Schnorbus, 2022), using a static or dynamic 

approach was found to have limited impact on reproducing the observed streamflow, due to the low ice-covered fraction and 595 

glacier-sourced runoff contribution in the study basin, in addition to the relatively short simulation period which limits the 

effect of glacier changes. 
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4.3 Local hydrological insights: comparison with other studies 

The model performed satisfactorily especially under average flow conditions (reported via KGEsqr index) and adequately 

represented the dominant underlying processes, with outcomes that can be considered plausible within modelling 600 

simplifications and assumptions made on data accuracy. In this perspective, this modelling study contributes to the 

understanding and prediction of basin response in the region of interest. Calibration against multiple independent data 

sources allowed to obtain reliable and significant hydrological insights, for example in terms of water partitioning and inter-

seasonal redistribution of precipitation contributions to streamflow. It is noteworthy that the basin area corresponds to a scale 

(∼103 km2) which is challenging to investigate in water balance studies, because this intermediate dimension is particularly 605 

exposed to observational gaps and significant uncertainties (Dorigo et al., 2021; Hoeltgebaum and Dias, 2023), as well as a 

20-year modelling analysis on an hourly scale is not commonly performed, since studies using this temporal resolution 

typically cover shorter periods (van Tiel et al., 2020). 

The hydrological results are consistent with those of other multi-year simulations available in literature and carried out on 

the largest Alaknanda River basin at the confluence with the Bhagirathi River (e.g., Singh et al., 2023b; Rautela et al., 2023a, 610 

2023b; Kavya et al., 2025). The performances are not superior to those obtained here, despite the more complex modelling 

of some processes, as well as difficulties were encountered in capturing some peaks and recession limbs in the hydrograph. 

In Kavya et al. (2025), the fully distributed physically based WATFLOOD model was used to simulate the surface runoff 

data from the ERA5-Land reanalysis, as an alternative to the stream gauge observations. Since the reanalysis surface runoff 

is not inclusive of the glacier melt contribution, the latter was not reproduced. In Rautela et al. (2023a, 2023b), semi-615 

distributed conceptual models, namely SWAT and SRM, were employed to simulate processes at the scale of elevation 

bands, with precipitation and temperature data spatialized via lapse rates. While snow dynamics modelling was quite 

complex, the contribution of glacier melt was not considered. In Singh et al. (2023b), the fully distributed conceptual SPHY 

model was used to evaluate the snow and glacier melt runoff considering observed streamflow and remotely sensed snow 

cover and glacier area variations. Modelled snow and glacier melt have peaks in June-July and August-September, 620 

respectively, thus being quite consistent with the results obtained here (Fig. 9). An indication of the temporal distribution of 

the glacier-sourced streamflow is also provided in the observational study by Kumar et al. (2018b), who measured meltwater 

from a glacier in the Alaknanda River basin and identified the monthly runoff peak in August. Finally, in terms of water 

balance, the outcomes of our study (Fig. 8) are quite consistent with those of Rautela et al. (2023b), who quantified 

streamflow and AET at 62% and 35% of the total precipitation respectively, and the contribution of snow melt ranging from 625 

20 to 24% of the total streamflow, with the latter being split between surface and subsurface runoff in terms of 1/3 and 2/3. 

The higher volumes of AET and the slightly lower contribution of snow melt compared to our study are attributable to the 

greater extension downstream in the basin they considered. In Singh et al. (2023b), although rainfall is still dominant in the 

streamflow generation, a very significant contribution is attributed to glacier melt (22%), which in their model 
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conceptualization includes meltwater from permanent snow- or ice-covered surfaces, resulting even higher than snow melt 630 

(14%). 

The comparison with independent studies therefore supports the results obtained here in terms of characterization of water 

balance components and key hydrological processes. Similarities in performance with models having more complex 

conceptualizations for snow and glacier processes suggest that the simplifications adopted in this study had a limited effect 

on the hydrological simulations. In this regard, the proposed modelling approach can be a useful tool for exploring the 635 

hydrological behaviour of basins under similar conditions, providing particularly valuable insights in contexts of 

observational and knowledge gaps.  

4.4 Current limitations 

In the current application of the model, some limitations must be highlighted, which are largely related to the scarcity and 

high uncertainty of the data and could be addressed in future studies. Specifically: 640 

- the spatial downscaling of hourly meteorological forcings was not addressed and the bias correction was performed 

only for precipitation data through hydrological modelling at basin scale; 

- for each variable a single dataset was considered, attributing the errors only to precipitation and neglecting other 

inherent data uncertainties; 

- a basic approach was used for parameter calibration, based on a single-objective function embedding multiple 645 

criteria with a priori set weights; 

- no specific solutions were implemented to remove excessive snow accumulation at high altitudes due to a locally 

poor positive degree-day sum. 

Regarding the first point, coarse meteorological data are typically processed to obtain higher resolution estimates consistent 

with local ground observations. The latter may therefore be informative for gauge-based bias correction, as well as for 650 

downscaling in the typical form of gauge-interpolated vertical gradients of precipitation and air temperature, recommended 

due the strong impact of elevation (e.g., Immerzeel et al., 2014; van Tiel et al., 2020) but whose effectiveness in accurately 

reconstructing meteorological fields at the large basin scale may be limited (e.g., Chen et al., 2017b; Yang et al., 2025). 

Ground observations in the mountainous areas may be unavailable or lacking in accuracy and representativeness (e.g., 

Wortmann et al., 2018; Mishra et al., 2021; Barandun and Pohl, 2023) and do not systematically constitute an added value 655 

compared to the meteorological model estimates (Lundquist et al., 2019). Gauge-based lapse rates are often poorly captured 

due to unavailability of elevational transects and, where stations are in valley areas, are essentially extrapolated, with 

significant impacts on simulations (e.g., Magnusson et al., 2011; Hegdahl et al., 2016; Wang et al., 2024). Alternatively, a 

common practice in hydrological models is to calibrate or fix lumped linear gradients (e.g., Finger et al., 2015; Van 

Beusekom and Viger, 2016; Wang et al., 2021; Ruelland, 2024), even though they might not reflect the actual distribution of 660 

the considered variables (e.g., Ragettli et al., 2013; Tarasova et al., 2016). In the Himalayas, representing local elevation 

dependence of precipitation is particularly challenging, due to different types of orographic controls operating at different 
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scales and resulting in complex precipitation patterns (e.g., Barros et al., 2004). Observational and modelling studies (e.g., 

Singh and Kumar, 1997; Arora et al., 2006; Shrestha et al., 2012, 2019; Immerzeel et al., 2012, 2014; Baral et al., 2014; 

Dahri et al., 2016; Meher et al., 2018; Mimeau et al., 2019a, 2019b; Yadav et al., 2020, 2024; Dimri et al., 2021; Jiang et al., 665 

2022; Regmi and Bookhagen, 2022; Wolvin et al., 2024) highlighted the inadequacy of the assumptions of monotonic 

increasing trend and linear variation, as well as significant changes in the relationship with season, precipitation type or 

intensity, aspect, elevation range, and location in different mountain ranges within the basin. At the storm scale, significant 

events such as cloudbursts occur mainly at altitudes of 1000-2000 m and therefore in specific and not particularly elevated 

areas in the Indian Himalayas. 670 

In this study, weather station measurements were not considered, and ERA5-Land data with the original resolution were 

used, although they are not informative on the highly variable and small-scale dynamics that would be useful to capture for 

hydrological modelling of the study basin. This involved simulating the snowpack and glaciers dynamics at a very coarse 

scale compared to that at which the underlying processes operate. Given the rainfall-driven runoff generation under high 

flow conditions, it was hypothesized that averaging the small-scale variability of non-dominant melting processes would not 675 

significantly affect the overall large-scale representation of the basin response. Furthermore, as stated above, widely used 

downscaling methods, based on stationarity in the relationship between meteorological patterns and some predictors such as 

elevation, would likely be inaccurate at hourly resolution. This is also due to the lack of data and understanding of the 

underlying dynamics (e.g., difficulty in estimating a complex but reliable relationship between precipitation and altitude) 

(Johnson and Rupper, 2020), as well as to the inheritance of the coarse scale errors (Fowler et al., 2007). Similarly, and more 680 

significantly, a locally effective gauge-based bias correction could then plausibly be outweighed by the precipitation 

adjustment made to address the water imbalance at basin scale.  

In any case, the coarse modelling resolution did not prevent from obtaining reliable simulations and capturing the relevant 

processes in the study basin, although this may also be due to the model’s ability to compensate for inaccurate forcing fields 

(e.g., Magnusson et al., 2011). The model performances are expected to improve with the availability of good quality, higher 685 

resolution distributed datasets and an adequate gauge network providing accurate observations (e.g., Bannister et al., 2019; 

Evin et al., 2024), which can more effectively support the representation of processes at proper scales. In this perception, the 

proposed modelling procedure may benefit from the outputs of well-configured higher resolution meteorological models 

(i.e., kilometre-scale), adopting convection-permitting approaches (Lundquist et al., 2019), which rely on a finer 

representation of complex landforms. They have been found to improve the simulation of diurnal cycle of precipitation (e.g., 690 

Ahrens et al., 2020), localized phenomena (e.g., Collier and Immerzeel, 2015; Karki et al., 2017), and extreme rainfall events 

(e.g., Chevuturi et al., 2015; Karki et al., 2018) in the Himalayan regions. 

Then, limitations were highlighted concerning the joint use of multiple data sources. Although it is reasonable to assume that 

the main source of error comes from precipitation, uncertainties in other data should be considered, also evaluated with the 

analysis of multiple datasets. More accurate data with characterized uncertainty can then be used profitably within an 695 

appropriate multi-objective calibration framework (e.g., Efstratiadis and Koutsoyiannis, 2010). The desirable extension of 
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considered datasets may also include other additional variables, primarily observations of snow dynamics, which can thus 

support a modelling of more adequate complexity.  

Information on observed snow patterns can not only provide a more realistic characterization of melting rates, thus 

improving streamflow representation, but can also highlight possible model shortcomings. In this regard, occurrences of 700 

excessive snow accumulation here were reduced by the DDF enhancement with elevation, thus affecting only limited areas 

in 3 northern sub-basins. At the same locations, Bandyopadhyay et al. (2019) detected an increase in accumulation area ratio, 

although the elevation change in the ablation zone was such as to lead to an overall negative mass balance at the basin scale. 

While local occurrences could therefore be plausible, disregarding snow accumulation effects can lead to an incorrect 

representation of hydrological fluxes and water balance (for example, here precipitation adjustments were also influenced by 705 

snow dynamics). For these issues, conceptual hydrological models typically integrate ‘ad hoc fixes’ approaches (Freudiger et 

al., 2017; van Tiel et al., 2020), such as artificially enhanced snow melting (e.g., Burek et al., 2020) or simplified snow 

redistribution methods (e.g., Tarasova et al., 2016). 

5 Conclusions 

This study implemented a conceptual, semi-distributed hydrological model (MISDc-2L) to simulate the hydrological 710 

response in the water years 2001-2020 in the monsoon-dominated, glacier-influenced Alaknanda River basin, a major 

tributary of the Ganges. Specifically, a tailored and parsimonious conceptualization enhanced by using additional reference 

data was tested for a reliable (as well as feasible and efficient) flood modelling. Multiple scenarios were explored, differing 

in the data used to constrain model calibration, the methods applied to correct systematic precipitation errors, and the 

treatment of glacier melt – whether explicitly modelled or not. Despite significant input data uncertainties – particularly in 715 

precipitation – the model successfully reproduced key hydrological processes when constrained with multi-variable data, 

namely glacier stored water loss and AET.  

The analysis showed that: 

- Despite its simplified and parsimonious conceptualization, the model proved capable of reproducing observed 

streamflow during both the calibration and validation periods with a KGE of 0.88 and 0.83, respectively, for the 720 

baseline scenario. These increased to 0.93 and 0.92 when using a two-parameter precipitation adjustment formula. 

The model demonstrated greater reliability under average flow conditions and effectively captured significant 

features of the high flow regimes. However, its performance in simulating specific flash flood events was limited, 

primarily due to localized inaccuracies in the rainfall data. 

- The model accurately reproduced reference estimates of glacier water loss and AET when additional data were 725 

embedded in the calibration framework. Using multiple reference datasets enhanced the model’s ability to represent 

the internal behaviour of the hydrological system; however, it also introduced trade-offs in seasonal hydrograph 

estimation in some scenarios where bias in precipitation data was not sufficiently addressed.  
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- Parsimonious precipitation adjustments can significantly improve streamflow simulation, by handling biases in the 

original dataset. Model simulations enabled the quantification of precipitation underestimation for hydrological 730 

applications, with the extent of such underestimation varying by season and precipitation intensity.  

- Glacier melt contributes marginally to overall streamflow, but its inclusion improves internal model consistency. 

Simple conceptualizations, such as temperature-driven melting combined with static or V-A scaling approaches for 

glacier evolution, may be appropriate for hydrological simulations in monsoon-dominated basins. Here, reference 

data available for calibration were well reproduced both in terms of magnitude and spatial patterns, but during the 735 

validation period the model did not capture the expected increase in glacier stored water loss.  

The 20-year modelling analysis yielded hydrologically consistent estimates of the main water fluxes, refined through the 

integration of independent multi-variable data. This analysis enabled a deeper exploration of various aspects of the water 

cycle within the study basin – capturing seasonal and spatial patterns as well as interannual variability – and contributed to 

advancing process understanding in hydrologically heterogeneous, monsoon-dominated basins of the Indian Himalayas. 740 

Overall, the study illustrates a practical modelling strategy for data-scarce Himalayan basins with similarly complex 

hydrological processes, offering valuable insights for regional flood forecasting and water balance assessment. Nonetheless, 

limitations persist due to coarse input data and simplifications in model structure, parameterization and calibration scheme, 

with non-dominant snow and glacier processes being highly generalized in this large-scale, flood-oriented application. 

Future work should focus on improving the spatial resolution of process simulation, enhancing the modelling for adequacy 745 

and parsimony (by adding justified complexities to the conceptualization and improving the parameterization also through 

sensitivity analysis), and applying multi-objective calibration techniques using uncertainty-characterized datasets – including 

reference information on snow dynamics. 

The availability of accurate high-resolution precipitation data remains essential to improve the predictability of high flows 

during the ISM season, regardless of the complexity of the hydrological model. The inability to capture localized heavy 750 

rainfall events constrains the use of hydrological models as predictive tools for flood forecasting and hinders progress in 

understanding the hydrological response to extreme precipitation in the Indian Himalayas. 

Appendix A 

Volume-area (V-A) scaling is a widely used approach for estimating the total ice volume of large sets of glaciers and its 

temporal changes (Bahr et al., 2015). The method is based on the following relation: 755 

𝑉 = 𝑐𝐴𝛾  ,            (A.1) 

where V and A are the volume and surface area of glaciers (which can be expressed in km3 and km2, respectively), γ is the 

dimensionless scaling exponent, and c is the multiplicative scaling coefficient [km3–2γ]. According to Bahr et al. (2015), the 

scaling exponent can be fixed to a theoretical constant (γ = 1.375), while the scaling coefficient is a variable. More generally, 

γ and c can be evaluated with different approaches and at different spatial scale, which has led to a wide range of estimates 760 
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(e.g., Radić and Hock, 2010; Huss and Farinotti, 2012; Grinsted, 2013). A global mean value of the scaling coefficient c = 

0.034 km3–2γ was proposed by Bahr (1997). The impact of the error in c is reduced when the method is applied to large sets 

of glaciers (Bahr et al., 2015). According to Bahr (2011), a sample size of ~100 glaciers appears sufficient and, in many 

applications, far fewer glaciers may be reasonable.  

The V-A scaling is often used for efficient representation of glacier dynamics within hydrological models (e.g., Lutz et al., 765 

2013; van Tiel et al., 2020; Yang et al., 2025), as it can be applied at the scale of large basins, requires minimal input from 

readily available data, and generalises changes in glacier extent without modelling individual glaciers. Typical use in 

hydrological models is based on the estimation of the volume variation on a certain time interval (e.g., Luo et al., 2013; 

Valentin et al., 2018; Pesci et al., 2023), from the area at the beginning of the period and the subsequent ice melting or 

accumulation (in practice the latter is applied to the previous average ice thickness). Glaciers area corresponding to the 770 

updated volume is then computed according to Eq. (A.1). 

Here, an analytical formulation was considered to continuously simulate the glaciers area evolution as a function of ice 

melting, based on a simplified representation suitable for hydrological applications, thus reducing the approximations of the 

approach just illustrated. While such approximations generally did not have a significant impact on the generated runoff, the 

proposed implementation does not imply increased computational demands. In the following, reference is made only to the 775 

case of glacier melting, due to the prevailing dynamics observed in the study basin and to the interest in streamflow 

modelling; however, this can easily be generalized to include also occurrences of glacier accumulation. Parameters γ and c 

are assumed to be known for the glacier population in the study basin. Specifically, the global values γ = 1.375 and c = 0.034 

km3–2γ were used in this application, even if slightly different from those estimated in literature in the study region (e.g., 

Sattar et al., 2019). The glaciers area evolution is assessed separately for each of the sub-basins, which should be outlined in 780 

such a way as to include an adequate number of glaciers. Ice melting is here calculated with the degree-day method for each 

grid point of meteorological dataset, considering only those to which glaciers belong. Meltwater is then averaged to obtain a 

lumped value at the sub-basin scale to be associated with the ensemble of glaciers which occupy the ice-covered fraction. 

Melting causes a change in thickness and modifies the aggregate volume of the considered glaciers. 

The infinitesimal variation in thickness at time τ, dh(τ), is here made to correspond to the variation in volume: 785 

𝑑𝑉(𝜏) = 𝑑ℎ(𝜏) ∙ 𝐴(𝜏) ,           (A.2) 

from which it can be obtained in the interval 0-t: 

ℎ𝑡 − ℎ0 =
𝑐𝛾

𝛾−1
(𝐴𝑡

𝛾−1 − 𝐴0
𝛾−1) .           (A.3) 

The glacier area evolution can be related to the melting process considering: 

𝑀ice,𝑡 = −
𝜌𝑖

𝜌𝑤
(ℎ𝑡 − ℎ0) ∙ 10

6 ,          (A.4) 790 

since a negative variation in h [km] can be made to correspond to the cumulative ice melting Mice,t [mm], while ρi and ρw are 

the density of ice and liquid water, respectively. This results in: 
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𝐴𝑡 = [𝐴0
𝛾−1 −

𝛾−1

𝑐𝛾
∙
𝜌𝑤

𝜌𝑖
∙ 𝑀ice,𝑡 ∙ 10

−6]

1

𝛾−1
 .         (A.5) 

Equation (A.5), which is applied here at the sub-basin scale, can hold at any spatial scale for which Eq. (A.1) is assumed to 

be valid. For hydrological applications, it may be of interest to simulate the evolution of the glacierized fraction of the sub-795 

basin, Wg,t, which is used to weight the current glacier-sourced melting flux:  

𝑊𝑔,𝑡 = [𝑊𝑔,0
𝛾−1

− 𝐴sub
1−𝛾

∙
𝛾−1

𝑐𝛾
∙
𝜌𝑤

𝜌𝑖
∙ 𝑀ice,𝑡 ∙ 10

−6]

1

𝛾−1
 ,        (A.6) 

where Wg,0 is the initial glacier-covered fraction and Asub is the total sub-basin area. 
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