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Abstract. The southern rim of the Indian Himalayas is highly susceptible to floods during the summer monsoon, making
accurate streamflow modelling critical yet difficult due to complex terrain, climate variability, and sparse ground
observations. This study uses a conceptual, semi-distributed hydrological model — enhanced with both static and dynamic
glacier modules — to reproduce streamflow into the Alaknanda River at Rudraprayag gauge (~8600 km?), a representative
basin in northern India. The model was calibrated using multi-variable data, including satellite-based glacier water loss and
actual evapotranspiration, also to address bias in the precipitation input. Despite inherent data uncertainties and simplified
process conceptualization, the tailored hydrological modelling captured key features of observed streamflow and produced
internally consistent water balance estimates. Multi-variable calibration improved the simulation of hydrological fluxes and
highlighted the value of using complementary satellite-based information in data-poor mountain regions. Parsimonious
precipitation adjustment approaches are proven effective for hydrological applications. However, input data errors such as
unaccounted-for heavy precipitation events limited short-term streamflow prediction accuracy. The study demonstrates that a
viable, parsimonious modelling strategy can still be developed for data-scarce, monsoon-dominated Himalayan basins,
offering insights into the spatiotemporal dynamics of streamflow generating processes, the inter-seasonal redistribution of
precipitation, the role of cryosphere contributions, and flood simulation. The approach is transferable to other monsoon-

dominated, glacier-influenced, and data-limited mountain catchments facing increasing hydroclimatic risks.

1 Introduction

Advancing knowledge of hydrological processes in the Himalayas is essential because of the regional inherent vulnerability
to water-induced hazards, complex dynamics, and lack or shortage of data. In the southern rim of the Indian Himalayas,
basins characterized by high mountains and densely populated valleys are prone to flash floods and other river flow-related
disasters, due to heavy rains triggered by the interaction between the complex orography and the Indian Summer Monsoon

(ISM) (e.g., Kumar et al., 2018a; Dimri et al., 2016, 2021). In these basins, a complex interplay of meteorological,
1
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topographical, and runoff generation factors controls streamflow variability, whose accurate forecast is pivotal for effective
flood risk management. However, the peculiarity of the Himalayan region poses significant challenges to understanding and
simulating streamflow response.

Investigating the dynamics of hydrological variables in the Himalayan basins is limited by their high spatiotemporal
heterogeneity and by the lack of ground-based observations. Not only does the availability of measurements decrease
dramatically with altitude and topographic complexity, but gauge precipitation data are also often underestimated due to the
wind-induced undercatch of snowfall (e.g., Adam and Lettenmaier, 2003). Furthermore, precipitation products from
meteorological models or remote sensing observations also suffer from large uncertainties in complex mountainous terrain
(e.g., Azam et al., 2021; Dimri et al., 2021; Girotto et al., 2024; Azimi et al., 2025). In Himalayan basins, several studies
have highlighted an underestimation of precipitation data when compared with observed streamflow volume (e.g.,
Immerzeel et al., 2012; Savéan et al., 2015; Dahri et al., 2016; Li et al., 2020; Ghatak et al., 2018; Saddique et al., 2022).
Furthermore, available precipitation datasets are lacking in detecting and characterizing highly localized and short
occurrence events such as cloudbursts (Dimri et al., 2016, 2017), which are as impactful in terms of flash flooding as elusive
both for sparse ground stations and for remote sensors and meteorological models at coarse scale (e.g., Jena et al., 2020;
Garg et al., 2023). Finally, glacier melting also contributes to the streamflow generation, although in monsoon climates it
remains a minor component (e.g., Collins et al., 2013; Nie et al., 2021), localized in the season of high flows. Accurate
quantification of the ice melt is hampered by the difficulty of monitoring changes in glacier mass. As very few and sparse
glaciological field measurements are available, remotely sensed multi-year difference in glacier surface elevation offers a
valid alternative for studying ice storage variations (e.g., La Frenierre and Mark, 2014; Dorigo et al., 2021). More generally,
using independent datasets (including satellite-derived ones) for additional hydrological variables can provide valuable
information in this high-altitude, data-poor region, but it remains difficult to close the water balance at the basin scale due to
inconsistencies with precipitation (e.g., Shafeeque et al., 2019; Li et al., 2020; Miao et al., 2024).

Process-oriented hydrological modelling can bridge this gap, taking advantage of multiple data sources to address
uncertainties in model forcings and provide a consistent representation of basin behaviour. Conceptual and semi-distributed
models can be particularly well-suited for basins with complex dynamics and limited data availability, resulting comparable
to more advanced models for specific application purposes (e.g., Kobierska et al., 2013; Addor et al., 2014; Ragettli et al.,
2014; Orth et al., 2015; Finger et al., 2015). Under sub-optimal conditions of data scarcity and limited understanding of the
system, highly complex models may indeed provide performance that is not necessarily improved, as well as insights based
on inadequate assumptions, resulting in less robustness than simple but efficient models designed to represent the main
hydrological processes, with a degree of sophistication functional for targeted modelling (e.g., Burlando et al., 2002; Orth et
al., 2015; Horton et al., 2022). In this perspective, model selection or development should be ‘fit-for-purpose’ (Beven and
Young, 2013), looking for the most appropriate structure and complexity in relation to application requirements,

hydrological system characteristics, and data availability (e.g., Efstratiadis and Koutsoyiannis, 2010; Fenicia et al., 2011).
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Low-complexity models are commonly used for flood simulation in large basins, implemented at appropriately short
temporal resolution, including hourly time-step (e.g., Viviroli et al., 2009; Horton et al., 2022), and at low spatial resolution,
assuming that the downstream impact of any inadequate capture of small-scale processes can be sufficiently limited (e.g.,
Momblanch et al., 2019; Wang et al., 2024). For example, advanced methods for glacier-related hydrologic processes are
typically applied to small basins (e.g., Naz et al., 2014; Pesci et al., 2023), while at larger scales a simplified representation
generally prevails (e.g., Lutz et al. 2013; Yang et al., 2025). Then, hydrological modelling over large domains must properly
address the spatial and temporal heterogeneity of processes that influence streamflow generation (e.g., Horton et al., 2022,
van Tiel et al., 2023), representing different contributions with a level of accuracy also informed by the basin size
(Momblanch et al., 2019). The basins of the southern rim of the Indian Himalayas are monsoon-dominated in the high flow
regime (e.g., Thayyen and Gergan, 2010; Lutz et al., 2014; Dimri et al., 2021), with relative meltwater contributions
diminishing with decreasing altitude (e.g., Singh et al., 2016a; Wang et al., 2024; Yang et al., 2025). While parsimonious
approaches are generally suitable due to the limited availability and quality of data at relevant scales, the complexity of the
system representation should be adjusted to consider how rainfall, snow and ice melt contribute differently to the
downstream river flow regime. Therefore, in medium to large basins encompassing high mountain and valley environments,
with rainfall dominating over snowfall as source of precipitation and low proportion of glacier area, flood-oriented
modelling can properly emphasize the representation of rainfall-runoff transformation, simplifying that of glacier and snow
dynamics in the upper reaches.

Furthermore, to address data scarcity and limit sensitivity to input errors, it may be particularly useful to enhance the
calibration strategy of conceptual models by using multiple reference variables, complementary to conventional streamflow
measurements (e.g., La Frenierre and Mark, 2014; van Tiel et al., 2020), rather than increase the model complexity (e.g.,
Finger et al., 2015; Tarasova et al., 2016). Constraining the hydrological model with additional data can also improve the
reliability of calibrated parameters and limit the model’s tendency to compensate for errors (e.g., an underestimation of high-
altitude precipitation input being compensated by an overestimation of modelled glacier melt). However, a more realistic
representation of internal processes does not necessarily lead to better streamflow performance (e.g., Mayr et al., 2013;
Finger et al., 2015; van Tiel et al., 2020).

In this perception, the objective of this study is to develop and evaluate a parsimonious, semi-distributed hydrological
modelling approach for simulating streamflow under high flow regime in the data-scarce, monsoon-dominated basins in the
Indian Himalayas. The approach is based on the one hand on the integration, within a conceptual model well-suited for
rainfall-induced floods, of tailor-made snow and glacier modules with low complexity and minimal data requirements. On
the other hand, a multi-variable calibration is considered, involving supplementary satellite-based data on actual
evapotranspiration and glacier mass loss, to improve the representation of the water balance. The study also explores the
impact of precipitation input uncertainties by comparing different adjustment approaches and evaluates the contribution of
ice melt in streamflow generation using simplified glacier representations. The modelling approach was tested in the

Alaknanda River basin in northern India, where the ISM causes frequent flash floods, sometimes with disastrous effects
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(e.g., Joshi and Kumar, 2006; Rautela et al., 2023a, 2023b). Although this study is somewhat preliminary due to the scarcity
and high uncertainty of the data, the findings offer practical insights into the challenges of modelling hydrological fluxes in
high-altitude, monsoon-dominated basins with glacierized headwaters, and contribute to the understanding of the flood

generating processes in similar Himalayan environments.

2 Data and methods
2.1 Study basin and streamflow gauge data

The Alaknanda River basin is located in the Uttarakhand state in northern India. The study area coincides with the sub-basin
subtended by the Rudraprayag gauge, upstream the confluence with the Mandakini River. Further downstream, the
Alaknanda River joins the Bhagirathi River forming the Ganges River. The study basin lies between 78°58' to 80°15' E and
29°59' to 31°05' N and extends over an area of 8602 km?. It is characterized by heterogeneity in topography, climate, and
runoff production mechanisms (Yadav et al., 2020). The elevation range is extremely wide (i.e., from 600 to 7700 m above
sea level, approximately), with the upper portions of the basin being dominated by snow and glaciers and lying under steep
slopes, which reduce gradually in the lower parts. In the high mountain areas, a significant portion of precipitation occurs as
snowfall during the late winter and spring months due to western disturbances, while at lower altitudes most of the
precipitation is associated with the ISM. Consequently, streamflow is highly seasonal, being governed by rainfall during
monsoon months from June to September and influenced by snow melt in the pre-monsoon season (Chakrapani and Saini,
2009).

Streamflow data was collected daily at regular times by the Central Water Commission (CWC). The study period includes
2001-2020 water years (June-May). Digital elevation model data (NASADEM at 30-m resolution) were used to delineate the
main drainage network and 19 sub-basins (Fig. 1), with areas ranging between 160 and 778 km?.

The Alaknanda River basin has faced devastating floods in last decades, resulting in severe loss of life and extensive
damages (e.g., Joshi and Kumar, 2006; Rana et al., 2013). Repeated flash floods are caused by heavy rainfall events, even
localized and short-lived (i.e., a few hours), including cloudbursts (Dimri et al., 2016, 2017; Kumar et al., 2018a; Singh and
Kansal, 2022), which occur frequently in the monsoon months at altitudes of 1000-2000 m (Mishra et al., 2022; Singh et al.,
2023a). The basin is also prone to flash floods triggered or exacerbated by other local events. For instance, on 15-17 June
2013 very severe rainfall resulted in devastating flash floods, landslides, and debris flows, but most fatalities and destruction
were caused by the Chorabari glacial lake outburst above the village of Kedarnath, which led to catastrophic flooding

downstream (e.g., Allen et al., 2016; Mehta et al., 2016).
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Figure 1: Study basin: river network and topography are shown along with the location of glaciers.
2.2 ERAS-Land reanalysis data

The ERAS-Land reanalysis dataset was used as meteorological forcings (Mufioz-Sabater et al., 2021). ERA5-Land provides
hourly information of land surface variables, available globally at 0.1° grid resolution, consistent with atmospheric fields
from the ERAS climate reanalysis. Besides the commonly used meteorological inputs (i.e., precipitation P and air
temperature 7), other variables were considered to estimate the reference evapotranspiration ETy with the FAO’s Penman-
Monteith formulation (Allen et al., 1998). Hourly ET, was computed following the procedure in Singer et al. (2021) and
using separate values of the denominator constant for daytime and nighttime (Allen et al., 2006). The spatial patterns shown
in Fig. S2-S4 in the Supplement describe the highly heterogeneous climatic conditions within the basin.

The ERAS-Land dataset was shown to capture precipitation patterns adequately in the Himalayas (e.g., Chen et al., 2021;
Kumar et al., 2021; Khadka et al., 2022; Singh et al., 2025). However, difficulties in reproducing processes at fine spatial
and temporal scales were highlighted (Khadka et al., 2022; Singh et al., 2025), together with an effect of elevation and
season on its performance (Paul et al., 2024; Singh et al., 2025). A wet bias was found during the monsoon by Chen et al.
(2021) and Khadka et al. (2022), while according to Kumar et al. (2021) ERAS5-Land showed a low bias in tracking large

storms (i.e., longer than 5 days).

2.3 GLEAM actual evapotranspiration data

Actual evapotranspiration (AET) was obtained from the GLEAM dataset v3.8a at 0.25° spatial resolution (Miralles et al.,
2011; Martens et al., 2017). Potential evapotranspiration (PET) was computed with a Priestley-Taylor equation and then
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converted into AET considering an evaporative stress factor. In ice- and snow-covered regions, a Priestley-Taylor equation
adapted for ice and super-cooled waters was considered. GLEAM algorithm employs several forcing datasets, such as
reanalysis radiation and air temperature, a combination of gauge-based, reanalysis and satellite-based precipitation, and

satellite-based vegetation optical depth, as well as it assimilates satellite-based surface soil moisture.

2.4 Glacier outlines and stored water loss

Glacier outlines dating back to approximately the year 2000 were obtained from the global Randolph Glacier Inventory, RGI
(RGI 7.0 Consortium, 2023). The glaciers have an area of 1042 km?, corresponding to about 12% of the total area of the
basin, with some sub-basins exceeding 30% (Fig. 1).

Changes in glacier volume were analysed in several local studies (e.g., Remya et al., 2022; Mishra et al., 2023; Bhambri et
al., 2023; Bhattacharya et al., 2023; Singh and Pandey, 2024), generally reporting a negative mass balance in recent decades.
For this work, the study by Bandyopadhyay et al. (2019) was taken as a reference. Geodetic glacier mass balance data over
the period 2000-2014 were calculated from the elevation changes, evaluated on RGI outlines through multi-annual high-
resolution satellite-based digital elevation models. The estimated mass balance was validated using reported observations on
select glaciers. Summary data at the river basin scale were provided for the two main tributaries (Dhauliganga and Pindar)
and the Upper Alaknanda (upstream of the confluence with Dhauliganga). Here, glacier stored water loss estimates were
used as independent reference in the model calibration, for the corresponding three groups of sub-basins. To be consistent
with Bandyopadhyay et al. (2019), an ice density of 850 kg m™ was assumed, appropriate for converting geodetic glacier
volume changes (Huss, 2013).

2.5 Hydrological model

The conceptual and semi-distributed MISDc-2L model was used (Massari et al., 2018), already applied in different versions
to a multitude of basins with heterogeneous characteristics (e.g., Brocca et al., 2011, 2012; Masseroni et al., 2017; Camici et
al., 2020; Nguyen et al., 2020; De Santis et al., 2021). The model was modified here with a tailored snow module and the
addition of a static and a dynamic glacier module, integrated for the first time in its structure. Since the study basin is
monsoon-dominated in the high flow regime, a simplified conceptualization of the snow and glacier contribution to
streamflow was considered, adopting commonly used empirical and parsimonious methods with meteorological forcings at a
coarse resolution (e.g., Li et al., 2014; Pohl et al., 2015; Su et al., 2016; Chen et al., 2017a; Ghatak et al., 2018; Chawla and
Mujumdar, 2020; Huang et al., 2022; Yang et al., 2022; Nazeer et al., 2022; Laha et al., 2023).

The model was applied at hourly time-step and sub-basin scale. MISDc-2L schematizes the soil in two storage layers, within
a soil water balance module that generates surface and subsurface runoff. While these modules were implemented in a
lumped way, the input processing was performed at a higher spatial resolution and then averaged across the sub-basin.
Specifically, rainfall-snowfall separation, snowpack evolution, snow and ice melting were simulated at every ERAS5-Land

grid point. Ice melting was simulated only on grid points classified as having afferent glaciers. At sub-basin scale, the

6
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glacier-sourced meltwater flux, averaged on the classified grid points, was multiplied by the glacierized fraction of sub-basin
area. The main features of the snow and glacier modules are explained below, while in the Section S1 of the Supplement
further details are provided on the hydrological model and its implementation, which includes other changes mainly related

to the parameterization compared to the previous formulations.

2.5.1 Snow and glacier modules

An air temperature threshold was used for rainfall-snowfall partitioning and snow melting, with the snowpack acting as
temporary water storage. Snow melting was simulated with the well-known degree-day method according only to hourly air
temperature, and similarly the ice melting over glacierized areas:

DDanow/ice ' (T - TO)/24 T>T,

0 T<T,’ M

Msnow/ice = {

where M is the melt rate from snowpack or glaciers [mm h™'], Ty is the threshold temperature [°C], and DDF is the degree-
day-factor [mm °C"! d'] differentiated for ice- and snow-covered surfaces. DDFs,ow tends to be lower than DDFic, due to

higher albedo of snow compared to ice. Here, a linear proportionality was assumed between DDF gow and DDFjce:
DDFjce = kice * DDFsnow » (2)

with kice>1.

The degree-day method exploits the high correlation of temperature with various components of the surface energy balance,
which more properly describes the melting processes (Hock, 2005). A spatial variability of the DDF value is to be expected,
given topographic effects (e.g., slope and aspect) and other concurring meteorological variables (e.g., radiation and albedo)
(Hock, 2005). Here, the dependence of DDF with altitude was considered, due to the latter’s wide variability within the
basin. DDF is expected to increase with elevation (e.g., Hock, 2003; Ismail et al., 2023), as confirmed in Himalayas by
several studies (e.g., Kayastha et al., 2003; Deng and Zhang, 2018). For example, different DDF values were proposed for
altitudes below and above 5000 m in Central Himalaya (Kayastha et al., 2020; Khadka et al., 2020). In this study, a more

flexible relationship between DDF and elevation Z was proposed:

DDF(Z) = [tan—1 (Z—Zthr)] (DDFmax—DDFmin) 4 DDFmax+DDFimin N

scale b4 2 >

where DDFpnax and DDFin parameters constitute the range bounds, Zn: [m] is a location parameter at which the average
value of the DDF range is obtained, and the scale parameter [m] controls the smoothness of the DDF transition along Z.
Equation (3) is hereinafter referred to snow, but due to Eq. (2) holds also for ice. The current version of the model does not
consider either sublimation or meltwater refreezing, nor does it distinguish between debris-free and debris-covered glaciers.

To counteract overparameterization issues, 4 of the 6 interdependent parameters were set a priori. Specifically, 7, was

assumed to be equal to 0 °C (e.g., Schaefli et al., 2005, 2014), Zy, and scale were set at 5000 and 50 m, respectively, to
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mimic the threshold tested by Kayastha et al. (2020), and finally k. was set at 1.3, following field experiments by Singh et
al. (2000) in a nearby glacier. DDFgnow,max and DDFnow,min parameters were obtained through calibration. This specific setup,
although limiting in terms of flexibility, considers that the modelling was not constrained in this study by reference snow
dynamics data.

Ice melting is assumed to occur once the seasonal snowpack is locally depleted and refers to the fraction of the sub-basin
covered by glaciers. Melting dynamics influence the geometry, including the area, and the actual water storage of glaciers,
impacting flow generation. In this study, a static glacier module was firstly considered, without simulating changes in area
and volume (e.g., Terink et al., 2015; Nepal et al., 2017; Gao et al., 2017; Laha et al., 2023). To deal with the assumption of
infinite ice storage (e.g., Schaefli et al., 2005, 2014; Savéan et al., 2015; Pohl et al., 2015), the model was constrained to
glacier mass balance data (e.g., Konz and Seibert, 2010; Jost et al., 2012).

To provide a more realistic conceptual representation of the process, a simplified dynamic glacier module was also tested as
a variant. Several formulations have been proposed to simulate glacier evolution with relatively simple representations
within hydrological models (e.g., Huss et al., 2010; Wortmann et al., 2019). The use of a volume-area (V-A) scaling
relationship can be particularly practical since it directly considers estimates of ice melting to reproduce extent changes for a
large set of glaciers (e.g., Luo et al., 2013; Lutz et al., 2013; Su et al., 2016; Van Beusekom and Viger, 2016; Valentin et al.,
2018; Chen et al., 2018; Cui et al., 2023; Nunchhani et al., 2024). Here, a novel implementation of the V-A scaling
relationship was adopted at the sub-basin scale and applied with parameters set to global values from literature. The dynamic

glacier module is described in Appendix A.

2.6 Datasets consistency analysis and precipitation adjustment

A preliminary data assessment revealed a significant water budget imbalance, with streamflow and AET far exceeding
precipitation and glacier melt. Focusing on ERAS5-Land precipitation and CWC streamflow data, the runoff-to-precipitation
ratio at the annual scale ranges between 0.78 and 1.33, except for water year 2014 when it is slightly greater than 2. This
spurious value may be related to the disastrous flood of June 2013, with observed streamflow resulting persistently high even
in the months following the event. For this reason, streamflow data in water year 2014 were excluded from the analysis.

Similar inconsistencies between precipitation and streamflow data have been described in previous works in Himalayan
basins (e.g., Lutz et al., 2014; Savéan et al., 2015; Li et al., 2020; Ghatak et al., 2018; Shafeeque et al., 2019; Saddique et al.,
2022; Miao et al., 2024), while Goteti and Famiglietti (2024) attributed the observed imbalance in Indian basins to
underestimation in precipitation datasets rather than to change in basin water storage, inter-basin groundwater flow, and
anthropogenic influences. Streamflow measurements (together with other water budget terms) are typically assumed as a
benchmark, and precipitation is adjusted for biases (e.g., Duethmann et al., 2013, 2015; Lutz et al., 2014; Savéan et al., 2015,
Wortmann et al., 2018). Explicit correction parameters for precipitation input are commonly applied in hydrological

modelling in high-altitude regions, also to consider bias due to gauge undercatch and limited representativeness, as well as
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further implicit adjustment of meteorological forcings occurs through the tuning of altitudinal gradients (e.g., Mayr et al.,
2013; Van Beusekom and Viger, 2016; Wang et al., 2021; Ruelland, 2024).

Here, different systematic error structures were assumed and lumped parameters were estimated simultaneously with those
of the hydrological model. The proposed approaches are parsimonious but omit the spatial and temporal bias variability
typical of precipitation data, as well as they are ineffective in the case of missing (or severely underestimated) events in the
meteorological dataset.

First, the use of a multiplicative, time-invariant coefficient CF was considered for adjusting precipitation:
Pagj1 = CF- P 4)

In a second case (Pagj2), seasonal CF values were assumed for two different 6-month periods (i.e., from May to October and
from November to April), which include summer monsoon and western disturbance systems respectively.

As a third alternative, a two-parameter, time-invariant adjustment formulation was used (e.g., Bannister et al., 2019):

P,gj3 = CFco - PCFEXP ®)

2.7 Calibration setup and evaluation strategy

Warmup, calibration, and validation periods cover water years 1999-2000, 2001-2014, and 2015-2020, respectively. The
calibration period was set to approximately match the time coverage of the glacier mass balance data. In the comparison
between observed and simulated streamflow, 2014 was excluded as explained above.

A multi-variable and multi-response objective function (Efstratiadis & Koutsoyiannis, 2010) was defined to summarizes the
features that the model should best fit with respect to the given data (e.g., van Tiel et al., 2020). Specifically, four
performance metrics were aggregated into a scalar function, and a single-objective global optimization algorithm was
applied, the Covariance Matrix Adaptation Evolution Strategy (Hansen et al., 2003). Despite some disadvantages
(Efstratiadis & Koutsoyiannis, 2010), such an embedded multi-criteria calibration approach is widely used (e.g., Gao et al.,
2017; van Tiel et al., 2018; Mei et al., 2023), adopting suitable weights for an acceptable trade-off in the simulation of the
individual components of interest. In this regard, the practice of weight refinement during optimization tests was followed
here (e.g., Viviroli et al., 2009; Tarasova et al., 2016; Sleziak et al., 2020; Ruelland, 2024).

The model calibration was developed considering the following scenarios:

- Scenario | (baseline): the model was calibrated against reference streamflow (considering two metrics, one of
which is specific for high flows in terms of annual peaks), AET and glacier water loss data simultaneously,
adopting the static glacier module and the multiplicative, time-invariant precipitation adjustment (Pag,1).

- Scenario 2: same as in 1, but the model was not calibrated for glacier water loss, with the latter not being simulated.

- Scenario 3: same as in 2, but the model was no longer calibrated against reference AET.
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- Scenario 4: same as in 3, but only one metric was considered in the calibration against reference streamflow,
excluding the specific one for peak flows.

- Scenario 1B: same as in 1 but considering different coefficients for precipitation adjustment depending on the
period of the year (Pagj2).

- Scenario 1C: same as in 1 but considering a two-parameter, time-invariant approach for precipitation adjustment
(Padi3)-

- Scenario 1D: same as in 1 but considering the dynamic glacier module based on a V-A scaling relationship
(Appendix A).

In Scenario 1 (and its variants 1B, 1C, and 1D), the overall objective function @ to be minimized therefore involves a

weighted combination of four efficiency indices ¢;:

@ =%, wi(1-¢y), (6)
¢1 = KGE, (7
¢, = 1— APFB, ®)
§s = 1 — el )

_ 2:J'lnvlvj,sim_IMVj,refl
TjIMV; rer ’

$y=1 (10)

KGE is the Kling-Gupta efficiency index (Gupta et al., 2009), computed between observed and simulated streamflow, while
APFB is the annual peak flow bias proposed by Mizukami et al. (2019). AETm and AET. indicate the simulated and
reference AET volume at basin scale, while IMV,im and IMV, r are the simulated and reference glacier-sourced meltwater
volume for the j-th sub-basin aggregate. In the following, the terms ¢», @3, and ¢4 are more intuitively referred to as Effaprs,
Effaer, and Effimy, respectively. The weights vector w is equal to [0.65, 0.1, 0.1, 0.15]. In Scenarios 2, 3, and 4, Effimv,
Effaer, and Effaprs were progressively omitted from the objective function during calibration (see Tab. 1). Then, ice melting
was not modelled in these alternative scenarios. This is motivated by i) the difficulty in realistically reproducing the process
without using specific constraints (mainly due to underestimation of precipitation), and ii) the small glacier-sourced supply
in the water budget at basin scale. The same 13 parameters are calibrated in all scenarios, except in 1B and 1C which have a

different formulation for precipitation adjustment.
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Scenario
1 2 3 4 1B 1C 1D
Calibration criteria ~ KGE X X X X X X X
Effarrs X X X X X X
Effaer X X X X X
Effimv X X X X
Glacier module Static X X X
Dynamic X
None X X X
Precipitation bias Pagi1 X X X X X
adjustment Pagin X
Pagj3 X

Table 1. Scenarios configuration.

Other performance metrics were also considered for the evaluation of modelled streamflow (see Sect. 3.2). Specifically, the
three components of KGE index were analysed, i.e., the Pearson correlation coefficient r, and the ratios osim/oobs and fisim/tobs,
where osim and usim are the standard deviation and the mean of simulated streamflow, while ops and zops are those of observed
streamflow. Then, the KGE index based on a root squared transformation of streamflow time series (KGEg,) was assumed
informative for average flow conditions (Garcia et al., 2017), while the inverse transformed streamflow (KGEi,) was
considered to emphasize low flows (Santos et al., 2018). In addition, to overcome the effect of streamflow seasonality on the
performance metrics (e.g., van Tiel et al., 2020) and give even more relevance to the high flow regime, KGE index was
recalculated considering only the monsoon period from June to September (KGEjas). Finally, the well-known Nash-
Sutcliffe efficiency index (NSE) was computed. Furthermore, the internal model behaviour was assessed in terms of reliable

spatiotemporal patterns and reasonable representation of the hydrological processes (see Sect. 3.3).

3 Results
3.1 Calibration and validation analysis

The values of the calibrated parameters in the different scenarios are reported in Tab. S1 in the Supplement, whereas Tab. 2
shows the efficiency indices in the objective function evaluated during the calibration and validation periods.

In the calibration phase, the baseline scenario produced an acceptable KGE of 0.88, which progressively improved up to 0.91
moving along Scenarios 2-4, due to the reduction of the competing criteria. Regarding the baseline variants, the more
realistic representation of glacier dynamics in Scenario 1D did not increase the KGE. Conversely, a more flexible adjustment

of precipitation was able to improve the streamflow simulation. Specifically, the precipitation adjustment that includes two
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seasonal parameters (Scenario 1B) provided a KGE equal to 0.90 and enhanced the glacier melting simulation, whereas the
adoption of a more complex structure in Scenario 1C resulted in the largest KGE (0.93), at the expense of the other objective
metrics.

In the validation phase, KGE decreased overall, following a similar behaviour between scenarios with some exceptions.
Scenario 1D performed better than Scenario 1 and both outperformed Scenario 2. Scenario 1B - and not only 1C - showed
higher KGE than Scenarios 3 and 4, despite the greater relative weight of this metric in the latter during calibration. The
improvements in streamflow across the different scenarios obtained during the calibration phase but not confirmed in the
validation one (Scenarios 2-4) can be indicative of a poor representation of physical processes and hydrological behaviour of
the basin when additional data are not considered for parameter tuning.

Furthermore, during calibration, the model captured almost perfectly both the mean annual peak flow and the reference AET
volume, if the Effaprg and Effagr metrics were incorporated into the objective function. Otherwise, AET was underestimated,
due to a smaller adjustment in precipitation (Scenarios 3 and 4). Effaprs showed a value of 0.94, with an overestimation of
mean annual peak flow, when not integrated in the calibration (Scenario 4). In the validation phase, a worsening of Effaprs
and, to a less significant extent, of Effagr was generally observed. In Scenario 2, Effaprs was lower than in Scenario 1,
despite the greater relative weight during calibration. Scenarios 1B and 1C also performed worse than the baseline, whereas
Scenario 1D had a slightly higher Effaprs, resulting lower than Scenario 3 only, where the criterion for peak flows had its
maximum relative weight in calibration. In Scenarios 3, 1B, and 1C, the model slightly underestimated the mean annual peak
flow during the validation period, whereas in the other scenarios an overestimation was observed.

The efficiency index for the glacier stored water loss, Effivy, has a higher relative complexity since it incorporates spatially
explicit information on 3 sub-basin aggregates, whereas in the model only 2 lumped parameters were calibrated to reproduce
snow and ice melt dynamics at different altitudes. Nevertheless, in the scenarios where glacier melting was simulated,
efficiencies ranged from 0.982 to 0.995, thus capturing the independently estimated and spatially variable stored water loss
during calibration.

Regarding precipitation adjustment, an increase of 29% was achieved in Scenario 1 (and similarly in 1D). In Scenario 2,
where the omitted contribution of glacier melt had to be compensated, this correction was slightly higher (32.5%), while in
Scenarios 3 and 4 it dropped to just over 20%, no longer being constrained to support the reference AET volume. In Scenario
1B, winter precipitation, which mainly occurs as snowfall due to western disturbances and represents a more significant
contribution at high altitudes, increased compared to summer precipitation (53% vs 16%). Scenario 1C enhanced hourly
precipitation below approximately 1.4 mm and decreased the higher rates, which are more common in the valley areas
during the ISM. Therefore, precipitation adjustments suggest that the underestimation is not primarily related to monsoon
rainfall, particularly for the more intense events identified in the coarse scale meteorological dataset.

PET was estimated to be generally close to ET in scenarios having calibration constrained against AET. The exception was
Scenario 1B, where the seasonal precipitation adjustment involved a reduced water input in the summer months resulting in

lower soil water content, with the latter modulating the AET-to-PET ratio. This translated in a higher evapotranspiration
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demand (which is at its maximum in the ISM period) to provide an AET volume equal to the reference. In Scenarios 3 and 4,
without constraints, the model underestimated both PET (reduced by approximately 40%) and AET (35%) and its ability to
capture this process was limited by the bias in precipitation not corrected sufficiently.

The parameters used in the snow and glacier modules assumed consistent values between the different scenarios in which ice
melting was simulated, i.e., Scenario 1 and its variants, with DDF g,y varying approximately between 2.5 and 3.8 mm °C™' d
! depending on altitude, according to Eq. (3). In the other scenarios, these values significantly increased (on average from 4.3
to 8 mm °C! d! depending on altitude), with the accelerated snow melt functional to an effective reproduction of the rising
limb of the seasonal hydrograph (see Sect. 3.2). Furthermore, the enhancement of melting factors compensated for
occurrences of modelled snow accumulation at high altitudes due to a locally low positive degree-day sum.

Finally, the remaining parameters operate in the processes of runoff generation, convolution at sub-basin outlet, and
propagation in the downstream network. The complex interactions of these processes make it more difficult to identify
parameters across scenarios, which does not exclude the possibility of equifinality issues. However, a particularly fast
response time generally emerged in the surface runoff convolution, as shown by the low values of calibrated parameter yciun

(Tab. S1), which appears compatible with the river network flashiness due to the steep slopes.

Scenario
Period ®
1 2 3 4 1B 1C 1D
CAL KGE 0.882 0.894 0.907 0.911 0.904 0.930 0.878

Effaprs 1.000 | 1.000 | 1.000 | 0.940 | 1.000 | 0.999 | 1.000
Effaer 1.000 | 1.000 | 0.651 0.642 | 1.000 | 0.999 | 1.000
Effimy 0.993 0 0 0 0.995 | 0.982 | 0.993
VAL KGE 0.828 | 0.823 | 0.856 | 0.860 | 0.873 | 0.918 | 0.831
Effarrs 0.966 | 0.955 | 0982 | 0935 | 0.952 | 0.951 0.968
Effarr 0.998 | 0.998 | 0.648 | 0.640 | 0.999 | 1.000 | 0.998

Table 2. Efficiency indices considered for the objective function, during the calibration (CAL) and validation (VAL) periods, for
the different scenarios. In bold the values of the metrics optimized during the calibration.

3.2 Streamflow

Additional performance metrics provided complementary information on the model’s ability to reproduce observed
streamflow at the outlet (Tab. 3). The simulated streamflow tends to have a larger variability than the observed one in the
validation phase, whereas all scenarios maintain a very low bias in terms of mean streamflow. In Scenarios 1B and 1C, the
more complex precipitation adjustments better address streamflow bias issues. The omission of the glacier melting process
(Scenarios 2-4) coincides with the largest overestimation of the mean streamflow in validation. The slight improvement in

KGE in Scenario 1D compared to the baseline is attributed to the two bias terms being close to the target value, also due to
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the glacier shrinkage resulting in lower ice melt volume. NSE follows similar patterns to KGE, albeit with lower values. The
model does not present criticalities in reproducing the average flow conditions (with KGE higher than 0.90 and 0.89 during
calibration and validation, respectively), but rather in the monsoon period (KGEjjas) and, to a lesser extent, in the low flow
regime (KGEi). Regarding the latter, both modelling choices and calibration strategies were aimed to capture high flow
conditions, and despite this, KGEi,y not lower than 0.77 and 0.81 was achieved during calibration and validation,
respectively. Nevertheless, performances during the monsoon are less accurate, with a larger decrease in the validation
period than that of the KGE over all seasons. The use of additional data in the calibration framework appears more
penalizing on the KGE than in the overall period, while the selection of the precipitation adjustment scheme results to be
more effective: for example, in the validation phase, when switching from Scenario 1 to 1C, the efficiency index changes
from 0.60 to 0.80.

Such localized shortcomings appear to be attributable to two factors. The first is errors on individual events not well captured
in the precipitation dataset, for example during the transition from the pre-monsoon to the monsoon periods (May-June). The
second is a delay in the reproduction of the rising and falling limbs of the hydrograph on a seasonal scale, which depends on
the modelling scenario. Figure 2 presents observed and simulated streamflow time series for the baseline scenario, for which
both issues can be detected, whereas Fig. 3 shows the corresponding empirical cumulative distribution functions and
scatterplots. The model provides a quite good streamflow reproduction both for calibration and validation periods (Fig. 2)
and adequately captures the distribution of observed values (Fig. 3a and 3c), especially in calibration and in any case
reproducing well the maximum ones (as also quantified by the Effaprs index). However, the scatterplots (Fig. 3b and 3d)
highlight a concentration of systematic deviations in specific streamflow ranges, attributable to delays in the simulation in
the onset and end of the monsoon season. In this regard, the role of modelling setup is shown in Fig. S5 and S6 in the
Supplement, for Scenarios 1-4 and for the variants of Scenario 1, respectively. The systematic shift does not emerge
significantly in Scenarios 3 and 4, where the calibration was only against streamflow. In Scenario 1, the constrained
modelling of glacier melt leads to lower DDF values, as shown in Tab. S1, i.e., snow melting is slowed down to maintain
snowpack coverage, whereas the observed streamflow begins to increase seasonally in a way that cannot be supported by
simultaneous rainfall inputs alone. Of all the scenarios where glacier melting is modelled, in 1C no temporal shift in
streamflow is evident, due to the greater flexibility of the precipitation adjustment scheme in modulating the inflow
distribution. In Scenario 2, a residual delay can still be noticed in the simulated streamflow, where supporting an increased
AET results in a different partition between surface and subsurface runoff compared to Scenarios 3 and 4. More specifically,
there is a lower and delayed production of baseflow, with the latter being more effective in capturing the seasonal cycle in
observed streamflow than the surface component. This is due to the model’s tendency to maintain water availability in the
topsoil storage to meet the higher evapotranspiration demand, which also implies increased surface runoff generation during

monsoon rains.
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Period Metric Scenario
1 2 3 4 1B 1C 1D

CAL r 0.885 | 0.895 | 0.907 | 0.911 | 0.905 | 0.930 | 0.882
Osim/Oobs 1.021 1.011 | 0.996 | 0.996 | 1.002 | 1.001 1.015
Usim/Mobs 0.987 | 0.990 | 0.999 | 1.002 | 0.987 | 1.006 | 0.975
KGEsqr 0912 | 0.921 | 0931 | 0934 | 0.924 | 0946 | 0.907
KGEiny 0.780 | 0.783 | 0.792 | 0.783 | 0.788 | 0.872 | 0.777
KGEjjas 0.707 | 0.735 | 0.766 | 0.777 | 0.760 | 0.814 | 0.699
NSE 0.765 | 0.788 | 0.815 | 0.823 | 0.809 | 0.860 | 0.759

VAL r 0.885 | 0.896 | 0915 | 0918 | 0.905 | 0.929 | 0.880
Osim/Gobs 1.127 | 1.142 | 1.113 1.109 | 1.083 1.041 1.119
Usim/ thobs 1.015 1.026 | 1.027 | 1.027 | 1.003 1.001 1.000
KGEqq 0.891 | 0.896 | 0.920 | 0.926 | 0.917 | 0.940 | 0.890
KGEiny 0.815 | 0.830 | 0.841 | 0.832 | 0.830 | 0.892 | 0.810
KGEjas 0.597 | 0.601 | 0.680 | 0.690 | 0.678 | 0.800 | 0.591
NSE 0.724 | 0.742 | 0.797 | 0.805 | 0.787 | 0.850 | 0.718

410 Table 3. Complementary performance metrics for the analysis of streamflow simulation, during the calibration (CAL) and
validation (VAL) periods, for the different scenarios.
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Figure 2: Time series of observed (grey) and simulated (red) streamflow obtained for Scenario 1, in calibration (a) and validation
(b) periods. Represented data are normalized with respect to the maximum observed streamflow value.
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Figure 3: Comparison between observed (green) and simulated (red, dotted) streamflow obtained for Scenario 1, in terms of
empirical cumulative distribution function in calibration (a) and validation (c), and scatterplot in calibration (b) and validation
420  (d). Represented data are normalized with respect to the maximum observed streamflow value
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3.3 AET, glacier melting, and water budget assessment

The model was able to reproduce AET in terms of overall volume at the basin scale, when reference data are considered in
the calibration. Figure 4 presents monthly timeseries of simulated and reference lumped AET for Scenario 1, showing a good
agreement with a root mean square error equal to 3.3 mm month™'. Figure 5 illustrates spatial distributions of mean annual
425 AET at sub-basin and pixel scales for MISDc-2L and GLEAM data, respectively. AET patterns are consistent, although the
reference dataset is characterized by slightly greater variability in magnitude between headwaters and downstream areas
compared to the hydrological model. This can be attributed to transitions in land cover from snow- or ice-dominated to
vegetated surfaces, which are considered in GLEAM and not in the hydrological model (the latter being based on a lumped

parameter to compute PET from ET)).
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Figure 4: Comparison between simulated (in red) and reference (in blue) monthly AET data at basin scale in the study period for
Scenario 1.
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Figure 5: Comparison between simulated and reference mean annual AET in the water years 2001-2020, for Scenario 1.
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A similar additional analysis was also performed for glacier melt, where reference data are available only in the calibration
period and on a spatial scale consisting of three sub-basin aggregates. Table 4 reports reference and simulated glacier water
loss data, for Scenarios 1 and 1D. The sub-basins outlined here were aggregated as per Bandyopadhyay et al. (2019),
considering in addition also the small glaciers in the middle course of the Alaknanda River, between the confluence with
Dhauliganga and that with Pindar rivers. Compared to the reference, the model accurately reproduces water loss volumes,
with a non-negligible deviation only in the Pindar River basin, although consistent with the uncertainty value (about 60
Mm?) locally indicated in Bandyopadhyay et al. (2019). This may be partly related to the formulation adopted for Effpy,
which focuses on absolute and not relative errors, and therefore favours accuracy on sub-basin aggregates with higher ice
melt volume within lumped parameters calibration. The model calibrated from the geodetic glacier mass change over the
period 2000-2014 was used to reconstruct an annual distribution of stored water losses (Fig. 6), with ice melting which
overall shows considerable interannual variability. A model-based representation of the spatial patterns of glacier stored
water loss was also provided, in terms of cumulative volume over the study period (Fig. 7). Overall, high heterogeneity in
the estimated glacier melt contribution to streamflow is observed, due to the variability in snowpack dynamics and
temperature conditions, as well as in glaciated areas distribution.

Scenario 1D reproduces the glacier runoff contribution in the period and areas involved in the calibration with
spatiotemporal patterns similar to those of the baseline scenario, while elsewhere the dynamic module returns lower glacier
loss estimates (Tab. 4). During the validation period, overall changes in glacier extent result in an 8% reduction in meltwater
compared to the baseline scenario. At the basin scale over the 2001-2020 period, the simulation provides a reduction in
glacier areas of about 62 km?, with a variation of the ice-covered fraction equal to 0.7% (from 12.1% to 11.4% of the total
basin area). This decrease varies in the different sub-basins, exceeding 1.7% in some cases.

The modelled glacier melting for the validation period was compared with previous studies. Here, for the baseline scenario,
the simulated water loss rate at basin scale is higher in the calibration period (614 Mm?® y™! on average) in comparison to the
validation one (580 Mm?® y™'), mainly due to variations in the Upper Alaknanda River basin (from 128 to 102 Mm? y!). This
can be explained by the difference in temperature conditions in the high-altitude areas of the basin and especially in the
north-western part (Fig. S7 in the Supplement). However, according to satellite-based analysis (Bhambri et al., 2023;
Bhattacharya et al., 2023), in the same area the rate of glacier mass loss observed in the period 2015-2020 appears to have
increased significantly compared to 2000-2015. Similarly, an acceleration in glacier retreat was also detected in the
Dhauliganga River basin between 2013-2020 compared to 2000-2013 (Singh and Pandey, 2024). These discrepancies
highlight the limitations of a simplified and large-scale modelling of glacier dynamics, which, although functional for
hydrological purposes, did not appear in validation to be able to reproduce as accurately the remote sensing observations

already captured in calibration.
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Period | Data Sub-basin aggregate
Upper Middle
Dhauliganga Pindar
Alaknanda Alaknanda
CAL Model - Scenario 1 1796 5037 1017 740
Model - Scenario 1D 1795 5030 1014 612
Geodetic reference 1795 5037 965 N/A
VAL Model - Scenario 1 614 2094 461 310
Model - Scenario 1D 577 1995 436 183
470 Table 4. Glacier water loss data in Mm?, for Scenarios 1 and 1D.
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Figure 6: Annual distribution of simulated glacier water loss, for different sub-basin aggregates according to Scenario 1.
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Figure 7: Simulated glacier melting in the water years 2001-2020 at sub-basin scale, attributed to the glacier areas represented
therein, for Scenario 1.

Additional information on the spatial patterns of the simulated streamflow is reported in Fig. S8 in the Supplement, showing
the highly variable distribution of runoff coefficient and generation at sub-basin scale, with maximum runoff coefficient at
mid-altitudes (where streamflow is enhanced by increased ice melt, in conditions of low PET) and minimum streamflow
generation at the extreme altitudes (due to low precipitation). Then, Fig. 8 summarises the analysis of the modelled water
balance at the basin scale, for the baseline scenario. The following formulation has been considered for the water balance:

R+ S¢ + Imeit — Qbase = Qsurf — AET = ASsoi + ASsnow » (11)

where terms include adjusted rainfall (R) and snowfall (Sy), ice melting (/meit), subsurface (Qvase) and surface (Qsur) runoff,
AET, and changes in soil (ASsi) and snowpack (ASsow) Water storages. Net of a certain interannual variability, the study
period showed an annual mean of around 1980 mm of adjusted precipitation (through a 29% increase), of which more than
75% as rainfall. Simulations outflows are about 1575 and 435 mm per year on average for streamflow and AET,
respectively. The water balance closes with approximately 70 mm of modelled glacier melting and 40 mm of snowpack
accumulation (the latter due to some areas in ERAS5-Land dataset with low positive degree-day sum). The variation of

simulated soil water storage over the study period is almost zero. Finally, Fig. 9 shows the seasonal variability of both
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rainfall, snow and ice melt inputs, and AET, subsurface and surface runoff outputs of the hydrological system. It emerges the

well-known ISM-driven rainfall and runoff seasonal patterns with peaks in July and August. Furthermore, the model shows

that ice melt mainly occurs between July and September with the maximum in August, and snow melt generates the

maximum water input in June and July, while in May (before the onset of the monsoon) it provides a contribution

approximately equivalent to that of rainfall.
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Figure 8: Simulated water balance for the study basin, according to Eq. (11), for Scenario 1.
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Figure 9: Monthly distribution of subsurface (Qpase) and surface (Qsurf) runoff generation, AET, snow melting (Smer), ice melting
(Imett), and rainfall (R), at basin scale over the study period, for a selection of scenarios (from left to right: 1, 1B, 1C, and 4).
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4 Discussion
4.1 Precipitation errors

Errors in hydrological model forcings, particularly in precipitation data, are confirmed as main limiting factors in predictive
skills and processes understanding (e.g., Lundquist et al., 2019; Tang et al., 2023; Wang et al., 2024). In the study area,
precipitation is originated by different weather systems during the year, whose interactions with the highly rugged
topography give rise to complex and difficult to capture generation mechanisms. Although meteorological models are a
viable option for hydrological input in complex mountainous terrain (Lundquist et al., 2019), orographic rainfall and
snowfall remain difficult to simulate (e.g., Viviroli et al., 2011; Azam et al., 2021), thus also limiting the evaluation of the
representation of high-elevation processes in hydrological models. At the same time, the latter may be used to benchmark the
quality of meteorological forcings for hydrological applications (e.g., Duethmann et al., 2013; Evin et al., 2024).

Here, precipitation data were adjusted using different parsimonious formulations, with increasing flexibility resulting in
improved hydrological performance. Scenario 1C, adopting a two-parameter formulation, showed the best results in terms of
streamflow, together with a consistent representation of the underlying processes. Model-derived indications can be drawn
regarding possible systematic errors of the ERAS-Land data within the study basin. Simulations suggest that precipitation
required an average increase of nearly 30%, with the model tending to attribute this underestimation to winter and/or low
intensity data, rather than to the high summer rainfall that mainly affects the valley areas. In this sense, more flexible
precipitation adjustments (Scenarios 1B and 1C) as well as calibration based only on streamflow (e.g., Scenario 4) tend to
reduce the inflow in the months from July to September compared to the baseline scenario (Fig. 9). Although these
corrections may be affected by compensation for model errors, the results are consistent with the ERAS5-Land validation
analyses described in Sect. 2.2 and with other studies indicating more generally larger precipitation biases in winter and at
higher altitudes (e.g., Shafeeque et al., 2019; Pritchard, 2021; Saddique et al., 2022).

While more complex and targeted bias adjustment schemes could be beneficial, such systematic corrections are not effective
on heavy rainfall events that were not well detected in the coarse meteorological dataset, and that proved to be detrimental
on hydrological prediction in high flow regime. It is noteworthy that these coarse scale errors are generally not corrected by
statistical downscaling methods (typically employed in hydrological studies over the more demanding dynamical ones),
since they do not consider the non-stationarity of spatial precipitation patterns (e.g., Lundquist et al., 2019), particularly at
the storm-specific time scale. Finally, input errors not only impact hydrological performance but also the behaviour of the
conceptual model. The latter is expected to compensate for inaccuracies in precipitation (e.g., Magnusson et al., 2011;
Duethmann et al., 2013; van Tiel et al., 2020; Tang et al., 2023), erroneously adjusting the parameters and misrepresenting
underlying processes. For example, the possibility of missing or underestimated rainfall events during the transition from the
pre-monsoon to the monsoon periods was highlighted in Sect. 3.2, that can be compensated by the model through accelerated

snow melt (Scenarios 2 to 4, where snowpack dynamics are not constrained against glacier loss data).
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4.2 Hydrological model skills and value of additional calibration data

The proposed conceptual model, with limited data requirements and complexity and tailored to represent specific hydrologic
conditions, was combined with a multi-variable calibration strategy and tested in a representative basin in the Indian
Himalayas. The use of non-physical parameters, while on the one hand can increase the flexibility in simulating target
outputs, on the other hand can hinder reproduction of the internal processes. In this sense, the model was expected to
compensate for errors, simulating the streamflow dynamics well but without implicitly capturing other fluxes, unless they are
used as constraints. Therefore, supplementary multi-variable data derived by advanced modelling and remote sensing were
considered to overcome limitations in the conceptualization of processes, as well as to handle potential biases in precipitation
forcing. However, a more realistic representation of internal processes may have some negative effects on streamflow
simulation. Different scenarios (1-4) were therefore analysed to explore the role of constraining data for model calibration
and to characterize the benefits and trade-offs in performance.

Similarly to other studies (e.g., Mayr et al., 2013; Finger et al., 2015; Tarasova et al., 2016; Chen et al., 2017a; Zhang et al.,
2025), the use of additional variables led to a reduction in streamflow performance metrics, which was largely offset by
improvements in underlying process characterization. The latter were both in terms of accuracy in the representation of
individual processes, with AET being underestimated when not constrained, and prevention of internal process
compensation, with glacier melting otherwise appropriately switched off due to the underestimation of precipitation. It is
noteworthy that there are few hydrological studies in cold environments that integrate AET into the calibration (van Tiel et
al., 2020), although it is a significant component of the water budget for basins in the monsoon regime (e.g., Fugger et al.,
2024).

Specifically, in Scenarios 1 and 2, although few lumped parameters were optimized, a satisfactory representation of
magnitude and patterns of AET (both scenarios) and glacier storage change (Scenario 1) was obtained during calibration
period, proving that the model structure was able to accommodate this additional information. While the reference AET was
also captured in validation, for glacier water loss the simplified approaches did not reproduce the increasing rates retrieved
from satellite data in other studies, and which have no correlation with temperature in the meteorological dataset (see Sect.
4.2.1). However, the impact of this error on streamflow at the basin scale remains marginal. This acceptable reproduction of
AET and glacier loss was found to potentially hinder the simulation of significant streamflow characteristics, such as the
timing of rising limb in the seasonal hydrograph. Specific modelling issues behind this shortcoming are commented in Sect.
3.2. Furthermore, since melting dynamics are influential on the seasonal hydrograph (e.g., Mackay et al., 2018), possible
inadequacies in the conceptualization of the process, in the attribution of a priori parameters and in the spatialization of the
forcings may have played a role. The effect of data inconsistency cannot be ruled out either, with calibration criteria
directing the model to compensate for them in a competitive manner. However, using a two-parameter, time-invariant
precipitation adjustment formula (Scenario 1C) was sufficient to adequately reproduce the seasonal hydrograph together with

additional reference data. Finally, in Scenarios 3 and 4, the model simulated well the streamflow response, but having
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omitted the contribution of glacier melt and significantly underestimating AET due to a poor precipitation adjustment. These
latter scenarios are therefore not indicative for understanding the basin behaviour and for correctly quantifying the main
terms of the water balance. It should be noted that these are the only scenarios in which the calibration returns a parameter —
related to the processing of model forcings — that collapses to the boundaries of the range (Tab. S1).

Overall, despite the inherent data uncertainties and the simplified processes conceptualization, the model has shown potential
to reproduce several key features of the streamflow dynamics. In this regard, the magnitude of the average annual flood
peaks was well simulated, which is not trivial in the Himalayan basins (e.g., Singh et al., 2016b; Khadka et al., 2020; Wang
et al., 2021; Saddique et al., 2022; Nazeer et al., 2022). Specifically, the efficiency index used for flow peaks does not drop
below 0.94 between calibration and validation, even in the Scenario 4 where it was not integrated into the objective function.
Ultimately, the assumptions underlying the hydrological modelling are supported to some extent by the overall satisfactory
performances, while the calibration experiments indicate to properly evaluate the modelling configuration, also considering

pros and cons of adding specific data and processes in relation to the application objectives.

4.2.1 Glacier water loss simulation

The probable discrepancy between modelled and observed rate of glacier mass loss during validation period may be due to
inaccuracies in climate forcings, oversimplification in melting conceptualization relying on temperature-based approach, as
well as the control of non-climatic factors, such as glacier topographic and morphological attributes (e.g., Singh et al., 2016a;
Barandun and Pohl, 2023). Focusing on modelling, not only the conceptualization itself, but also its specific implementation
(e.g., the coarse spatial resolution) played a role, including a priori setting of sensitive parameters. For example, the
threshold temperature 7y can prevent ablation regardless of the actual net shortwave radiation, which is the dominant driver
for glacier melting and could be appropriately integrated in the model (Hock, 2003, 2005), while at high altitudes the air
temperature tends to be less informative about the incoming energy inputs (e.g., Barandun and Pohl, 2023).

While on the one hand assessing glacier changes and their hydrological impacts would therefore require a more complex
representation, on the other hand ice melt remains a minor component of streamflow in the study basin (Fig. 8-9). Here, two
simplified and parsimonious conceptualizations were implemented to simulate glacier-sourced runoff. The first one
considers static glacier areas, while in the second one an analytical implementation of the V-A scaling relationship was
proposed, suitable for hydrological modelling and not computationally and data demanding. Similar to other studies (e.g.,
Naz et al., 2014; Duethmann et al., 2015; van Tiel et al., 2018; Tsuruta and Schnorbus, 2022), using a static or dynamic
approach was found to have limited impact on reproducing the observed streamflow, due to the low ice-covered fraction and
glacier-sourced runoff contribution in the study basin, in addition to the relatively short simulation period which limits the

effect of glacier changes.

25



600

605

610

615

620

625

https://doi.org/10.5194/egusphere-2025-4933
Preprint. Discussion started: 15 October 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

4.3 Local hydrological insights: comparison with other studies

The model performed satisfactorily especially under average flow conditions (reported via KGEy index) and adequately
represented the dominant underlying processes, with outcomes that can be considered plausible within modelling
simplifications and assumptions made on data accuracy. In this perspective, this modelling study contributes to the
understanding and prediction of basin response in the region of interest. Calibration against multiple independent data
sources allowed to obtain reliable and significant hydrological insights, for example in terms of water partitioning and inter-
seasonal redistribution of precipitation contributions to streamflow. It is noteworthy that the basin area corresponds to a scale
(~10° km?) which is challenging to investigate in water balance studies, because this intermediate dimension is particularly
exposed to observational gaps and significant uncertainties (Dorigo et al., 2021; Hoeltgebaum and Dias, 2023), as well as a
20-year modelling analysis on an hourly scale is not commonly performed, since studies using this temporal resolution
typically cover shorter periods (van Tiel et al., 2020).

The hydrological results are consistent with those of other multi-year simulations available in literature and carried out on
the largest Alaknanda River basin at the confluence with the Bhagirathi River (e.g., Singh et al., 2023b; Rautela et al., 2023a,
2023b; Kavya et al., 2025). The performances are not superior to those obtained here, despite the more complex modelling
of some processes, as well as difficulties were encountered in capturing some peaks and recession limbs in the hydrograph.
In Kavya et al. (2025), the fully distributed physically based WATFLOOD model was used to simulate the surface runoff
data from the ERAS-Land reanalysis, as an alternative to the stream gauge observations. Since the reanalysis surface runoff
is not inclusive of the glacier melt contribution, the latter was not reproduced. In Rautela et al. (2023a, 2023b), semi-
distributed conceptual models, namely SWAT and SRM, were employed to simulate processes at the scale of elevation
bands, with precipitation and temperature data spatialized via lapse rates. While snow dynamics modelling was quite
complex, the contribution of glacier melt was not considered. In Singh et al. (2023b), the fully distributed conceptual SPHY
model was used to evaluate the snow and glacier melt runoff considering observed streamflow and remotely sensed snow
cover and glacier area variations. Modelled snow and glacier melt have peaks in June-July and August-September,
respectively, thus being quite consistent with the results obtained here (Fig. 9). An indication of the temporal distribution of
the glacier-sourced streamflow is also provided in the observational study by Kumar et al. (2018b), who measured meltwater
from a glacier in the Alaknanda River basin and identified the monthly runoff peak in August. Finally, in terms of water
balance, the outcomes of our study (Fig. 8) are quite consistent with those of Rautela et al. (2023b), who quantified
streamflow and AET at 62% and 35% of the total precipitation respectively, and the contribution of snow melt ranging from
20 to 24% of the total streamflow, with the latter being split between surface and subsurface runoff in terms of 1/3 and 2/3.
The higher volumes of AET and the slightly lower contribution of snow melt compared to our study are attributable to the
greater extension downstream in the basin they considered. In Singh et al. (2023b), although rainfall is still dominant in the

streamflow generation, a very significant contribution is attributed to glacier melt (22%), which in their model
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conceptualization includes meltwater from permanent snow- or ice-covered surfaces, resulting even higher than snow melt
(14%).

The comparison with independent studies therefore supports the results obtained here in terms of characterization of water
balance components and key hydrological processes. Similarities in performance with models having more complex
conceptualizations for snow and glacier processes suggest that the simplifications adopted in this study had a limited effect
on the hydrological simulations. In this regard, the proposed modelling approach can be a useful tool for exploring the
hydrological behaviour of basins under similar conditions, providing particularly valuable insights in contexts of

observational and knowledge gaps.

4.4 Current limitations

In the current application of the model, some limitations must be highlighted, which are largely related to the scarcity and
high uncertainty of the data and could be addressed in future studies. Specifically:
- the spatial downscaling of hourly meteorological forcings was not addressed and the bias correction was performed
only for precipitation data through hydrological modelling at basin scale;
- for each variable a single dataset was considered, attributing the errors only to precipitation and neglecting other
inherent data uncertainties;
- a basic approach was used for parameter calibration, based on a single-objective function embedding multiple
criteria with a priori set weights;
- no specific solutions were implemented to remove excessive snow accumulation at high altitudes due to a locally
poor positive degree-day sum.
Regarding the first point, coarse meteorological data are typically processed to obtain higher resolution estimates consistent
with local ground observations. The latter may therefore be informative for gauge-based bias correction, as well as for
downscaling in the typical form of gauge-interpolated vertical gradients of precipitation and air temperature, recommended
due the strong impact of elevation (e.g., Immerzeel et al., 2014; van Tiel et al., 2020) but whose effectiveness in accurately
reconstructing meteorological fields at the large basin scale may be limited (e.g., Chen et al., 2017b; Yang et al., 2025).
Ground observations in the mountainous areas may be unavailable or lacking in accuracy and representativeness (e.g.,
Wortmann et al., 2018; Mishra et al., 2021; Barandun and Pohl, 2023) and do not systematically constitute an added value
compared to the meteorological model estimates (Lundquist et al., 2019). Gauge-based lapse rates are often poorly captured
due to unavailability of elevational transects and, where stations are in valley areas, are essentially extrapolated, with
significant impacts on simulations (e.g., Magnusson et al., 2011; Hegdahl et al., 2016; Wang et al., 2024). Alternatively, a
common practice in hydrological models is to calibrate or fix lumped linear gradients (e.g., Finger et al., 2015; Van
Beusekom and Viger, 2016; Wang et al., 2021; Ruelland, 2024), even though they might not reflect the actual distribution of
the considered variables (e.g., Ragettli et al., 2013; Tarasova et al., 2016). In the Himalayas, representing local elevation

dependence of precipitation is particularly challenging, due to different types of orographic controls operating at different
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scales and resulting in complex precipitation patterns (e.g., Barros et al., 2004). Observational and modelling studies (e.g.,
Singh and Kumar, 1997; Arora et al., 2006; Shrestha et al., 2012, 2019; Immerzeel et al., 2012, 2014; Baral et al., 2014;
Dabhri et al., 2016; Meher et al., 2018; Mimeau et al., 2019a, 2019b; Yadav et al., 2020, 2024; Dimri et al., 2021; Jiang et al.,
2022; Regmi and Bookhagen, 2022; Wolvin et al., 2024) highlighted the inadequacy of the assumptions of monotonic
increasing trend and linear variation, as well as significant changes in the relationship with season, precipitation type or
intensity, aspect, elevation range, and location in different mountain ranges within the basin. At the storm scale, significant
events such as cloudbursts occur mainly at altitudes of 1000-2000 m and therefore in specific and not particularly elevated
areas in the Indian Himalayas.

In this study, weather station measurements were not considered, and ERAS5-Land data with the original resolution were
used, although they are not informative on the highly variable and small-scale dynamics that would be useful to capture for
hydrological modelling of the study basin. This involved simulating the snowpack and glaciers dynamics at a very coarse
scale compared to that at which the underlying processes operate. Given the rainfall-driven runoff generation under high
flow conditions, it was hypothesized that averaging the small-scale variability of non-dominant melting processes would not
significantly affect the overall large-scale representation of the basin response. Furthermore, as stated above, widely used
downscaling methods, based on stationarity in the relationship between meteorological patterns and some predictors such as
elevation, would likely be inaccurate at hourly resolution. This is also due to the lack of data and understanding of the
underlying dynamics (e.g., difficulty in estimating a complex but reliable relationship between precipitation and altitude)
(Johnson and Rupper, 2020), as well as to the inheritance of the coarse scale errors (Fowler et al., 2007). Similarly, and more
significantly, a locally effective gauge-based bias correction could then plausibly be outweighed by the precipitation
adjustment made to address the water imbalance at basin scale.

In any case, the coarse modelling resolution did not prevent from obtaining reliable simulations and capturing the relevant
processes in the study basin, although this may also be due to the model’s ability to compensate for inaccurate forcing fields
(e.g., Magnusson et al., 2011). The model performances are expected to improve with the availability of good quality, higher
resolution distributed datasets and an adequate gauge network providing accurate observations (e.g., Bannister et al., 2019;
Evin et al., 2024), which can more effectively support the representation of processes at proper scales. In this perception, the
proposed modelling procedure may benefit from the outputs of well-configured higher resolution meteorological models
(i.e., kilometre-scale), adopting convection-permitting approaches (Lundquist et al., 2019), which rely on a finer
representation of complex landforms. They have been found to improve the simulation of diurnal cycle of precipitation (e.g.,
Ahrens et al., 2020), localized phenomena (e.g., Collier and Immerzeel, 2015; Karki et al., 2017), and extreme rainfall events
(e.g., Chevuturi et al., 2015; Karki et al., 2018) in the Himalayan regions.

Then, limitations were highlighted concerning the joint use of multiple data sources. Although it is reasonable to assume that
the main source of error comes from precipitation, uncertainties in other data should be considered, also evaluated with the
analysis of multiple datasets. More accurate data with characterized uncertainty can then be used profitably within an

appropriate multi-objective calibration framework (e.g., Efstratiadis and Koutsoyiannis, 2010). The desirable extension of
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considered datasets may also include other additional variables, primarily observations of snow dynamics, which can thus
support a modelling of more adequate complexity.

Information on observed snow patterns can not only provide a more realistic characterization of melting rates, thus
improving streamflow representation, but can also highlight possible model shortcomings. In this regard, occurrences of
excessive snow accumulation here were reduced by the DDF enhancement with elevation, thus affecting only limited areas
in 3 northern sub-basins. At the same locations, Bandyopadhyay et al. (2019) detected an increase in accumulation area ratio,
although the elevation change in the ablation zone was such as to lead to an overall negative mass balance at the basin scale.
While local occurrences could therefore be plausible, disregarding snow accumulation effects can lead to an incorrect
representation of hydrological fluxes and water balance (for example, here precipitation adjustments were also influenced by
snow dynamics). For these issues, conceptual hydrological models typically integrate ‘ad hoc fixes’ approaches (Freudiger et
al., 2017; van Tiel et al., 2020), such as artificially enhanced snow melting (e.g., Burek et al., 2020) or simplified snow

redistribution methods (e.g., Tarasova et al., 2016).

5 Conclusions

This study implemented a conceptual, semi-distributed hydrological model (MISDc-2L) to simulate the hydrological
response in the water years 2001-2020 in the monsoon-dominated, glacier-influenced Alaknanda River basin, a major
tributary of the Ganges. Specifically, a tailored and parsimonious conceptualization enhanced by using additional reference
data was tested for a reliable (as well as feasible and efficient) flood modelling. Multiple scenarios were explored, differing
in the data used to constrain model calibration, the methods applied to correct systematic precipitation errors, and the
treatment of glacier melt — whether explicitly modelled or not. Despite significant input data uncertainties — particularly in
precipitation — the model successfully reproduced key hydrological processes when constrained with multi-variable data,
namely glacier stored water loss and AET.

The analysis showed that:

- Despite its simplified and parsimonious conceptualization, the model proved capable of reproducing observed
streamflow during both the calibration and validation periods with a KGE of 0.88 and 0.83, respectively, for the
baseline scenario. These increased to 0.93 and 0.92 when using a two-parameter precipitation adjustment formula.
The model demonstrated greater reliability under average flow conditions and effectively captured significant
features of the high flow regimes. However, its performance in simulating specific flash flood events was limited,
primarily due to localized inaccuracies in the rainfall data.

- The model accurately reproduced reference estimates of glacier water loss and AET when additional data were
embedded in the calibration framework. Using multiple reference datasets enhanced the model’s ability to represent
the internal behaviour of the hydrological system; however, it also introduced trade-offs in seasonal hydrograph

estimation in some scenarios where bias in precipitation data was not sufficiently addressed.
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- Parsimonious precipitation adjustments can significantly improve streamflow simulation, by handling biases in the
original dataset. Model simulations enabled the quantification of precipitation underestimation for hydrological
applications, with the extent of such underestimation varying by season and precipitation intensity.

- Glacier melt contributes marginally to overall streamflow, but its inclusion improves internal model consistency.
Simple conceptualizations, such as temperature-driven melting combined with static or V-A scaling approaches for
glacier evolution, may be appropriate for hydrological simulations in monsoon-dominated basins. Here, reference
data available for calibration were well reproduced both in terms of magnitude and spatial patterns, but during the
validation period the model did not capture the expected increase in glacier stored water loss.

The 20-year modelling analysis yielded hydrologically consistent estimates of the main water fluxes, refined through the
integration of independent multi-variable data. This analysis enabled a deeper exploration of various aspects of the water
cycle within the study basin — capturing seasonal and spatial patterns as well as interannual variability — and contributed to
advancing process understanding in hydrologically heterogeneous, monsoon-dominated basins of the Indian Himalayas.
Overall, the study illustrates a practical modelling strategy for data-scarce Himalayan basins with similarly complex
hydrological processes, offering valuable insights for regional flood forecasting and water balance assessment. Nonetheless,
limitations persist due to coarse input data and simplifications in model structure, parameterization and calibration scheme,
with non-dominant snow and glacier processes being highly generalized in this large-scale, flood-oriented application.
Future work should focus on improving the spatial resolution of process simulation, enhancing the modelling for adequacy
and parsimony (by adding justified complexities to the conceptualization and improving the parameterization also through
sensitivity analysis), and applying multi-objective calibration techniques using uncertainty-characterized datasets — including
reference information on snow dynamics.

The availability of accurate high-resolution precipitation data remains essential to improve the predictability of high flows
during the ISM season, regardless of the complexity of the hydrological model. The inability to capture localized heavy
rainfall events constrains the use of hydrological models as predictive tools for flood forecasting and hinders progress in

understanding the hydrological response to extreme precipitation in the Indian Himalayas.

Appendix A

Volume-area (V-A) scaling is a widely used approach for estimating the total ice volume of large sets of glaciers and its
temporal changes (Bahr et al., 2015). The method is based on the following relation:

V =cAr, (A.1)
where V and A are the volume and surface area of glaciers (which can be expressed in km? and km?, respectively), y is the
dimensionless scaling exponent, and ¢ is the multiplicative scaling coefficient [km*2']. According to Bahr et al. (2015), the
scaling exponent can be fixed to a theoretical constant (y = 1.375), while the scaling coefficient is a variable. More generally,

y and ¢ can be evaluated with different approaches and at different spatial scale, which has led to a wide range of estimates
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(e.g., Radi¢ and Hock, 2010; Huss and Farinotti, 2012; Grinsted, 2013). A global mean value of the scaling coefficient ¢ =
0.034 km*2” was proposed by Bahr (1997). The impact of the error in c is reduced when the method is applied to large sets
of glaciers (Bahr et al., 2015). According to Bahr (2011), a sample size of ~100 glaciers appears sufficient and, in many
applications, far fewer glaciers may be reasonable.

The V-A scaling is often used for efficient representation of glacier dynamics within hydrological models (e.g., Lutz et al.,
2013; van Tiel et al., 2020; Yang et al., 2025), as it can be applied at the scale of large basins, requires minimal input from
readily available data, and generalises changes in glacier extent without modelling individual glaciers. Typical use in
hydrological models is based on the estimation of the volume variation on a certain time interval (e.g., Luo et al., 2013;
Valentin et al., 2018; Pesci et al., 2023), from the area at the beginning of the period and the subsequent ice melting or
accumulation (in practice the latter is applied to the previous average ice thickness). Glaciers area corresponding to the
updated volume is then computed according to Eq. (A.1).

Here, an analytical formulation was considered to continuously simulate the glaciers area evolution as a function of ice
melting, based on a simplified representation suitable for hydrological applications, thus reducing the approximations of the
approach just illustrated. While such approximations generally did not have a significant impact on the generated runoff, the
proposed implementation does not imply increased computational demands. In the following, reference is made only to the
case of glacier melting, due to the prevailing dynamics observed in the study basin and to the interest in streamflow
modelling; however, this can easily be generalized to include also occurrences of glacier accumulation. Parameters y and ¢
are assumed to be known for the glacier population in the study basin. Specifically, the global values y = 1.375 and ¢ = 0.034
km3~2 were used in this application, even if slightly different from those estimated in literature in the study region (e.g.,
Sattar et al., 2019). The glaciers area evolution is assessed separately for each of the sub-basins, which should be outlined in
such a way as to include an adequate number of glaciers. Ice melting is here calculated with the degree-day method for each
grid point of meteorological dataset, considering only those to which glaciers belong. Meltwater is then averaged to obtain a
lumped value at the sub-basin scale to be associated with the ensemble of glaciers which occupy the ice-covered fraction.
Melting causes a change in thickness and modifies the aggregate volume of the considered glaciers.

The infinitesimal variation in thickness at time 7, dh(z), is here made to correspond to the variation in volume:

dV(t) = dh(z) - A7), (A.2)
from which it can be obtained in the interval 0-z:

hy — hy = % (47 =471 (A.3)
The glacier area evolution can be related to the melting process considering:

Miger = =% (he — ho) - 10°, (A4)

since a negative variation in 4 [km] can be made to correspond to the cumulative ice melting M., [mm], while p; and p,, are

the density of ice and liquid water, respectively. This results in:
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1
_ -1 w _cly=1
A= [Aoy ' ycy ) F;)_L " Micer - 10 6]y h (A-5)

Equation (A.5), which is applied here at the sub-basin scale, can hold at any spatial scale for which Eq. (A.1) is assumed to
be valid. For hydrological applications, it may be of interest to simulate the evolution of the glacierized fraction of the sub-

basin, Wg,, which is used to weight the current glacier-sourced melting flux:

1
-1 1- -1 pw —6|r-1
Wy, = [%}/0 - Asug ' yc_y ) % Mice, * 10 G]V ' i (A.6)

where Wy, is the initial glacier-covered fraction and A is the total sub-basin area.
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data of Alaknanda River at Rudraprayag gauge were provided by CWC at our request and are classified.

Author contribution

Conceptualization: CM, SB, DDS, SS, AS, AA, VM. Formal analysis, investigation, methodology, software, visualization,
writing (original draft preparation): DDS. Funding acquisition: SB, SS. Project administration: SB, SS, AS, AA, CM.
Resources: SS, AS, AA. Supervision: CM, SB. Writing (review and editing): SB, VM, SS, FB, AS, AA, SG, FA, CM.

Competing interests

Some authors are members of the editorial board of Natural Hazards and Earth System Sciences.

Acknowledgements

This study was carried out in the framework of the FLOSET Project “Probabilistic floods and sediment transport forecasting
in the Himalayas during the extreme events”, funded in the context of the ‘ITALY-INDIA JOINT SCIENCE AND
TECHNOLOGY COOPERATION CALL FOR JOINT PROJECT PROPOSALS FOR THE YEARS 2021 2023".

The authors sincerely thank the Central Water Commission - CWC (New Delhi, India) for providing the streamflow data that

were used in this study.

32



820

825

830

835

840

845

https://doi.org/10.5194/egusphere-2025-4933
Preprint. Discussion started: 15 October 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

References

Adam, J. C., & Lettenmaier, D. P. (2003). Adjustment of global gridded precipitation for systematic bias. Journal of
Geophysical Research Atmospheres, 108(D9). https://doi.org/10.1029/2002jd002499

Addor, N., Rossler, O., Koplin, N., Huss, M., Weingartner, R., & Seibert, J. (2014). Robust changes and sources of
uncertainty in the projected hydrological regimes of Swiss catchments. Water Resources Research, 50(10), 7541-7562.
https://doi.org/10.1002/2014wr015549

Ahrens, B., Meier, T., & Brisson, E. (2020). Diurnal cycle of precipitation in the Himalayan Foothills — Observations and
model results. In Himalayan Weather and Climate and their Impact on the Environment (pp. 73-89).
https://doi.org/10.1007/978-3-030-29684-1 5

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration - Guidelines for computing crop water
requirements - FAO Irrigation and drainage paper 56.

Allen, R. G., Pruitt, W. O., Wright, J. L., Howell, T. A., Ventura, F., Snyder, R., Itenfisu, D., Steduto, P., Berengena, J.,
Yrisarry, J. B., Smith, M., Pereira, L. S., Raes, D., Perrier, A., Alves, 1., Walter, 1., & Elliott, R. (2006). A recommendation
on standardized surface resistance for hourly calculation of reference ETo by the FAOS56 Penman-Monteith method.
Agricultural Water Management, 81(1-2), 1-22. https://doi.org/10.1016/j.agwat.2005.03.007

Allen, S. K., Rastner, P., Arora, M., Huggel, C., & Stoffel, M. (2016). Lake outburst and debris flow disaster at Kedarnath,
June 2013: hydrometeorological triggering and topographic predisposition. Landslides, 13(6), 1479-1491.
https://doi.org/10.1007/s10346-015-0584-3

Arora, M., Singh, P., Goel, N. K., & Singh, R. D. (2006). Spatial distribution and seasonal variability of rainfall in a
mountainous basin in the Himalayan region. Water Resources Management, 20(4), 489-508. https://doi.org/10.1007/s11269-
006-8773-4

Azam, M. F., Kargel, J. S., Shea, J. M., Nepal, S., Haritashya, U. K., Srivastava, S., Maussion, F., Qazi, N., Chevallier, P.,
Dimri, A. P., Kulkarni, A. V., Cogley, J. G., & Bahuguna, 1. (2021). Glaciohydrology of the Himalaya-Karakoram. Science,
373(6557). https://doi.org/10.1126/science.abf3668

Azimi, S., Massari, C., Roati, G., Barbetta, S., & Rigon, R. (2025). A new tool for correcting the spatial and temporal pattern
of global precipitation products across mountainous terrain: precipitation and hydrological analysis. Journal of Hydrology,
133530. https://doi.org/10.1016/j.jhydrol.2025.133530

Bahr, D. B. (1997). Global distributions of glacier properties: A stochastic scaling paradigm. Water Resources Research,
33(7), 1669-1679. https://doi.org/10.1029/97wr00824

Bahr, D. B. (2011). Estimation of glacier volume and volume change by scaling methods. In Encyclopedia of earth sciences
series/Encyclopedia of earth sciences (pp. 278-280). https://doi.org/10.1007/978-90-481-2642-2 690

Bahr, D. B., Pfeffer, W. T., & Kaser, G. (2015). A review of volume-area scaling of glaciers. Reviews of Geophysics, 53(1),
95-140. https://doi.org/10.1002/2014rg000470

33



850

855

860

865

870

875

880

https://doi.org/10.5194/egusphere-2025-4933
Preprint. Discussion started: 15 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

Bandyopadhyay, D., Singh, G., & Kulkarni, A. V. (2019). Spatial distribution of decadal ice-thickness change and glacier
stored water loss in the Upper Ganga basin, India during 2000-2014. Scientific Reports, 9(1).
https://doi.org/10.1038/s41598-019-53055-y

Bannister, D., Orr, A., Jain, S. K., Holman, I. P., Momblanch, A., Phillips, T., Adeloye, A. J., Snapir, B., Waine, T. W.,
Hosking, J. S., & Allen-Sader, C. (2019). Bias correction of High-Resolution Regional Climate Model precipitation output
gives the best estimates of precipitation in Himalayan catchments. Journal of Geophysical Research Atmospheres, 124(24),
14220-14239. https://doi.org/10.1029/2019jd030804

Baral, P., Kayastha, R. B., Immerzeel, W. W., Pradhananga, N. S., Bhattarai, B. C., Shahi, S., Galos, S., Springer, C., Joshi,
S. P., & Mool, P. K. (2013). Preliminary results of mass-balance observations of Yala Glacier and analysis of temperature
and precipitation gradients in Langtang Valley, Nepal. Annals of Glaciology, 55(66), 9-14.
https://doi.org/10.3189/2014a0g66a106

Barandun, M., & Pohl, E. (2023). Central Asia’s spatiotemporal glacier response ambiguity due to data inconsistencies and
regional simplifications. the Cryosphere, 17(3), 1343—1371. https://doi.org/10.5194/tc-17-1343-2023

Barros, A. P., Kim, G., Williams, E., & Nesbitt, S. W. (2004). Probing orographic controls in the Himalayas during the
monsoon using satellite imagery. Natural Hazards and Earth System Sciences, 4(1), 29-51. https://doi.org/10.5194/nhess-4-
29-2004

Beven, K., & Young, P. (2013). A guide to good practice in modeling semantics for authors and referees. Water Resources
Research, 49(8), 5092-5098. https://doi.org/10.1002/wrcr.20393

Bhambri, R., Schmidt, S., Chand, P., Niisser, M., Haritashya, U., Sain, K., Tiwari, S. K., & Yadav, J. S. (2023).
Heterogeneity in glacier thinning and slowdown of ice movement in the Garhwal Himalaya, India. The Science of the Total
Environment, 875, 162625. https://doi.org/10.1016/j.scitotenv.2023.162625

Bhattacharya, A., Mukherjee, K., King, O., Karmakar, S., Remya, S., Kulkarni, A. V., Kropacek, J., & Bolch, T. (2023).
Influence of climate and non-climatic attributes on declining glacier mass budget and surging in Alaknanda Basin and its
surroundings. Global and Planetary Change, 230, 104260. https://doi.org/10.1016/j.gloplacha.2023.104260

Brocca, L., Melone, F., & Moramarco, T. (2011). Distributed rainfall-runoff modelling for flood frequency estimation and
flood forecasting. Hydrological Processes, 25(18), 2801-2813. https://doi.org/10.1002/hyp.8042

Brocca, L., Moramarco, T., Melone, F., Wagner, W., Hasenauer, S., & Hahn, S. (2012). Assimilation of Surface- and Root-
Zone ASCAT Soil Moisture Products Into Rainfall-Runoff Modeling. IEEE Transactions on Geoscience and Remote
Sensing, 50(7), 2542-2555. https://doi.org/10.1109/tgrs.2011.2177468

Burek, P., Satoh, Y., Kahil, T., Tang, T., Greve, P., Smilovic, M., Guillaumot, L., Zhao, F., & Wada, Y. (2020).
Development of the Community Water Model (CWatM v1.04) — a high-resolution hydrological model for global and
regional assessment of integrated water resources management. Geoscientific Model Development, 13(7), 3267-3298.

https://doi.org/10.5194/gmd-13-3267-2020

34



885

890

895

900

905

910

915

https://doi.org/10.5194/egusphere-2025-4933
Preprint. Discussion started: 15 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

Burlando, P., Pellicciotti, F., & Strasser, U. (2002). Modelling mountainous water systems between learning and speculating
looking for challenges. Hydrology Research, 33(1), 47—74. https://doi.org/10.2166/nh.2002.0004

Camici, S., Massari, C., Ciabatta, L., Marchesini, 1., & Brocca, L. (2020). Which rainfall score is more informative about the
performance in river discharge simulation? A comprehensive assessment on 1318 basins over Europe. Hydrology and Earth
System Sciences, 24(10), 4869—4885. https://doi.org/10.5194/hess-24-4869-2020

Chakrapani, G., & Saini, R. (2009). Temporal and spatial variations in water discharge and sediment load in the Alaknanda
and Bhagirathi Rivers in Himalaya, India. Journal of Asian Earth Sciences, 35(6), 545-553.
https://doi.org/10.1016/j.jseaes.2009.04.002

Chawla, 1., & Mujumdar, P. (2020). Evaluating rainfall datasets to reconstruct floods in data-sparse Himalayan region.
Journal of Hydrology, 588, 125090. https://doi.org/10.1016/j.jhydrol.2020.125090

Chen, R., Wang, G., Yang, Y., Liu, J., Han, C., Song, Y., Liu, Z., & Kang, E. (2018). Effects of cryospheric change on
Alpine hydrology: combining a model with observations in the upper reaches of the Hei River, China. Journal of
Geophysical Research Atmospheres, 123(7), 3414-3442. https://doi.org/10.1002/2017jd027876

Chen, X., Long, D., Hong, Y., Zeng, C., & Yan, D. (2017a). Improved modeling of snow and glacier melting by a
progressive two-stage calibration strategy with GRACE and multisource data: How snow and glacier meltwater contributes
to the runoff of the Upper Brahmaputra River basin? Water Resources Research, 53(3), 2431-2466.
https://doi.org/10.1002/2016wr019656

Chen, Y., Li, W., Fang, G., & Li, Z. (2017b). Review article: Hydrological modeling in glacierized catchments of central
Asia — status and challenges. Hydrology and Earth System Sciences, 21(2), 669—684. https://doi.org/10.5194/hess-21-669-
2017

Chen, Y., Sharma, S., Zhou, X., Yang, K., Li, X., Niu, X., Hu, X., & Khadka, N. (2020). Spatial performance of multiple
reanalysis precipitation datasets on the southern slope of central Himalaya. Atmospheric Research, 250, 105365.
https://doi.org/10.1016/j.atmosres.2020.105365

Chevuturi, A., Dimri, A. P., Das, S., Kumar, A., & Niyogi, D. (2015). Numerical simulation of an intense precipitation event
over Rudraprayag in the central Himalayas during 13—14 September 2012. Journal of Earth System Science, 124(7), 1545—
1561. https://doi.org/10.1007/s12040-015-0622-5

Collier, E., & Immerzeel, W. W. (2015). High-resolution modeling of atmospheric dynamics in the Nepalese Himalaya.
Journal of Geophysical Research Atmospheres, 120(19), 9882-9896. https://doi.org/10.1002/2015jd023266

Collins, D. N., Davenport, J. L., & Stoffel, M. (2013). Climatic variation and runoff from partially-glacierised Himalayan
tributary  basins of the Ganges. The Science of the Total Environment, 468-469, S48-S59.
https://doi.org/10.1016/j.scitotenv.2013.10.126

Cui, T, Li, Y., Yang, L., Nan, Y., Li, K., Tudaji, M., Hu, H., Long, D., Shahid, M., Mubeen, A., He, Z., Yong, B., Lu, H.,
Li, C., Ni, G., Hu, C., & Tian, F. (2023). Non-monotonic changes in Asian Water Towers’ streamflow at increasing warming

levels. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-36804-6

35



920

925

930

935

940

945

950

https://doi.org/10.5194/egusphere-2025-4933
Preprint. Discussion started: 15 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

Dahri, Z. H., Ludwig, F., Moors, E., Ahmad, B., Khan, A., & Kabat, P. (2016). An appraisal of precipitation distribution in
the high-altitude catchments of the Indus basin. The Science of the Total Environment, 548-549, 289-306.
https://doi.org/10.1016/j.scitotenv.2016.01.001

Deng, C., & Zhang, W. (2018). Spatial distribution pattern of degree—day factors of glaciers on the Qinghai—Tibetan Plateau.
Environmental Monitoring and Assessment, 190(8). https://doi.org/10.1007/s10661-018-6860-7

De Santis, D., Biondi, D., Crow, W. T., Camici, S., Modanesi, S., Brocca, L., & Massari, C. (2021). Assimilation of satellite
soil moisture products for river flow prediction: an extensive experiment in over 700 catchments throughout Europe. Water
Resources Research, 57(6). https://doi.org/10.1029/2021wr029643

Dimri, A., Chevuturi, A., Niyogi, D., Thayyen, R., Ray, K., Tripathi, S., Pandey, A., & Mohanty, U. (2017). Cloudbursts in
Indian Himalayas: A review. Earth-Science Reviews, 168, 1-23. https://doi.org/10.1016/j.earscirev.2017.03.006

Dimri, A. P., Allen, S., Huggel, C., Mal, S., Ballesteros-Canovas, J. A., Rohrer, M., Shukla, A., Tiwari, P., Maharana, P.,
Bolch, T., Thayyen, R. J., Stoffel, M., & Pandey, A. (2021). Climate change, cryosphere and impacts in the Indian
Himalayan region. Current Science, 120(5), 774. https://doi.org/10.18520/cs/v120/i5/774-790

Dimri, A., Thayyen, R., Kibler, K., Stanton, A., Jain, S., Tullos, D., & Singh, V. (2016). A review of atmospheric and land
surface processes with emphasis on flood generation in the Southern Himalayan rivers. The Science of the Total
Environment, 556, 98—115. https://doi.org/10.1016/j.scitotenv.2016.02.206

Dorigo, W., Dietrich, S., Aires, F., Brocca, L., Carter, S., Cretaux, J., Dunkerley, D., Enomoto, H., Forsberg, R., Glintner,
A., Hegglin, M. 1., Hollmann, R., Hurst, D. F., Johannessen, J. A., Kummerow, C., Lee, T., Luojus, K., Looser, U., Miralles,
D. G, ... Aich, V. (2021). Closing the Water Cycle from Observations across Scales: Where Do We Stand? Bulletin of the
American Meteorological Society, 102(10), E1897—E1935. https://doi.org/10.1175/bams-d-19-0316.1

Duethmann, D., Zimmer, J., Gafurov, A., Glintner, A., Kriegel, D., Merz, B., & Vorogushyn, S. (2013). Evaluation of areal
precipitation estimates based on downscaled reanalysis and station data by hydrological modelling. Hydrology and Earth
System Sciences, 17(7), 2415-2434. https://doi.org/10.5194/hess-17-2415-2013

Duethmann, D., Bolch, T., Farinotti, D., Kriegel, D., Vorogushyn, S., Merz, B., Pieczonka, T., Jiang, T., Su, B., & Gfintner,
A. (2015). Attribution of streamflow trends in snow and glacier melt-dominated catchments of the Tarim River, Central
Asia. Water Resources Research, 51(6), 4727-4750. https://doi.org/10.1002/2014wr016716

Efstratiadis, A., & Koutsoyiannis, D. (2010). One decade of multi-objective calibration approaches in hydrological
modelling: a review. Hydrological Sciences Journal, 55(1), 58—78. https://doi.org/10.1080/02626660903526292

Evin, G., Lay, M. L., Fouchier, C., Penot, D., Colleoni, F., Mas, A., Garambois, P., & Laurantin, O. (2024). Evaluation of
hydrological models on small mountainous catchments: impact of the meteorological forcings. Hydrology and Earth System
Sciences, 28(1), 261-281. https://doi.org/10.5194/hess-28-261-2024

Fenicia, F., Kavetski, D., & Savenije, H. H. G. (2011). Elements of a flexible approach for conceptual hydrological
modeling: 1. Motivation and  theoretical development. Water Resources Research, 47(11).

https://doi.org/10.1029/2010wr010174

36



955

960

965

970

975

980

https://doi.org/10.5194/egusphere-2025-4933
Preprint. Discussion started: 15 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

Finger, D., Vis, M., Huss, M., & Seibert, J. (2015). The value of multiple data set calibration versus model complexity for
improving the performance of hydrological models in mountain catchments. Water Resources Research, 51(4), 1939-1958.
https://doi.org/10.1002/2014wr015712

Fowler, H. J., Blenkinsop, S., & Tebaldi, C. (2007). Linking climate change modelling to impacts studies: recent advances in
downscaling techniques for hydrological modelling. International Journal of Climatology, 27(12), 1547-1578.
https://doi.org/10.1002/joc.1556

Freudiger, D., Kohn, 1., Seibert, J., Stahl, K., & Weiler, M. (2017). Snow redistribution for the hydrological modeling of
alpine catchments. Wiley Interdisciplinary Reviews Water, 4(5). https://doi.org/10.1002/wat2.1232

Fugger, S., Shaw, T. E., Jouberton, A., Miles, E. S., Buri, P., McCarthy, M., Fyffe, C., Fatichi, S., Kneib, M., Molnar, P., &
Pellicciotti, F. (2024). Hydrological regimes and evaporative flux partitioning at the climatic ends of high mountain Asia.
Environmental Research Letters, 19(4), 044057. https://doi.org/10.1088/1748-9326/ad25a0

Gao, H., Ding, Y., Zhao, Q., Hrachowitz, M., & Savenije, H. H. (2017). The importance of aspect for modelling the
hydrological response in a glacier catchment in Central Asia. Hydrological Processes, 31(16), 2842-2859.
https://doi.org/10.1002/hyp.11224

Garcia, F., Folton, N., & Oudin, L. (2017). Which objective function to calibrate rainfall-runoff models for low-flow index
simulations? Hydrological Sciences Journal, 62(7), 1149—1166. https://doi.org/10.1080/02626667.2017.1308511

Garg, S., Jena, P., Devi, U., & Azad, S. (2023). Performance evaluation of high-resolution IMDAA and IMERG for
detecting cloudburst events over the Northwest Himalayas. International Journal of Climatology, 43(8), 3730-3748.
https://doi.org/10.1002/joc.8055

Ghatak, D., Zaitchik, B., Kumar, S., Matin, M. A., Bajracharya, B., Hain, C., & Anderson, M. (2018). Influence of
Precipitation Forcing Uncertainty on Hydrological Simulations with the NASA South Asia Land Data Assimilation System.
Hydrology, 5(4), 57. https://doi.org/10.3390/hydrology5040057

Girotto, M., Formetta, G., Azimi, S., Bachand, C., Cowherd, M., De Lannoy, G., Lievens, H., Modanesi, S., Raleigh, M. S.,
Rigon, R., & Massari, C. (2024). Identifying snowfall elevation patterns by assimilating satellite-based snow depth
retrievals. The Science of the Total Environment, 906, 167312. https://doi.org/10.1016/j.scitotenv.2023.167312

Goteti, G., & Famiglietti, J. (2024). Extent of gross underestimation of precipitation in India. Hydrology and Earth System
Sciences, 28(14), 3435-3455. https://doi.org/10.5194/hess-28-3435-2024

Grinsted, A. (2013). An estimate of global glacier volume. the Cryosphere, 7(1), 141-151. https://doi.org/10.5194/tc-7-141-
2013

Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE
performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377(1-2), 80-91.
https://doi.org/10.1016/j.jhydrol.2009.08.003

37



985

990

995

1000

1005

1010

1015

https://doi.org/10.5194/egusphere-2025-4933
Preprint. Discussion started: 15 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

Hansen, N., Miiller, S. D., & Koumoutsakos, P. (2003). Reducing the Time Complexity of the Derandomized Evolution
Strategy ~ with  Covariance = Matrix ~ Adaptation = (CMA-ES).  Evolutionary = Computation, 11(1), 1-18.
https://doi.org/10.1162/106365603321828970

Hegdahl, T. J., Tallaksen, L. M., Engeland, K., Burkhart, J. F., & Xu, C. (2016). Discharge sensitivity to snowmelt
parameterization: a case study for Upper Beas basin in Himachal Pradesh, India. Hydrology Research, 47(4), 683—700.
https://doi.org/10.2166/nh.2016.047

Hock, R. (2003). Temperature index melt modelling in mountain areas. Journal of Hydrology, 282(1-4), 104-115.
https://doi.org/10.1016/s0022-1694(03)00257-9

Hock, R. (2005). Glacier melt: a review of processes and their modelling. Progress in Physical Geography Earth and
Environment, 29(3), 362-391. https://doi.org/10.1191/0309133305pp453ra

Hoeltgebaum, L. E., & Dias, N. L. (2023). Evaluation of the storage and evapotranspiration terms of the water budget for an
agricultural watershed using local and remote-sensing measurements. Agricultural and Forest Meteorology, 341, 109615.
https://doi.org/10.1016/j.agrformet.2023.109615

Horton, P., Schaefli, B., & Kauzlaric, M. (2022). Why do we have so many different hydrological models? A review based
on the case of Switzerland. Wiley Interdisciplinary Reviews Water, 9(1). https://doi.org/10.1002/wat2.1574

Huang, J., Su, F., Yao, T., & Sun, H. (2022). Runoff regime, change, and attribution in the Upper Syr Darya and Amu
Darya, Central Asia. Journal of Hydrometeorology, 23(10), 1563—1585. https://doi.org/10.1175/jhm-d-22-0036.1

Huss, M. (2013). Density assumptions for converting geodetic glacier volume change to mass change. the Cryosphere, 7(3),
877-887. https://doi.org/10.5194/tc-7-877-2013

Huss, M., & Farinotti, D. (2012). Distributed ice thickness and volume of all glaciers around the globe. Journal of
Geophysical Research Atmospheres, 117(F4). https://doi.org/10.1029/2012jf002523

Huss, M., Jouvet, G., Farinotti, D., & Bauder, A. (2010). Future high-mountain hydrology: a new parameterization of glacier
retreat. Hydrology and Earth System Sciences, 14(5), 815—829. https://doi.org/10.5194/hess-14-815-2010

Immerzeel, W. W., Pellicciotti, F., & Shrestha, A. B. (2012). Glaciers as a proxy to quantify the spatial distribution of
precipitation in the Hunza Basin. Mountain Research and Development, 32(1), 30—-38. https://doi.org/10.1659/mrd-journal-d-
11-00097.1

Immerzeel, W. W., Petersen, L., Ragettli, S., & Pellicciotti, F. (2014). The importance of observed gradients of air
temperature and precipitation for modeling runoff from a glacierized watershed in the Nepalese Himalayas. Water Resources
Research, 50(3), 2212-2226. https://doi.org/10.1002/2013wr014506

Ismail, M. F., Bogacki, W., Disse, M., Schifer, M., & Kirschbauer, L. (2023). Estimating degree-day factors of snow based
on energy flux components. the Cryosphere, 17(1), 211-231. https://doi.org/10.5194/tc-17-211-2023

Jena, P., Garg, S., & Azad, S. (2020). Performance Analysis of IMD High-Resolution Gridded Rainfall (0.25° x 0.25°) and
Satellite Estimates for Detecting Cloudburst Events over the Northwest Himalayas. Journal of Hydrometeorology, 21(7),
1549-1569. https://doi.org/10.1175/jhm-d-19-0287.1

38



1020

1025

1030

1035

1040

1045

https://doi.org/10.5194/egusphere-2025-4933
Preprint. Discussion started: 15 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

Jiang, Y., Yang, K., Yang, H., Lu, H., Chen, Y., Zhou, X., Sun, J., Yang, Y., & Wang, Y. (2022). Characterizing basin-scale
precipitation gradients in the Third Pole region using a high-resolution atmospheric simulation-based dataset. Hydrology and
Earth System Sciences, 26(17), 4587-4601. https://doi.org/10.5194/hess-26-4587-2022

Johnson, E., & Rupper, S. (2020). An examination of physical processes that trigger the Albedo-Feedback on glacier
surfaces and implications for regional glacier mass balance across high mountain Asia. Frontiers in Earth Science, 8.
https://doi.org/10.3389/feart.2020.00129

Joshi, V., & Kumar, K. (2006). Extreme rainfall events and associated natural hazards in Alaknanda valley, Indian
Himalayan region. Journal of Mountain Science, 3(3), 228-236. https://doi.org/10.1007/s11629-006-0228-0

Jost, G., Moore, R. D., Menounos, B., & Wheate, R. (2012). Quantifying the contribution of glacier runoff to streamflow in
the wupper Columbia River Basin, Canada. Hydrology and Earth System Sciences, 16(3), 849-860.
https://doi.org/10.5194/hess-16-849-2012

Karki, R., Hasson, S. U., Gerlitz, L., Schickhoff, U., Scholten, T., & Bohner, J. (2017). Quantifying the added value of
convection-permitting climate simulations in complex terrain: a systematic evaluation of WRF over the Himalayas. Earth
System Dynamics, 8(3), 507-528. https://doi.org/10.5194/esd-8-507-2017

Karki, R., Hasson, S. U., Gerlitz, L., Talchabhadel, R., Schenk, E., Schickhoff, U., Scholten, T., & Bohner, J. (2018). WRF-
based simulation of an extreme precipitation event over the Central Himalayas: Atmospheric mechanisms and their
representation by  microphysics  parameterization  schemes. Atmospheric ~ Research, 214,  21-35.
https://doi.org/10.1016/j.atmosres.2018.07.016

Kavya, M., Singh, A., Jha, S. K., Kouwen, N., & Srivastava, P. (2025). Applicability of reanalysis data in calibrating a
hydrological model in a data-scarce mountainous watershed. International Journal of River Basin Management, 1-19.
https://doi.org/10.1080/15715124.2024.2445236

Kayastha, R. B., Ageta, Y., Nakawo, M., Fujita, K., Sakai, A., and Matsuda, Y. (2003). Positive degree-day factors for ice
ablation on four glaciers in the Nepalese Himalayas and Qinghai-Tibetan Plateau. Bulletin of Glaciological Research, 20, 7—
14.

Kayastha, R. B., Steiner, N., Kayastha, R., Mishra, S. K., & McDonald, K. (2020). Comparative study of hydrology and
icemelt in three Nepal river basins using the Glacio-Hydrological Degree-Day Model (GDM) and observations from the
Advanced Scatterometer (ASCAT). Frontiers in Earth Science, 7. https://doi.org/10.3389/feart.2019.00354

Khadka, A., Wagnon, P., Brun, F., Shrestha, D., Lejeune, Y., & Arnaud, Y. (2022). Evaluation of ERA5-Land and HARV?2
reanalysis data at high elevation in the Upper Dudh Koshi Basin (Everest Region, Nepal). Journal of Applied Meteorology
and Climatology, 61(8), 931-954. https://doi.org/10.1175/jamc-d-21-0091.1

Khadka, M., Kayastha, R. B., & Kayastha, R. (2020). Future projection of cryospheric and hydrologic regimes in Koshi
River basin, Central Himalaya, using coupled glacier dynamics and glacio-hydrological models. Journal of Glaciology,

66(259), 831-845. https://doi.org/10.1017/j0g.2020.51

39



1050

1055

1060

1065

1070

1075

1080

https://doi.org/10.5194/egusphere-2025-4933
Preprint. Discussion started: 15 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

Kobierska, F., Jonas, T., Zappa, M., Bavay, M., Magnusson, J., & Bernasconi, S. M. (2012). Future runoff from a partly
glacierized watershed in Central Switzerland: A two-model approach. Advances in Water Resources, 55, 204-214.
https://doi.org/10.1016/j.advwatres.2012.07.024

Konz, M., & Seibert, J. (2010). On the value of glacier mass balances for hydrological model calibration. Journal of
Hydrology, 385(1-4), 238-246. https://doi.org/10.1016/j.jhydrol.2010.02.025

Kumar, A., Gupta, A. K., Bhambri, R., Verma, A., Tiwari, S. K., & Asthana, A. (2018a). Assessment and review of
hydrometeorological aspects for cloudburst and flash flood events in the third pole region (Indian Himalaya). Polar Science,
18, 5-20. https://doi.org/10.1016/j.polar.2018.08.004

Kumar, A., Verma, A., Gokhale, A. A., Bhambri, R., Misra, A., Sundriyal, S., Dobhal, D. P., & Kishore, N. (2018b).
Hydrometeorological assessments and suspended sediment delivery from a central Himalayan glacier in the upper Ganga
basin. International Journal of Sediment Research, 33(4), 493—509. https://doi.org/10.1016/}.ijsrc.2018.03.004

Kumar, M., Hodnebrog, @., Daloz, A. S., Sen, S., Badiger, S., & Krishnaswamy, J. (2021). Measuring precipitation in
Eastern Himalaya: Ground validation of eleven satellite, model and gauge interpolated gridded products. Journal of
Hydrology, 599, 126252. https://doi.org/10.1016/j.jhydrol.2021.126252

La Frenierre, J., & Mark, B. G. (2014). A review of methods for estimating the contribution of glacial meltwater to total
watershed  discharge.  Progress in  Physical Geography Earth and Environment, 38(2), 173-200.
https://doi.org/10.1177/0309133313516161

Laha, S., Banerjee, A., Singh, A., Sharma, P., & Thamban, M. (2023). Climate sensitivity of the summer runoff of two
glacierised Himalayan catchments with contrasting climate. Hydrology and Earth System Sciences, 27(2), 627-645.
https://doi.org/10.5194/hess-27-627-2023

Li, D., Yang, K., Tang, W., Li, X., Zhou, X., & Guo, D. (2020). Characterizing precipitation in high altitudes of the western
Tibetan plateau with a focus on major glacier areas. International Journal of Climatology, 40(12), 5114-5127.
https://doi.org/10.1002/joc.6509

Li, F., Zhang, Y., Xu, Z., Liu, C., Zhou, Y., & Liu, W. (2014). Runoff predictions in ungauged catchments in southeast
Tibetan Plateau. Journal of Hydrology, 511, 28-38. https://doi.org/10.1016/j.jhydrol.2014.01.014

Luo, Y., Arnold, J., Liu, S., Wang, X., & Chen, X. (2013). Inclusion of glacier processes for distributed hydrological
modeling at basin scale with application to a watershed in Tianshan Mountains, northwest China. Journal of Hydrology, 477,
72-85. https://doi.org/10.1016/j.jhydrol.2012.11.005

Lundquist, J., Abel, M. R., Gutmann, E., & Kapnick, S. (2019). Our Skill in Modeling Mountain Rain and Snow is
Bypassing the Skill of Our Observational Networks. Bulletin of the American Meteorological Society, 100(12), 2473-2490.
https://doi.org/10.1175/bams-d-19-0001.1

Lutz, A. F., Immerzeel, W. W., Gobiet, A., Pellicciotti, F., & Bierkens, M. F. P. (2013). Comparison of climate change
signals in CMIP3 and CMIP5 multi-model ensembles and implications for Central Asian glaciers. Hydrology and Earth
System Sciences, 17(9), 3661-3677. https://doi.org/10.5194/hess-17-3661-2013

40



1085

1090

1095

1100

1105

1110

1115

https://doi.org/10.5194/egusphere-2025-4933
Preprint. Discussion started: 15 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

Lutz, A. F., Immerzeel, W. W., Shrestha, A. B., & Bierkens, M. F. P. (2014). Consistent increase in High Asia’s runoff due
to increasing glacier melt and precipitation. Nature Climate Change, 4(7), 587-592. https://doi.org/10.1038/nclimate2237
Mackay, J. D., Barrand, N. E., Hannah, D. M., Krause, S., Jackson, C. R., Everest, J., & Adalgeirsdottir, G. (2018). Glacio-
hydrological melt and run-off modelling: application of a limits of acceptability framework for model comparison and
selection. the Cryosphere, 12(7), 2175-2210. https://doi.org/10.5194/tc-12-2175-2018

Magnusson, J., Farinotti, D., Jonas, T., & Bavay, M. (2011). Quantitative evaluation of different hydrological modelling
approaches in a partly glacierized Swiss watershed. Hydrological Processes, 25(13), 2071-2084.
https://doi.org/10.1002/hyp.7958

Martens, B., Miralles, D. G., Lievens, H., Van Der Schalie, R., De Jeu, R. a. M., Fernandez-Prieto, D., Beck, H. E., Dorigo,
W. A., & Verhoest, N. E. C. (2017). GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geoscientific
Model Development, 10(5), 1903—1925. https://doi.org/10.5194/gmd-10-1903-2017

Massari, C., Camici, S., Ciabatta, L., & Brocca, L. (2018). Exploiting Satellite-Based Surface Soil Moisture for flood
forecasting in the Mediterranean Area: State update versus rainfall correction. Remote Sensing, 10(2), 292.
https://doi.org/10.3390/rs10020292

Masseroni, D., Cislaghi, A., Camici, S., Massari, C., & Brocca, L. (2017). A reliable rainfall-runoff model for flood
forecasting: review and application to a semi-urbanized watershed at high flood risk in Italy. Hydrology Research, 48(3),
726—740. https://doi.org/10.2166/nh.2016.037

Mayr, E., Hagg, W., Mayer, C., & Braun, L. (2013). Calibrating a spatially distributed conceptual hydrological model using
runoff, annual mass balance and winter mass balance. Journal of Hydrology, 478, 40-49.
https://doi.org/10.1016/j.jhydrol.2012.11.035

Meher, J. K., Das, L., Benestad, R. E., & Mezghani, A. (2018). Analysis of winter rainfall change statistics over the Western
Himalaya: the influence of internal variability and topography. International Journal of Climatology, 38(S1).
https://doi.org/10.1002/joc.5385

Mehta, M., Shukla, T., Bhambri, R., Gupta, A. K., & Dobhal, D. (2016). Terrain changes, caused by the 15—-17 June 2013
heavy rainfall in the Garhwal Himalaya, India: A case study of Alaknanda and Mandakini basins. Geomorphology, 284, 53—
71. https://doi.org/10.1016/j.geomorph.2016.11.001

Mei, Y., Mai, J., Xuan, H., DO, Gronewold, A., Reeves, H., Eberts, S., Niswonger, R., Regan, R. S., & Hunt, R. J. (2023).
Can hydrological models benefit from using global soil moisture, evapotranspiration, and runoff products as calibration
targets? Water Resources Research, 59(2). https://doi.org/10.1029/2022wr032064

Miao, C., Immerzeel, W. W., Xu, B., Yang, K., Duan, Q., & Li, X. (2024). Understanding the Asian water tower requires a
redesigned precipitation observation strategy. Proceedings of the National Academy of Sciences, 121(23).

https://doi.org/10.1073/pnas.2403557121

41



1120

1125

1130

1135

1140

1145

https://doi.org/10.5194/egusphere-2025-4933
Preprint. Discussion started: 15 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

Mimeau, L., Esteves, M., Jacobi, H., & Zin, 1. (2019a). Evaluation of gridded and in situ precipitation datasets on modeled
glacio-hydrologic response of a small glacierized Himalayan catchment. Journal of Hydrometeorology, 20(6), 1103—1121.
https://doi.org/10.1175/jhm-d-18-0157.1

Mimeau, L., Esteves, M., Zin, 1., Jacobi, H., Brun, F., Wagnon, P., Koirala, D., & Arnaud, Y. (2019b). Quantification of
different flow components in a high-altitude glacierized catchment (Dudh Koshi, Himalaya): some cryospheric-related
issues. Hydrology and Earth System Sciences, 23(9), 3969—3996. https://doi.org/10.5194/hess-23-3969-2019

Miralles, D. G., Holmes, T. R. H., De Jeu, R. a. M., Gash, J. H., Meesters, A. G. C. A., & Dolman, A. J. (2011). Global land-
surface evaporation estimated from satellite-based observations. Hydrology and Earth System Sciences, 15(2), 453-469.
https://doi.org/10.5194/hess-15-453-2011

Mishra, A., Nainwal, H. C., Bolch, T., Shah, S. S., & Shankar, R. (2023). Glacier inventory and glacier changes (1994—-2020)
in the Upper Alaknanda Basin, Central Himalaya. Journal of Glaciology, 69(275), 591-606.
https://doi.org/10.1017/jog.2022.87

Mishra, P. K., Thayyen, R. J., Singh, H., Das, S., Nema, M. K., & Kumar, P. (2022). Assessment of cloudbursts, extreme
rainfall and vulnerable regions in the Upper Ganga basin, Uttarakhand, India. International Journal of Disaster Risk
Reduction, 69, 102744. https://doi.org/10.1016/].ijdrr.2021.102744

Mishra, S. K., Rupper, S., Kapnick, S., Casey, K., Chan, H. G., Ciraci, E., Haritashya, U., Hayse, J., Kargel, J. S., Kayastha,
R. B., Krakauer, N. Y., Kumar, S. V., Lammers, R. B., Maggioni, V., Margulis, S. A., Olson, M., Osmanoglu, B., Qian, Y.,
McLarty, S., . .. Arendt, A. (2021). Grand Challenges of Hydrologic Modeling for Food-Energy-Water Nexus Security in
High Mountain Asia. Frontiers in Water, 3. https://doi.org/10.3389/frwa.2021.728156

Mizukami, N., Rakovec, O., Newman, A. J., Clark, M. P., Wood, A. W., Gupta, H. V., & Kumar, R. (2019). On the choice
of calibration metrics for “high-flow” estimation using hydrologic models. Hydrology and Earth System Sciences, 23(6),
2601-2614. https://doi.org/10.5194/hess-23-2601-2019

Momblanch, A., Holman, 1., & Jain, S. (2019). Current practice and recommendations for modelling global change impacts
on water resource in the Himalayas. Water, 11(6), 1303. https://doi.org/10.3390/w11061303

Muiloz-Sabater, J., Dutra, E., Agusti-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M.,
Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodriguez-Fernandez, N. J., Zsoter, E., Buontempo, C.,
& Thépaut, J. (2021). ERAS5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth System Science
Data, 13(9), 4349-4383. https://doi.org/10.5194/essd-13-4349-2021

Naz, B. S,, Frans, C. D., Clarke, G. K. C., Burns, P., & Lettenmaier, D. P. (2014). Modeling the effect of glacier recession on
streamflow response using a coupled glacio-hydrological model. Hydrology and Earth System Sciences, 18(2), 787—-802.
https://doi.org/10.5194/hess-18-787-2014

Nazeer, A., Maskey, S., Skaugen, T., & McClain, M. E. (2022). Simulating the hydrological regime of the snow fed and
glaciarised Gilgit Basin in the Upper Indus using global precipitation products and a data parsimonious precipitation-runoff

model. The Science of the Total Environment, 802, 149872. https://doi.org/10.1016/j.scitotenv.2021.149872

42



1150

1155

1160

1165

1170

1175

1180

https://doi.org/10.5194/egusphere-2025-4933
Preprint. Discussion started: 15 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

Nepal, S., Chen, J., Penton, D. J., Neumann, L. E., Zheng, H., & Wahid, S. (2017). Spatial GR4J conceptualization of the
Tamor glaciated alpine catchment in Eastern Nepal: evaluation of GR4JSG against streamflow and MODIS snow extent.
Hydrological Processes, 31(1), 51-68. https://doi.org/10.1002/hyp.10962

Nie, Y., Pritchard, H. D., Liu, Q., Hennig, T., Wang, W., Wang, X., Liu, S., Nepal, S., Samyn, D., Hewitt, K., & Chen, X.
(2021). Glacial change and hydrological implications in the Himalaya and Karakoram. Nature Reviews Earth &
Environment, 2(2), 91-106. https://doi.org/10.1038/s43017-020-00124-w

Nguyen, N. T., He, W., Zhu, Y., & Lii, H. (2020). Influence of Calibration Parameter Selection on Flash Flood Simulation
for Small to Medium Catchments with MISDc-2L Model. Water, 12(11), 3255. https://doi.org/10.3390/w12113255
Nunchhani, V., Chiphang, N., Bandyopadhyay, A., & Bhadra, A. (2024). Development of a Spatially Distributed Snow and
Glacier Melt Runoff Model (SDSGRM) for data scarce high-altitude river basins. Environmental Modelling & Software,
175, 106004. https://doi.org/10.1016/j.envsoft.2024.106004

Orth, R., Staudinger, M., Seneviratne, S. 1., Seibert, J., & Zappa, M. (2015). Does model performance improve with
complexity? A case study with three hydrological models. Journal of Hydrology, 523, 147-159.
https://doi.org/10.1016/j.jhydrol.2015.01.044

Paul, S., Sharma, P. J., & Teegavarapu, R. S. V. (2024). Indian Summer monsoon rainfall characteristics derived from
multiple gridded precipitation datasets: A Comparative assessment. International Journal of Climatology, 45(2).
https://doi.org/10.1002/joc.8708

Pesci, M. H., Overberg, P. S., Bosshard, T., & Forster, K. (2023). From global glacier modeling to catchment hydrology:
bridging the gap with the WaSiM-OGGM coupling scheme. Frontiers in Water, 5.
https://doi.org/10.3389/frwa.2023.1296344

Pohl, E., Knoche, M., Gloaguen, R., Andermann, C., & Krause, P. (2015). Sensitivity analysis and implications for surface
processes from a hydrological modelling approach in the Gunt catchment, high Pamir Mountains. Earth Surface Dynamics,
3(3), 333-362. https://doi.org/10.5194/esurf-3-333-2015

Pritchard, H. D. (2021). Global data gaps in our knowledge of the terrestrial cryosphere. Frontiers in Climate, 3.
https://doi.org/10.3389/fclim.2021.689823

Radi¢, V., & Hock, R. (2010). Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory
data. Journal of Geophysical Research Atmospheres, 115(F1). https://doi.org/10.1029/2009;f001373

Ragettli, S., Cortés, G., McPhee, J., & Pellicciotti, F. (2014). An evaluation of approaches for modelling hydrological
processes in high-elevation, glacierized Andean watersheds. Hydrological Processes, 28(23), 5674-5695.
https://doi.org/10.1002/hyp.10055

Ragettli, S., Pellicciotti, F., Bordoy, R., & Immerzeel, W. W. (2013). Sources of uncertainty in modeling the
glaciohydrological response of a Karakoram watershed to climate change. Water Resources Research, 49(9), 6048—6066.
https://doi.org/10.1002/wrcr.20450

43



1185

1190

1195

1200

1205

1210

1215

https://doi.org/10.5194/egusphere-2025-4933
Preprint. Discussion started: 15 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

Rana, N., Singh, S., Sundriyal, Y.P., & Juyal, N. (2013). Recent and past floods in the Alaknanda valley: causes and
consequences. Current Science, 105(9), 1209-1212.

Rautela, K. S., Kumar, D., Gandhi, B. G. R., Kumar, A., & Dubey, A. K. (2023a). Long-term hydrological simulation for the
estimation of snowmelt contribution of Alaknanda River Basin, Uttarakhand using SWAT. Journal of Water Supply
Research and Technology—AQUA, 72(2), 139-159. https://doi.org/10.2166/aqua.2023.176

Rautela, K. S., Kumar, D., Gandhi, B. G. R., Kumar, A., Dubey, A. K., & Khati, B. S. (2023b). Evaluating hydroelectric
potential in Alaknanda basin, Uttarakhand using the snowmelt runoff model (SRM). Journal of Water and Climate Change,
14(11),4146-4161. https://doi.org/10.2166/wcc.2023.341

Regmi, S., & Bookhagen, B. (2022). The spatial pattern of extreme precipitation from 40 years of gauge data in the central
Himalaya. Weather and Climate Extremes, 37, 100470. https://doi.org/10.1016/j.wace.2022.100470

Remya, S. N., Syed, T. H., Kulkarni, A. V., & Anand, R. (2022). Manifestation of topography and climate variations on
long-term glacier changes in the Alaknanda Basin of Central Himalaya, India. Geocarto International, 37(26), 11010—11029.
https://doi.org/10.1080/10106049.2022.2044392

RGI 7.0 Consortium (2023). Randolph Glacier Inventory - A Dataset of Global Glacier Outlines, Version 7.0. Boulder,
Colorado USA. NSIDC: National Snow and Ice Data Center. https://doi.org/10.5067/f6jmovySnavz

Ruelland, D. (2024). Potential of snow data to improve the consistency and robustness of a semi-distributed hydrological
model using the SAFRAN input dataset. Journal of Hydrology, 631, 130820. https://doi.org/10.1016/j.jhydrol.2024.130820
Saddique, N., Muzammil, M., Jahangir, 1., Sarwar, A., Ahmed, E., Aslam, R. A., & Bernhofer, C. (2022). Hydrological
evaluation of 14 satellite-based, gauge-based and reanalysis precipitation products in a data-scarce mountainous catchment.
Hydrological Sciences Journal, 67(3), 436—450. https://doi.org/10.1080/02626667.2021.2022152

Santos, L., Thirel, G., & Perrin, C. (2018). Technical note: Pitfalls in using log-transformed flows within the KGE criterion.
Hydrology and Earth System Sciences, 22(8), 4583—4591. https://doi.org/10.5194/hess-22-4583-2018

Sattar, A., Goswami, A., Kulkarni, A. V., & Das, P. (2019). Glacier-Surface velocity derived ice volume and retreat
assessment in the Dhauliganga Basin, Central Himalaya — a remote sensing and modeling based approach. Frontiers in Earth
Science, 7. https://doi.org/10.3389/feart.2019.00105

Savéan, M., Delclaux, F., Chevallier, P., Wagnon, P., Gonga-Saholiariliva, N., Sharma, R., Neppel, L., & Arnaud, Y. (2015).
Water budget on the Dudh Koshi River (Nepal): Uncertainties on precipitation. Journal of Hydrology, 531, 850—-862.
https://doi.org/10.1016/j.jhydrol.2015.10.040

Schaefli, B., Hingray, B., Niggli, M., & Musy, A. (2005). A conceptual glacio-hydrological model for high mountainous
catchments. Hydrology and Earth System Sciences, 9(1/2), 95-109. https://doi.org/10.5194/hess-9-95-2005

Schaefli, B., Nicoétina, L., Imfeld, C., Da Ronco, P., Bertuzzo, E., & Rinaldo, A. (2014). SEHR-ECHO v1.0: a Spatially
Explicit Hydrologic Response model for ecohydrologic applications. Geoscientific Model Development, 7(6), 2733-2746.
https://doi.org/10.5194/gmd-7-2733-2014

44



1220

1225

1230

1235

1240

1245

https://doi.org/10.5194/egusphere-2025-4933
Preprint. Discussion started: 15 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

Shafeeque, M., Luo, Y., Wang, X., & Sun, L. (2019). Revealing vertical distribution of precipitation in the glacierized upper
indus basin based on multiple datasets. Journal of Hydrometeorology, 20(12), 2291-2314. https://doi.org/10.1175/jhm-d-19-
0081.1

Shrestha, D., Singh, P., & Nakamura, K. (2012). Spatiotemporal variation of rainfall over the central Himalayan region
revealed by TRMM Precipitation Radar. Journal of Geophysical Research Atmospheres, 117(D22).
https://doi.org/10.1029/2012jd018140

Shrestha, S., Yao, T., Kattel, D. B., & Devkota, L. P. (2019). Precipitation characteristics of two complex mountain river
basins on the southern slopes of the central Himalayas. Theoretical and Applied Climatology, 138(1-2), 1159-1178.
https://doi.org/10.1007/s00704-019-02897-7

Singer, M. B., Asfaw, D. T., Rosolem, R., Cuthbert, M. O., Miralles, D. G., MacLeod, D., Quichimbo, E. A., & Michaelides,
K. (2021). Hourly potential evapotranspiration at 0.1° resolution for the global land surface from 1981-present. Scientific
Data, 8(1). https://doi.org/10.1038/s41597-021-01003-9

Singh, H., Varade, D., & Mishra, P. K. (2023a). Cloudburst events in the Indian Himalayas: A Historical geospatial
perspective. In International Handbook of Disaster Research (pp. 777-797). https://doi.org/10.1007/978-981-19-8388-7 192
Singh, J., Singh, V., & Ojha, C. S. P. (2025). A Cluster-Based data assimilation approach to generate new daily gridded time
series  precipitation data in the Himalayan River basins. @ Water Resources  Research, 61(1).
https://doi.org/10.1029/2024wr037324

Singh, P., & Kumar, N. (1997). Effect of orography on precipitation in the western Himalayan region. Journal of Hydrology,
199(1-2), 183-206. https://doi.org/10.1016/s0022-1694(96)03222-2

Singh, P., Kumar, N., & Arora, M. (2000). Degree—day factors for snow and ice for Dokriani Glacier, Garhwal Himalayas.
Journal of Hydrology, 235(1-2), 1-11. https://doi.org/10.1016/s0022-1694(00)00249-3

Singh, S., & Kansal, M. L. (2022). Cloudburst—A major disaster in the Indian Himalayan states. In Civil Engineering for
Disaster Risk Reduction (pp. 115-126). https://doi.org/10.1007/978-981-16-5312-4 9

Singh, S., Kumar, R., Bhardwaj, A., Sam, L., Shekhar, M., Singh, A., Kumar, R., & Gupta, A. (2016a). Changing climate
and glacio-hydrology in Indian Himalayan Region: a review. Wiley Interdisciplinary Reviews Climate Change, 7(3), 393—
410. https://doi.org/10.1002/wce.393

Singh, S., & Pandey, P. (2024). Decadal Changes in Glaciers in the Alaknanda Basin (Uttarakhand) Under Warming
Climate. In Climate Crisis and Sustainable Solutions (pp. 17—34). https://doi.org/10.1007/978-981-97-7110-3 2

Singh, V., Goyal, M. K., & Chu, X. (2016b). Multicriteria Evaluation Approach for Assessing Parametric Uncertainty during
Extreme Peak and Low Flow Conditions over Snow Glaciated and Inland Catchments. Journal of Hydrologic Engineering,
21(1). https://doi.org/10.1061/(asce)he.1943-5584.0001217

Singh, V., Jain, S. K., Nagale, D. S., & Singh, J. (2023b). Glacier changes and their impacts on the melt runoff in high and
moderate  elevation ranges of Himalayan Upper Ganges Basin.  Hydrological Processes, 37(5).

https://doi.org/10.1002/hyp.14897

45



1250

1255

1260

1265

1270

1275

1280

https://doi.org/10.5194/egusphere-2025-4933
Preprint. Discussion started: 15 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

Sleziak, P., Szolgay, J., Hlavcova, K., Danko, M., & Parajka, J. (2020). The effect of the snow weighting on the temporal
stability = of hydrologic model efficiency and parameters. Journal of Hydrology, 583, 124639.
https://doi.org/10.1016/j.jhydrol.2020.124639

Su, F., Zhang, L., Ou, T., Chen, D., Yao, T., Tong, K., & Qi, Y. (2015). Hydrological response to future climate changes for
the major wupstream river basins in the Tibetan Plateau. Global and Planetary Change, 136, 82-95.
https://doi.org/10.1016/j.gloplacha.2015.10.012

Tang, G., Clark, M. P., Knoben, W. J. M., Liu, H., Gharari, S., Arnal, L., Beck, H. E., Wood, A. W., Newman, A. J., &
Papalexiou, S. M. (2023). The impact of meteorological forcing uncertainty on hydrological modeling: A Global analysis of
Cryosphere basins. Water Resources Research, 59(6). https://doi.org/10.1029/2022wr033767

Tarasova, L., Knoche, M., Dietrich, J., & Merz, R. (2016). Effects of input discretization, model complexity, and calibration
strategy on model performance in a data-scarce glacierized catchment in Central Asia. Water Resources Research, 52(6),
4674-4699. https://doi.org/10.1002/2015wr018551

Terink, W., Lutz, A. F., Simons, G. W. H., Immerzeel, W. W., & Droogers, P. (2015). SPHY v2.0: Spatial Processes in
HYdrology. Geoscientific Model Development, 8(7), 2009-2034. https://doi.org/10.5194/gmd-8-2009-2015

Thayyen, R. J., & Gergan, J. T. (2010). Role of glaciers in watershed hydrology: a preliminary study of a &quot;Himalayan
catchment&quot; the Cryosphere, 4(1), 115-128. https://doi.org/10.5194/tc-4-115-2010

Tsuruta, K., & Schnorbus, M. A. (2022). Assessing the influence of calibration methodology and model structure on glacio-
hydrological simulations in the Cheakamus River Basin, British Columbia, Canada. Journal of Hydrology X, 17, 100144.
https://doi.org/10.1016/j.hydroa.2022.100144

Valentin, M. M., Viger, R. J., Van Beusekom, A. E., Hay, L. E., Hogue, T. S., & Foks, N. L. (2018). Enhancement of a
parsimonious water balance model to simulate surface hydrology in a glacierized watershed. Journal of Geophysical
Research Earth Surface, 123(5), 1116—1132. https://doi.org/10.1029/2017;jf004482

Van Beusekom, A. E., & Viger, R. J. (2016). A glacier runoff extension to the Precipitation Runoff Modeling System.
Journal of Geophysical Research Earth Surface, 121(11), 2001-2021. https://doi.org/10.1002/2015jf003789

Van Tiel, M., Stahl, K., Freudiger, D., & Seibert, J. (2020). Glacio-hydrological model calibration and evaluation. Wiley
Interdisciplinary Reviews Water, 7(6). https://doi.org/10.1002/wat2.1483

Van Tiel, M., Teuling, A. J., Wanders, N., Vis, M. J. P., Stahl, K., & Van Loon, A. F. (2018). The role of glacier changes
and threshold definition in the characterisation of future streamflow droughts in glacierised catchments. Hydrology and Earth
System Sciences, 22(1), 463—485. https://doi.org/10.5194/hess-22-463-2018

Van Tiel, M., Weiler, M., Freudiger, D., Moretti, G., Kohn, 1., Gerlinger, K., & Stahl, K. (2023). Melting alpine water
towers aggravate downstream low flows: A  Stress-Test Storyline approach. Earth’s Future, 11(3).
https://doi.org/10.1029/2022ef003408

Viviroli, D., Archer, D. R., Buytaert, W., Fowler, H. J., Greenwood, G. B., Hamlet, A. F., Huang, Y., Koboltschnig, G.,
Litaor, M. L., Lopez-Moreno, J. 1., Lorentz, S., Schidler, B., Schreier, H., Schwaiger, K., Vuille, M., & Woods, R. (2011).

46



1285

1290

1295

1300

1305

1310

1315

https://doi.org/10.5194/egusphere-2025-4933
Preprint. Discussion started: 15 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

Climate change and mountain water resources: overview and recommendations for research, management and policy.
Hydrology and Earth System Sciences, 15(2), 471-504. https://doi.org/10.5194/hess-15-471-2011

Viviroli, D., Zappa, M., Schwanbeck, J., Gurtz, J., & Weingartner, R. (2009). Continuous simulation for flood estimation in
ungauged mesoscale catchments of Switzerland — Part I: Modelling framework and calibration results. Journal of Hydrology,
377(1-2), 191-207. https://doi.org/10.1016/j.jhydrol.2009.08.023

Wang, L., Liu, H., Bhlon, R., Chen, D., Long, J., & Sherpa, T. C. (2024). Modeling glacio-hydrological processes in the
Himalayas: A review and future  perspectives.  Geography and  Sustainability, 5(2), 179-192.
https://doi.org/10.1016/j.geosus.2024.01.001

Wang, N., Liu, W., Wang, H., Sun, F., Duan, W., Li, Z., Li, Z., & Chen, Y. (2021). Improving streamflow and flood
simulations in three headwater catchments of the Tarim River based on a coupled glacier-hydrological model. Journal of
Hydrology, 603, 127048. https://doi.org/10.1016/j.jhydrol.2021.127048

Wolvin, S., Strong, C., Rupper, S., & Steenburgh, W. J. (2024). Climatology of orographic precipitation gradients over high
mountain Asia derived from dynamical downscaling. Journal of Geophysical Research Atmospheres, 129(20).
https://doi.org/10.1029/2024jd041010

Wortmann, M., Bolch, T., Menz, C., Tong, J., & Krysanova, V. (2018). Comparison and correction of High-Mountain
precipitation data based on Glacio-Hydrological modeling in the Tarim River headwaters (High Asia). Journal of
Hydrometeorology, 19(5), 777-801. https://doi.org/10.1175/jhm-d-17-0106.1

Wortmann, M., Bolch, T., Su, B., & Krysanova, V. (2019). An efficient representation of glacier dynamics in a semi-
distributed hydrological model to bridge glacier and river catchment scales. Journal of Hydrology, 573, 136-152.
https://doi.org/10.1016/j.jhydrol.2019.03.006

Yadav, B. C., Thayyen, R. J., & Jain, K. (2020). Topoclimatic zones and characteristics of the upper Ganga basin,
Uttarakhand, India. International Journal of Climatology, 40(14), 6002—6019. https://doi.org/10.1002/joc.6562

Yadav, M., Dimri, A. P., Mal, S., & Maharana, P. (2024). Elevation-dependent precipitation in the Indian Himalayan
Region. Theoretical and Applied Climatology, 155(2), 815—828. https://doi.org/10.1007/s00704-023-04661-4

Yang, C., Xu, M., Fu, C,, Kang, S., & Luo, Y. (2022). The coupling of glacier melt module in SWAT+ model based on
Multi-Source Remote Sensing data: a case study in the Upper Yarkant River Basin. Remote Sensing, 14(23), 6080.
https://doi.org/10.3390/rs14236080

Yang, C., Wang, X., Kang, S., Xu, M., Zhang, Y., Wei, J., & Fu, C. (2025). A global perspective on the development and
application of glacio-hydrological model. Journal of Hydrology, 653, 132797. https://doi.org/10.1016/j.jhydrol.2025.132797

Zhang, M., Nan, Y., & Tian, F. (2025). Runoff component quantification and future streamflow projection in a large
mountainous basin based on a multidata-constrained cryospheric—hydrological model. Hydrology and Earth System

Sciences, 29(4), 1033—1060. https://doi.org/10.5194/hess-29-1033-2025

47



