In this work, the authors present an extended version of a semi-distributed hydrological model and
evaluate its performance across multiple processes in the complex, monsoon-dominated regions of the
Indian Himalayas. The manuscript is generally well written, and the results are discussed in depth.
However, | have few methodological concerns that should be clarified prior to publication.

We are grateful to the reviewer for the insightful and constructive feedback on our paper, which have
significantly helped us to enhance the quality of the manuscript. We greatly appreciate the valuable
contribution in identifying critical areas for improvement. However, it was possible to address some
concerns only to a limited extent, due to data scarcity issues that are a peculiarity of the study area.
Streamflow measurements are typically lacking in mountainous and transboundary regions, with
limitations related to the practical difficulties of monitoring in such environments, as well as public
access to measured data. Therefore, the availability of local information that would be essential for
hydrological modelling (including, for example, data from internal stream gauges or about
anthropogenic influences) is far from a given. Knowledge gaps make streamflow reproduction
challenging, which in our opinion gives value and usefulness to the contribution of the methodological
choices and the satisfactory local results of the study. We also point out thatthe model was
calibrated with a stochastic optimization algorithm rather than Bayesian inference. This resulted in
having a single set of parameters for each of the 8 current scenarios: to derive a rigorous quantification
of parametric uncertainty from our elaborations, the use of a Bayesian approach would still be essential.
The basic calibration procedure, as well as some simplifications due to data scarcity, have also been
discussed in the section dedicated to the known limitations of the study. As further detailed below, we
have carefully addressed the reviewer’s comments to the extent reasonably possible, aiming to seize
the full opportunity to improve the clarity and accuracy of the manuscript.

Novelty of the study: The authors should more clearly articulate the key scientific advances of this work.
Extending and evaluating an existing hydrological model and exploring multiple calibration approaches
are important objectives, but the manuscript does not sufficiently clarify what constitutes the main
innovation compared with existing literature. This should be clearly stated, ideally in the introduction,
so that the contribution of the paper is evident from the outset.

We thank the reviewer for pointing this out, allowing us to more clearly explain in the introduction the
advances and contributions provided by our study. The latter implements and tests a practical
modelling strategy which combines several methodological solutions, some of which are original,
aimed at addressing specific challenges due to data scarcity in complex terrain and poorly monitored
regions. In general, the study illustrates the implementation of various methods, including new ones,
analyses the outcomes of their application, and provides contributions on still open topics such as the
proper use of additional hydrological variables for model evaluation and calibration (e.g., Wagner et al.,
2025). Furthermore, in the study context, the results obtained at the local scale also offer valuable
insights into understanding the hydrological behaviour and streamflow generation processes.

These contributions in terms of methods and results will be better highlighted by inserting the following
in correspondence with L89 and replacing the final part of the introduction:

“More generally, the integration of multi-variable datasets within hydrological modelling still presents
several challenges and open questions, with a variety of calibration and validation strategies that have
attempted to best exploit this potential (e.g., van Tiel et al., 2020; Wagner et al., 2025).

In this perception, the objective of this study was to develop and evaluate a parsimonious, semi-
distributed hydrological modelling approach for simulating streamflow under high flow regime in the
partially glacierized, monsoon-dominated basins of the Indian Himalayas. The modelling approach was
tested in the Alaknanda River basin in northern India, where the ISM causes frequent flash floods,
sometimes with disastrous effects (e.g., Joshi and Kumar, 2006; Rautela et al., 2023a, 2023b). The



feasibility of integrating reanalysis and satellite data was investigated, given the scarcity of ground-
based information. Specifically, the proposed modelling approach was based on the implementation of
1) a specifically tailored hydrological model, and 2) a multi-variable and multi-response model
calibration.

Regarding the first point, a conceptual model well-suited for rainfall-induced floods was modified with
a tailor-made snow module and the addition of a static and a dynamic glacier module. The snow and
glacier modules are characterized by low complexity and minimal data requirements, as well as by the
proposal of original methods regarding the variability of melting parameters with altitude and the
analytical formulation of melting-induced glacier evolution based on volume-area scaling. The model
thus adapted was applied here for the first time in glacier-influenced basins and tested as a tool for
reproducing streamflow dynamics in the study region. Regarding the second point, the modelling
framework was enhanced by using multiple reference data in calibration, including satellite-based
glacier water loss and actual evapotranspiration, to address bias in precipitation input and improve
water balance representation. It is noteworthy that there are few hydrological studies in cold
environments that integrate actual evapotranspiration into the calibration (van Tiel et al., 2020),
although this is a significant component of the water budget for basins in the monsoon regime (e.g.,
Fugger et al., 2024). A specific objective function was proposed here by combining multiple criteria,
which consider additional data characteristics and modelling objectives. The benefits for process
representation and trade-offs with streamflow performance were evaluated through several simulation
scenarios representing different calibration setups in terms of target variables. Other simulation
scenarios were then devoted to comparing the impact of using the static or dynamic glacier module and
the effects of different adjustment methods to handle biases in reanalysis precipitation.

The study therefore provides advancements in terms of specific methods and general results for the
broader topics of fit-for-purpose hydrological modelling and integration of additional variables into
calibration. The proposed modelling approach has proven to be valuable in a challenging context with
complex dynamics and significant observational and knowledge gaps. Therefore, local results from this
study contribute to understanding the streamflow response dynamics and water balance quantification
in data-poor, monsoon-dominated Himalayan basins with glacierized headwaters. Although this study
is somewhat preliminary due to the scarcity and high uncertainty of the data, the findings offer practical
insights into the challenges of modelling hydrological fluxes and predicting floods in a region with
increasing hydroclimatic risks”.

ADDITIONAL REFERENCE:

Wagner, P. D., Duethmann, D., Kiesel, J., Pool, S., Hrachowitz, M., Ceola, S., Herzog, A., Houska, T.,
Loritz, R., Spieler, D., Staudinger, M., Tarasova, L., Thober, S., Fohrer, N., Tetzlaff, D., Wagener, T., & Guse,
B. (2025). The unexploited treasures of hydrological observations beyond streamflow for catchment
modeling. Wiley Interdisciplinary Reviews Water, 12(2). https://doi.org/10.1002/wat2.70018

Model calibration procedures and uncertainty discussion: Although calibration is presented as a central
component of the study, there is no explicit investigation of model parameter uncertainty. It remains
unclear how the different calibration methods and their respective constraints influence the uncertainty
associated with parameter identification. Presenting only a single optimal value for each parameter, is
restrictive, particularly given that calibration is one of the main goals of the paper. A more
comprehensive analysis of parameter uncertainty would significantly strengthen the study.

We agree with the reviewer on the significant role of model calibration in our study and on the
importance of uncertainty information in parameter estimates (along with that in the data and model
structure, which are reasonably expected to contribute no less to the error budget in the study context).
Here the calibration was performed with a stochastic optimization algorithm, rather than a Bayesian



inference algorithm designed to explicitly quantify parametric uncertainty via posterior probability
distributions. Optimization algorithms are focused on locating a single global optimum of the objective
function by estimating the corresponding single set of parameters. Despite this limitation, such an
approach allowed to reduce the computational costs associated with the setup of the calibration
experiments (search space dimensions, model time step and calibration window length, number of
simulation scenarios). Specifically, the standard version of the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) was used, which has been successfully tested in several hydrological applications.
CMA-ES employs a multivariate Gaussian as the search distribution and updates its parameters,
including a covariance matrix (C) that controls the shape, to generate successful search directions. A
valid example of using standard CMA-ES computations to produce the posterior distribution of
parameters (by the way, not necessarily Gaussian) is the study by Grayver and Kuvshinov (2016). In their
work, the local information about the current search distribution provided by C at the optimum, further
processed through a proper rescaling, contributes to initialize the proposal distribution and improve the
efficiency of a Bayesian method, which is used in a subsequent step for simultaneous parameter
estimation and rigorous uncertainty quantification. Such a hybrid strategy, combining CMA-ES
optimization with Bayesian sampling to derive parametric uncertainty, is well beyond the scope of our
study.

Here the calibration experiments compared different scenarios analysing their implications on
streamflow performance and on the representation of hydrological processes. The calibration approach
employed has proven useful for this investigation and more generally for the study context; however, we
acknowledge its limitations, which are highlighted in Section 4.4, and do not recommend it as a general
method. In this sense, it would be appropriate that for the scenario deemed ideal based on the
purposes, a calibration can be carried out that goes beyond the search for a single optimal model
realization, but which explicitly considers model structural, data and parameter uncertainty (a task that
is far beyond the scope of this paper). In any case, we agree with the reviewer on the appropriateness of
a comprehensive analysis of parameter uncertainty, as part of a less basic calibration approach (see
L645). We have therefore made this point explicit in the discussion of the current limitations, integrating
the sentence in L695 of the original manuscript as follows: “More accurate data with characterized
uncertainty can then be used profitably within an appropriate multi-objective calibration framework for
parameter estimation and uncertainty assessment (e.g., Efstratiadis and Koutsoyiannis, 2010)”.

ADDITIONAL REFERENCE:

Grayver, A. V., and Kuvshinov, A. V. (2016). Exploring equivalence domain in nonlinear inverse problems
using Covariance Matrix Adaption Evolution Strategy (CMAES) and random sampling. Geophysical
Journal International, 205(2), 971-987. https://doi.org/10.1093/gji/ggw063

Model validation with observational data: The model validation against observed data appears limited.
For example, the absence of independent river-flow validation at interior points of the basin is a
limitation. Relying on a single outlet control point for such large catchments may mask the model’s
ability, or inability, to reproduce flow dynamics in locations within the basin unseen during calibration.
Additional validation would help demonstrate the robustness and transferability of the calibrated
model. Are the calibrated parameters spatially varying across the basin or constant in space? How this
would influence the simulated results?

Regarding the first part of the comment, we agree that the lack of internal stream gauges (also
representative of different hydrological behaviours within the basin) is limiting. However, in the study
region the streamflow observations are extremely scarce, especially with increasing altitude and
topographic complexity (in this perspective, another scenario will be added to represent the absence of
hydrological information, at the suggestion of the first referee). It should also be noted that, in line with



the scope of the journal and modelling objectives, densely populated valley areas are of greatest
concern in the Himalayan basins from a river flow-related risk perspective. In this sense, although
additional upstream gauging stations are extremely valuable for model assessment, the information
they provide may be of limited benefit in simulating streamflow at basin outlet (e.g., Lerat et al., 2012).

Regarding the second part of the comment, we highlight that for reasons of parsimony (and
identifiability), the model parameters are lumped. However, we attempted to introduce original
solutions in model parameterization to ensure spatial variability in process simulation, arriving at the
presented configuration which led to satisfactory results. For example, a relationship was proposed to
consider the dependence of degree-day-factors with elevation (see Section 2.5.1), as well as empirical
relationships between river basin and streamflow response characteristics were used to
parsimoniously represent the variability of convolution and propagation parameters across sub-basins
(see Section S1 in the Supplement). This last point will be better highlighted in the main text in
correspondence with L182.

ADDITIONAL REFERENCE:

Lerat, J., Andréassian, V., Perrin, C., Vaze, J., Perraud, J. M., Ribstein, P., & Loumagne, C. (2012). Do
internal flow measurements improve the calibration of rainfall-runoff models? Water Resources
Research, 48(2). https://doi.org/10.1029/2010wr010179

Artificial influences of the hydrological regime: Regarding river flow, the authors should also consider
discussing whether artificial reservoirs, hydropower plants, or other human interventions influence the
hydrological cycle in the study area, and, if so, how these anthropogenic factors are represented or
accounted for in the model.

We thank the reviewer for the opportunity to clarify this point in the revised text. The model simulates
only natural flows, similarly to many others typically employed in the study region. Its structure does not
integrate components to reproduce anthropogenic effects and therefore would encounter limitations in
basins where their impacts are significant with respect to the rainfall-runoff transformation. In this
regard, it is appropriate to make some considerations both on the context and on the objectives of the
study.

The presence of anthropogenic influences is clearly likely, in a region where water resources have
significant potential for irrigation and hydropower. However, on the one hand their impacts are to be
considered limited in the basin we have outlined, on the other hand, in view of a possible integration
into modelling, the problem of availability and accessibility of the relevant data remains. In accordance
with the cited study by Goteti and Famiglietti (2024), the area of our interest (Northern India, altitude
above 1500 m, transboundary basins) is characterised, in addition to limited and “classified”
streamflow data, by minimal groundwater extraction and water diversions, while both the density of
dams and reservoirs and the corresponding storage capacity are low. Other hydrological studies on the
Alaknanda River basin (closed further downstream), mentioned in Section 4.3 “Local hydrological
insights: comparison with other studies” (Singh et al., 2023b; Rautela et al., 2023a, 2023b; Kavya et al.,
2025), do not integrate the effects of operational hydroelectric power plants into the modelling, despite
the main focus of their analyses being on water resources management rather than on high flows and
flood response dynamics. In the study by Kavya et al. (2025), where it was even necessary to overcome
the unavailability of streamflow data by replacing them with the ERA5-Land runoff simulations, they
conducted a field trip to approach a hydropower agency that provided them with a year of streamflow
observations for a gauged site. In Rautela et al. (2023b), the modelled streamflow was converted in
hydroelectric potential (simulated HEP) and compared with data obtained for a power plant (plant-
produced HEP) which is located downstream from our outlet. The authors highlight some limitations of



this validation approach, which does not consider, for example, operational and maintenance factors
that play a role in determining the actual energy output.

In our study, hydrological modelling is oriented towards the high flow regime during the monsoon
season, with satisfactory performance that provides insights into the streamflow response to extreme
rainfalland is indicative of its potential as a tool for flood simulation. The study basin has faced repeated
flash floods due to heavy rainfall events, including cloudbursts, and in such circumstances any possible
anthropogenic effect has been found to be secondary. The analysis of the precipitation and streamflow
time series does not show any alterations in the latter indicative of significative regulation effects (e.g.,
constant flow regime to variable precipitation inputs or sudden changes in the hydrographs that cannot
be attributed to rain or showmelt inputs), which would in any case impact the performance of a model
that is designed for natural flows and not for highly regulated basins. Although not considering
anthropogenic influences increases errors in model simulations, in a context such as the one under
consideration it can be assumed that the contribution to the overall uncertainty budget is limited,
compared for example to that attributable to meteorological inputs.

We will integrate this point into Section 4.4 "Current limitations", as reported below, although it can be
assumed that our results and conclusions still apply. “”. In L648 will be added “the model simulated
only natural flows and therefore did not consider any possible anthropogenic influence on the
hydrological cycle”. In L709 will be added “Finally, the model structure did not integrate components to
reproduce anthropogenic effects, nor were these considered in the analyses performed. While the
streamflow in the study area is expected to be relatively less impacted by such factors (e.g., Goteti and
Famiglietti, 2024), the latter are present but difficult to characterize due to the poor availability and
accessibility of the relevant data. Here the modelling objective was to simulate the high flow regime
during the monsoon season to gain insights into the flood response dynamics, in a basin subject to
extreme events of such magnitude that the simultaneous effect of any anthropogenic influences can
likely be considered secondary. The model achieved satisfactory performances in reproducing the
streamflow time series, with the latter showing no evidence of significant alterations attributable to
anthropogenic effects, especially regarding the generation and propagation of high flows. In any case,
the model, as currently configured, is only indicated for mountainous basins with near-natural regimes”.

Specific comments:

Line 118: How are these sub-basins defined? Are they delineated based on geomorphological
attributes, land-use/land-cover, soil, geology, or another criterion?

Sub-basins were delineated based solely on elevation data, using GIS tools to calculate the flow
direction matrix from the DEM (in this case, with the widely used D8 algorithm). From the resulting flow
accumulation matrix, the river network was obtained by setting a threshold area for the creation of
streams, and therefore the boundaries of the sub-basins. In the hope of improving clarity on this point,
we will restructure the sentence in L117-118, adding this operator-defined information, to also facilitate
reproducibility: “Digital elevation model data (NASADEM at 30-m resolution) were used to delineate the
main drainage network, assuming a threshold area to form a stream of 200 km?. The 19 sub-basins in
Fig.1 were thus identified, having areas ranging between 160 and 778 km?”.

Line 137: It appears that S1 has not been introduced yet.

Yes, because the Supplement contains an initial section referring to the hydrological model that
includes a first figure (indicated as S1 in the original version and not referenced in the main text). To
resolve what appears to be an inconsistency, we will ensure that the figures referenced in the main text
have indices that start from S1, making the necessary changes in the Supplement as well.



Line 145: Why is GLEAM v4 not used? It offers higher spatial resolution and extended temporal coverage.

In the calibration, the AET volume at basin scale (and therefore lumped) was used as a constraint, to
correct precipitation in accordance with a realistic water balance. This target value did not differ
significantly from GLEAM v3 to v4, nor was there a benefit from the extended temporal coverage as our
study period was limited to 2020 by the availability of streamflow data. It is noteworthy that the spatial
variability of the simulated AET is likely driven more by the meteorological forcings than by the lumped
model parameters, limiting the benefits on the latter of a calibration metric that considers AET patterns.
While we considered it not worth repeating the calibration experiments for the several scenarios, we
agree that it may be appropriate to use the enhanced and later available GLEAM v4 for the assessment
of the simulated AET patterns (especially the spatial ones, which have been previously evaluated only
in qualitative terms). Therefore, we will update Section 2.3 as follows: “Actual evapotranspiration (AET)
from the GLEAM dataset v3.8a at 0.25° spatial resolution (Miralles et al., 2011; Martens et al., 2017) was
used as a basin-scale reference for model calibration and validation with a lumped approach. For
further evaluation regarding spatial patterns, a later available version with an improved spatial
resolution of 0.1°, namely GLEAM v4.2a (Miralles et al., 2025), was instead considered. Potential
evapotranspiration (PET) was computed with a Priestley-Taylor (GLEAM v3) or Penman (GLEAM v4)
equation and then converted into AET considering an evaporative stress factor. Specific
parametrisations were implemented for ice- and snow-covered regions. GLEAM algorithm employs
several forcing datasets, such as reanalysis radiation and air temperature, a combination of gauge-
based, reanalysis and satellite-based precipitation, and satellite-based vegetation optical depth, as
well as it assimilates satellite-based surface soil moisture”. Similarly, we will update Section 3.3 with
the new results (the figures of which we anticipate below) and related comments.
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Figure 4: Comparison between simulated (in red) and reference (in blue) monthly AET data at basin scale in the study period
for Scenario 1.
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Figure 5: Mean annual AET in the water years 2001-2020 for Scenario 1, according to semi-distributed hydrological model (a)
and gridded reference (b). Panel (c) shows the differences at the sub-basin scale between the simulated and reference AET.



Lines 156-165: Could you provide more details on the methodology? When you refer to “summary data,”
what exactly does this include? Are these spatially varying discharge time series for each sub-basin? At
what temporal resolution?

To improve clarity on this point by adding appropriate details, we will modify the sentences in L157-164
as follows: “For this work, the study by Bandyopadhyay et al. (2019) was taken as a reference. Geodetic
glacier mass balance data were calculated from elevation changes, evaluated on RGI outlines by the
differences between two satellite-based high-resolution digital elevation models referring to the years
2000 (SRTM mission) and 2014 (TanDEM-X mission), respectively. The mass changes thus attributed to
the period 2000-2014 were validated against previous studies on selected glaciers. Glacier mass
balance values aggregated to the river basin scale were provided for the two main tributaries
(Dhauliganga and Pindar) and the Upper Alaknanda (upstream of the confluence with Dhauliganga).
These latter data, in terms of stored water loss, were used in this study as independent reference in the
model calibration, for the corresponding three groups of the sub-basins outlined here. To be consistent
with Bandyopadhyay et al. (2019), an ice density of 850 kg m™ was assumed, appropriate for converting
geodetic glacier volume changes (Huss, 2013)”.

In the original version, with 'summary data' we meant the values of the glacier mass variations at the
scale of the river basin, with the latter corresponding to an aggregate of the sub-basins outlined here.
There are no time series of data available, and the spatial scale is larger than that of the individual sub-
basins.

Line 166: Could you clarify the elementary spatial unit used by the model for the different hydrological
processes? Is it a 0.1° pixel?

Line 178: “Ice melting was simulated only...” On what basis are these grid points classified? Is this
classification time-varying? Why is ice melting simulated only for these pixels and not for all pixels
where snow is present?

We have merged these two comments because they both addressed the topic of process modelling unit
and we believe that a joint response would be more effective and concise.

As stated in L175-178, a first set of processes is simulated at the ERA5-Land grid scale (0.1° resolution),
specifically those involving the processing of meteorological inputs that then determine liquid inflow
into soil storages. These liquid inputs, as well as evapotranspiration demand, are then averaged at the
sub-basin scale since the second set of processes is modelled with a lumped approach. The first set
includes rainfall-snowfall separation, snowpack evolution, and snow and ice melting (L177), while the
second set consists of the processes of surface and subsurface runoff generation (L175-176), and
following convolution and propagation. It should be noted that in Section S1 of the Supplement,
dedicated to the model description and implementation, the general structure is represented, and
reported here.

We will integrate the sentence in L178 to make it more explicit: “lce melting is simulated only on grid
points classified as having afferent glaciers according to RGI outlines”. This matching results in a
percentage of glacierized area at the sub-basin scale, which is considered static in all scenarios except
the 1D in which it evolves according to a volume-area scaling approach. While the matching between
ERA5-Land and RGl does not vary over time, the value of the glacierized fraction can change dynamically
onlyin Scenario 1D. Finally, since ice melting here represents the contribution from water already stored
in the glaciers, it is simulated only in the presence of the latter.




The coarse resolution at which some key processes are modelled, although not deviating from similar

applications in the literature (L171-173), is a known critical factor of the study, discussed in detail in the
Section 4.4 “Current limitations”.
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General structure of the model described in this study

Line 190: How are the initial conditions defined for standard grid points and for glacier grid points?

The hydrological model has three state variables expressed in terms of water storages (see also model
structure represented in the Supplement and reported in the previous response). The snowpack storage
was assumed null at the start of the model warmup, while the upper (layer 1) and lower (layer 2) soil
storages were both half of their total thickness (i.e., Wmax1 and Whax2, respectively). These initial
conditions will be specified in Section S1 of the Supplement, which focuses on the model description
and implementation. It should be noted, however, that the length of the warmup (2 water years, from
June 1998 to May 2000) was set such as to minimize the dependence of the state variables on the
arbitrary initial condition. In this sense, it was also necessary to avoid the potential compensation for



underestimated precipitation through depletion of initial storage capacities. Although there was no in-
depth analysis of the effect of initial conditions, the established values have been verified compatible
with the study’s configuration and objectives. In this perspective, below are some example graphs,
representing fluxes and states for a headwater sub-basin that includes glaciers during the study period.

As stated in L175-178, at the sub-basin scale the soil water balance module was implemented in a
lumped way, while the snow and glacier modules operated on the ERA5-Land grid points (which may or
may not have afferent glaciers). Ice melt is not controlled by state variables additional to snowpack
storage. In the case of the dynamic glacier module, the contributing glacierized area was initialized

according to the RGI dataset, which refers to the year 2000 and therefore adequately approximates the
beginning of the study period.
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Line 225: Could you specify which snow and glacier model parameters are used and how many there
are? Which parameters are fixed (and at what values), and which ones are calibrated?

There are 6 parameters in snow and glacier modules, 4 of which are fixed a priori and 2 are calibrated.
Information on these was given in the main text in L206-209 and is summarized here in the following
table. To improve clarity on this point, this information will also be included in a more general table
referring to all the model parameters, both calibrated and not (see the reply to the comment on L312,
where this table is showed).

Parameter Fixed value Calibration range
To 0°C
Kice 1.3
Ly 5000 m
scale 50m
DDF snow,min 1+5mmeC’d’
DDF 440 1+2

Lines 245-250: Please define P and its units. Also, specify the parameter ranges and provide references
for CF in methods adj1 and adj2, as well as for the parameters in Equation 5.

The precipitation P, which was introduced in L133, will be explicitly referred to in L246 with the indication
of the unit of measurement [mm]. The parameter ranges for the various adjustment approaches will be
reported later in the main text in a general table structured by processes (see the reply to the comment
on L312, where this table is shown). References for the different adjustment methods will be given.

Line 253: The calibration period is three times longer than the validation period. Could you discuss or
justify this choice? Reducing the calibration period could have allowed validation of the glacier module,
which represents one of the novelties of this work.

As stated in L253-255, the calibration period covers 14 water years (2001-2014), which becomes 13 for
streamflow data (2014 was excluded), while the validation period lasts 6 water years (2015-2020).
Therefore, the calibration years are just over double the validation years, not deviating from common
practices. The calibration period was set to approximately match the temporal coverage of the reference
glacier loss data, calculated from the differences between two satellite-based attributed to the years
2000 (SRTM mission) and 2014 (TanDEM-X mission) respectively. Therefore, the reference data are
associated with a single time window without intermediate information, implying the unavailability of a
second period to validate the modelled glacier loss. Finally, the end of the validation period considered
(i.e., 2020) is determined by the availability of streamflow data provided to us.

Line 265: All calibration scenarios should produce the same output. In some cases these outputs result
from uncalibrated parameters, while in others they come from calibrated ones. It appears that the
reliability of the uncalibrated parameters is not assessed against reference data. Is there a reason for
this?

Line 266: Could you specify how many parameters are involved in each scenario?

We have merged these two comments because they addressed the same main topic, namely calibrated
and fixed parameters in the several scenarios, and we believe that a joint response to both would be
more effective and concise. The presentation on this point was evidently not clear enough in the original
submission, and the opportunity offered by the reviewer is taken to improve it and eliminate any
ambiguity.



Information on the number of calibrated parameters was reported in L293-294, with an overview
provided in Tab. S1 in the Supplement. As it can be seen, in the original simulations in each scenario
there were the same uncalibrated parameters and largely the same calibrated parameters (only
scenarios 1B and 1C differ in terms of precipitation adjustment structure, changing the number of
calibrated parameters from 13 to 14). In other words, the scenarios do not differ substantially in terms
of which parameters are alternatively calibrated or not. Furthermore, there are no processes in which
all the parameters have been set a priori, making it difficult to attribute to these the ability or otherwise
to capture the corresponding reference data.

On this point we will provide updates to consider a further scenario (Scenario 5), integrated following
the comments of the first referee (see AC1). Additionally, Tab. S1 will be updated to include both
calibrated and uncalibrated parameters and moved to the main text (see the reply to the comment on
L312, where this new version of the table is provided).

Parameters were calibrated to reproduce reference hydrological fluxes in the basin (whose selection
varies with the scenario), namely outgoing streamflow and AET, and the contribution of incoming glacier
melting (additional to precipitation, which was also adjusted). We confirm that, regardless of the target
fluxes, the model reproduces the same processes and outputs in every scenario, except for those
(Scenarios 2-4) in which the glacier module is switched off (see reply to comment on L268). Aside from
that, itis worth noting that in Scenarios 1-5 the model is structurally identical, that Scenarios 1Band 1C
differ from the previous ones only for the preprocessing of incoming precipitation, and that in Scenario
1D the evolution of the glacier area is also simulated.

Line 268: Is glacier melt simulated in Scenario 2? If not, how do you justify this?

As stated in L290-293, glacier mass losses are not simulated in the absence of specific constraints (i.e.,
®, in the objective function), mainly due to underestimation of precipitation which would tend to be
compensated by overestimation of modelled ice melt, considering also that the process that is thus
neglected has a limited impact on the water budget at basin scale.

Line 312: You might consider beginning the results section with a figure or table from the main text, or
alternatively moving S1 to the main text if it is essential.

We will insert in the main text the updated table showing the values of the calibrated and fixed
parameters, also reported below.

Range Scenario
Process Parameter
min | max 1 2 3 4 5 1B 1C 1D

Potential
evapo- kpeT 06 | 1.4 | 1.075 | 1.025 | 0.610 0.6 0.853 1.211 | 0.941 1.008
transpiration

To - - (0] [0] [0] [0] [0] [0] [0] [0]

kice - - [1.3] [1.3] [1.3] [1.3] [1.3] [1.3] [1.3] [1.3]
Snow  and | Zer - - | [5000] | [5000] | [5000] | [5000] | [5000] | [5000] | [5000] | [5000]
ice melting | op)e | - | 501 | 501 | 501 | [501 | [s01 | [50] | [s501 | [s50]

DDFsnowmin | 1 5 2493 | 4478 | 4288 | 4236 | 2.511 | 2.676 | 2.569 | 2.533

DDFatio 1 2 1.459 | 1.739 2 1.774 | 1.463 | 1.438 | 1.459 | 1.443




Glacier area | ¢ - - - - - - - - - [0.034]
evolution y } _ R ; - - - - - [1.375]
Streamflow | % 2 | 30 | 6.997 | 9.598 | 29.79 | 20.95 | [16] | 23.97 | 23.52 | 25.71
propagation | . 1 15 | 13.19 | 8.515 | 3.398 | 12.00 [8] 11.99 | 11.83 | 8.195
Surface
runoff from
, ‘ a 05| 10 | 3.997 | 5715 | 8276 | 7.307 | 2.730 | 4.355 | 4.545 | 5.242
infiltration
€XCeSss
Percolation | g | 0.1 | 200 | 104.5 | 1062 | 146.6 | 160.8 | 1.524 | 126.2 | 53.96 | 128.0
from 1% soil
layer m 5 130 | 1613 | 17.61 | 21.72 | 22.33 | 20.15 | 12.68 | 20.42 | 19.22
Percolation | g 0.1 | 200 | 95.08 | 100.3 | 39.01 | 158.9 | [4.472] | 1554 | 75.39 | 82.96
from 2" soil
layer my 5 | 30 | 1825 | 17.41 | 23.10 | 19.97 | [17.5] | 21.88 | 27.54 | 17.41
Surface and | ., 01| 6 | 0427 | 0.706 | 0.753 | 0.103 | [3.05] | 0.489 | 0.388 | 3.750
subsurface
runoff VLR 2 | 10 | 5.618 | 4.615 | 5.560 | 2.071 [6] 5.020 | 3.389 | 6.319
convolution
CF 1 | 1.4 | 1.290 | 1.325 | 1.223 | 1214 | 1.310 - - 1.280
.| CFuayou 1 |16 - - - - - 1.162 - -
Precipitation
bias CFNov-Apr 1 | 1.6 - - - - - 1.532 - -
adjustment
CFcok 06 | 1.4 - - - - - - 1.103 -
CFexp 0.5 1.5 - - - - - - 0.690 -

Table 2. Model parameters and calibrated and fixed values for the different scenarios. In italic the calibrated values equal to
the upper or lower bound of the parameter range, while the uncalibrated parameters are reported in square brackets.
Information on parameters not described in the main text can be found in Section S1 of the Supplement. DDFsnow,min is reported
in mm °C! d!, Ty in °C, Zwr and scale in m, ¢ in km*?, K,; and K> in mm h™'. DDFaso indicates the ratio of DDFnow,max to
DDFsnow,min. The soil storage depths Wmax,1 and Wmax,2, which are cross-cutting parameters in the processes related to surface
and subsurface runoff generation, are set at 500 and 3000 mm respectively.

Line 423: Regarding the term “lumped,” does this refer to the spatial basin average? Could you provide
a spatially distributed quantitative metric (e.g., r, R or bias) to assess how modelled and reference AET
compare across the basin?

The reviewer’s interpretation of the term "lumped" is correct, but we will replace it with the less
ambiguous wording of “basin-wide averaged AET”. Fig. 5¢c will report the sub-basin scale distribution of
the differences in mm/year between the mean AET of MISDc-2L and GLEAM v4 (see the reply to the
comment on L145).



