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Abstract

15 Diurnal variations in planetary boundary layer height (PBLH) is highly linked to weather,
climate, and environmental processes. However, remaining challenges persist in estimating
its diurnal behavior at a large scale due to insufficient observations and limitations of
operational retrieval algorithms. This study proposed a deep learning framework based on an
attention-augmented residual neural network to estimate diurnal variations in near-global

20  PBLH, incorporating profiles from an non-sun-synchronous lidar (Cloud-Aerosol Transport
System: CATS) and meteorological fields. The framework can largely address the issue of
multi-layer structures in space-borne lidar signals, significantly improving the accuracy of
PBLH retrieval during morning and evening (with accuracy improvement approach 40%
compared to traditional algorithms). Due to insufficient observations aligned with CATS

25  orbits, a pre-trained model was firstly trained using pseudo-labels from reanalysis, and then
was transferred to observation-based target labels. The transfer model demonstrated superior
performance in most regions and periods, outperforming conventional algorithms in
capturing PBLH magnitude and its diurnal variations, though under-performing over complex

terrains. Further assessments over different land covers shown that the transfer-trained model
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30 estimated PBLH and diurnal patterns were highly consistent with those from radiosondes,
surpassing reanalysis outputs. For model capability, wavelet covariance transformation
derived potential PBLH and temperature profiles emerged as dominant factors, with
contributions exhibiting diurnal patterns. Overall, this work proposes a novel framework for
large-scale PBLH estimation and provides insights for improving conventional algorithms,

35  particularly through integrating remote sensing and machine learning.

1. Introduction
The planetary boundary layer height (PBLH) plays key roles in land-air exchanges and
lower tropospheric processes (LeMone et al., 2019; Medeiros et al., 2005), such as the
40  transfer and exchange of heat, momentum, humidity, and materials (Garratt, 1994; Holtslag et
al., 2013; Stull, 1988). As an interface between the turbulent boundary layer and the free
atmosphere, PBLH acts as a significant barrier and represents the degree of turbulent
diffusion, determining the upper limit of boundary layer processes and playing vital roles in
weather, climate, and environmental studies (Che et al., 2019; Davy and Esau, 2016; Guo et
45 al., 2021; Li et al., 2017). Particularly, weather and pollution conditions are largely dependent
on the diurnal behaviors of PBLH, which dominates the atmospheric dispersion and vertical

mixing of pollutants (Ding et al., 2013; Huang et al., 2023; Li et al., 2025).

Despite the crucial importance, accurately measuring diurnal variation of PBLH across

large scaled areas remains challenging due to spatio-temporal limitations of current detection

50  instruments. Radiosonde and lidar measurements allow precise representation of vertical
atmospheric structure (Seidel et al., 2010; Seidel et al., 2012). The radiosonde derived PBLH
generally served as a benchmark for validating simulations, reanalysis, and remote sensing
(Guo et al., 2021; Li et al., 2023; Yue et al., 2021).However, global radiosondes are typically
launched two or four times per day, and its coverage is much sparse in less-developed regions

55  (like Africa and South America). Lidar systems serve as a promising tool for continuous
PBLH monitoring (Chen et al., 2022; Liu et al., 2021), benefiting from their operation at
sub-minute temporal resolution. While ground-based lidar has limited spatial representation,

space-borne lidar enables large-scale PBLH detection across diverse regions (Jordan et al.,
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2010; McGrath-Spangler and Denning, 2012). Li et al. (2023) demonstrated diurnal
60  variations in large-scale PBLH from an non-sun-synchronous satellite. However, they
retrieved PBLH exhibited large deviations in accuracy and diurnal patterns due to

uncertainties of retrieval and signal noises such as multi-layer structures.

Conventional algorithms for retrieving PBLH from satellite signals are typically developed

either to detect abrupt jumps in backscatter profiles (Kumar et al., 2018; Liu et al., 2015) or

65  to identify the first exceeding of an empirical threshold (Palm et al., 2021). These algorithms
suffered from significant accuracy challenges, due to at least three limitations: (i) the
presence of elevated residual layers prevent downward staring lidar from detecting the true
PBLH; (ii) cloud contamination or advected aerosols induce noises into lidar echos; and (iii)
parameter selection of algorithm affect its sensitivity to diverse profile structures. The

70  primary challenge for retrieving the diurnal variation of PBLH perhaps lies in minimizing the
influences of residual layers or multi-layer structures during its morning and evening
transition periods (Su et al., 2020; Li et al., 2023). Numerous efforts have been taken to
enhance the algorithm performance in operating multi-layer profile structures of space-borne

lidar, such as utilizing graphic clustering (Liu et al., 2018) or implementing additional

75  physical constraints (Kim et al., 2021; Su et al., 2017). However, to date, current algorithms
have not yet achieved optimal performance, primarily due to their inability to effectively

resolve ambiguity signal structures through automated detection.

In recent years, machine learning has been increasingly integrated into PBLH estimation,
achieving evidenced improvements. Several studies have employed deep neural network

80  frameworks to estimate PBLH using near-surface and vertical atmospheric variables (Nguyen
et al., 2021; Su and Zhang, 2024), constructing non-linear mapping from meteorologies to
PBLH. Based on parameters acquired from surface observations, remoter sensors, reanalyses,

and simulations, several random forest models were developed to predict PBLH (Guo et al.,
2024; Krishnamurthy et al., 2021), the results demonstrated greater consistency with

85 radiosondes and effectively corrected some inherent biases. There are gradient boosting
learning models been proposed (de Arruda Moreira et al., 2022; Peng et al., 2023), which

sequentially fits multiple weak learners, allowing the model to learn iteratively and improve
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prediction accuracy progressively. These methodologies essentially addressed the regression
relationship between PBLH and associated meteorological variables. There are also machine
90 learning models were employed to refine retrieval technique from only remote sensing data.
Rieutord et al. (2021) compared an unsupervised (AdaBoost) and a supervised (K-means)
learning, to judge whether the lidar signals originate from the boundary layer or the above
free atmosphere. Mei et al. (2022) proposed a VGG16-based convolutional neural network
for PBLH detection using wavelet covariance transformation (WCT) images of ground-lidar
95  backscatter, which can effectively suppresses contamination from clouds and residual layers.
Sleeman et al. (2020) improved PBLH measurement from backscatter profiles under cloud

condition through convolutional network.

Existing machine learning methodologies exhibit significant advantages in capture PBLH

and its diurnal variations from noisy lidar signals. However, these studies have almost been

100  limited to ground-based sites, and either require additional meteorological variables affecting
PBLH evolution to be provided or necessitate human intervention to process remote sensing
signals. These site-scaled models may not be generalizable on larger regions or global scale.

Few studies have focused on improving PBLH estimation from space-borne lidar through
machine learning approaches. This is primarily due to training a robust model requires

105  substantial feature samples been provided, yet ground-based observations aligned with
space-borne lidar overpass orbits are extremely scarce, making it difficult to obtain sufficient

target labels; while those unsupervised learning methods often fail to achieve the desired

performance (Rieutord et al., 2021).

Given the aforementioned considerations, this study proposes to construct a temporally and

110  spatially adaptive deep learning model to estimate PBLH and its diurnal variations on a
near-global scale using space-borne Cloud-Aerosol Transport System (CATS). As the satellite
operates on a non-sun-synchronous orbit, it can capture a complete diurnal cycle (Yorks et al.,
2016). To address the issue of insufficient matching samples with satellite orbits, this paper
employs a transfer learning strategy. The approach involves first establishing a pre-trained

115  model using large-scale samples matched by reanalysis data. And then, the feature extraction

capabilities of the pre-trained model are transferred to small samples matched with ground
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truth values. By fine-tuning the model weights, its representation for real-world targets and
generalization are enhanced, thereby constructing more accuracy measurements of diurnal
variations in large-scaled PBLH. Overall, this work presents the first attempt to integrate
120  attention mechanisms and transfer learning for diurnal PBLH estimation at near-global scale,
overcoming the limitations of conventional algorithms in handling multi-layer atmospheric

structures.

2. Dataset
125 2.1 satellite-based lidar profiles

This study aims to develop a robust and generalizable deep learning framework for

PBLH estimation from space-borne CATS lidar. CATS was initiated to monitor atmospheric
clouds and aerosols using advanced lidar technology and was mounted on the International

Space Station's (ISS) Japanese Experiment Module. Launched on Jan. 10, 2015, the ISS

130 operated in 51.6° inclined orbits at an altitude of ~405 km, covering tropical and mid-latitude
regions. Unlike sun-synchronous satellite, CATS exhibited a repeat cycle of approximately

three days and operated at non-fixed overpass times. These characteristics allow CATS to
capture large-scale diurnal variations in aerosols (Yu et al., 2021) and clouds (Zhao et al.,
2023), as well as in PBLH (Li et al., 2023) after approximately 16 days of running. Due to

135  instrument malfunctions, available CATS backscatters for PBLH retrieval only limited from
Mar. 2015 to Oct. 2017, exclusively at the 1064 nm. Such wavelength is more sensitive to
aerosol structure and variations compared to 532 nm (Winker et al., 2007), but with a lower
signal-to-noise ratio (SNR); such that CATS signals necessitate more rigorous denoising
processes. Herein, the study acquired 1064 nm 'Total Attenuated Backscatter' profiles (TAB)

140  from the CATS V3.00 Level 1B product and 'Feature Type' data from the Level 2 product.
The collected L1B and L2 products have horizontal resolutions of 350 m and 5 km,
respectively, while both maintain a vertical resolution of 60 m. Several additional CATS
products: 'Profile UTC_Time', 'DEM_Mean Elevation', 'Bin_Altitude Array', 'Opacity’,

'Layer_Top_ Bin', "Layer Base Bin', 'Surface Type', 'Sky Condition' were collected to refine
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145  the input features when training model. Only the daytime products were acquired and the

determination for nocturnal PBLH falls outside scope of this paper.

2.2 Radiosondes and reanalyses derived PBLH
Given that radiosonde derived PBLH is typically recognized as ground truth, this study
employed sounding profiles from Integrated Global Radiosonde Archive (IGRA) V2.0, which
150  serves to generate benchmark PBLH and to assess performances of our deep learning model.
IGRA offers exceptional temporal and spatial coverage, with current 466 radiosondes sites
(Fig. S1) available in CATS overpassing areas. We acquired IGRA data temporally aligned
with the CATS orbits. Sounding profiles employed for PBLH determination encompass
geo-potential height, temperature, dew point depression, wind speed and direction. The bulk
155  Richardson number method (Vogelezang and Holtslag, 1996) was adopted to calculate the
PBLH, which can even maintain enough effectiveness under stable atmosphere regimes and
coarse sounding resolutions. Nevertheless, procedures were still conducted to eliminate
soundings with coarse vertical resolution: within 5 km from the surface, the profiles must
include at least seven vertical levels of temperature and humidity records; along with at least
160  four levels of wind records. If valid wind observations are fewer than seven levels, a cubic
spline interpolation was employed to fill missing values (Zhang et al., 2013). However, we
should aware that radiosondes have standard launch schedule (fixed at two UTC), only a few
soundings coincide with CATS orbits, spatio-temporal overlaps between the two datasets are
quite scarce. Fig. S1 gives their match-up information, where relatively rough matching rules
165  (with distance limited to 150 km and time to 1.5 hour) were performed to enlarge the number
of samples. As a result, we obtained totally 5368 valid matching samples, which cover the

majority of the Earth's land, and larger sampling numbers observed in mid-latitude regions.

While the robustness and reliability of radiosonde-based PBLH, using only 5,368 matched

samples to train a model is far from sufficient, especially considering these samples fall

170 throughout diverse periods and regions. Therefore, two reanalyses outputted PBLH, ERAS
(the fifth generation European Centre for Medium-Range Weather Forecasts atmospheric
reanalysis) and MERRA2 (the Modern-Era Retrospective Analysis for Research and

Applications Version 2), were further acquired in this study. Two sets of PBLH share the
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same temporal resolution (1-hour) but with discrepant spatial grids: 0.25° x 0.25° (ERAS)
175  and 0.625° x 0.5° (MERRAZ2). The grid-based reanalyses were interpolated to the orbit-based
CATS data using inverse distance weighting to ensure they are spatially aligned. In this study,
the MERRA2 PBLH was employed to construct one of training sets for the model, partly
because it assimilates aerosol information compared to ERA5 (Gelaro et al., 2017), making it
more approach to the intrinsic nature of CATS retrievals. Our prior study also reported that
180  using conventional algorithm retrieved PBLH from CATS was more consistent with that from
MERRAZ2 (Li et al., 2023). Moreover, we acquired vertical profiles of temperature, humidity,
and wind speed from MERRA?2 as meteorological features for training the model. These
variables represent 3-hourly averaged values and were matched with CATS orbit based on the

closest temporal and spatial proximity.

185

3. Methodologies

3.1 Generate training data

WCT is one of typical PBLH retrieval techniques from satellite-based backscatters. This
study employed the Haar wavelet transform (Gamage and Hagelberg, 1993):
1 (= -b
190 W, (a.b)==[" B(z)h(=—)dz (1)
! aa a

where, Wf(a,b) is the WCT coefficient, a is dilation factor, b denotes the central location of

vertical translation, B(z) is backscatters, z» and z: represent the bottom and top limits when
integrating the Haar function, respectively. The Haar wavelet function is:

I, b—a/2<z<b
Vy=13-1, b<z<z+af2 2)

0, elsewhere

h(z—b

195  inherently, the WCT is designed to check the similarity between the lidar profile and wavelet
stepping function, its maximum peak represents the sharpest signal gradient, and thereby
considered as PBLH. However, selecting a proper dilation factor is crucial, diverse dilation
values exhibit significant impacts on step WCT signals. Particularly, a smaller dilation cause

WCT being sensitive to smaller fluctuations in backscatter profile and is susceptible to noise
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200 interference, whereas a larger dilation may smooth out thin aerosol layers.
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Fig. 1. Assessment for the WCT algorithm under different dilations (a); and accuracy (b) and MAE (c)
compared against radiosonde derived PBLH when assuming one the first five peaks in WCT profiles

(dilation=480) as PBLH.

205 Since varying sensitivity of different dilations to backscatter structures, we evaluated the
retrieval accuracy of seven dilation values ranging 240-960 m (with an interval of 120 m) in
Fig. 1a. Note that a tolerate PBLH bias of 500 m between WCT and radiosonde was utilized
when calculating the retrieval accuracy, accounting for spatio-temporal matching errors and
inherent algorithm differences between them. When compared against radiosonde derived
210  PBLH, a dilation of 480 m yielded the optimal results. Therefore, a dilation of 480 m is
taken as a benchmark for WCT in this work. However, its maximum accuracy of 39.7% does
not meet reasonable desire, such uncertainty is mainly induced by multi-layer structures such

as residual layer and advected aerosols, and inability of WCT algorithm (Li et al., 2023).

The WCT can, to some extent, be considered as a gradient-based algorithm, local peaks in

215  WCT profile denote sharp changes in signal structure. A previous study adopted dynamic
noise thresholds of ground-based lidar to identify the multiple layers (Li et al., 2023), but is

not applicative to space-borne lidar profiles. Due to the magnitude of WCT represents the

intensity of local changes in backscatter profile, we hypothesize in this study that the local



https://doi.org/10.5194/egusphere-2025-4918
Preprint. Discussion started: 15 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

peaks in WCT profiles correspond to the top position of multi-layer aerosols; these peaks
220  were then compared against the radiosonde derived PBLH (Fig. 1b). The results show that the
first five peaks in WCT profiles aligned well with the truth PBLH, with their overall accuracy
exceeding 90% when we assumed one of the peaks to be PBLH. These peaks may not
necessarily originate from the PBLH and may be induced by other interfering signals,
whereas the first peak (i.e., benchmark for WCT algorithm), only capture few portion of truth
225  PBLH. In other words, the WCT can effectively detect complex signal structures, while its
maximum peak does not fully denote the PBLH. Therefore, the performance of WCT are
largely biased, particularly when it was utilized to CATS backscatters with strong temporal
variability. Fig. 1c further examine mean absolute errors (MAE) when assuming one of the
first five WCT peaks as PBLH, the values (~240 m) are much lower than that using WCT

230  algorithm (~1 km, not show here).

Consequently, this study proposes to develop a deep learning framework to identify the

optimal peak from the first several peaks of WCT profiles that aligned with the truth PBLH.

Three types of feature data: remotely sensed profiles, meteorological profiles, and auxiliary
parameters served as model inputs. We used the raw CATS backscatter profile as one of the

235  remotely sensed features. Due to the lower SNR, a series of pre-processing procedures were
implemented. First, we utilized the 'Opacity' parameter to remove opaque profiles, ensuring
downward-scanning CATS lidar can detect entire atmosphere columns. According to previous
retrieval practices (Li et al., 2023), profiles containing cloud layers were filtered using the
'Feature Type' and corresponding 'Layer Top Bin', 'Layer Base Bin' from CATS L2 product.

240  Since CATS L1B and L2 products have diverse horizontal resolutions (a single L2 profile
involves 14 L1B profiles), all of 14 L1B profiles would be eliminated if any cloud layer was
detected in the L2 profile. Noting that cloud screening only applied below 5 km, profiles
remained available when the lowest cloud base exceeded this altitude. Prior studies have
suggested that long-distance horizontal smoothing can enhance SNR of daytime CATS

245  profiles (Nowottnick et al., 2022; Palm et al., 2021). Accordingly, the L1B profiles were then
horizontally averaged across 60 km, meaning each training unit aggregated 60 km of raw

CATS profiles. However, the solid ground generally return stronger signal echoes than the
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above aerosols, which could potentially distort the long-distance smoothing. To address this,
we re-aligned the CATS profiles according to their elevations, ensuring consistent bin for
250  ground layers for a single training unit. Moreover, elevations of CATS profile extracted from
the 'DEM_Mean_Elevation' may slightly bias from the true ground level, we thereby
followed the same approach as Li et al. (2023) to re-calibrate the ground bin. Finally, to
prevent the model from learning unforeseeable signal noises, we adopted a vertical

smoothing window spanning three vertical bins into the profiles.

255 Based on the above cloud-screened, re-aligned, and horizontally averaged CATS profiles,
we calculated the corresponding WCT profiles based on a dilation of 480 m. This study limits
the PBLH estimation to height below 5 km (corresponding to 84 CATS bins), which covers
the vast majority of global cases. Additionally, the two lowest bins (nearest the surface) were
excluded to minimize ground noise contamination. Consequently, the derived PBLH values

260  range from 360 m (120 + a/2) to 4800 m (5040 - a/2). From each WCT profile, we acquired
an additional profile involves the candidate PBLH, with the same dimensions as the
backscatter and WCT profiles. In candidate profile, most bins were assigned as '0', while the
bins corresponding to local WCT peaks were marked as 'l'. The WCT peaks were selected
based on their sorted magnitudes, with a maximum of five peaks retained per profile. Overall,

265 three remote sensing based profiles, encompassing averaged TAB, WCT, and candidate

PBLH, each with dimensions of 84 x 1, were incorporated as model inputs.

The meteorological profiles include temperature, relative humidity, and wind speeds
obtained from MERRA2 3-D meteorological fields, which were first spatio-temporally
matched with CATS orbits and then vertically interpolated to 84 corresponding CATS bins. In

270  addition, the model inputs incorporated several non-profile parameters extracted from CATS
auxiliary products, including geography information (latitude, longitude, altitude), local
standard time (LST; converted from UTC of each profile), surface type, and sky conditions.
These non-profile parameters were subsequently resampled to match the dimensions of the
profile features, and finally forming a standardized input array (84 bins x 12 features) for

275 training the model, as the input layer shown in Fig. 2.

10
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Fig. 2. Visualization for the model architecture, encompassing input layer (pre-training set and transfer
training set), shared feature extractor (involving two attention augmented residual blocks), prediction

heads (two discrepant fully connected layers for pre-training and transfer-training), and output layer.

280 In principle, the target labels for model training should be generated based on radiosonde
derived PBLH . However, this study obtained only 5,368 matched samples between CATS
and radiosonde data, which is far too limited to train a model capable of capturing both
temporal and spatial PBLH variations. To address this challenge, a transfer learning strategy
was adopted. Specifically, a baseline model was pre-trained across a large feature set using

285  pseudo-labels constrained by MERRA2 PBLH, after which the pre-trained model was
fine-tuned on a smaller dataset with target labels constrained by radiosonde derived PBLH.
During the pre-training phase, the training target was defined as the single peak in the WCT
profile closest to the MERRA2 PBLH, allowing a maximum deviation of 480 m that equals
to one-fold dilation value. This approach enabled the model to learn vast feature information

290  and substantially expanding the training sample size. For pre-training, a feature dataset of
2016 covering a completed calender year was employed, comprising 113,488 samples in total,
and were split into training (80%) and validation (20%) subsets. In the transfer-learning stage,
the target labels were constrained by radiosonde derived PBLH. There are 4,662 feature
samples were extracted from the matched CATS-radiosonde samples. Of these, 4,000 samples

295  were used for transfer training, while the remaining 662 samples served as a common testing

11
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set to assess model performances for both pre-training and transfer-learning stages.

3.2 Model architecture

A residual neural network (ResNet) attempts to learn the residual mapping between input

300 features and outputs, effectively alleviating the vanishing gradient problems in a deep neural
network. This study constructs a ResNet based transfer learning framework for target location
detection, aiming to identify the only bin representing the PBLH. The approach reshapes
inputted feature array and employs a deep neural network to estimate the probability of each

bin approximating the truth PBLH. As illustrated in Fig. 2, the model adopts a modified

305  ResNet-18 architecture (He et al., 2016), consisting of four main components. (i) Input layer:
the model receives 2-D feature vectors (84 x 12) without spatial reshape, maintaining the
original temporal structure. (ii) Initial feature extracting: a 1D convolutional layer with 64
channels (kernel _size=7) processes the input sequence, followed by batch normalization and

ReLU activation. This maintains the original sequence length while expands the channel

310  dimension. (iii) Attention augmented residual blocks: three groups of down-sampling
networks (64 — 128 — 256 channels) process the extracted features, containing two residual
blocks. Notably, all convolutions use kernel size=3 with to preserve sequence length. Each
residual block incorporates a parallel attention mechanism, where the positions of candidate
PBLH are transformed through a 1D convolution to weight the feature maps. Skip

315  connections are implemented through 1 X 1 convolutions when channel dimensions change.
(iv) Prediction heads: our model architecture includes a global average pooling across the
temporal dimension to aggregate sequence information, and two fully connected layers (256

— 256 — 84) with ReLU activation and dropout. Sigmoid activation producing probability
scores for each bin, the losses during training process were ranked to ensure that the score of

320  target bin is higher than that of non-target bins.

The architecture involves an end-to-end supervised learning approach to train an enhanced
attention-based ResNet based on PyTorch framework, where candidate PBLH with single

channel was mapped to 64 channels via 1D convolution to align with the main ResNet

12



https://doi.org/10.5194/egusphere-2025-4918
Preprint. Discussion started: 15 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

networks, transforming position information into attention weights that explicitly leverage
325  prior knowledge for improved PBLH prediction. For the hyper-parameter tuning, the model
was trained using the Adam optimizer with an initial learning rate of 0.001, and was
optimized via binary cross-entropy loss. To prevent over-fitting, a dropout regularization with
a rate of 0.3 was implemented in the last fully connected layers, and an early stopping
mechanism is enabled (patience=10). Training process will be terminated when the validating

330  accuracy does not improved for 10 epochs.

Transfer learning is an efficient deep learning strategy that leverages prior knowledge from
pre-trained models to address new tasks (Pan and Yang, 2010). In this study, we first
pre-trained a ResNet model as our base network on a largely sampled dataset with target
labels constrained by MERRA2 PBLH. By virtue of the strong feature extraction capability

335  of the pre-trained model to learn common hierarchical features from the input data, we then
transfer it to a new task, establishing the optimal prediction model. For this new task, the
classification head at the end of the pre-trained model was removed and replaced with new
fully connected layers, which were re-trained on the smaller transfer-training dataset.
Meanwhile, the weights of the original convolutional layers were kept frozen to preserve the

340 learned feature representations. During transfer training, we employed a fine-tuning strategy
with a lower learning rate (0.0001), reduced training epochs and early stopping tolerance (=8)

to prevent overfitting.

13
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Fig. 3. Assessment of the pre-trained model. (a-b) give the accuracy (column), MAE (solid line) and
standard deviation of MAE (asterisk) at monthly and hourly scale, respectively; (c) and (d) denote the

spatial distribution of accuracy and MAE.

Given that the majority of matched CATS-radiosonde samples fall in land (Fig. S1),
features over oceans were filtered out when training the pre-training model. As training
curves shown in Fig. S2, the pre-training model achieved its optimal validation accuracy at
38t epoch, and training was stopped at 48" epoch due to early stopping. The optimal model
demonstrated an accuracy of 80.24% on the training set and 81.18% on the validation set,
with corresponding losses of 0.0209 and 0.0204. Over the common testing set, the pre-trained
model achieved an accuracy of 65.87%. Such test accuracy surpasses an non-transfer trained
model (training the model only across the radiosonde-constrained training set, with testing
accuracy of 63.2%), see training curves in Fig. S3. However, our transfer training achieved an
superior performances than both the pre-training and non-transfer models. The transfer model
early stopped at 22" epoch (Fig. S4), reaching accuracies of 75.38% and 72.36% over
training and validating sets, and a testing accuracy of 69.03%. This indicates that employing
a transfer learning strategy can effectively enhance the model's learning capabilities and

increase its generalization.
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Fig. 3 preliminarily evaluates the temporal (monthly and hourly) and spatial differences in
accuracy and MAE of the pre-trained model. The results indicate the pre-trained model
performed well over most land areas. However, the model's representation in high-altitude
regions (Tibetan Plateau, Rocky Mountains) and desert areas (Sahara, Arabian Peninsula)

365  were somewhat weak, where the accuracy dropped below 70% and the MAE exceeded 400 m.
These inabilities can be attributed to three main causes. First, the long-distance signal
smoothing in processing raw CATS profiles may cause uncertainties over complex terrain.
Second, grid-based MERRA2 data represents average state within a grid-cell, potentially
leading to matching errors with orbital CATS observations in high-altitude areas. Finally,

370  meteorological profiles and PBLH from MERRA2 may contain larger errors in these regions
due to sparse observations available for assimilation. The capabilities of pre-trained model
also exhibited seasonal and diurnal discrepancies. Particularly, the model demonstrate poorer
performance from April to September compared to other months. As the poorer performances
were primarily sourced from the Northern Hemisphere, it can be concluded that the model's

375  representation in spring and summer seasons were somewhat weaker than that in autumn and
winter. From a perspective of diurnal variation, the pre-trained model performed less
effectively during morning and later afternoon hours compared to around midday, with

particularly poor performance observed in the later afternoon.
3.3 Feature importance permutation

380 Based on the transfer-trained model, we examined the importance score of each input
feature using permutation importance technique (Altmann et al., 2010; Breiman, 2001). By
randomly shuffling individual feature and measuring decreases in model performance, this
method directly quantifies feature importance and can capture the non-linear dependencies
among different features. Since the proposed ResNet model is essentially a classification task,

385  we quantify the feature importance scores by calculating the increase in MAE induced by
feature shuffling. Specifically, permutation importance estimations were implemented based
on radiosonde constrained dataset (4662 samples), and the baseline MAE over original test
dataset was firstly derived. And then, we randomly shuffled the target feature across all

samples, ensuring that 84 bins of target feature move synchronously from every input sample,
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390  while keeping other features unchanged. This will break the association between the target
feature and predict label and is much applicable for our position sensitive predict task. The
importance score is determined by the increased magnitude of MAE after permutation, a
larger MAE increase indicates an higher feature importance. To enhance the robustness of
feature permutation, each feature undergoes 30 independent iterations with different random

395  sequences, noting that the input features were shuffled using a common random seed in each

iteration. The ultimate importance scores were represented as mean value across 30 iterations.
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Fig. 4. The permutation importance of input features is measured by the increase in MAE when each
individual feature is randomly shuffled. These importance scores are then normalized to represent their
400  relative contributions (a), with the total importance summing to 100%. (b) illustrates their relative

importance scores at each hour.

The obtained importance score of each input feature was recalculated to derive its relative
contribution rate. As shown in Fig. 4a, two profile features (candidate PBLH, temperature),
along with two non-profile features (LST, altitude) emerged as the most important features,

405  each with relative importance exceeding 10%. Geographic associated variables (latitude,
longitude) and two meteorological (humidity, wind speed) profiles contributed the secondary
importance, collectively contributing over 20% to the total importance, whereas surface type
and sky conditions contributed marginally. Among the three remotely sensed profiles,
importance score of TAB and WCT were negligible, despite candidate PBLH playing the

410  dominant role in the model. This implies that local peak/valley locations in backscatter

profiles are more important than other shape features when estimating PBLH from CATS
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profiles. This may also suggest potential direction for improving conventional retrieval
algorithms, that is, the shape and structure of remotely sensed profiles provide limited
information about the PBLH, efforts should be taken to incorporate other diagnostic data, as

415  suggested by (Su et al., 2020).

We further extracted the permutation importance of input feature at each hour, and present
their diurnal variations (Fig. 3b). The hourly importance scores of the two dominant
contributors (candidate PBLH and temperature) varied evidently, while the diurnal variation
of other importance scores were relatively slight. The combined importance of the two

420  dominant contributors exceeded 50%, and their diurnal variation exhibited an alternating
dominance pattern. Specifically, candidate PBLH dominates the model's capability during the
morning periods with a gradually decreasing tendency, while the temperature emerges as the
primary factor in the afternoon, with its importance scores essentially surpassing those of
candidate PBLH. The diurnal variations in these importance scores might lead to diurnal

425  behaviors of model performance (Fig. 3b), which will be discussed in the next section.

4. Results and Discussions
4.1 Assessing the model

Herein, we evaluated the performance of the transfer-trained model by checking whether

430  the model effectively captured the target labels constrained by radiosonde derived PBLH. The
assessment was categorized into training and testing subsets, Fig. 5a-d illustrate the diurnal
variations in accuracy and MAE and for WCT, pre-trained and transfer-trained models.
Notably, the calculated accuracy for WCT was slightly higher than that in Fig. 1a because the
current assessment is carried out only on the feature samples (4662) rather than all of the

435  matched CATS-radiosonde samples (5368). Both the pre-trained and transfer-trained models
demonstrated different degree of enhancements related to the conventional WCT algorithm,

and the performance of transfer-trained model was reasonably better than the pre-trained
model. Quantitatively, the transfer-trained model achieved an increase of 26.1% (24.9%) in

accuracy and a reduction of 537.2 (517.2) m in MAE compared to the WCT on training
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440

445

450

455

(testing) subset, demonstrating the substantial advantage of transfer-training in refining

PBLH measurements from CATS data.
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Fig. 5. Performance comparison of the WCT, pre-trained model, and transfer-trained model against
radiosonde-constrained target labels. (a-b) show results for the training set, while (c-d) correspond to the
testing set. (e-f) display the accuracy and MAE of the transfer-trained model on the combined training and

testing dataset.

For the diurnal variations, transfer-trained model performed better during the morning and
midday periods but poorly in the afternoon. In other words, its performance deteriorated over
daytime hours. It is interesting to note that the diurnal variation of the model performance
aligned closely with the importance scores of candidate PBLH in Fig. 4b, while exhibited an
inverse tendency with that of temperature. This further underscores the dominant role these
two factors in regulating the model's capability. These diurnal variations may be largely
regulated by the spatial distribution of training samples. Since radiosondes are only launched
at two fixed times (00:00 and 12:00 UTC), each sits can provide samples at different local
time. The poorest accuracy and largest MAE typically occurred between 14:00 and 16:00
LST, with most samples originating from western North America and the Middle East (see

rectangular boxes in Fig. 5f), regions characterized by high-altitude terrain or desert areas. As
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illustrated in Fig. 3, the pre-trained model performed poorly in these regions. Even so, the
transfer-trained model achieved significant improvements in the later afternoon. Additionally,
460  the pre-trained model exhibited generally weak performance during morning and evening
periods (Fig. 3b), whereas the transfer-trained model performed better in the morning than at
other daily times. This may attribute to the fact that morning samples were predominantly
collected from regions around 120° E and 60° W, where the pre-trained model performed
stronger feature extraction capabilities in these low-altitude areas compared to others (Fig.
465  3c-d). Fig. S5 further provides the accuracy and MAE at site scale for WCT, pre-trained, and

transfer-trained models, the transfer-trained model achieved enhancement at nearly all sites.
4.2 Inter-comparison of multi-sourced PBLH

The above analyses primarily involve to validate the model's capability in capturing target

labels, where the positions typically correspond to the WCT peak closest to either MERRA2

470  or radiosonde derived PBLH. In fact, the core function of the model is selecting, from
multiple WCT peaks, the one that most accurately represents the PBLH based on provided
meteorological and physical conditions. It is crucial to aware that the model output remains a
remotely sensed product, while radiosonde derived PBLH is regarded as closest to ground

truth and generally serves as benchmarks for validating other measurements. Accordingly,

475  Fig. 6 presents scatter plots comparing PBLH estimations from WCT, pre-trained model,
transfer-trained model, MERRA2, and ERAS5 against those from radiosondes. To enable
systematic comparisons, their outputs within 150 km of sounding sites were averaged to
derive statistical metrics, including correlation coefficients (R), MAE, and root mean square

error (RMSE).
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Fig. 6. Scatter plots comparing PBLH estimations from (a) WCT, (b) pre-trained model, (c) transfer-trained
model, (d) MERRA2, and (¢) ERAS against radiosonde observations. Unlike Fig. 5, these comparisons
employ direct radiosonde-derived PBLH rather than the radiosonde-constrained target labels. Statistical

metrics, correlation (R), MAE, and RMSE are present in red at the upper left corner of each subplot.

485 As results, the conventional WCT algorithm had the poorest consistence with radiosondes,
with the weakest correlation (0.27) and largest MAE (845.98 m) among all these comparisons.
Although we have previously obtained reasonable consistency between them by filtering
PBLH under stable regime and separately comparing samples under cloudy and clear-sky
conditions (Li et al., 2023), those statistical metrics remained inferior to the comparisons

490  between radiosonde and MERRA2 and ERAS. However, our ResNet model significantly
enhanced the representation for the ground truth PBLH. The transfer-trained model
demonstrated marked improvements in predictive capability, exhibiting higher consistency
with radiosondes than both the pre-trained model and two reanalysis datasets, with the
strongest correlation (0.74) and the lowest MAE (501.74 m). Since the pre-trained model

495  using pseudo-labels constrained by MERRA2 PBLH, its statistical metrics with radiosonde
closely consistent with those between MERRA2 and radiosonde. In addition, Table 1 gives

the comparisons between the WCT, pre-trained model, and transfer-trained model and
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radiosonde at each daytime hour. The transfer-trained model is also superior than others at
hourly scale, indicating its ability to capture more accurate diurnal variations of PBLH.
500  However, its correlations in the morning were somewhat weaker, This may seem to contradict
the accuracies in Fig. 4. In fact, the correlation represents the linear relationship between
model predicts and radiosonde calculation, accuracy is statistically based on deviations
between them. The transfer-trained model predicted PBLH exhibited the lowest biases from

ground truth during the morning period, which accordingly leads to its higher accuracy.
505

Table 1. Statistics metrics for comparing PBLH from WCT, pre-trained model, and transfer-trained model

to radiosonde derived PBLH at each daytime hours.

Local Time 8 9 10 11 12 13 14 15 16 17 18
Correlation 0.18 0.1 0.12 0.24 0.31 0.3 0.25 0.28 0.32 0.21 0.27

g MAE (km) 0.87 0.93 0.8 0.64 0.74 0.84 0.88 0.96 1.01 0.97 0.92
RMSE (km) 1.11 1.2 1.04 0.86 1 1.15 1.24 1.29 1.36 1.38 1.26

3 Correlation 0.24 0.37 0.38 0.41 0.67 0.72 0.66 0.69 0.69 0.65 0.59
g MAE (km) 0.38 0.39 0.44 0.44 0.45 0.54 0.61 0.68 0.77 0.79 0.72
E RMSE (km) 0.5 0.5 0.56 0.58 0.65 0.79 0.88 0.96 1.07 1.11 1.08
3 Correlation 0.44 0.34 0.49 0.48 0.71 0.72 0.71 0.7 0.76 0.72 0.68
g MAE (km) 0.33 0.34 0.33 0.39 0.46 0.56 0.63 0.72 0.73 0.7 0.6
[g RMSE (km) 0.45 0.46 0.43 0.54 0.67 0.84 0.9 0.98 1.01 0.97 0.89

Although radiosondes are considered as ground truth and are often served as benchmarks

510  for evaluating models and reanalysis outputs, complete quantitative consistency cannot be
pursued due to mis-matches in both space and time with other datasets and discrepancies in
retrieval algorithms. Instead, we can only ensure certain consistency in their spatio-temporal
characteristics. The prominent consistency between the transfer-trained model and radiosonde
demonstrates the superiority of deep learning approaches and validates the rationality of our

515  experimental design. However, it should be noted that the matchup between orbital CATS

data and radiosonde sites remain relatively crude, exhibiting considerable mismatches in
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520

525

530

temporal, horizontal distance, and altitudes. Moreover, different vertical resolution of
radiosondes induce uncertainties in deriving PBLH. Therefore, the PBLH differences
between the transfer-trained models and the WCT compared to the sounding derived PBLH
were examined in Fig. 7 and Fig. S6, with respect to their sensitivity to the matching
differences in distance, time, and altitude, as well as vertical resolution of radiosonde. It can
be observed that although the PBLH deviations exhibited slight dependence on time
difference, distance difference, and vertical resolution, this dependence is not obvious. This
implies that the matching criteria between the radiosonde sites and CATS orbits cannot cause
substantial uncertainties in this study. However, significant PBLH differences emerged as the
altitude difference increasing. This is related to the poor model performance over rugged

terrain, and it also highlights the heterogeneity of PBLH over complex terrains.
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Fig. 7. Sensitivity analysis of PBLH differences between transfer-trained model predictions and radiosonde
measurements with respect to: (a) matching distance, (b) matching time, (c) matching elevation, and (d)

vertical resolution of sounding profiles.
4.3 Diurnal variations in near-global PBLH

Benefiting from the unique operational characteristics of the CATS, the near-global diurnal

variations in PBLH can be obtained after approximately 16 days of operation. However, due
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535 to interference from multi-layer structures and noises in backscatter signals, diurnal variations
derived by conventional WCT algorithm often present non-physical fluctuations (Li et al.,
2023). This study aims to extract more physically reasonable diurnal PBLH variations from
CATS data using a deep learning approach. Based on theory by Stull (1988), we assumed that
daytime PBLH evolution undergoes four distinct phases: morning transition (08:00-09:00),

540  rapid growth (10:00-14:00), maintenance (14:00-16:00), and decay in the late afternoon
(17:00-18:00). Fig. 8 presents spatial distributions of PBLH for the four evolution periods
derived from WCT, pre-trained model, transfer-trained model, MERRA2, and ERAS.
Additionally, Fig. S7 provides further details by highlighting the specific daytime PBLH at
each hour. These results demonstrate reasonable diurnal PBLH behaviors, and they shown

545  evident differences among different datasets or methodologies.

Similar as previous results by Li et al. (2023), the diurnal variation amplitudes derived
from the WCT algorithm were severely weaken, showing no significant difference between
the morning transition period and the afternoon maintenance period. In contrast, our ResNet
model captured clearer diurnal patterns: lower PBLH was observed in the morning transition

550  period, gradually increased at the growth period, reached its daily maximum in the
maintenance stage, and then began to decline during the decay period. However, such typical
diurnal variation pattern appeared more pronounced for the pre-trained model, while became
relatively indistinct for the transfer-trained model. It is evident that the pre-trained model
predicted PBLH exhibited significant spatial consistency with MERRA2 and ERAS5 outputs

555  compared to the transfer-trained model. This is mainly because the transfer-trained model
predicted higher PBLH in high-altitude regions and in decay phase in the later afternoon.
However, higher consistency between the pre-trained model and reanalysis did not indicate
its predictions are closer to true values, as reanalysis outputs themselves still require careful

assessment.
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Fig. 8. Spatial distributions of PBLH derived from (al-a4) WCT, (b1-b4) pre-trained model, (cl-c4)
transfer-trained model, (d1-d4) MERRA2, and (el-e4) ERAS during four diurnal evolution phases:

morning transition, rapid growth, maintenance, and afternoon decay.

However, we must acknowledge the transfer-trained model exhibited some anomalous

565  performance. Such as its abnormally higher PBLH over the Tibetan Plateau during the
morning transition and afternoon decay periods, which severely deviated from actual
situations. This partly stems from the inherent limitation in feature extraction capability of the
pre-trained model over high-altitude regions (Fig. 3). Furthermore, the scarcity of available
training samples in high-altitude regions for the transfer-trained model can also cause

570  substantial uncertainties in its performances. Therefore, it can be concluded that the
transfer-trained model predicted PBLH in high-altitude regions being unreliable in this study.
Additionally, the transfer-trained model predicted PBLH in the later afternoon did not
significant decay and remained notably higher than those derived from other methods or
datasets. Fig. S8 illustrates the diurnal variations of PBLH derived from the transfer model at

575  four seasons. There were almost no discernible decays in PBLH during summer (JJA in the
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580

585

590

Northern Hemisphere and SON in the Southern Hemisphere); instead, it even maintained an

increasing trend. In contrast, only slight PBLH decays were observed in other seasons.
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Fig. 9. Hourly PBLH from WCT, pre-trained model, transfer-trained model, MERRA2, and ERAS over the
major ten land cover types. The bar plots denote sampling frequency for a specified land cover at each

daytime hours. (k) reveals the land cover distributions across 2° x 2° grids.

Evolution of PBLH is mainly governed by surface conditions and is highly dependent on
land surface types (Li et al., 2021). To better illustrate its diurnal variation, Fig. 9 presents the
hourly PBLH across ten major land surface types (derived from the three approaches and two
reanalyses). The transfer-trained model demonstrated significant improvements in capturing
diurnal variations compared to WCT at most land covers, exhibiting more realistic diurnal
patterns in terms of amplitude, growth duration, and peak timing. Particularly, the model
present clearer morning growth phase and more accurate peak attainment timing. Additionally,
the model predicted PBLH exhibited a more pronounced dependence on land cover, with
higher PBLH and greater diurnal amplitude observed over bare soil and shrublands compared
to forests, croplands, and grassland areas. These findings are consistent with our previous
observation based report (Li et al., 2021), whereas the WCT predicted PBLH exhibited much

smaller deviations across different land surface types. In addition, the diurnal PBLH variation
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patterns (amplitude, peak timing) derived from our models aligned closely with those from
595  the two reanalyses. Specifically, the pre-trained model displayed nearly identical diurnal
patterns to MERRA2, while the transfer-trained model performed more closely with ERAS
during the growth and maintenance period. However, the transfer-trained model predicted

much higher PBLH than ERAS during transition and decay phases.
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600  Fig. 10. Comparing the diurnal variations of PBLH estimated from WCT, pre-trained model,

transfer-trained model, MERRA2, and ERAS to that derived from radiosondes (bar plots).

As mentioned above, our transfer-trained model derived PBLH decay in the later afternoon
is not pronounced in most land covers, with PBLH magnitudes during this period being
notably higher than those from the reanalyses and pre-trained model. This is primarily due to

605  reanalysis outputted PBLH is highly dependent on thermodynamic conditions and begins to
decay after surface thermal flux reaches its afternoon maximum. In contrast, the model
predicted PBLH is associated with backscatter of aerosols, which does not diminish
synchronously with thermodynamic weakening (Wang et al., 2012). Likewise, Pearson et al.
(2010) synthesized numerous studies regarding the diurnal variations of PBLH, obtaining

610  diurnal variation curves that resembled the results from our transfer-trained model, which

suggested the credibility of the diurnal patterns predicted by our transfer-trained model. To
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further support this conclusion, we qualitatively compared the diurnal PBLH patterns from
WCT, model predictions, and reanalysis outputs, to the radiosonde observations across the
ten major land types (Fig. 10). Although these diurnal variations were composited from
615 radiosonde sites at different longitudes (potentially inducing perturbations in diurnal curves),
their one-to-one matchup with other PBLH can still provide certain effective evidences. The
results demonstrated that over most land covers, PBLH from the two reanalyses shown more
pronounced decays and lower magnitudes in the later afternoon than the radiosonde derived
PBLH. Additionally, ERAS5 exhibited lower PBLH than radiosonde observations during the
620  morning transition period. These findings indicate that our transfer-trained model captured
more reasonable diurnal patterns, and the ResNet based transfer learning approach can

effectively estimate near-global PBLH from CATS data.

5. Conclusions
This study developed a spatially and temporally applicative ResNet learning framework to
625  estimate near-global diurnal variations in PBLH from approximately three years of CATS
lidar profiles. The proposed model demonstrates significant enhancement in estimating
large-scale PBLH compared to conventional algorithm. The framework is designed based on
the concept that the first few peaks in WCT profiles typically capture the true PBLH, and the
model is inherently proposed to identify the peak with the highest probability of representing
630  the actual PBLH. Given the radiosonde measured PBLH samples for training a robust deep
learning model are insufficient, this study adopted a transfer learning strategy. We first
trained a base model using pseudo-target constrained by MERRA2 PBLH and then fine-tuned
the base model on a smaller sampling dataset to generate the optimal model. This
transfer-trained model retained the strong feature extraction capabilities of the pre-trained
635 model and demonstrated considerable improvement in performance when evaluated on
unseen data.
The input features for the model include remotely sensed and meteorological profiles,
geographic and temporal information, as well as surface/sky conditions. Among these,
candidate PBLH derived from CATS backscatters and temperature profiles are the two

640  dominant factors influencing model performance, collectively accounting for more than 50%
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of the importance scores. Their importance exhibits a distinct diurnal variation with
alternating dominance: candidate PBLH primarily influences morning periods while
temperature dominates the afternoon. This alternating dominance pattern further explains the
diurnal variation in model performance, with higher accuracy and lower MAE observed
645  during morning hours and the opposite tendencies occurred in the late afternoon. Despite
these temporal fluctuations, the transfer-trained model demonstrates overall superior
performance metrics when compared against radiosondes, outperforming the results obtained
from WCT, pre-trained model, MERRA2, and ERAS.
Regarding diurnal variation, the transfer-trained model predicted PBLH exhibited clear
650  diurnal patterns, demonstrating more reasonable diurnal amplitude, growth duration, and
peak timing compared to the conventional WCT algorithm. Although the model struggled to
capture PBLH over high-altitude regions like the Tibetan Plateau due to insufficient training
samples, its performances in other regions were significantly better. Particularly, the model
derived diurnal PBLH variations were sensitive to land covers. PBLH over bare and shrub
655 lands had higher magnitude and larger diurnal amplitudes than that over forests, croplands,
and other vegetated areas. Furthermore, the model maintained high PBLH magnitudes in the
late afternoon and shown only slight decay, differing from the pronounced decay phases of
the two reanalyses derived PBLH. However, this non-prominent afternoon decay aligned well
with radiosonde measurements, indicating its superior capability in capturing diurnal PBLH.
660 This study involves an initial attempt of using a deep neural network to address complex
signal structure in CATS backscatter, and then to re-fine its measurement for PBLH on a
near-global scale. Although utilizing attention augmented ResNet and transfer learning
strategy can effectively improve the model's capability, its performances in high-altitude
regions and in the morning and later afternoon periods remain poor. Future efforts would be
665  prospected to refine the model's applicability in rugged topography or in certain local time,
and fine-resolution meteorological data and accurate target label are crucial for improving the

model performances.
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