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Abstract

Diurnal variations in planetary boundary layer height (PBLH) is highly linked to weather,15

climate, and environmental processes. However, remaining challenges persist in estimating

its diurnal behavior at a large scale due to insufficient observations and limitations of

operational retrieval algorithms. This study proposed a deep learning framework based on an

attention-augmented residual neural network to estimate diurnal variations in near-global

PBLH, incorporating profiles from an non-sun-synchronous lidar (Cloud-Aerosol Transport20

System: CATS) and meteorological fields. The framework can largely address the issue of

multi-layer structures in space-borne lidar signals, significantly improving the accuracy of

PBLH retrieval during morning and evening (with accuracy improvement approach 30%

compared to traditional algorithm). Due to insufficient observations aligned with CATS orbits,

a pre-train model was firstly trained using pseudo-labels from reanalysis, and then was25

transferred to observation-based target labels. The transfer model demonstrates superior

performance in most regions and periods, outperforming classical algorithm in capturing

PBLH magnitude and its diurnal variations. Further assessments over different land covers

show that the transfer model estimated PBLH and diurnal patterns were highly consistent

mailto:hejianjun@cma.gov.cn


2

with those from radiosondes, surpassing reanalysis outputs. For model capability, wavelet30

covariance transformation derived potential PBLH and temperature profiles emerged as

dominant factors, with contributions exhibiting diurnal patterns. Overall, this work proposes a

novel framework for large-scale PBLH estimation and provides insights for improving

retrieval algorithms, particularly through integrating remote sensing and machine learning.

35

1. Introduction

The planetary boundary layer height (PBLH) plays key roles in land-air exchanges and

lower tropospheric processes (LeMone et al., 2019; Medeiros et al., 2005), such as the

transfer and exchange of heat, momentum, humidity, and materials (Garratt, 1994; Holtslag et

al., 2013; Stull, 1988). As an interface between the turbulent boundary layer and the free40

atmosphere, PBLH acts as a significant barrier and represents the degree of turbulent

diffusion, determining the upper limit of boundary layer processes and playing vital roles in

weather, climate, and environmental studies (Che et al., 2019; Davy and Esau, 2016; Guo et

al., 2021; Li et al., 2017). Particularly, weather and pollution conditions are largely dependent

on the diurnal behaviors of PBLH, which dominates the atmospheric dispersion and vertical45

mixing of pollutants (Ding et al., 2013; Huang et al., 2023; Li et al., 2025).

Despite the crucial importance, accurately measuring diurnal variations of PBLH across

large scaled areas remains challenging due to spatio-temporal limitations of current detection

instruments. Radiosonde and lidar measurements allow precise representation of vertical

atmospheric structure (Seidel et al., 2010; Seidel et al., 2012). The radiosonde derived PBLH50

generally serves as a benchmark for validating simulations, reanalysis, and remote sensing

(Guo et al., 2021; Li et al., 2023; Yue et al., 2021).However, global radiosondes are generally

launched two or four times per day, and its coverage is much sparse in less-developed regions

(like Africa and South America). Lidar systems serve as a promising tool for continuous

PBLH monitoring (Chen et al., 2022; Liu et al., 2021), benefiting from their operation at55

sub-minute temporal resolution. While ground-based lidar has limited spatial representation,

space-borne lidar enables large-scale PBLH detection across diverse regions (Jordan et al.,

2010; McGrath-Spangler and Denning, 2012). Li et al. (2023) demonstrated diurnal
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variations in large-scale PBLH from an non-sun-synchronous satellite. However, the PBLH

retrieved by them exhibited large deviations in accuracy and diurnal patterns due to60

uncertainties of retrieval and signal noises such as multi-layer structures.

Traditional algorithms for retrieving PBLH from satellite signals are typically developed

either to detect abrupt jumps in backscatter profiles (Kumar et al., 2018; Liu et al., 2015) or

to identify the first exceeding of an empirical threshold (Palm et al., 2021). These algorithms

suffered from significant accuracy challenges, due to at least three limitations: (ⅰ) the65

presence of elevated residual layers prevent downward staring lidar from detecting the true

PBLH; (ⅱ) cloud contamination or advected aerosols induce noises into lidar echos; and (ⅲ)

parameter selection of algorithm affect its sensitivity to diverse profile structures. The

primary challenge for retrieving the diurnal variation of PBLH perhaps lies in minimizing the

influences of residual layers or multi-layer structures during its morning and evening70

transition periods (Su et al., 2020; Li et al., 2023). Numerous efforts have been taken to

enhance the algorithm performance in operating multi-layer profile structures of space-borne

lidar, such as utilizing graphic clustering (Liu et al., 2018) or implementing additional

physical constraints (Kim et al., 2021; Su et al., 2017). However, to date, current algorithms

have not yet achieved optimal performance, primarily due to their inability to effectively75

resolve ambiguity signal structures through automated detection.

In recent years, machine learning has been increasingly integrated into PBLH estimation,

achieving evidenced improvements. Several studies have employed deep neural network

frameworks to estimate PBLH using near-surface and vertical atmospheric variables (Nguyen

et al., 2021; Su and Zhang, 2024), constructing non-linear mapping from meteorologies to80

PBLH. Based on parameters acquired from surface observations, remoter sensors, reanalyses,

and simulations, several random forest models were developed to predict PBLH (Guo et al.,

2024; Krishnamurthy et al., 2021), the results demonstrated greater consistency with

radiosondes and effectively corrected some inherent biases. There are gradient boosting

learning models been proposed (de Arruda Moreira et al., 2022; Peng et al., 2023), which85

sequentially fits multiple weak learners, allowing the model to learn iteratively and improve

prediction accuracy progressively. These methodologies essentially address a regression
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relationship between PBLH and associated meteorological variables. There are also machine

learning models were employed to refine retrieval technique from only remote sensing data.

Rieutord et al. (2021) compared an unsupervised (AdaBoost) and a supervised (K-means)90

learning, to judge whether the lidar signals originate from the boundary layer or the above

free atmosphere. Mei et al. (2022) proposed a VGG16-based convolutional neural network

for PBLH detection using wavelet covariance transformation (WCT) images of ground-lidar

backscatter, which can effectively suppresses contamination from clouds and residual layers.

Sleeman et al. (2020) improved PBLH measurement from backscatter profiles under cloud95

condition through convolutional network.

Existing machine learning methodologies exhibit significant advantages in capture PBLH

and its diurnal variations from noisy lidar signals. However, these studies have almost been

limited to ground-based sites, and either require additional meteorological variables affecting

PBLH evolution to be provided or necessitate human intervention to process remote sensing100

signals. These site-scaled models may not be generalizable on larger regions or global scale.

Few studies have focused on improving PBLH estimation from space-borne lidar through

machine learning approaches. This is primarily due to training a robust model requires

substantial feature samples been provided, yet ground-based observations aligned with

space-borne lidar overpass orbits are extremely scarce, making it difficult to obtain sufficient105

target labels; while those unsupervised learning methods often fail to achieve the desired

performance (Rieutord et al., 2021).

Given the aforementioned considerations, this study proposes to construct a temporally and

spatially adaptive deep learning model to estimate PBLH and its diurnal variations on a

near-global scale using space-borne Cloud-Aerosol Transport System (CATS). As the satellite110

operates on a non-sun-synchronous orbit, it can capture a complete diurnal cycle (Yorks et al.,

2016). To address the issue of insufficient matching samples with satellite orbits, this paper

employs a transfer learning strategy. The approach involves first establishing a pre-train

model using large samples matched by reanalysis data. And then, the feature extraction

capabilities of the pre-train model are transferred to small samples matched with ground truth115

values. By fine-tuning the model weights, its representation for real-world targets and
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generalization will beenhanced, thereby constructing more accuracy measurements of diurnal

variations in large-scaled PBLH. Overall, this work presents the first attempt to integrate

attention mechanisms and transfer learning for diurnal PBLH estimation at near-global scale,

overcoming the limitations of classical algorithms in handling multi-layer atmospheric120

structures.

2. Dataset

2.1 satellite-based lidar profiles

This study aims to develop a robust and generalizable deep learning framework for125

PBLH estimation from space-borne CATS lidar. CATS is initiated to monitor atmospheric

clouds and aerosols using advanced lidar technology and is mounted on the International

Space Station's (ISS) Japanese Experiment Module. Launched on January, 10, 2015, the ISS

operated in 51.6° inclined orbits at an altitude of ~405 km, covering tropical and mid-latitude

regions. Unlike sun-synchronous satellite, CATS exhibits a repeat cycle of approximately130

three days and operates at non-fixed overpass times. These characteristics allow CATS to

capture large-scale diurnal variations in aerosols (Yu et al., 2021) and clouds (Zhao et al.,

2023), as well as in PBLH (Li et al., 2023) after approximately 16 days of running. Due to

instrument malfunctions, available CATS backscatters for PBLH retrieval only limited from

Mar. 2015 to Oct. 2017, exclusively at the 1064 nm. Such wavelength is more sensitive to135

aerosol structure and variations compared to 532 nm (Winker et al., 2007), but with a lower

signal-to-noise ratio (SNR); such that CATS signals necessitate more rigorous de-noising

processes. Herein, the study acquired 1064 nm 'Total_Attenuated_Backscatter' profiles (TAB)

from the CATS V3.00 Level 1B product and 'Feature_Type' data from the Level 2 product.

The collected L1B and L2 products have horizontal resolutions of 350 m and 5 km, while140

both maintain a vertical resolution of 60 m. Several additional CATS products:

'Profile_UTC_Time', 'DEM_Mean_Elevation', 'Bin_Altitude_Array', 'Opacity',

'Layer_Top_Bin', 'Layer_Base_Bin', 'Surface_Type', 'Sky_Condition' were collected to refine

the input features when training model. Noting that only the daytime CATS products were
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acquired, as the determination for nocturnal PBLH falls outside scope of this paper.145

2.2 Radiosondes and reanalyses derived PBLH

Given that radiosonde derived PBLH is typically recognized as ground truth, this study

employed sounding profiles from Integrated Global Radiosonde Archive (IGRA) V2.0, which

serves to generate benchmark PBLH and to assess performances of our deep learning model.

IGRA offers exceptional temporal and spatial coverage, with current 466 radiosondes sites150

(Fig. S1) available in CATS overpassing areas. We acquired IGRA data temporally aligned

with the CATS orbits (2015–2017). Sounding profiles for PBLH determination encompass

geo-potential height, temperature, dew point depression, wind speed and direction. The bulk

Richardson number method (Vogelezang and Holtslag, 1996) was adopted here to calculate

the PBLH, which can even maintain enough effectiveness under stable atmosphere regime155

and coarse sounding resolutions. Nevertheless, procedures were still conducted to eliminate

soundings with coarse vertical resolution: within 5 km from the surface, the profiles must

include at least seven vertical levels of temperature and humidity records; along with at least

four levels of wind records. If valid wind observations are fewer than seven levels, a cubic

spline interpolation was employed to fill missing values (Zhang et al., 2013). However, we160

should aware that radiosondes have standard launch schedule (fixed at two UTC), only a few

soundings coincide with CATS orbits, spatio-temporal overlaps between the two CATS and

radiosondes are quite scarce. Fig. S1 gives their match-up information, where relatively

rough matching rules (with distance limited to 200 km and time to 1.5 hour) were performed

to enlarge the number of samples. As a result, we obtained totally 5368 valid matching165

samples, which cover the majority of the Earth's land, and larger sampling numbers observed

in mid-latitude regions.

While the robustness and reliability of radiosonde-based PBLH, using only 5,368 matched

samples to train a model is far from sufficient, especially considering these samples fall

throughout diverse periods and areas. Therefore, two reanalyses outputted PBLH, ERA5 (the170

fifth generation European Centre for Medium-Range Weather Forecasts atmospheric

reanalysis) and MERRA2 (the Modern-Era Retrospective Analysis for Research and

Applications Version 2), were further acquired in this study. Two sets of PBLH have the same
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temporal resolution (1-hour) but with discrepant spatial grids: 0.25° × 0.25° (ERA5) and

0.625° × 0.5° (MERRA2). The grid-based reanalyses were interpolated to the orbit-based175

CATS data using inverse distance weighting to ensure they are spatially aligned. In this study,

the MERRA2 PBLH was employed to construct one of training sets for the model, partly

because it assimilates aerosol information compared to ERA5 (Gelaro et al., 2017), making it

more approach to the intrinsic nature of CATS retrieval. Our prior study also reported that

using classical algorithm retrieved PBLH from CATS was more consistent with that from180

MERRA2 (Li et al., 2023). Moreover, we acquired vertical profiles of temperature, humidity,

and wind speed from MERRA2 website as meteorological features input to model. These

variables represent 3-hour averaged meteorological fields and were matched with CATS

orbits.

185

3. Methodologies

3.1 Generate training data

WCT is one of typical PBLH retrieval techniques from satellite-based backscatters. This

study employs the Haar wavelet transform (Gamage and Hagelberg, 1993):
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inherently, the WCT is designed to check the similarity between the lidar profile and wavelet195

stepping function, its maximum peak represents the sharpest signal gradient, and thereby is

considered as PBLH. However, selecting a proper dilation factor is crucial, diverse dilation

values exhibit significant impacts on step WCT signals. Particularly, a smaller dilation cause

WCT being sensitive to small-scaled fluctuations in backscatter profile and is susceptible to
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noise interference, whereas a larger dilation may smooth out thin aerosol layers.200

Fig. 1. Assessment for the WCT algorithm under different dilations (a); and accuracy (b) and MAE (c)
compared against radiosonde derived PBLH when assuming one the first five peaks in WCT profiles
(dilation=480) as PBLH.

Since varying sensitivity of different dilations to backscatter structures, we evaluated the205

retrieval accuracy of seven dilation values ranging 240–960 m (with an interval of 120 m) in

Fig. 1a. Note that a tolerate PBLH bias of 500 m between WCT and radiosonde was utilized

when calculating the retrieval accuracy, accounting for spatio-temporal matching errors and

inherent algorithm differences between them. When compared against radiosonde derived

PBLH, a dilation of 480 m yielded the optimal results. Therefore, a dilation of 480 m is210

taken as a benchmark for WCT in this work. However, its maximum accuracy of 39.7% does

not meet reasonable desire, such uncertainty is mainly induced by multi-layer structures such

as residual layer and advected aerosols, and inability of WCT algorithm (Li et al., 2023).

Here, the threshold of 500 m is only used to check whether the retrieval results of WCT are

close to the actual PBLH, rather than to illustrate the performance of the algorithm. Changing215

the threshold (Table S1) does not affect the key findings.

The WCT can, to some extent, be considered as a gradient-based algorithm, local peaks in

WCT profile denote sharp changes in signal structure. A previous study adopted dynamic

noise thresholds of ground-based lidar to identify the multiple layers (Li et al., 2023), but it is

not applicative to space-borne lidar profiles. Due to the magnitude of WCT represents the220



9

intensity of local changes in backscatter profile, we hypothesize in this study that the local

peaks in WCT profiles correspond to the top position of multi-layer aerosols; these peaks

were then compared against the radiosonde derived PBLH (Fig. 1b). The results show that the

first five peaks in WCT profiles align well with the truth PBLH, with their overall accuracy

exceeding 90% when we assumed one of these peaks to be PBLH. These peaks may not225

necessarily originate from the PBLH but may be induced by other interfering signals,

whereas the first peak (i.e., benchmark for WCT algorithm), only capture few portion of truth

PBLH. In other words, the WCT can effectively detect complex signal structures, while its

maximum peak does not fully denote the PBLH. Therefore, the performance of WCT are

largely biased, particularly when it was utilized to CATS backscatters with strong temporal230

variability. Fig. 1c further examine mean absolute errors (MAE) when assuming one of the

first five WCT peaks as PBLH, the MAE values (~240 m) are much lower than that using

WCT algorithm (~1 km, not show here). Moreover, the hit rates and MAEs across multiple

peaks under various dilation parameters also indicate that selecting 480 m as the dilation for

WCT is the most appropriate for this study.235

Consequently, this study proposes to develop a deep learning framework to identify the

optimal peak from the first several peaks of WCT profiles that aligned with the truth PBLH.

Three types of feature data: remotely sensed profiles, meteorological profiles, and auxiliary

parameters serve as model inputs. We used the raw CATS backscatter profile as one of the

remotely sensed features. Due to the lower SNR, a series of pre-processing procedures were240

implemented. First, we utilized the 'Opacity' parameter to remove opaque profiles, ensuring

downward scanning CATS lidar can detect entire atmosphere columns. Samilar as previous

retrieval practices (Li et al., 2023), profiles containing cloud layers were filtered using the

'Feature_Type' and corresponding 'Layer_Top_Bin', 'Layer_Base_Bin' from CATS L2 product.

Since CATS L1B and L2 products have diverse horizontal resolutions (a single L2 profile245

involves 14 L1B profiles), all of 14 L1B profiles would be eliminated if any cloud layer

exists in the L2 profile. Noting that cloud screening was only applied below 5 km, profiles

remained available when the lowest cloud base exceeded this altitude. Prior studies have

suggested that long-distance horizontal smoothing can enhance SNR of daytime CATS
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profiles (Nowottnick et al., 2022; Palm et al., 2021). Accordingly, the L1B profiles were then250

horizontally averaged across 60 km, meaning each training unit aggregated 60 km of raw

CATS profiles. However, the solid ground generally return stronger signal echoes than the

above aerosols, which could potentially distort the long-distance smoothing. To address this,

we re-aligned the CATS profiles according to their elevations, ensuring consistent bin for

ground layers in a single training unit. Moreover, elevations of CATS profile extracted from255

the 'DEM_Mean_Elevation' may slightly bias from the true ground level, we thereby

followed the same approach as Li et al. (2023) to re-calibrate the ground bin. Finally, to

prevent the model from learning unforeseeable signal noises, we adopted a vertical

smoothing window spanning three vertical bins into the profiles.

Based on the above cloud-screened, re-aligned, and horizontally averaged CATS profiles,260

we calculated the corresponding WCT profiles based on a dilation of 480 m. This study limits

the PBLH estimation to height below 5 km (corresponding to 84 CATS bins), which covers

the vast majority of global cases. Additionally, the two lowest bins (nearest the surface) were

excluded to minimize ground noise contamination. Consequently, the derived PBLH values

range from 360 m (120 + a/2) to 4800 m (5040 - a/2). From each WCT profile, we acquired265

an additional profile involves the candidate PBLH, with the same shape as the backscatter

and WCT profiles. In candidate profile, most bins were assigned as '0', while the bins

corresponding to local WCT peaks were marked as '1'. The WCT peaks were selected based

on their sorted magnitudes, with a maximum of five peaks retained per profile. Overall, three

remote sensing based profiles, encompassing averaged TAB, WCT, and candidate PBLH,270

each with dimensions of 84 × 1, are incorporated as model inputs.

The meteorological profiles include temperature, relative humidity, and wind speeds

obtained from MERRA2 reanalysis,which were first matched with each CATS orbit,

following inverse distance weight for spatial matchup and most proximity for temporal

matchup. And then the spatio-temporally matched MERRA2 profiles were vertically aligned275

to 84 CATS bins using a linear interpolation method.. In addition, the model inputs

incorporated several non-profile parameters extracted from CATS auxiliary products,

including geography information (latitude, longitude, altitude), local standard time (LST;
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converted from UTC of each profile), surface type (based on MODIS land cover catagories) ,

and sky conditions. These non-profile parameters are one-to-on attached to CATS profiles280

and were subsequently resampled to match the dimensions of the profile features, and finally

forming a standardized input array (84 bins × 12 features) for training the model, as the input

layer shown in Fig. 2.

Fig. 2. Visualization for the model architecture, encompassing input layer (pre-training set and transfer285
training set), shared feature extractor (involving two attention augmented residual blocks), prediction
heads (two discrepant fully connected layers for pre-training and transfer-training), and output layer.

In principle, the target labels for model training should be generated from radiosonde

derived PBLH. However, this study obtained only 5,368 matched samples between CATS and

radiosonde data, which are far too limited to train a model capable of capturing both temporal290

and spatial PBLH variations. To address this challenge, a transfer learning strategy was

adopted. Specifically, a base model was pre-trained across a large feature set using

pseudo-labels constrained by MERRA2 PBLH, after which the pre-train model was

fine-tuned on a smaller dataset with target labels constrained by radiosonde derived PBLH.

During the pre-training phase, the target lable was defined as the single peak in the WCT295

profile closest to the MERRA2 PBLH, allowing a maximum deviation of 480 m that equals

to one-fold dilation value. This approach enables the model to learn vast feature information

and substantially expands the training sample size. For pre-training, a feature dataset of 2016

covering a completed calender year was employed, comprising 113,488 samples in total, and
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were split into training (80%) and validation (20%) subsets. In the transfer-learning stage, the300

target labels were constrained by radiosonde derived PBLH. There are 5008 feature samples

were extracted from the matched CATS-radiosonde samples. Of these, 4258 samples were

used for transfer training, while the remaining 750 samples served as a common testing set to

assess model performances for both pre-training and transfer-learning stages. It is worth

noting that the 750 samples in test set were not randomly chosen. We carefully consider the305

sample size and distribution to ensure that they could cover most of the space and time, while

also ensuring that there is no data leakage. In fact, for matching samples from different orbits,

the possibility of data leakage is extremely low due to the time and space isolation. However,

for the same orbit, if the distance between two samples is too close, there may be a data

leakage risk. Therefore, all samples on the same orbit that are within 300 km of other samples310

were placed in the training set while not in the testing set.

3.2 Model architecture

A residual neural network (ResNet) attempts to learn the residual mapping between input

features and outputs, effectively alleviating the vanishing gradient problems in a deep neural315

network. This study constructed a ResNet based transfer learning framework for target

location detection, aiming to identify the only bin representing the PBLH. The approach

reshaped inputted feature array and employed a deep neural network to estimate the

probability of each bin approximating the truth PBLH. As illustrated in Fig. 2, the model

adopted a modified ResNet-18 architecture (He et al., 2016), consisting of four main320

components. (i) Input layer: the model receives 2-D feature vectors (84 × 12) without spatial

reshape, maintaining the original temporal structure. (ii) Initial feature extracting: a 1-D

convolutional layer with 64 channels (kernel_size=7) processes the input sequence, followed

by batch normalization and ReLU activation. This maintains the original sequence length

while expands the channel dimension. (iii) Attention augmented residual blocks: three groups325

of down-sampling networks (64 → 128 → 256 channels) process the extracted features,

containing two residual blocks. Notably, all convolutions use kernel_size=3 with to preserve

sequence length. Each residual block incorporates a parallel attention mechanism, where the
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positions of candidate PBLH are transformed through a 1-D convolution to weight the feature

maps. Skip connections are implemented through 1 × 1 convolutions when channel330

dimensions change. (iv) Prediction heads: our model architecture includes a global average

pooling across the temporal dimension to aggregate sequence information, and two fully

connected layers (256→256→84) with ReLU activation and dropout. Sigmoid activation

producing probability scores for each bin, the losses during training process were ranked to

ensure that the score of target bin is higher than that of non-target bins.335

The architecture involves an end-to-end supervised learning approach to train an enhanced

attention-based ResNet based on PyTorch framework, where candidate PBLH with single

channel was mapped to 64 channels via 1D convolution to align with the main ResNet

networks, transforming position information into attention weights that explicitly leverage

prior knowledge for improved PBLH prediction. For the hyper-parameter tuning, the model340

was trained using the Adam optimizer with an initial learning rate of 0.001, and was

optimized via binary cross-entropy loss. To prevent over-fitting, a dropout regularization with

a rate of 0.3 was implemented in the last fully connected layers, and an early stopping

mechanism was enabled (patience=10). Training process would be terminated when the

validating accuracy does not improved for 10 epochs.345

Transfer learning is an efficient deep learning strategy that leverages prior knowledge from

pre-train model to address new tasks (Pan and Yang, 2010). In this study, we first trained a

ResNet model as our base network on larger samples with target labels constrained by

MERRA2 PBLH. By virtue of the strong feature extraction capability of the pre-train model

to learn common hierarchical features from the input data, we then transferred it to a new task,350

establishing the optimal prediction model. For this new task, the classification head at the end

of the pre-train model was removed and replaced with new fully connected layers, the

weights of the third residual block were also released, which were re-trained on the smaller

transfer-training dataset. Meanwhile, the weights of other convolutional layers were kept

frozen to preserve the learned feature representations. During transfer training, we employed355

a fine-tuning strategy with a lower learning rate (0.0001), reduced training epochs and early

stopping tolerance to prevent overfitting.
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Fig. 3. Assessment of the pre-train model. (a-b) give the accuracy (column), MAE (black solid line) and360
NMAE (red solid line) at monthly and hourly scale, respectively; (c-f) denote the spatial distributions of
accuracy,MAE, R2, and NMAE, respectively.

Given the majority of matched CATS-radiosonde samples fall in land (Fig. S1), features

over oceans were filtered out when training the pre-train model. As training curves shown in

Fig. S2, the pre-train model achieved its optimal validation accuracy at 38th epoch, and365

training was stopped at 48th epoch due to early stopping. The optimal model demonstrates an

accuracy of 80.24% on the training set and 81.18% on the validation set, with corresponding

losses of 0.0209 and 0.0204. Over the common testing set, the pre-train model achieves an

accuracy of 59.2%. Such testing accuracy is slightly lower when compared the base model

(training model only in the radiosonde constrained training set, with testing accuracy of370

60.0%), see training curves in Fig. S3. However, our transfer training achieves an better

performances than both the pre-train and base models. The transfer model early stopped at

27th epoch (Fig. S4), reaching accuracies of 72.85% and 71.79% over training and validating

sets, and a testing accuracy of 68.3%. This indicates that employing a transfer learning

strategy can effectively enhance the model's learning capabilities and increase its375
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generalization.

Fig. 3 preliminarily evaluates the temporal (monthly and hourly) and spatial differences in

accuracy,MAE, determination coefficient (R2), and normalized mean absolute error (NMAE)

of the pre-train model. The results indicate the pre-train model performed well over most land

areas. However, the model's representation in high-altitude regions (Tibetan Plateau, Rocky380

Mountains) and desert areas (Sahara, Arabian Peninsula) are somewhat weak, where the

accuracy drops below 80% and the MAE exceeds 400 m, particularly the R2 and NMAE

denote the model's performances are quite poor over complex terrains. These inabilities can

be attributed to three main causes. First, the long-distance signal smoothing in processing raw

CATS profiles may cause uncertainties over complex terrain. Second, grid-based MERRA2385

data represents average state within a grid-cell, potentially leading to matching errors with

orbital CATS observations in high-altitude areas. Finally, meteorological profiles and PBLH

from MERRA2 may contain pronounced errors in these regions due to sparse observations

available for assimilation.

The capabilities of pre-train model also exhibits seasonal and diurnal discrepancies.390

Particularly, the model demonstrate poorer performance from April to September compared

to other months. As the poorer performances are primarily sourced from the Northern

Hemisphere, it can be concluded that the model's representation in spring and summer

seasons are somewhat weaker than that in autumn and winter. For the spring and summer

seasons, the atmosphere is vigorous, accompanied by more convective activities. This leads395

to more complex aerosol structures (more noised CATS signal), but also limits the

representation ability of MERRA2. In contrast, the atmosphere is more stagnant, and the

aerosol structure is simpler (Li et al., 2025). Additionally, our assessment is mainly based on

absolute deviations. The higher PBLH magnitude in the spring and summer seasons will

cause the assessment being worse. When considering relative deviation (NMAE, Fig. 3a), the400

performance improves somewhat, but it is still slightly poorer than that in the autumn and

winter. From a perspective of diurnal variation, the pre-train model performs less effectively

during morning and later afternoon hours compared to around midday, with particularly poor

performance observed in the later afternoon.
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3.3 Feature importance permutation405

Based on the transfer model, we examined the importance score of each input feature using

permutation importance technique (Altmann et al., 2010; Breiman, 2001). By randomly

shuffling individual feature and measuring decreases in model performance, this method

directly quantifies feature importance and can capture the non-linear dependencies among

different features. Since the proposed ResNet model is essentially a classification task, we410

quantified the feature importance scores by calculating the increase in MAE induced by

feature shuffling. Specifically, permutation importance estimations were implemented based

on radiosonde constrained dataset (5008 samples), and the baseline MAE over original

testing set was firstly derived. And then, we randomly shuffled the target feature across all

samples, ensuring that 84 bins of target feature move synchronously from every input sample,415

while keeping other features unchanged. This will break the association between the target

feature and predict label and is much applicable for our position sensitive predict task. The

importance score is determined by the increased magnitude of MAE after permutation, a

larger MAE increase indicates an higher feature importance. To enhance the robustness of

feature permutation, each feature undergoes 30 independent iterations with different random420

sequences, noting that the input features were shuffled using a common random seed at each

iteration. The ultimate importance scores were represented as mean value across 30 iterations.

Fig. 4. The permutation importance of input features is measured by the increase in MAE when each425
individual feature is randomly shuffled. These importance scores are then normalized to represent their
relative contributions (a), with the total importance summing to 100%. (b) illustrates their relative
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importance scores at each hour.

The obtained importance score of each input feature was recalculated to derive its relative

contribution rate. As shown in Fig. 4a, two profile features (candidate PBLH, temperature),430

along with two non-profile features (alititude, LST) emerge as the most important features,

each with relative importance exceeding 10%. Geographic associated variables (latitude,

longitude) and two meteorological (humidity, wind speed) profiles contribute the secondary

importance, collectively contributing over 25% to the total importance, whereas surface type

and sky conditions contribute marginally. Among the three remotely sensed profiles,435

importance scores of TAB and WCT are negligible, despite candidate PBLH playing the

dominant role in the model. This implies that local peak/valley locations in backscatter

profiles are more important than other shape features when estimating PBLH from CATS

profiles. This may also suggest potential direction for improving classical retrieval algorithms

of PBLH. That is, the shape and structure of remotely sensed profiles provide limited440

information about the PBLH, efforts should be taken to incorporate other diagnostic data, as

also suggested by (Su et al., 2020). This also promote an implication for refining

performances of classical algorithm, many of signal structures in the lidar profiles are noisy

and meaningless. Instead of further refining profile-shape as our previous study (Li et al.,

2023), incorporating thermodynamic and terrain-related diagnostics appears more beneficial.445

We further extracted the permutation importance of input feature at each hour, and present

their diurnal variations (Fig. 3b). The hourly importance scores of the two dominant

contributors (candidate PBLH and temperature) vary evidently, while the diurnal variations of

other importance scores are relatively slight. The combined importance of the two dominant

contributors exceeds 45%, and their diurnal variations exhibit an alternating dominance450

pattern. Specifically, candidate PBLH dominates the model's capability during the morning

periods with a gradually decreasing tendency, while the temperature emerges as the primary

factor in the afternoon, with its importance scores essentially surpassing those of candidate

PBLH. The diurnal variations in these importance scores might lead to diurnal behaviors of

model performance (Fig. 3b), which will be discussed in the next section.455
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4. Results and Discussions

4.1 Assessing the model

Herein, we evaluated the performance of the transfer model by checking whether the

model effectively captures the target labels constrained by radiosonde derived PBLH. Fig. 5460

illustrate the spatial distributions of accuracy, MAE, and NMAE for transfer model, as well

as their diurnal variations for WCT, base, pre- and transfer models. transfer. Notably, the

calculated accuracy for WCT is slightly higher than that in Fig. 1a, because the current

assessment is carried out only on the feature samples (5008) rather than all of the matched

CATS-radiosonde samples (5368). All the three metrics denote the transfer model's prediction465

ability is weak in Western Asia and western North America, which are regions (Fig. 3)

characterized by high-elevations and deserts. The pre-train model also performs poorly in

these regions, partly because both the meteorological and lidar profiles over these regions

have relatively low data quality (Li et al., 2023). Overall, the pre-train and transfer models

demonstrate different degree of enhancements related to the classical WCT algorithm, and the470

performance of transfer model is reasonably better than pre-train and base model. As shown

in Fig. S5, the transfer model achieves an improvement at nearly all sites. Quantitatively, the

transfer model achieves an increase of 27.7% in accuracy and a reduction of 596.5 m (55%)

m in MAE (NMAE) compared to the WCT,, demonstrating the substantial advantage of

transfer training in refining driunal PBLH measurements from CATS data.475



19

Fig. 5. Performance comparisons of the WCT, base, pre-train, and transfer model against radiosonde
constrained target labels. (a, c, e) show the spatial distributions of accuracy, MAE, and NMAE for transfer
model, (b, d, f) display the diurnal variations of these metrics for WCT (column), base (back dash),480
pre-train (blue dash), and transfer (red dash) models. transfer

For the diurnal variations, transfer model performs well during the morning and midday

periods but poor in the afternoon. In other words, its performance deteriorates over daily

hours. It is interesting to note that the diurnal variations of the model performance align

closely with the importance scores of candidate PBLH in Fig. 4b, while exhibits an inverse485

tendency with that of temperature. This further underscores the dominant roles of these two

factors in regulating the model's capability. These diurnal variations may be largely regulated

by the spatial distribution of training samples. Since radiosondes are only launched at two

fixed times (00:00 and 12:00 UTC), these sites can provide samples at different local time.

The lowest accuracy and largest MAE/NMAE typically occurred during 14:00–16:00 LST,490

with most samples originated from western North America and the Western Asia (see

rectangular boxes in Fig. 5c).Since the PBLH magnitude over these regions is generally

higher than others, an absolute error may bias the assessment; however, the relative error (i.e.,

NMAE) also demonstrate the model's ability is weak in afternoon.transferAdditionally, the
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pre-train model exhibits generally weak performance during morning and later afternoon495

periods (Fig. 3b), whereas the transfer model performs better in the morning than at other

daily times. This may attribute to the fact that morning samples are predominantly collected

from areas around 120° E and 60° W, where the pre-train model performs stronger feature

extraction capabilities in these low-altitude areas compared to others (Fig. 3c-d).

transfertransfer500

4.2 Inter-comparison of multi-sourced PBLH

The above analyses primarily involve to validate the model's capability in capturing target

labels, where the positions typically correspond to the WCT peak closest to either MERRA2

or radiosonde derived PBLH. In fact, the core function of the model is selecting, from

multiple WCT peaks, the one that most accurately represents the PBLH based on505

meteorological and physical conditions. It is crucial to aware that the model output remains a

remotely sensed product, while radiosonde derived PBLH is regarded as closest to ground

truth and generally serves as benchmarks for validating other measurements. Accordingly,

Fig. 6 presents scatter plots comparing PBLH estimated by WCT, base model, pre-train

model, transfer model, MERRA2, and ERA5 against those from radiosondes. To enable510

systematic comparisons, their outputs within 200 km of sounding sites were averaged to

derive statistical metrics, including correlation coefficient (R), MAE, NMAE, and root mean

square error (RMSE).
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515
Fig. 6. Scatter plots comparing PBLH estimations from (a) base model, (b) pre-train model, (c) transfer
trained model, (d) WCT, (e) MERRA2, and (f) ERA5 against radiosonde observations. Unlike Fig. 5, these
comparisons employ direct radiosonde-derived PBLH rather than the radiosonde-constrained target labels.
Statistical metrics, R, MAE, NMAE, and RMSE are present in red at the upper left of each subplot.

As results, the classical WCT shows the poorest consistence with radiosondes, with the520

weakest correlation (0.22) and largest MAE/NMAE (989.8 m/73.6%) among all these

comparisons. Although we have previously obtained reasonable consistency between them by

filtering PBLH under stable regime and separately comparing samples under cloudy and

clear-sky conditions (Li et al., 2023), those statistical metrics remained inferior to the

comparisons between radiosonde and MERRA2 and ERA5. However, our ResNet model525

significantly enhances the representation for the truth PBLH. The transfer model

demonstrates marked improvements in predictive capability, exhibiting higher consistency

with radiosondes than both the base and pre-train model, as well as two reanalysis datasets,

with the strongest correlation (0.67) and the lowest MAE/NMAE (561.3 m/41.7%). In

addition, Table 1 gives the comparisons between the WCT, base, pre-train, and transfer530

models and radiosondes at each daily hour. The transfer model is also superior than others at

hourly scale, indicating its ability to capture more accurate diurnal variations of PBLH.

transfer
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Table 1. Statistics metrics for comparing PBLH from WCT, base model, pre-train model, and transfer
model to radiosonde derived PBLH at each daytime hours, values following "±" represent the 95%535
confidence level.

Local Time 8 9 10 11 12 13 14 15 16 17 18

W
C

T

R 0.17±0.08 0.03±0.09 0.22±0.12 0.12±0.14 0.28±0.11 0.26±0.10 0.21±0.09 0.28±0.10 0.14±0.10 0.24±0.09 0.18±0.10

RMSE 1.22±0.07 1.45±0.08 1.3±0.10 1.16±0.10 1.1±0.09 1.25±0.08 1.29±0.08 1.28±0.08 1.4±0.10 1.25±0.08 1.28±0.08

MAE 0.95±0.06 1.16±0.08 1.05±0.10 0.88±0.10 0.84±0.08 0.94±0.08 0.97±0.07 1.0±0.08 1.08±0.09 0.94±0.08 0.98±0.08

NMAE 138.3±9.3 175.6±12.0 138.2±12.2 80.4±9.6 59.4±5.8 59.1±5.0 56.7±4.5 53.7±4.5 57.0±4.9 54.7±4.7 66.0±5.4

B
as

e

R 0.37±0.07 0.37±0.08 0.35±0.11 0.62±0.09 0.44±0.11 0.55±0.08 0.43±0.08 0.52±0.08 0.49±0.08 0.5±0.08 0.56±0.07

RMSE 5.58±0.31 5.13±0.31 5.41±0.42 6.63±0.59 8.09±0.62 9.1±0.59 10.21±0.62 10.64±0.72 10.95±0.74 10.57±0.69 9.09±0.59

MAE 0.38±0.04 0.35±0.03 0.41±0.04 0.52±0.06 0.62±0.06 0.68±0.06 0.79±0.06 0.83±0.07 0.85±0.07 0.8±0.06 0.67±0.06

NMAE 54.3±5.0 52.9±5.1 53.9±5.6 47.2±5.2 43.9±4.3 42.6±3.7 45.9±3.5 44.4±3.8 44.7±3.8 46.8±3.9 44.7±4.1

Pr
e-

M
od

el

R 0.25±0.08 0.35±0.08 0.45±0.10 0.49±0.12 0.6±0.08 0.63±0.06 0.56±0.07 0.61±0.07 0.56±0.08 0.58±0.07 0.53±0.07

RMSE 5.19±0.30 5.28±0.32 6.59±0.51 6.57±0.59 6.68±0.51 8.12±0.52 9.02±0.55 9.67±0.66 10.25±0.70 9.54±0.62 9.48±0.61

MAE 0.39±0.02 0.43±0.03 0.54±0.05 0.5±0.06 0.5±0.05 0.59±0.06 0.65±0.05 0.71±0.07 0.77±0.07 0.71±0.06 0.71±0.06

NMAE 57.2±4.2 64.7±4.2 70.7±6.0 45.8±5.4 35.2±3.7 37.0±3.5 38.1±3.3 38.2±3.6 40.6±3.7 41.6±3.6 47.7±4.2

Tr
a-

M
od

el

R 0.42±0.07 0.37±0.08 0.49±0.09 0.57±0.10 0.52±0.09 0.66±0.06 0.6±0.06 0.62±0.07 0.64±0.06 0.57±0.07 0.53±0.07

RMSE 4.68±0.27 4.7±0.28 4.26±0.34 6.18±0.56 7.53±0.58 8.15±0.52 9.18±0.56 10.17±0.69 10.1±0.69 10.08±0.65 9.21±0.60

MAE 0.35±0.03 0.36±0.03 0.33±0.03 0.44±0.06 0.53±0.06 0.56±0.06 0.65±0.06 0.76±0.07 0.76±0.07 0.75±0.07 0.67±0.06

NMAE 50.4±3.9 54.1±4.2 43.9±4.2 40.5±5.5 37.4±4.5 35.3±3.7 38.0±3.5 41.0±3.8 39.9±3.6 43.5±3.8 45.3±4.2

Since the pre-train model using pseudo-labels constrained by MERRA2 PBLH, the

statistical metrics may inject reanalysis systematic deviation into the learned representation.

Residual deviation correlation analysis was carried out to quantify this impacts. We

calculated the residual biases between radiosonde-based PBLH and others (MERRA2, base540

model, pre-train model, and transfer model estimated PBLH), and compared them against the

residual bias of MERRA2 (Fig. 7). The R and R2 in Fig. 7a indicates that the base model itself

incorporates some bias information from MERRA2 (15%), this may be due to the

meteorological features inputted the model are generated from MERRA2. However, the

system's deviation of MERRA2 is deeply embedded in the pre-train model, 80% of its545

residual can be explained by the MERRA2 deviation. Despite fine-tuning the model's weights

using radiosonde labels can mitigate this impacts, with R2 dropped to 0.38, it is undeniable

that the transfer model still introduces a certain deviation information from MERRA2. Herein,

we quantified the reduction rate of transfer training by a function:

Rpre2 −Rtra2 Rpre2 −Rbase2 ×100% , and found the reduction rate reaches 64.6%, suggesting that550

fine-tuning can effectively weaken the generalization impact of the MERRA2 deviation.
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Compared to the base model, our transfer model has better overall performance (Fig. 6),

suggesting that the model has achieved bias mitigation while retaining the advantages of the

pre-train model. Even so, it is declare to integrate multi-source observations to reduce this

impacts in future work.555

Fig.7. Comparisons of residual deviations from base, pre-train, transfer model against those from
MERRA2 PBLH. (a) base v.s. MERRA2, (b) Pre-train v.s. MERRA2, and (c) Transfer v.s. MERRA2.

Although radiosondes are considered as ground truth and often serve as benchmarks for

evaluating models and reanalysis outputs, complete quantitative consistency cannot be560

pursued due to mis-matches in both space and time with other datasets and discrepancies in

retrieval algorithms. Instead, we can only ensure certain consistency in their spatio-temporal

characteristics. The prominent consistency between the transfer model and radiosonde

demonstrates the superiority of deep learning approaches and validates the rationality of our

experimental design. However, it should be noted that the matchup between orbital CATS565

data and radiosonde sites remain relatively crude, exhibiting considerable mismatches in

temporal, horizontal distance, and altitudes. Moreover, different vertical resolution of

radiosondes induce uncertainties in deriving PBLH. Therefore, the PBLH differences

between the transfer model compared to the sounding derived PBLH were examined in Fig.

S6, with respect to their sensitivity to the matching differences in distance, time, and altitude,570

as well as vertical resolution of radiosonde. It can be observed that although the PBLH

deviations exhibit slight dependence on time difference, distance difference, and vertical

resolution,implying that the matching criteria between the radiosonde sites and CATS orbits

cannot cause substantial uncertainties in this study. However, significant PBLH differences
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emerge as the altitude difference increasing. This is related to the poor model performance575

over rugged terrain, and it also highlights the heterogeneity of PBLH over complex terrains.

4.3 transferDiurnal variations in near-global PBLH

Benefiting from the unique operational characteristics of the CATS, the near-global diurnal

variations in PBLH can be obtained after approximately 16 days of operation. However, due

to interference from multi-layer structures and noises in backscatter signals, diurnal variations580

derived by classical WCT algorithm often present non-physical fluctuations (Li et al., 2023).

This study aims to extract more physically reasonable diurnal PBLH variations from CATS

data using a deep learning approach. Based on theory by Stull (1988), we assumed that

daytime PBLH evolution undergoes four distinct phases: morning transition (08:00–09:00),

rapid growth (10:00–14:00), maintenance (14:00–16:00), and decay in the late afternoon585

(17:00–18:00). Fig. 8 presents spatial distributions of PBLH for the four evolution periods

derived from WCT, pre-train model, transfer model, MERRA2, and ERA5. Furthermore, Fig.

S7 provides their details by highlighting the specific PBLH at each daytime hour. These

results demonstrate reasonable diurnal PBLH behaviors, and they show evident differences

among different datasets or methodologies.590

Similar as previous results by Li et al. (2023), the diurnal variation amplitudes derived by

the WCT algorithm are severely weaken, showing no significant difference between the

morning transition period and the afternoon maintenance period. In contrast, our ResNet

model capture clearer diurnal patterns: lower PBLH is observed in the morning transition

period, gradually increases at the growth period, reaches its daily maximum in the595

maintenance stage, and then began to decline during the decay period. The transfer model

exhibits some anomalous performance, such as its higher PBLH over high-altitudes and

deserts during the maintenance and decay stages. We suspect that the transfer model may

deviate from actual situations over these areas, as the assessments in Fig. 5 has proved the

model's ability over these areas are relatively weaker than others. Fig. S8 also shows the600

model's prediction biases for hourly PBLH are larger over plateaus and deserts, especially in

maintenance and decay stages. On average, the MAE in high-elevation and desert is 260.2 m

and 187.6 m higher than that in low-elevation and non-deserts. This partly stems from the
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inherent limitation in feature extraction capability of the pre-train model over high-altitude

regions (Fig. 3). Furthermore, the scarcity of available training samples in high-altitude605

regions for the transfer model can also cause substantial uncertainties in its performances.

Additionally, the transfer model predicted PBLH in the later afternoon does not significant

decay and remained notably higher than those from other methods or datasets. Fig. S9

illustrates the diurnal variations of PBLH derived from the transfer model at four seasons.

There are almost no discernible decays in PBLH during summer (JJA in the Northern610

Hemisphere and SON in the Southern Hemisphere); instead, it even maintains an increasing

trend. In contrast, slight PBLH decays were observed in other seasons.

Fig. 8. Spatial distributions of PBLH derived from (a1-a4) WCT, (b1-b4) pre-train model, (c1-c4) transfer
model, (d1-d4) MERRA2, and (e1-e4) ERA5 during four diurnal evolution phases: morning transition,615
rapid growth, maintenance, and afternoon decay.
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Fig. 9. Hourly PBLH from WCT, pre-train model, transfer model, MERRA2, and ERA5 over the major ten
land cover types. The bar plots denote sampling frequency for a specified land cover at each daytime hours.
(k) reveals the land cover distributions across 2° × 2° grids.620

Evolution of PBLH is mainly governed by surface conditions and is highly dependent on

land surface types (Li et al., 2021). To better illustrate its diurnal variation, Fig. 9 presents the

hourly PBLH across ten major land surface types (derived from the three approaches and two

reanalyses). The transfer model demonstrate significant improvements in capturing diurnal

variations compared to WCT at most land covers, exhibiting more reasonable diurnal patterns625

in terms of amplitude, growth duration, and peak timing. Particularly, the model presents

clearer morning growth phase and more accurate peak timing. Additionally, the model

predicted PBLH exhibits a more pronounced dependence on land cover, with higher PBLH

and greater diurnal amplitude observed over bare soil and shrublands compared to forests,

croplands, and grassland areas. These findings are consistent with our previous observation630

based report (Li et al., 2021), whereas the WCT predicted PBLH exhibits much smaller

deviations across different land surface types. In addition, the diurnal PBLH variation

patterns (amplitude, peak timing) derived from our models aligned closely with those from

the two reanalyses. Specifically, the pre-train model displays nearly identical diurnal patterns

to MERRA2, while the transfer model performs more closely with ERA5 during the growth635
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and maintenance period. However, the transfer model predicted much higher PBLH than

ERA5 during transition and decay phases.

Fig. 10. Comparing the diurnal variations of PBLH estimated from WCT, base model, pre-train model,
transfer model, MERRA2, and ERA5 to that derived from radiosondes (bar plots). text in subplots640
represent the peak timing and amplitude for each diurnal curve, which is formatted with "peak timing /
amplitude".

As mentioned above, our transfer model derived PBLH decay in the later afternoon is not

pronounced in most land covers, with PBLH magnitudes during this period being notably

higher than those from the reanalyses and pre-train model. This is primarily due to reanalysis645

outputted PBLH is highly dependent on thermodynamic conditions and begins to decay after

surface thermal flux reaches its afternoon maximum. In contrast, the model predicted PBLH

is associated with backscatter of aerosols, which does not diminish synchronously with

thermodynamic weakening (Wang et al., 2012). Likewise, Pearson et al. (2010) synthesized

numerous studies regarding the diurnal variations of PBLH, obtaining diurnal variation650

curves that resembled the results from our transfer model, which suggested the credibility of

the diurnal patterns predicted by our transfer model. To further support this conclusion, we

qualitatively compared the diurnal PBLH patterns from WCT, three model predictions, and

reanalysis outputs, to the radiosonde observations across the ten major land types (Fig. 10).

Although these diurnal variations were composited from radiosonde sites at different655
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longitudes (potentially inducing perturbations in diurnal curves), their one-to-one matchup

with other PBLH can still provide certain effective evidences. The results demonstrate that

over most land covers, PBLH from the two reanalyses show more pronounced decays and

lower magnitudes in the later afternoon than the radiosonde derived PBLH. Additionally,

ERA5 exhibits lower PBLH than radiosonde observations during the morning transition and660

afternoon decay periods. Based on their diurnal variations on the seasonal scale (Fig. S10),

we evaluated several metrics of their diurnal variations with the radiosonde derived PBLH,

including R, MAE, and IA (index of agreement, Li et al., 2023). These metrics were

calculated separately for the periods before and after the peak of the diurnal variations of

sounding PBLH (Fig. S11). The results show that for those land cover types with sufficient665

sample sizes, the performance of the transfer model is superior to that of the base and the

pre-train model, even more often superior to reanalyses. These findings indicate that our

transfer model captures more reasonable diurnal patterns, and the ResNet based transfer

learning approach can effectively estimate near-global PBLH from CATS data.

670

5. Conclusions

This study developed a spatially and temporally applicative ResNet learning framework to

estimate near-global diurnal variations in PBLH from approximately three years of CATS

lidar profiles. The proposed model demonstrates significant enhancement in estimating

large-scale PBLH compared to classical algorithm. The framework is designed based on the675

concept that the first few peaks in WCT profiles typically capture the true PBLH, and the

model is inherently proposed to identify the peak with the highest probability of representing

the actual PBLH. Given the radiosonde measured PBLH samples for training a robust deep

learning model are insufficient, this study adopted a transfer learning strategy. We first

trained a base model using pseudo-target constrained by MERRA2 PBLH and then fine-tuned680

the base model on a smaller sampling dataset to generate the optimal model. This transfer

model retained the strong feature extraction capabilities of the pre-train model and

demonstrated considerable improvement in performance when evaluated on unseen data.

The input features for the model include remotely sensed and meteorological profiles,
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geographic and temporal information, as well as surface/sky conditions. Among these,685

candidate PBLH derived from CATS backscatters and temperature profiles are the two

dominant factors influencing model performance, collectively accounting for more than 45%

of the importance scores. Their importance exhibits a distinct diurnal variation with

alternating dominance: candidate PBLH primarily influences morning periods while

temperature dominates the afternoon. This alternating dominance pattern further explains the690

diurnal variation in model performance, with higher accuracy and lower MAE/NMAE

observed during morning hours and the opposite tendencies occurred in the late afternoon.

Despite these temporal fluctuations, the transfer model demonstrates overall superior

performance metrics when compared against radiosondes, outperforming the results obtained

from WCT, pre-train model, MERRA2, and ERA5.695

Regarding diurnal variation, the transfer model predicted PBLH exhibits clear diurnal

patterns, demonstrating more reasonable diurnal amplitude, growth duration, and peak timing

compared to the classical WCT algorithm. Although the model struggles to capture PBLH

over high-altitude regions like the Tibetan Plateau due to insufficient training samples and

low data quality, its performances in other regions are significantly better. Particularly, the700

model derived diurnal PBLH variations are sensitive to land covers. PBLH over bare and

shrub lands exhibit higher magnitude and larger diurnal amplitudes than that over forests,

croplands, and other vegetated areas. Furthermore, the model maintains high PBLH

magnitudes in the late afternoon and shows only slight decay, differing from the pronounced

decay phases of the two reanalyses derived PBLH. Even so, this non-prominent afternoon705

decay aligns well with radiosonde measurements, indicating its superior capability in

capturing diurnal PBLH.

This study involves an initial attempt of using a deep neural network to address complex

signal structure in CATS backscatter, and then to re-fine its measurement for PBLH on a

near-global scale. Although utilizing attention augmented ResNet and transfer learning710

strategy can effectively improve the model's capability, its performances in high-altitude

regions and deserts in the morning and later afternoon periods remain poor. Future efforts

would be prospected to refine the model's applicability in rugged topography or on specified

land covers, integrating multi-source observations with fine-resolution meteorological data
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and accurate target label are crucial for improving the model performances.715
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