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Abstract

Diurnal variations in planetary boundary layer height (PBLH) is highly linked to weather,15

climate, and environmental processes. However, remaining challenges persist in estimating

its diurnal behavior at a large scale due to insufficient observations and limitations of

operational retrieval algorithms. This study proposed a deep learning framework based on an

attention-augmented residual neural network to estimate diurnal variations in near-global

PBLH, incorporating profiles from an non-sun-synchronous lidar (Cloud-Aerosol Transport20

System: CATS) and meteorological fields. The framework can largely address the issue of

multi-layer structures in space-borne lidar signals, significantly improving the accuracy of

PBLH retrieval during morning and evening (with accuracy improvement approach 430%

compared to traditional algorithms). Due to insufficient observations aligned with CATS

orbits, a pre-trained model was firstly trained using pseudo-labels from reanalysis, and then25

was transferred to observation-based target labels. The transfer model demonstratesd superior

performance in most regions and periods, outperforming conventionalclassical algorithms in

capturing PBLH magnitude and its diurnal variations., though under-performing over

complex terrains. Further assessments over different land covers shown that the
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transfer-trainedtransfer model estimated PBLH and diurnal patterns were highly consistent30

with those from radiosondes, surpassing reanalysis outputs. For model capability, wavelet

covariance transformation derived potential PBLH and temperature profiles emerged as

dominant factors, with contributions exhibiting diurnal patterns. Overall, this work proposes a

novel framework for large-scale PBLH estimation and provides insights for improving

retrievalconventional algorithms, particularly through integrating remote sensing and35

machine learning.

1. Introduction

The planetary boundary layer height (PBLH) plays key roles in land-air exchanges and

lower tropospheric processes (LeMone et al., 2019; Medeiros et al., 2005), such as the40

transfer and exchange of heat, momentum, humidity, and materials (Garratt, 1994; Holtslag et

al., 2013; Stull, 1988). As an interface between the turbulent boundary layer and the free

atmosphere, PBLH acts as a significant barrier and represents the degree of turbulent

diffusion, determining the upper limit of boundary layer processes and playing vital roles in

weather, climate, and environmental studies (Che et al., 2019; Davy and Esau, 2016; Guo et45

al., 2021; Li et al., 2017). Particularly, weather and pollution conditions are largely dependent

on the diurnal behaviors of PBLH, which dominates the atmospheric dispersion and vertical

mixing of pollutants (Ding et al., 2013; Huang et al., 2023; Li et al., 2025).

Despite the crucial importance, accurately measuring diurnal variations of PBLH across

large scaled areas remains challenging due to spatio-temporal limitations of current detection50

instruments. Radiosonde and lidar measurements allow precise representation of vertical

atmospheric structure (Seidel et al., 2010; Seidel et al., 2012). The radiosonde derived PBLH

generally servesd as a benchmark for validating simulations, reanalysis, and remote sensing

(Guo et al., 2021; Li et al., 2023; Yue et al., 2021).However, global radiosondes are

typicallygenerally launched two or four times per day, and its coverage is much sparse in55

less-developed regions (like Africa and South America). Lidar systems serve as a promising

tool for continuous PBLH monitoring (Chen et al., 2022; Liu et al., 2021), benefiting from

their operation at sub-minute temporal resolution. While ground-based lidar has limited
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spatial representation, space-borne lidar enables large-scale PBLH detection across diverse

regions (Jordan et al., 2010; McGrath-Spangler and Denning, 2012). Li et al. (2023)60

demonstrated diurnal variations in large-scale PBLH from an non-sun-synchronous satellite.

However, they retrieved PBLH retrieved by them exhibited large deviations in accuracy and

diurnal patterns due to uncertainties of retrieval and signal noises such as multi-layer

structures.

ConventionalTraditional algorithms for retrieving PBLH from satellite signals are typically65

developed either to detect abrupt jumps in backscatter profiles (Kumar et al., 2018; Liu et al.,

2015) or to identify the first exceeding of an empirical threshold (Palm et al., 2021). These

algorithms suffered from significant accuracy challenges, due to at least three limitations: (ⅰ)

the presence of elevated residual layers prevent downward staring lidar from detecting the

true PBLH; (ⅱ) cloud contamination or advected aerosols induce noises into lidar echos; and70

(ⅲ) parameter selection of algorithm affect its sensitivity to diverse profile structures. The

primary challenge for retrieving the diurnal variation of PBLH perhaps lies in minimizing the

influences of residual layers or multi-layer structures during its morning and evening

transition periods (Su et al., 2020; Li et al., 2023). Numerous efforts have been taken to

enhance the algorithm performance in operating multi-layer profile structures of space-borne75

lidar, such as utilizing graphic clustering (Liu et al., 2018) or implementing additional

physical constraints (Kim et al., 2021; Su et al., 2017). However, to date, current algorithms

have not yet achieved optimal performance, primarily due to their inability to effectively

resolve ambiguity signal structures through automated detection.

In recent years, machine learning has been increasingly integrated into PBLH estimation,80

achieving evidenced improvements. Several studies have employed deep neural network

frameworks to estimate PBLH using near-surface and vertical atmospheric variables (Nguyen

et al., 2021; Su and Zhang, 2024), constructing non-linear mapping from meteorologies to

PBLH. Based on parameters acquired from surface observations, remoter sensors, reanalyses,

and simulations, several random forest models were developed to predict PBLH (Guo et al.,85

2024; Krishnamurthy et al., 2021), the results demonstrated greater consistency with

radiosondes and effectively corrected some inherent biases. There are gradient boosting
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learning models been proposed (de Arruda Moreira et al., 2022; Peng et al., 2023), which

sequentially fits multiple weak learners, allowing the model to learn iteratively and improve

prediction accuracy progressively. These methodologies essentially addressed the a90

regression relationship between PBLH and associated meteorological variables. There are

also machine learning models were employed to refine retrieval technique from only remote

sensing data. Rieutord et al. (2021) compared an unsupervised (AdaBoost) and a supervised

(K-means) learning, to judge whether the lidar signals originate from the boundary layer or

the above free atmosphere. Mei et al. (2022) proposed a VGG16-based convolutional neural95

network for PBLH detection using wavelet covariance transformation (WCT) images of

ground-lidar backscatter, which can effectively suppresses contamination from clouds and

residual layers. Sleeman et al. (2020) improved PBLH measurement from backscatter profiles

under cloud condition through convolutional network.

Existing machine learning methodologies exhibit significant advantages in capture PBLH100

and its diurnal variations from noisy lidar signals. However, these studies have almost been

limited to ground-based sites, and either require additional meteorological variables affecting

PBLH evolution to be provided or necessitate human intervention to process remote sensing

signals. These site-scaled models may not be generalizable on larger regions or global scale.

Few studies have focused on improving PBLH estimation from space-borne lidar through105

machine learning approaches. This is primarily due to training a robust model requires

substantial feature samples been provided, yet ground-based observations aligned with

space-borne lidar overpass orbits are extremely scarce, making it difficult to obtain sufficient

target labels; while those unsupervised learning methods often fail to achieve the desired

performance (Rieutord et al., 2021).110

Given the aforementioned considerations, this study proposes to construct a temporally and

spatially adaptive deep learning model to estimate PBLH and its diurnal variations on a

near-global scale using space-borne Cloud-Aerosol Transport System (CATS). As the satellite

operates on a non-sun-synchronous orbit, it can capture a complete diurnal cycle (Yorks et al.,

2016). To address the issue of insufficient matching samples with satellite orbits, this paper115

employs a transfer learning strategy. The approach involves first establishing a pre-trained
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model using large-scale samples matched by reanalysis data. And then, the feature extraction

capabilities of the pre-trained model are transferred to small samples matched with ground

truth values. By fine-tuning the model weights, its representation for real-world targets and

generalization will beare enhanced, thereby constructing more accuracy measurements of120

diurnal variations in large-scaled PBLH. Overall, this work presents the first attempt to

integrate attention mechanisms and transfer learning for diurnal PBLH estimation at

near-global scale, overcoming the limitations of conventionalclassical algorithms in handling

multi-layer atmospheric structures.

125

2. Dataset

2.1 satellite-based lidar profiles

This study aims to develop a robust and generalizable deep learning framework for

PBLH estimation from space-borne CATS lidar. CATS iswas initiated to monitor atmospheric

clouds and aerosols using advanced lidar technology and iswas mounted on the International130

Space Station's (ISS) Japanese Experiment Module. Launched on January,. 10, 2015, the ISS

operated in 51.6° inclined orbits at an altitude of ~405 km, covering tropical and mid-latitude

regions. Unlike sun-synchronous satellite, CATS exhibitsed a repeat cycle of approximately

three days and operatesed at non-fixed overpass times. These characteristics allow CATS to

capture large-scale diurnal variations in aerosols (Yu et al., 2021) and clouds (Zhao et al.,135

2023), as well as in PBLH (Li et al., 2023) after approximately 16 days of running. Due to

instrument malfunctions, available CATS backscatters for PBLH retrieval only limited from

Mar. 2015 to Oct. 2017, exclusively at the 1064 nm. Such wavelength is more sensitive to

aerosol structure and variations compared to 532 nm (Winker et al., 2007), but with a lower

signal-to-noise ratio (SNR); such that CATS signals necessitate more rigorous de-noising140

processes. Herein, the study acquired 1064 nm 'Total_Attenuated_Backscatter' profiles (TAB)

from the CATS V3.00 Level 1B product and 'Feature_Type' data from the Level 2 product.

The collected L1B and L2 products have horizontal resolutions of 350 m and 5 km,

respectively, while both maintain a vertical resolution of 60 m. Several additional CATS
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products: 'Profile_UTC_Time', 'DEM_Mean_Elevation', 'Bin_Altitude_Array', 'Opacity',145

'Layer_Top_Bin', 'Layer_Base_Bin', 'Surface_Type', 'Sky_Condition' were collected to refine

the input features when training model. Noting that Oonly the daytime CATS products were

acquired, as and the determination for nocturnal PBLH falls outside scope of this paper.

2.2 Radiosondes and reanalyses derived PBLH

Given that radiosonde derived PBLH is typically recognized as ground truth, this study150

employed sounding profiles from Integrated Global Radiosonde Archive (IGRA) V2.0, which

serves to generate benchmark PBLH and to assess performances of our deep learning model.

IGRA offers exceptional temporal and spatial coverage, with current 466 radiosondes sites

(Fig. S1) available in CATS overpassing areas. We acquired IGRA data temporally aligned

with the CATS orbits (2015–2017). Sounding profiles employed for PBLH determination155

encompass geo-potential height, temperature, dew point depression, wind speed and direction.

The bulk Richardson number method (Vogelezang and Holtslag, 1996) waswas adopted here

to calculate the PBLH, which can even maintain enough effectiveness under stable

atmosphere regimes and coarse sounding resolutions. Nevertheless, procedures were still

conducted to eliminate soundings with coarse vertical resolution: within 5 km from the160

surface, the profiles must include at least seven vertical levels of temperature and humidity

records; along with at least four levels of wind records. If valid wind observations are fewer

than seven levels, a cubic spline interpolation was employed to fill missing values (Zhang et

al., 2013). However, we should aware that radiosondes have standard launch schedule (fixed

at two UTC), only a few soundings coincide with CATS orbits, spatio-temporal overlaps165

between the two datasetsCATS and radiosondes are quite scarce. Fig. S1 gives their match-up

information, where relatively rough matching rules (with distance limited to 200150 km and

time to 1.5 hour) werewere performed to enlarge the number of samples. As a result, we

obtained totally 5368 valid matching samples, which cover the majority of the Earth's land,

and larger sampling numbers observed in mid-latitude regions.170

While the robustness and reliability of radiosonde-based PBLH, using only 5,368 matched

samples to train a model is far from sufficient, especially considering these samples fall

throughout diverse periods and regionsareas. Therefore, two reanalyses outputted PBLH,
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ERA5 (the fifth generation European Centre for Medium-Range Weather Forecasts

atmospheric reanalysis) and MERRA2 (the Modern-Era Retrospective Analysis for Research175

and Applications Version 2), were further acquired in this study. Two sets of PBLH sharehave

the same temporal resolution (1-hour) but with discrepant spatial grids: 0.25° × 0.25° (ERA5)

and 0.625° × 0.5° (MERRA2). The grid-based reanalyses were interpolated to the orbit-based

CATS data using inverse distance weighting to ensure they are spatially aligned. In this study,

the MERRA2 PBLH was employed to construct one of training sets for the model, partly180

because it assimilates aerosol information compared to ERA5 (Gelaro et al., 2017), making it

more approach to the intrinsic nature of CATS retrievals. Our prior study also reported that

using conventionalclassical algorithm retrieved PBLH from CATS was more consistent with

that from MERRA2 (Li et al., 2023). Moreover, we acquired vertical profiles of temperature,

humidity, and wind speed from MERRA2 website as meteorological features input to model.185

These variables represent 3-hour averaged meteorological fields and were matched with

CATS orbits. Moreover, we acquired vertical profiles of temperature, humidity, and wind

speed from MERRA2 as meteorological features for training the model. These variables

represent 3-hourly averaged values and were matched with CATS orbit based on the closest

temporal and spatial proximity.190

3. Methodologies

3.1 Generate training data

WCT is one of typical PBLH retrieval techniques from satellite-based backscatters. This

study employsed the Haar wavelet transform (Gamage and Hagelberg, 1993):195
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where, ( , )fW a b is the WCT coefficient, a is dilation factor, b denotes the central location of

vertical translation, B(z) is backscatters, zb and zt represent the bottom and top limits when

integrating the Haar function, respectively. The Haar wavelet function is:
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inherently, the WCT is designed to check the similarity between the lidar profile and wavelet

stepping function, its maximum peak represents the sharpest signal gradient, and thereby is

considered as PBLH. However, selecting a proper dilation factor is crucial, diverse dilation

values exhibit significant impacts on step WCT signals. Particularly, a smaller dilation cause

WCT being sensitive to small-scaleder fluctuations in backscatter profile and is susceptible to205

noise interference, whereas a larger dilation may smooth out thin aerosol layers.

Fig. 1. Assessment for the WCT algorithm under different dilations (a); and accuracy (b) and MAE (c)
compared against radiosonde derived PBLH when assuming one the first five peaks in WCT profiles
(dilation=480) as PBLH.210

Since varying sensitivity of different dilations to backscatter structures, we evaluated the

retrieval accuracy of seven dilation values ranging 240–960 m (with an interval of 120 m) in

Fig. 1a. Note that a tolerate PBLH bias of 500 m between WCT and radiosonde was utilized

when calculating the retrieval accuracy, accounting for spatio-temporal matching errors and

inherent algorithm differences between them. When compared against radiosonde derived215

PBLH, a dilation of 480 m yielded the optimal results. Therefore, a dilation of 480 m is

taken as a benchmark for WCT in this work. However, its maximum accuracy of 39.7% does

not meet reasonable desire, such uncertainty is mainly induced by multi-layer structures such
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as residual layer and advected aerosols, and inability of WCT algorithm (Li et al., 2023).

Here, the threshold of 500 m is only used to check whether the retrieval results of WCT are220

close to the actual PBLH, rather than to illustrate the performance of the algorithm. Changing

the threshold (Table S1) does not affect the key findings.

The WCT can, to some extent, be considered as a gradient-based algorithm, local peaks in

WCT profile denote sharp changes in signal structure. A previous study adopted dynamic

noise thresholds of ground-based lidar to identify the multiple layers (Li et al., 2023), but it is225

not applicative to space-borne lidar profiles. Due to the magnitude of WCT represents the

intensity of local changes in backscatter profile, we hypothesize in this study that the local

peaks in WCT profiles correspond to the top position of multi-layer aerosols; these peaks

were then compared against the radiosonde derived PBLH (Fig. 1b). The results show that the

first five peaks in WCT profiles aligned well with the truth PBLH, with their overall accuracy230

exceeding 90% when we assumed one of these peaks to be PBLH. These peaks may not

necessarily originate from the PBLH andbut may be induced by other interfering signals,

whereas the first peak (i.e., benchmark for WCT algorithm), only capture few portion of truth

PBLH. In other words, the WCT can effectively detect complex signal structures, while its

maximum peak does not fully denote the PBLH. Therefore, the performance of WCT are235

largely biased, particularly when it was utilized to CATS backscatters with strong temporal

variability. Fig. 1c further examine mean absolute errors (MAE) when assuming one of the

first five WCT peaks as PBLH, the MAE values (~240 m) are much lower than that using

WCT algorithm (~1 km, not show here). Moreover, the hit rates and MAEs across multiple

peaks under various dilation parameters also indicate that selecting 480 m as the dilation for240

WCT is the most appropriate for this study.

Consequently, this study proposes to develop a deep learning framework to identify the

optimal peak from the first several peaks of WCT profiles that aligned with the truth PBLH.

Three types of feature data: remotely sensed profiles, meteorological profiles, and auxiliary

parameters served as model inputs. We used the raw CATS backscatter profile as one of the245

remotely sensed features. Due to the lower SNR, a series of pre-processing procedures were

implemented. First, we utilized the 'Opacity' parameter to remove opaque profiles, ensuring
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downward -scanning CATS lidar can detect entire atmosphere columns. According toSamilar

as previous retrieval practices (Li et al., 2023), profiles containing cloud layers were filtered

using the 'Feature_Type' and corresponding 'Layer_Top_Bin', 'Layer_Base_Bin' from CATS250

L2 product. Since CATS L1B and L2 products have diverse horizontal resolutions (a single

L2 profile involves 14 L1B profiles), all of 14 L1B profiles would be eliminated if any cloud

layer was detectedexists in the L2 profile. Noting that cloud screening was only applied

below 5 km, profiles remained available when the lowest cloud base exceeded this altitude.

Prior studies have suggested that long-distance horizontal smoothing can enhance SNR of255

daytime CATS profiles (Nowottnick et al., 2022; Palm et al., 2021). Accordingly, the L1B

profiles were then horizontally averaged across 60 km, meaning each training unit aggregated

60 km of raw CATS profiles. However, the solid ground generally return stronger signal

echoes than the above aerosols, which could potentially distort the long-distance smoothing.

To address this, we re-aligned the CATS profiles according to their elevations, ensuring260

consistent bin for ground layers infor a single training unit. Moreover, elevations of CATS

profile extracted from the 'DEM_Mean_Elevation' may slightly bias from the true ground

level, we thereby followed the same approach as Li et al. (2023) to re-calibrate the ground bin.

Finally, to prevent the model from learning unforeseeable signal noises, we adopted a vertical

smoothing window spanning three vertical bins into the profiles.265

Based on the above cloud-screened, re-aligned, and horizontally averaged CATS profiles,

we calculated the corresponding WCT profiles based on a dilation of 480 m. This study limits

the PBLH estimation to height below 5 km (corresponding to 84 CATS bins), which covers

the vast majority of global cases. Additionally, the two lowest bins (nearest the surface) were

excluded to minimize ground noise contamination. Consequently, the derived PBLH values270

range from 360 m (120 + a/2) to 4800 m (5040 - a/2). From each WCT profile, we acquired

an additional profile involves the candidate PBLH, with the same dimensionsshape as the

backscatter and WCT profiles. In candidate profile, most bins were assigned as '0', while the

bins corresponding to local WCT peaks were marked as '1'. The WCT peaks were selected

based on their sorted magnitudes, with a maximum of five peaks retained per profile. Overall,275

three remote sensing based profiles, encompassing averaged TAB, WCT, and candidate
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PBLH, each with dimensions of 84 × 1, wereare incorporated as model inputs.

The meteorological profiles include temperature, relative humidity, and wind speeds

obtainedobtained from MERRA2 reanalysis,3-D meteorological fields, which werewhich

were first matched with each CATS orbit, following inverse distance weight for spatial280

matchup and most proximity for temporal matchup. And then the spatio-temporally matched

MERRA2 profiles were vertically aligned to 84 CATS bins using a linear interpolation

method. first spatio-temporally matched with CATS orbits and then vertically interpolated to

84 corresponding CATS bins. In addition, the model inputs incorporated several non-profile

parameters extracted from CATS auxiliary products, including geography information285

(latitude, longitude, altitude), local standard time (LST; converted from UTC of each profile),

surface type (based on MODIS land cover catagories) , and sky conditions. These non-profile

parameters are one-to-on attached to CATS profiles and were subsequently resampled to

match the dimensions of the profile features, and finally forming a standardized input array

(84 bins × 12 features) for training the model, as the input layer shown in Fig. 2.290

Fig. 2. Visualization for the model architecture, encompassing input layer (pre-training set and transfer
training set), shared feature extractor (involving two attention augmented residual blocks), prediction
heads (two discrepant fully connected layers for pre-training and transfer-training), and output layer.

In principle, the target labels for model training should be generated based onfrom295

radiosonde derived PBLH . However, this study obtained only 5,368 matched samples

between CATS and radiosonde data, which areis far too limited to train a model capable of
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capturing both temporal and spatial PBLH variations. To address this challenge, a transfer

learning strategy was adopted. Specifically, a baseline model was pre-traineded across a large

feature set using pseudo-labels constrained by MERRA2 PBLH, after which the pre-trained300

model was fine-tuned on a smaller dataset with target labels constrained by radiosonde

derived PBLH. During the pre-training phase, the training target lable was defined as the

single peak in the WCT profile closest to the MERRA2 PBLH, allowing a maximum

deviation of 480 m that equals to one-fold dilation value. This approach enablesd the model

to learn vast feature information and substantially expandsing the training sample size. For305

pre-training, a feature dataset of 2016 covering a completed calender year was employed,

comprising 113,488 samples in total, and were split into training (80%) and validation (20%)

subsets. In the transfer-learning stage, the target labels were constrained by radiosonde

derived PBLH. There are 50084,662 feature samples were extracted from the matched

CATS-radiosonde samples. Of these, 4,258000 samples were used for transfer training, while310

the remaining 662750 samples served as a common testing set to assess model performances

for both pre-training and transfer-learning stages. It is worth noting that the 750 samples in

test set were not randomly chosen. We carefully consider the sample size and distribution to

ensure that they could cover most of the space and time, while also ensuring that there is no

data leakage. In fact, for matching samples from different orbits, the possibility of data315

leakage is extremely low due to the time and space isolation. However, for the same orbit, if

the distance between two samples is too close, there may be a data leakage risk. Therefore, all

samples on the same orbit that are within 300 km of other samples were placed in the training

set while not in the testing set.

320

3.2 Model architecture

A residual neural network (ResNet) attempts to learn the residual mapping between input

features and outputs, effectively alleviating the vanishing gradient problems in a deep neural

network. This study constructeds a ResNet based transfer learning framework for target

location detection, aiming to identify the only bin representing the PBLH. The approach325

reshapeds inputted feature array and employsed a deep neural network to estimate the
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probability of each bin approximating the truth PBLH. As illustrated in Fig. 2, the model

adopteds a modified ResNet-18 architecture (He et al., 2016), consisting of four main

components. (i) Input layer: the model receives 2-D feature vectors (84 × 12) without spatial

reshape, maintaining the original temporal structure. (ii) Initial feature extracting: a 1-D330

convolutional layer with 64 channels (kernel_size=7) processes the input sequence, followed

by batch normalization and ReLU activation. This maintains the original sequence length

while expands the channel dimension. (iii) Attention augmented residual blocks: three groups

of down-sampling networks (64 → 128 → 256 channels) process the extracted features,

containing two residual blocks. Notably, all convolutions use kernel_size=3 with to preserve335

sequence length. Each residual block incorporates a parallel attention mechanism, where the

positions of candidate PBLH are transformed through a 1-D convolution to weight the feature

maps. Skip connections are implemented through 1 × 1 convolutions when channel

dimensions change. (iv) Prediction heads: our model architecture includes a global average

pooling across the temporal dimension to aggregate sequence information, and two fully340

connected layers (256→256→84) with ReLU activation and dropout. Sigmoid activation

producing probability scores for each bin, the losses during training process werewere ranked

to ensure that the score of target bin is higher than that of non-target bins.

The architecture involves an end-to-end supervised learning approach to train an enhanced

attention-based ResNet based on PyTorch framework, where candidate PBLH with single345

channel was mapped to 64 channels via 1D convolution to align with the main ResNet

networks, transforming position information into attention weights that explicitly leverage

prior knowledge for improved PBLH prediction. For the hyper-parameter tuning, the model

was trained using the Adam optimizer with an initial learning rate of 0.001, and was

optimized via binary cross-entropy loss. To prevent over-fitting, a dropout regularization with350

a rate of 0.3 was implemented in the last fully connected layers, and an early stopping

mechanism wasis enabled (patience=10). Training process willwould be terminated when the

validating accuracy does not improved for 10 epochs.

Transfer learning is an efficient deep learning strategy that leverages prior knowledge from

pre-trained models to address new tasks (Pan and Yang, 2010). In this study, we first355
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pre-trainedtrained a ResNet model as our base network on a larger samplesly sampled dataset

with target labels constrained by MERRA2 PBLH. By virtue of the strong feature extraction

capability of the pre-trained model to learn common hierarchical features from the input data,

we then transferred it to a new task, establishing the optimal prediction model. For this new

task, the classification head at the end of the pre-trained model was removed and replaced360

with new fully connected layers, the weights of the third residual block were also released,

which were re-trained on the smaller transfer-training dataset. Meanwhile, the weights of the

originalother convolutional layers were kept frozen to preserve the learned feature

representations. During transfer training, we employed a fine-tuning strategy with a lower

learning rate (0.0001), reduced training epochs and early stopping tolerance to prevent365

overfitting.
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Fig. 3. Assessment of the pre-trained model. (a-b) give the accuracy (column), MAE (black solid line) and
standard deviation of MAE (asterisk)NMAE (red solid line) at monthly and hourly scale, respectively; (c-f))370
and (d) denote the spatial distributions of accuracy, and MAE, R2, and NMAE, respectively.

Given that the majority of matched CATS-radiosonde samples fall in land (Fig. S1),

features over oceans were filtered out when training the pre-training model. As training

curves shown in Fig. S2, the pre-training model achieved its optimal validation accuracy at

38th epoch, and training was stopped at 48th epoch due to early stopping. The optimal model375

demonstratesd an accuracy of 80.24% on the training set and 81.18% on the validation set,

with corresponding losses of 0.0209 and 0.0204. Over the common testing set, the pre-trained

model achievesd an accuracy of 65.8759.2%. Such testing accuracy is slightly lower when

compared surpasses an non-transfer trainedthe base model (training the model only acrossin

the radiosonde -constrained training set, with testing accuracy of 63.260.0%), see training380

curves in Fig. S3. However, our transfer training achievesd an superiorbetter performances

than both the pre-training and non-transferbase modelss. The transfer model early stopped at

227th epoch (Fig. S4), reaching accuracies of 752.3885% and 721.3679% over training and

validating sets, and a testing accuracy of 698.033%. This indicates that employing a transfer

learning strategy can effectively enhance the model's learning capabilities and increase its385
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generalization.

Fig. 3 preliminarily evaluates the temporal (monthly and hourly) and spatial differences in

accuracy, and MAE, determination coefficient (R2), and normalized mean absolute error

(NMAE) of the pre-trained model. The results indicate the pre-trained model performed well

over most land areas. However, the model's representation in high-altitude regions (Tibetan390

Plateau, Rocky Mountains) and desert areas (Sahara, Arabian Peninsula) arewere somewhat

weak, where the accuracy dropsped below 780% and the MAE exceedsed 400 m, particularly

the R2 and NMAE denote the model's performances are quite poor over complex terrains.

These inabilities can be attributed to three main causes. First, the long-distance signal

smoothing in processing raw CATS profiles may cause uncertainties over complex terrain.395

Second, grid-based MERRA2 data represents average state within a grid-cell, potentially

leading to matching errors with orbital CATS observations in high-altitude areas. Finally,

meteorological profiles and PBLH from MERRA2 may contain largerpronounced errors in

these regions due to sparse observations available for assimilation.

The capabilities of pre-trained model also exhibitsed seasonal and diurnal discrepancies.400

Particularly, the model demonstrate poorer performance from April to September compared

to other months. As the poorer performances arewere primarily sourced from the Northern

Hemisphere, it can be concluded that the model's representation in spring and summer

seasons arewere somewhat weaker than that in autumn and winter. For the spring and

summer seasons, the atmosphere is vigorous, accompanied by more convective activities.405

This leads to more complex aerosol structures (more noised CATS signal), but also limits the

representation ability of MERRA2. In contrast, the atmosphere is more stagnant, and the

aerosol structure is simpler (Li et al., 2025). Additionally, our assessment is mainly based on

absolute deviations. The higher PBLH magnitude in the spring and summer seasons will

cause the assessment being worse. When considering relative deviation (NMAE, Fig. 3a), the410

performance improves somewhat, but it is still slightly poorer than that in the autumn and

winter. From a perspective of diurnal variation, the pre-trained model performsed less

effectively during morning and later afternoon hours compared to around midday, with

particularly poor performance observed in the later afternoon.
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3.3 Feature importance permutation415

Based on the transfer-trainedtransfer model, we examined the importance score of each

input feature using permutation importance technique (Altmann et al., 2010; Breiman, 2001).

By randomly shuffling individual feature and measuring decreases in model performance,

this method directly quantifies feature importance and can capture the non-linear

dependencies among different features. Since the proposed ResNet model is essentially a420

classification task, we quantifiedy the feature importance scores by calculating the increase in

MAE induced by feature shuffling. Specifically, permutation importance estimations were

implemented based on radiosonde constrained dataset (50084662 samples), and the baseline

MAE over original testing dataset was firstly derived. And then, we randomly shuffled the

target feature across all samples, ensuring that 84 bins of target feature move synchronously425

from every input sample, while keeping other features unchanged. This will break the

association between the target feature and predict label and is much applicable for our

position sensitive predict task. The importance score is determined by the increased

magnitude of MAE after permutation, a larger MAE increase indicates an higher feature

importance. To enhance the robustness of feature permutation, each feature undergoes 30430

independent iterations with different random sequences, noting that the input features were

shuffled using a common random seed atin each iteration. The ultimate importance scores

were represented as mean value across 30 iterations.
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435
Fig. 4. The permutation importance of input features is measured by the increase in MAE when each
individual feature is randomly shuffled. These importance scores are then normalized to represent their
relative contributions (a), with the total importance summing to 100%. (b) illustrates their relative
importance scores at each hour.

The obtained importance score of each input feature was recalculated to derive its relative440

contribution rate. As shown in Fig. 4a, two profile features (candidate PBLH, temperature),

along with two non-profile features (alititude, LST, altitude) emerged as the most important

features, each with relative importance exceeding 10%. Geographic associated variables

(latitude, longitude) and two meteorological (humidity, wind speed) profiles contributed the

secondary importance, collectively contributing over 250% to the total importance, whereas445

surface type and sky conditions contributed marginally. Among the three remotely sensed

profiles, importance scores of TAB and WCT arewere negligible, despite candidate PBLH

playing the dominant role in the model. This implies that local peak/valley locations in

backscatter profiles are more important than other shape features when estimating PBLH

from CATS profiles. This may also suggest potential direction for improving450

classicalconventional retrieval algorithms of PBLH., tThat is, the shape and structure of

remotely sensed profiles provide limited information about the PBLH, efforts should be taken

to incorporate other diagnostic data, as also suggested by (Su et al., 2020). This also promote

an implication for refining performances of classical algorithm, many of signal structures in

the lidar profiles are noisy and meaningless. Instead of further refining profile-shape as our455

previous study (Li et al., 2023), incorporating thermodynamic and terrain-related diagnostics

appears more beneficial.

We further extracted the permutation importance of input feature at each hour, and present
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their diurnal variations (Fig. 3b). The hourly importance scores of the two dominant

contributors (candidate PBLH and temperature) varyied evidently, while the diurnal460

variations of other importance scores arewere relatively slight. The combined importance of

the two dominant contributors exceedsed 5045%, and their diurnal variations exhibited an

alternating dominance pattern. Specifically, candidate PBLH dominates the model's

capability during the morning periods with a gradually decreasing tendency, while the

temperature emerges as the primary factor in the afternoon, with its importance scores465

essentially surpassing those of candidate PBLH. The diurnal variations in these importance

scores might lead to diurnal behaviors of model performance (Fig. 3b), which will be

discussed in the next section.

4. Results and Discussions470

4.1 Assessing the model

Herein, we evaluated the performance of the transfer-trainedtransfer model by checking

whether the model effectively capturesd the target labels constrained by radiosonde derived

PBLH. The assessment was categorized into training and testing subsets, Fig. 5a-d illustrate

the spatial distributions of accuracy, MAE, and NMAE for transfer model, as well as their475

diurnal variations for WCT, base, pre- and transfer models. diurnal variations in accuracy and

MAE and for WCT, pre-trained and transfer-trainedtransfer models. Notably, the calculated

accuracyy for WCT iswas slightly higher than that in Fig. 1a, because the current assessment

is carried out only on the feature samples (46625008) rather than all of the matched

CATS-radiosonde samples (5368). All the three metrics denote the transfer model's prediction480

ability is weak in Western Asia and western North America, which are regions (Fig. 3)

characterized by high-elevations and deserts. The pre-train model also performs poorly in

these regions, partly because both the meteorological and lidar profiles over these regions

have relatively low data quality (Li et al., 2023). Both Overall, the pre-trained and

transfer-trainedtransfer models demonstrated different degree of enhancements related to the485

conventionalclassical WCT algorithm, and the performance of transfer-trainedtransfer model
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iswas reasonably better than the pre-trained and base model. As shown in Fig. S5, the transfer

model achieves an improvement at nearly all sites. Quantitatively, the transfer-trainedtransfer

model achievesd an increase of 27.7%6.1% (24.9%) in accuracy and a reduction of

537.2596.5 m (517.255%) m in MAE (NMAE) compared to the WCT, on training (testing)490

subset, demonstrating the substantial advantage of transfer -training in refining driunal PBLH

measurements from CATS data.
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Fig. 5. Performance comparisons of the WCT, base, pre-train, trained model, and transfer-trainedtransfer495
model against radiosonde -constrained target labels. (a, c, e-b) show results for the training setthe spatial
distributions of accuracy, MAE, and NMAE for transfer model, while (c-d) correspond to the testing set. (b,
d, fe-f) display the diurnal variations of these metrics for WCT (column), base (back dash), pre-train (blue
dash), and transfer (red dash) models. accuracy and MAE of the transfer-trainedtransfer model on the
combined training and testing dataset.500

For the diurnal variations, transfer-trainedtransfer model performsed betterwell during the

morning and midday periods but poorly in the afternoon. In other words, its performance

deterioratesd over daytimedaily hours. It is interesting to note that the diurnal variations of

the model performance aligned closely with the importance scores of candidate PBLH in Fig.

4b, while exhibitsed an inverse tendency with that of temperature. This further underscores505

the dominant roles of these two factors in regulating the model's capability. These diurnal

variations may be largely regulated by the spatial distribution of training samples. Since

radiosondes areare only launched at two fixed times (00:00 and 12:00 UTC), each sitsthese

sites can provide samples at different local time. The poorestlowest accuracy and largest

MAE/NMAE typically occurred betweenduring 14:00– and 16:00 LST, with most samples510

originateding from western North America and the Middle EastWestern Asia (see rectangular



22

boxes in Fig. 5fc)., regions characterized by high-altitude terrain or desert areas.Since the

PBLH magnitude over these regions is generally higher than others, an absolute error may

bias the assessment; however, the relative error (i.e., NMAE) also demonstrate the model's

ability is weak in afternoon. As illustrated in Fig. 3, the pre-trained model performed poorly515

in these regions. Even so, the transfer-trainedtransfer model achieved significant

improvements in the later afternoon. Additionally, the pre-trained model exhibitsed generally

weak performance during morning and later afternoonevening periods (Fig. 3b), whereas the

transfer-trainedtransfer model performsed better in the morning than at other daily times. This

may attribute to the fact that morning samples arewere predominantly collected from520

regionsareas around 120° E and 60° W, where the pre-trained model performsed stronger

feature extraction capabilities in these low-altitude areas compared to others (Fig. 3c-d). Fig.

S5 further provides the accuracy and MAE at site scale for WCT, pre-trained, and

transfer-trainedtransfer models, the transfer-trainedtransfer model achieved enhancement at

nearly all sites.525

4.2 Inter-comparison of multi-sourced PBLH

The above analyses primarily involve to validate the model's capability in capturing target

labels, where the positions typically correspond to the WCT peak closest to either MERRA2

or radiosonde derived PBLH. In fact, the core function of the model is selecting, from

multiple WCT peaks, the one that most accurately represents the PBLH based on provided530

meteorological and physical conditions. It is crucial to aware that the model output remains a

remotely sensed product, while radiosonde derived PBLH is regarded as closest to ground

truth and generally serves as benchmarks for validating other measurements. Accordingly,

Fig. 6 presents scatter plots comparing PBLH estimations from estimated by WCT, base

model, pre-trained model, transfer-trainedtransfer model, MERRA2, and ERA5 against those535

from radiosondes. To enable systematic comparisons, their outputs within 200150 km of

sounding sites were averaged to derive statistical metrics, including correlation coefficients

(R), MAE, NMAE, and root mean square error (RMSE).
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540

Fig. 6. Scatter plots comparing PBLH estimations from (a) WCTbase model, (b) pre-trained model, (c)
transfer -trained model, (d) WCT, (de) MERRA2, and (ef) ERA5 against radiosonde observations. Unlike
Fig. 5, these comparisons employ direct radiosonde-derived PBLH rather than the radiosonde-constrained
target labels. Statistical metrics, correlation (R)R, MAE, NMAE, and RMSE are present in red at the upper
left corner of each subplot.545

As results, the conventionalclassical WCT showsalgorithm had the poorest consistence

with radiosondes, with the weakest correlation (0.227) and largest MAE/NMAE
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(845.98989.8 m/73.6%) among all these comparisons. Although we have previously obtained

reasonable consistency between them by filtering PBLH under stable regime and separately

comparing samples under cloudy and clear-sky conditions (Li et al., 2023), those statistical550

metrics remained inferior to the comparisons between radiosonde and MERRA2 and ERA5.

However, our ResNet model significantly enhancesd the representation for the ground truth

PBLH. The transfer-trainedtransfer model demonstratesd marked improvements in predictive

capability, exhibiting higher consistency with radiosondes than both the base and pre-trained

model, as well as and two reanalysis datasets, with the strongest correlation (0.6774) and the555

lowest MAE/NMAE (501.74561.3 m/41.7%). Since the pre-trained model using

pseudo-labels constrained by MERRA2 PBLH, its statistical metrics with radiosonde closely

consistent with those between MERRA2 and radiosonde. In addition, Table 1 gives the

comparisons between the WCT, base, pre-trained, model, and transfer-trainedtransfer models

and radiosondes at each dailydaytime hour. The transfer-trainedtransfer model is also superior560

than others at hourly scale, indicating its ability to capture more accurate diurnal variations of

PBLH. However, its correlations in the morning were somewhat weaker, This may seem to

contradict the accuracies in Fig. 4. In fact, the correlation represents the linear relationship

between model predicts and radiosonde calculation, accuracy is statistically based on

deviations between them. The transfer-trainedtransfer model predicted PBLH exhibited the565

lowest biases from ground truth during the morning period, which accordingly leads to its

higher accuracy.

Table 1. Statistics metrics for comparing PBLH from WCT, base model, pre-trained model, and
transfer-trainedtransfer model to radiosonde derived PBLH at each daytimeytime hours, values following570
"±" represent the 95% confidence level..

Local Time 8 9 10 11 12 13 14 15 16 17 18

W
C

T

Correlation 0.18 0.1 0.12 0.24 0.31 0.3 0.25 0.28 0.32 0.21 0.27

MAE (km) 0.87 0.93 0.8 0.64 0.74 0.84 0.88 0.96 1.01 0.97 0.92

RMSE (km) 1.11 1.2 1.04 0.86 1 1.15 1.24 1.29 1.36 1.38 1.26

Pr
e-

tra
i

ne
d Correlation 0.24 0.37 0.38 0.41 0.67 0.72 0.66 0.69 0.69 0.65 0.59

MAE (km) 0.38 0.39 0.44 0.44 0.45 0.54 0.61 0.68 0.77 0.79 0.72
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RMSE (km) 0.5 0.5 0.56 0.58 0.65 0.79 0.88 0.96 1.07 1.11 1.08
Tr

a-
tra

in
ed Correlation 0.44 0.34 0.49 0.48 0.71 0.72 0.71 0.7 0.76 0.72 0.68

MAE (km) 0.33 0.34 0.33 0.39 0.46 0.56 0.63 0.72 0.73 0.7 0.6

RMSE (km) 0.45 0.46 0.43 0.54 0.67 0.84 0.9 0.98 1.01 0.97 0.89

Local Time 8 9 10 11 12 13 14 15 16 17 18

W
C

T

R 0.17±0.08 0.03±0.09 0.22±0.12 0.12±0.14 0.28±0.11 0.26±0.10 0.21±0.09 0.28±0.10 0.14±0.10 0.24±0.09 0.18±0.10

RMSE 1.22±0.07 1.45±0.08 1.3±0.10 1.16±0.10 1.1±0.09 1.25±0.08 1.29±0.08 1.28±0.08 1.4±0.10 1.25±0.08 1.28±0.08

MAE 0.95±0.06 1.16±0.08 1.05±0.10 0.88±0.10 0.84±0.08 0.94±0.08 0.97±0.07 1.0±0.08 1.08±0.09 0.94±0.08 0.98±0.08

NMAE 138.3±9.3 175.6±12.0 138.2±12.2 80.4±9.6 59.4±5.8 59.1±5.0 56.7±4.5 53.7±4.5 57.0±4.9 54.7±4.7 66.0±5.4

B
as

e

R 0.37±0.07 0.37±0.08 0.35±0.11 0.62±0.09 0.44±0.11 0.55±0.08 0.43±0.08 0.52±0.08 0.49±0.08 0.5±0.08 0.56±0.07

RMSE 5.58±0.31 5.13±0.31 5.41±0.42 6.63±0.59 8.09±0.62 9.1±0.59 10.21±0.62 10.64±0.72 10.95±0.74 10.57±0.69 9.09±0.59

MAE 0.38±0.04 0.35±0.03 0.41±0.04 0.52±0.06 0.62±0.06 0.68±0.06 0.79±0.06 0.83±0.07 0.85±0.07 0.8±0.06 0.67±0.06

NMAE 54.3±5.0 52.9±5.1 53.9±5.6 47.2±5.2 43.9±4.3 42.6±3.7 45.9±3.5 44.4±3.8 44.7±3.8 46.8±3.9 44.7±4.1

Pr
e-

M
od

el

R 0.25±0.08 0.35±0.08 0.45±0.10 0.49±0.12 0.6±0.08 0.63±0.06 0.56±0.07 0.61±0.07 0.56±0.08 0.58±0.07 0.53±0.07

RMSE 5.19±0.30 5.28±0.32 6.59±0.51 6.57±0.59 6.68±0.51 8.12±0.52 9.02±0.55 9.67±0.66 10.25±0.70 9.54±0.62 9.48±0.61

MAE 0.39±0.02 0.43±0.03 0.54±0.05 0.5±0.06 0.5±0.05 0.59±0.06 0.65±0.05 0.71±0.07 0.77±0.07 0.71±0.06 0.71±0.06

NMAE 57.2±4.2 64.7±4.2 70.7±6.0 45.8±5.4 35.2±3.7 37.0±3.5 38.1±3.3 38.2±3.6 40.6±3.7 41.6±3.6 47.7±4.2

Tr
a-

M
od

el

R 0.42±0.07 0.37±0.08 0.49±0.09 0.57±0.10 0.52±0.09 0.66±0.06 0.6±0.06 0.62±0.07 0.64±0.06 0.57±0.07 0.53±0.07

RMSE 4.68±0.27 4.7±0.28 4.26±0.34 6.18±0.56 7.53±0.58 8.15±0.52 9.18±0.56 10.17±0.69 10.1±0.69 10.08±0.65 9.21±0.60

MAE 0.35±0.03 0.36±0.03 0.33±0.03 0.44±0.06 0.53±0.06 0.56±0.06 0.65±0.06 0.76±0.07 0.76±0.07 0.75±0.07 0.67±0.06

NMAE 50.4±3.9 54.1±4.2 43.9±4.2 40.5±5.5 37.4±4.5 35.3±3.7 38.0±3.5 41.0±3.8 39.9±3.6 43.5±3.8 45.3±4.2

Since the pre-train model using pseudo-labels constrained by MERRA2 PBLH, the

statistical metrics may inject reanalysis systematic deviation into the learned representation.

Residual deviation correlation analysis was carried out to quantify this impacts. We

calculated the residual biases between radiosonde-based PBLH and others (MERRA2, base575

model, pre-train model, and transfer model estimated PBLH), and compared them against the

residual bias of MERRA2 (Fig. 7). The R and R2 in Fig. 7a indicates that the base model itself

incorporates some bias information from MERRA2 (15%), this may be due to the

meteorological features inputted the model are generated from MERRA2. However, the

system's deviation of MERRA2 is deeply embedded in the pre-train model, 80% of its580

residual can be explained by the MERRA2 deviation. Despite fine-tuning the model's weights

using radiosonde labels can mitigate this impacts, with R2 dropped to 0.38, it is undeniable

that the transfer model still introduces a certain deviation information from MERRA2. Herein,

we quantified the reduction rate of transfer training by a function:

Rpre2 −Rtra2 Rpre2 −Rbase2 ×100% , and found the reduction rate reaches 64.6%, suggesting that585
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fine-tuning can effectively weaken the generalization impact of the MERRA2 deviation.

Compared to the base model, our transfer model has better overall performance (Fig. 6),

suggesting that the model has achieved bias mitigation while retaining the advantages of the

pre-train model. Even so, it is declare to integrate multi-source observations to reduce this

impacts in future work.590

Fig.7. Comparisons of residual deviations from base, pre-train, transfer model against those from
MERRA2 PBLH. (a) base v.s. MERRA2, (b) Pre-train v.s. MERRA2, and (c) Transfer v.s. MERRA2.

Although radiosondes are considered as ground truth and are often served as benchmarks

for evaluating models and reanalysis outputs, complete quantitative consistency cannot be595

pursued due to mis-matches in both space and time with other datasets and discrepancies in

retrieval algorithms. Instead, we can only ensure certain consistency in their spatio-temporal

characteristics. The prominent consistency between the transfer-trainedtransfer model and

radiosonde demonstrates the superiority of deep learning approaches and validates the

rationality of our experimental design. However, it should be noted that the matchup between600

orbital CATS data and radiosonde sites remain relatively crude, exhibiting considerable

mismatches in temporal, horizontal distance, and altitudes. Moreover, different vertical

resolution of radiosondes induce uncertainties in deriving PBLH. Therefore, the PBLH

differences between the transfer-trainedtransfer models and the WCT compared to the

sounding derived PBLH were examined in Fig. 7 and Fig. S6, with respect to their sensitivity605

to the matching differences in distance, time, and altitude, as well as vertical resolution of

radiosonde. It can be observed that although the PBLH deviations exhibited slight

dependence on time difference, distance difference, and vertical resolution,, this dependence
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is not obvious. This impliesimplying that the matching criteria between the radiosonde sites

and CATS orbits cannot cause substantial uncertainties in this study. However, significant610

PBLH differences emerged as the altitude difference increasing. This is related to the poor

model performance over rugged terrain, and it also highlights the heterogeneity of PBLH

over complex terrains.

Fig. 7. Sensitivity analysis of PBLH differences between transfer-trainedtransfer model predictions and615
radiosonde measurements with respect to: (a) matching distance, (b) matching time, (c) matching elevation,
and (d) vertical resolution of sounding profiles.

4.3 Diurnal variations in near-global PBLH

Benefiting from the unique operational characteristics of the CATS, the near-global diurnal

variations in PBLH can be obtained after approximately 16 days of operation. However, due620

to interference from multi-layer structures and noises in backscatter signals, diurnal variations

derived by conventionalclassical WCT algorithm often present non-physical fluctuations (Li

et al., 2023). This study aims to extract more physically reasonable diurnal PBLH variations

from CATS data using a deep learning approach. Based on theory by Stull (1988), we

assumed that daytime PBLH evolution undergoes four distinct phases: morning transition625

(08:00–09:00), rapid growth (10:00–14:00), maintenance (14:00–16:00), and decay in the late

afternoon (17:00–18:00). Fig. 8 presents spatial distributions of PBLH for the four evolution
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periods derived from WCT, pre-trained model, transfer-trainedtransfer model, MERRA2, and

ERA5. AdditionallyFurthermore, Fig. S7 provides furthertheir details by highlighting the

specific daytime PBLH at each daytime hour. These results demonstrate reasonable diurnal630

PBLH behaviors, and they shown evident differences among different datasets or

methodologies.

Similar as previous results by Li et al. (2023), the diurnal variation amplitudes derived

fromby the WCT algorithm wereare severely weaken, showing no significant difference

between the morning transition period and the afternoon maintenance period. In contrast, our635

ResNet model captured clearer diurnal patterns: lower PBLH iswas observed in the morning

transition period, gradually increasesd at the growth period, reachesd its daily maximum in

the maintenance stage, and then began to declineline during the decay period. The transfer

model exhibits some anomalous performance, such as its higher PBLH over high-altitudes

and deserts during the maintainance and decay stages. We suspect that the transfer model may640

deviate from actual situations over these areas, as the assessments in Fig. 5 has proved the

model's ability over these areas are relatively weaker than others. Fig. S8 also shows the

model's prediction biases for hourly PBLH are larger over plateaus and deserts, especially in

maintenance and decay stages. On average, the MAE in high-elevation and desert is 260.2 m

and 187.6 m higher than that in low-elevation and non-deserts. This partly stems from the645

inherent limitation in feature extraction capability of the pre-train model over high-altitude

regions (Fig. 3). Furthermore, the scarcity of available training samples in high-altitude

regions for the transfer model can also cause substantial uncertainties in its performances.

Additionally, the transfer model predicted PBLH in the later afternoon does not significant

decay and remained notably higher than those from other methods or datasets. Fig. S9650

illustrates the diurnal variations of PBLH derived from the transfer model at four seasons.

There are almost no discernible decays in PBLH during summer (JJA in the Northern

Hemisphere and SON in the Southern Hemisphere); instead, it even maintains an increasing

trend. In contrast, slight PBLH decays were observed in other seasons.

However, such typical diurnal variation pattern appeared more pronounced for the655

pre-trained model, while became relatively indistinct for the transfer-trainedtransfer model. It
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is evident that the pre-trained model predicted PBLH exhibited significant spatial consistency

with MERRA2 and ERA5 outputs compared to the transfer-trainedtransfer model. This is

mainly because the transfer-trainedtransfer model predicted higher PBLH in high-altitude

regions and in decay phase in the later afternoon. However, higher consistency between the660

pre-trained model and reanalysis did not indicate its predictions are closer to true values, as

reanalysis outputs themselves still require careful assessment.



30

Fig. 8. Spatial distributions of PBLH derived from (a1-a4) WCT, (b1-b4) pre-trained model, (c1-c4)665
transfer-trainedtransfer model, (d1-d4) MERRA2, and (e1-e4) ERA5 during four diurnal evolution phases:
morning transition, rapid growth, maintenance, and afternoon decay.

However, we must acknowledge the transfer-trainedtransfer model exhibited some

anomalous performance. Such as its abnormally higher PBLH over the Tibetan Plateau

during the morning transition and afternoon decay periods, which severely deviated from670

actual situations. This partly stems from the inherent limitation in feature extraction

capability of the pre-trained model over high-altitude regions (Fig. 3). Furthermore, the

scarcity of available training samples in high-altitude regions for the transfer-trainedtransfer

model can also cause substantial uncertainties in its performances. Therefore, it can be

concluded that the transfer-trainedtransfer model predicted PBLH in high-altitude regions675

being unreliable in this study. Additionally, the transfer-trainedtransfer model predicted

PBLH in the later afternoon did not significant decay and remained notably higher than those

derived from other methods or datasets. Fig. S8 illustrates the diurnal variations of PBLH

derived from the transfer model at four seasons. There were almost no discernible decays in

PBLH during summer (JJA in the Northern Hemisphere and SON in the Southern680
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Hemisphere); instead, it even maintained an increasing trend. In contrast, only slight PBLH

decays were observed in other seasons.

Fig. 9. Hourly PBLH from WCT, pre-trained model, transfer-trainedtransfer model, MERRA2, and ERA5685
over the major ten land cover types. The bar plots denote sampling frequency for a specified land cover at
each daytime hours. (k) reveals the land cover distributions across 2° × 2° grids.

Evolution of PBLH is mainly governed by surface conditions and is highly dependent on
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land surface types (Li et al., 2021). To better illustrate its diurnal variation, Fig. 9 presents the

hourly PBLH across ten major land surface types (derived from the three approaches and two690

reanalyses). The transfer-trainedtransfer model demonstrated significant improvements in

capturing diurnal variations compared to WCT at most land covers, exhibiting more

reasonablelistic diurnal patterns in terms of amplitude, growth duration, and peak timing.

Particularly, the model presents clearer morning growth phase and more accurate peak

attainment timing. Additionally, the model predicted PBLH exhibitsed a more pronounced695

dependence on land cover, with higher PBLH and greater diurnal amplitude observed over

bare soil and shrublands compared to forests, croplands, and grassland areas. These findings

are consistent with our previous observation based report (Li et al., 2021), whereas the WCT

predicted PBLH exhibitsed much smaller deviations across different land surface types. In

addition, the diurnal PBLH variation patterns (amplitude, peak timing) derived from our700

models aligned closely with those from the two reanalyses. Specifically, the pre-trained

model displaysed nearly identical diurnal patterns to MERRA2, while the

transfer-trainedtransfer model performsed more closely with ERA5 during the growth and

maintenance period. However, the transfer-trainedtransfer model predicted much higher

PBLH than ERA5 during transition and decay phases.705
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Fig. 10. Comparing the diurnal variations of PBLH estimated from WCT, base model, pre-trained model,
transfer-trainedtransfer model, MERRA2, and ERA5 to that derived from radiosondes (bar plots). text in
subplots represent the peak timing and amplitude for each diurnal curve, which is formatted with "peak710
timing / amplitude".

As mentioned above, our transfer-trainedtransfer model derived PBLH decay in the later

afternoon is not pronounced in most land covers, with PBLH magnitudes during this period

being notably higher than those from the reanalyses and pre-trained model. This is primarily

due to reanalysis outputted PBLH is highly dependent on thermodynamic conditions and715

begins to decay after surface thermal flux reaches its afternoon maximum. In contrast, the

model predicted PBLH is associated with backscatter of aerosols, which does not diminish

synchronously with thermodynamic weakening (Wang et al., 2012). Likewise, Pearson et al.

(2010) synthesized numerous studies regarding the diurnal variations of PBLH, obtaining

diurnal variation curves that resembled the results from our transfer-trainedtransfer model,720

which suggested the credibility of the diurnal patterns predicted by our

transfer-trainedtransfer model. To further support this conclusion, we qualitatively compared

the diurnal PBLH patterns from WCT, three model predictions, and reanalysis outputs, to the

radiosonde observations across the ten major land types (Fig. 10). Although these diurnal

variations were composited from radiosonde sites at different longitudes (potentially inducing725

perturbations in diurnal curves), their one-to-one matchup with other PBLH can still provide
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certain effective evidences. The results demonstrated that over most land covers, PBLH from

the two reanalyses shown more pronounced decays and lower magnitudes in the later

afternoon than the radiosonde derived PBLH. Additionally, ERA5 exhibitsed lower PBLH

than radiosonde observations during the morning transition and afternoon decay periods.730

Based on their diurnal variations on the seasonal scale (Fig. S10), we evaluated several

metrics of their diurnal variations with the radiosonde derived PBLH, including R, MAE, and

IA (index of agreement, Li et al., 2023). These metrics were calculated separately for the

periods before and after the peak of the diurnal variations of sounding PBLH (Fig. S11). The

results show that for those land cover types with sufficient sample sizes, the performance of735

the transfer model is superior to that of the base and the pre-train model, even more often

superior to reanalyses. These findings indicate that our transfer-trainedtransfer model

capturesd more reasonable diurnal patterns, and the ResNet based transfer learning approach

can effectively estimate near-global PBLH from CATS data.

740

5. Conclusions

This study developed a spatially and temporally applicative ResNet learning framework to

estimate near-global diurnal variations in PBLH from approximately three years of CATS

lidar profiles. The proposed model demonstrates significant enhancement in estimating

large-scale PBLH compared to conventionalclassical algorithm. The framework is designed745

based on the concept that the first few peaks in WCT profiles typically capture the true PBLH,

and the model is inherently proposed to identify the peak with the highest probability of

representing the actual PBLH. Given the radiosonde measured PBLH samples for training a

robust deep learning model are insufficient, this study adopted a transfer learning strategy.

We first trained a base model using pseudo-target constrained by MERRA2 PBLH and then750

fine-tuned the base model on a smaller sampling dataset to generate the optimal model. This

transfer-trainedtransfer model retained the strong feature extraction capabilities of the

pre-trained model and demonstrated considerable improvement in performance when

evaluated on unseen data.

The input features for the model include remotely sensed and meteorological profiles,755
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geographic and temporal information, as well as surface/sky conditions. Among these,

candidate PBLH derived from CATS backscatters and temperature profiles are the two

dominant factors influencing model performance, collectively accounting for more than

5045% of the importance scores. Their importance exhibits a distinct diurnal variation with

alternating dominance: candidate PBLH primarily influences morning periods while760

temperature dominates the afternoon. This alternating dominance pattern further explains the

diurnal variation in model performance, with higher accuracy and lower MAE/NMAE

observed during morning hours and the opposite tendencies occurred in the late afternoon.

Despite these temporal fluctuations, the transfer-trainedtransfer model demonstrates overall

superior performance metrics when compared against radiosondes, outperforming the results765

obtained from WCT, pre-trained model, MERRA2, and ERA5.

Regarding diurnal variation, the transfer-trainedtransfer model predicted PBLH exhibitsed

clear diurnal patterns, demonstrating more reasonable diurnal amplitude, growth duration,

and peak timing compared to the conventionalclassical WCT algorithm. Although the model

strugglesd to capture PBLH over high-altitude regions like the Tibetan Plateau due to770

insufficient training samples and low data quality, its performances in other regions arewere

significantly better. Particularly, the model derived diurnal PBLH variations arewere sensitive

to land covers. PBLH over bare and shrub lands exhibithad higher magnitude and larger

diurnal amplitudes than that over forests, croplands, and other vegetated areas. Furthermore,

the model maintainsed high PBLH magnitudes in the late afternoon and showsn only slight775

decay, differing from the pronounced decay phases of the two reanalyses derived PBLH.

HoweverEven so, this non-prominent afternoon decay alignsed well with radiosonde

measurements, indicating its superior capability in capturing diurnal PBLH.

This study involves an initial attempt of using a deep neural network to address complex

signal structure in CATS backscatter, and then to re-fine its measurement for PBLH on a780

near-global scale. Although utilizing attention augmented ResNet and transfer learning

strategy can effectively improve the model's capability, its performances in high-altitude

regions and deserts in the morning and later afternoon periods remain poor. Future efforts

would be prospected to refine the model's applicability in rugged topography or in on certain

local timespecified land covers, and integrating multi-source observations with785
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fine-resolution meteorological data and accurate target label are crucial for improving the

model performances.
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