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Abstract. Ice sheets are the primary contributors to global sea level rise, yet projecting their future contributions remains chal-
lenging due to the complex, nonlinear processes governing their dynamics and uncertainties in future climate scenarios. This
study introduces ISEFlow, a neural network-based emulator of the ISMIP6 ice sheet model ensemble designed to accurately
and efficiently predict sea level contributions from both ice sheets while quantifying the sources of projection uncertainty.
By integrating a normalizing flow architecture to capture data coverage uncertainty and a deep ensemble of LSTM models to
assess emulator uncertainty, ISEFlow separates uncertainties arising from training data from those inherent to the emulator.
Compared to existing emulators such as Emulandice and LARMIP, ISEFlow achieves substantially lower mean squared error
and improved distribution approximation while maintaining faster inference times. This study investigates the drivers of in-
creased accuracy and emission scenario distinction and finds that the inclusion of all available climate forcings, ice sheet model
characteristics, and higher spatial resolution significantly enhances predictive accuracy and the ability to capture the effects
of varying emissions scenarios compared to other emulators. We include a detailed analysis of importance of input variables
using Shapley Additive Explanations, and highlight both the climate forcings and model characteristics that have the largest
impact on sea level projections. ISEFlow offers a computationally efficient tool for generating accurate sea level projections,

supporting climate risk assessments and informing policy decisions.

1 Introduction

Sea level rise is a critical worldwide concern, with ice sheets being the dominant contributor to global sea level rise (Shepherd
et al., 2018; Bamber et al., 2019; Rignot et al., 2019). Despite extensive research over the past decades (Pattyn et al., 2017,
Goelzer et al., 2017), uncertainty persists regarding the future contributions of the Antarctic Ice Sheet (AIS) and Greenland
Ice Sheet (GrIS) (Fox-Kemper et al., 2021; Oppenheimer et al., 2019; Kopp et al., 2023). This uncertainty largely stems from
the complex, nonlinear processes governing ice sheet dynamics, as well as uncertainty in future carbon emission scenarios

(DeConto and Pollard, 2016; Golledge et al., 2015). To address these challenges, ice sheet models (ISMs), such as those that
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took part in the Ice Sheet Model Intercomparison Project (ISMIP), are essential for understanding future sea level rise (Nowicki
et al., 2016, 2020; Seroussi et al., 2020; Goelzer et al., 2020).

Given the computational demands and inherent complexities of running full-scale climate simulations, emulators have
emerged as a valuable tool for producing climate projections efficiently and accurately (Van Katwyk et al., 2023; Edwards
et al., 2021). Emulators (also commonly referred to as "surrogate models") are small-scale models that approximate large,
more complex physical models (or simulation models). Emulators differ from data-driven parameterizations that are designed
to operate within a climate model to represent a key process (e.g., Sane et al., 2023): they are typically designed to be run inde-
pendently and represent either the whole climate system (e.g., Nicklas et al., 2025; Smith et al., 2018) or a major component of
it (e.g., Lam et al., 2023b; Bi et al., 2023; Kochkov et al., 2024), often to facilitate data assimilation and uncertainty quantifica-
tion applications (e.g., Nicklas et al., 2025). Emulators use either data-driven methods or simplifications of the physical models
to learn the mapping from simulation inputs to simulation outputs. They are typically designed to be more computationally
efficient than the simulation model they approximate; they allow researchers to explore a broader range of model inputs and pa-
rameters, and enable more efficient experimentation and exploration than is typically feasible with the larger simulation models
(Sacks et al., 1989; Reichstein et al., 2019; Beusch et al., 2020). In recent years, emulators have become increasingly popular
in Earth and climate sciences due to their ability to rapidly generate large numbers of simulations, providing valuable insights
with much lower computational costs compared to full-scale Earth system models (Bochenek and Ustrnul, 2022; Kashinath
et al., 2021). This computational efficiency has made emulators an essential tool for exploring a wide range of scenarios and
understanding impacts across different climate systems (de Burgh-Day and Leeuwenburg, 2023).

Development of machine learning (ML) architectures has significantly advanced emulator development by providing frame-
works for accurately and efficiently capturing complex dynamics. Recent ML emulators like FourCastNet (Pathak et al., 2022)
and GraphCast (Lam et al., 2023a) are able to produce high-resolution weather predictions with low computational demands.
These models illustrate ML’s ability to handle intricate spatial and temporal interactions in weather and climate data, providing
both speed and accuracy in weather forecasting. As ML-driven emulators continue to improve, they expand the possibilities
for more accurate, responsive climate modeling and uncertainty quantification across scenarios (Weyn et al., 2021).

Emulators played a pivotal role in the ice sheet assessments of the Intergovernmental Panel on Climate Change (IPCC) 6th
Assessment Report (AR6), where ISMIP6, an ensemble of ice sheet models that produce land ice and sea level projections
(Nowicki et al., 2020; Seroussi et al., 2020; Goelzer et al., 2020; Payne et al., 2021), and the Emulandice emulator (Edwards
et al., 2021) were used alongside the Linear Antarctic Response Model Intercomparison Project (LARMIP) (Levermann et al.,
2020) to produce a comprehensive view of future ice sheet contribution to sea level based on future socioeconomic scenarios
(including emissions) (Fox-Kemper et al., 2021). These tools were instrumental in expanding projections to include a range
of Shared Socioeconomic Pathways (SSPs), providing a more comprehensive sampling of climate, ice sheet, and glacier data.
However, both the Emulandice emulator and the LARMIP linear response models have inherent limitations due to their simpli-
fied representations of ice sheet dynamics. Emulandice, a Gaussian Process (GP)-based emulator, relies on global mean surface
air temperature and fixed parameters for glacier retreat and sub-shelf basal melt (Edwards et al., 2021). LARMIP employs lin-

ear response functions to estimate how different rates of ice-shelf basal melting on the Antarctic Ice Sheet (AIS) translate into
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ice mass loss and sea level rise. This approach assumes a linear relationship between basal melt and ice mass loss and does
not take into account feedback mechanisms or changes in surface mass balance (SMB), which limits its ability to capture the
complex, nonlinear dynamics of ice sheets (Levermann et al., 2020). While these tools have contributed significantly to our
understanding of future sea level rise, particularly when attempting to understand processes relevant to ice sheet evolution,
the simplifications required for computational efficiency reduce projection accuracy (Van Katwyk et al., 2023). For example,
Emulandice was unable to distinguish between different emission scenarios for the AIS in the IPCC ARG®6, effectively produc-
ing the same sea level outcomes regardless of scenario. This limitation is critical, as accurately modeling differences between
emission scenarios is essential for providing reliable information to government bodies and policymakers (Fox-Kemper et al.,
2021) and is an important part of climate uncertainty quantification (Hawkins and Sutton, 2009; Lehner et al., 2020).

This study proposes a novel ML-based ice sheet emulator for both the AIS and GrIS that accurately and efficiently projects
future sea level, quantifies projection uncertainties, and captures sea level projection sensitivity to carbon emission scenarios.
This model, which we call ISEFlow (Flow-based Ice Sheet Emulator), is a neural network (NN)-based emulator that leverages
the computational advantages of NNs and incorporates a flow-based architecture (Nalisnick et al., 2019) to separate sources of
projection uncertainty. This work directly builds upon Van Katwyk et al. (2023), which demonstrated that NN architectures are
able to approximate ice sheet dynamics effectively due to incorporation of more input variables enabled by its computational
efficiency. This work extends those previous results by proposing ISEFlow (v1.0), a specific model with available pretrained
weights to be used as ice sheet emulators for Earth’s two extant ice sheets—ISEFlow-AIS and ISEFlow-GrIS—as well as an
improved framework for separating sources of uncertainty in ice sheet emulators.

Along with demonstrating advances in projection accuracy and uncertainty quantification in the proposed ISEFlow model,
this work carefully examines the underlying processes that drive ISEFlow’s performance in order to verify the emulator is
learning correct physical principles and to build confidence in its projections. We perform a series of experiments, including
sensitivity testing and an analysis on input variable feature importances, to verify that the emulator is learning in a way that re-
flects the real-world behavior of ice sheet models. By understanding which variables and forcings most influence emulated sea
level projections, we not only validate ISEFlow’s accuracy and adherence to ice flow physics, but also identify the inputs nec-
essary for capturing sensitivity to different emission scenarios. This ensures that ISEFlow provides reliable insights for future
sea level projections and establishes a foundation for creating more effective ice sheet emulators. Adoption of ISEFlow will
allow climate and ice sheet scientists to curate better datasets, enhance the capabilities of ISMs, and improve our understanding

of future sea level.

2 Methods
2.1 Data

The data used to train the ISEFlow emulator comes from ISMIP6, which is an ensemble of ice sheet models that produced
land ice and corresponding sea level projections driven by climate forcings from the Climate Model Intercomparison Project

- phase 6 (CMIP6). The CMIP forcings include yearly-averaged atmospheric and oceanic forcing anomalies from 2015 to
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2100 at 8 km and 5 km resolution for the AIS and GrIS respectively (Nowicki et al., 2020; Slater et al., 2020; Jourdain et al.,
2020). The key emulator prediction target is the Sea Level Equivalent (SLE) contribution produced by each ice sheet model
within ISMIP6 for each experiment that was run, with geographic localization of the ice mass losses for regional sea level rise
projections, the consequences of key process treatments or ice sheet model characteristics, and other fingerprinting activities
as additional goals. Both input forcings and projected SLE in ISMIP6 and this study are reported as anomalies, or deviations
from a “control” experiment (simulation with constant climate conditions), to reduce the effects of model drift throughout the
projections (Nowicki et al., 2020).

We aggregate input climate forcing data by calculating the mean forcing value for each ISMIP6 region, as in Seroussi et al.
(2020) and Goelzer et al. (2020). Previous emulators partitioned the ice sheets into large regions to increase computational
efficiency, aggregating data into 3 regions for the AIS (East Antarctica, West Antarctica, Antarctic Peninsula) and 1 region for
the GrIS. We maintain the input data in a resolution closer to the original resolution, dividing the AIS into 18 sectors based
on drainage basins and the GrIS into six sectors, to preserve the maximum amount of spatial information possible. This finer
partitioning allows for more detailed projections, particularly at the sector level, which provides a detailed understanding of
regional ice sheet dynamics and their contributions to global sea level rise. The ability to produce projections for each sector is
a significant advantage over previous emulators that limited projections to only broad regions, offering enhanced information
for regional sea level projections. As a direct improvement from Van Katwyk et al. (2023), we also include ISM characteristics,
or choices made by modelers that reflect how ice sheet projections are calculated by the ISM rather than the encoded name of
the ISM being used to make a particular projection. These characteristics are encoded as binary variables and given to ISEFlow
as inputs along with the climate forcings for each year. The main ISM characteristics include numerical solving method,
initialization method, and basal melt parameterization schemes (for the full list and details of the characteristics, see Appendix
A2, which is based on Table 3 of Seroussi et al. (2020) and Table A1 of Goelzer et al. (2020)). Including ISM characteristics
offers enhanced generalization beyond modeling specific ISM configurations present in ISMIP6, as ISEFlow is not restricted
to only emulating the original set of ISMIP models used for training, so it could anticipate the results of model updates to
characteristics settings in ISMIP7 configurations, for example.

With the processed CMIP forcings and ISM characteristics as inputs, and the SLE anomalies produced by ISMIP as outputs,
we group the 86-year time series into training, validation, and testing sets. For the AIS, the training set consists of 635 projec-
tions of 86 years each, totaling 54,610 training observations, and the validation and testing set contains 136 full projections. For
the GrIS, the training set consists of 635 projections of 86 years, totaling 54,610 training observations, and the validation and
testing set contains 136 full projections. For more detailed information on all data acquisition, preprocessing, and preparation
steps, see Van Katwyk et al. (2023). For the open-source Python package for handling ISMIP6 data and creating the proposed

emulators, see Section 5: Code and data availability.
2.2 ISEFlow

ISEFlow is a deep learning-based emulator designed to improve sea level projection accuracy and quantify uncertainty. Deep

learning, a broad class of machine learning methods that use multi-layer NN architectures (LeCun et al., 2015), has been
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extensively applied in Earth and Climate Sciences due to its ability to efficiently and accurately approximate complex Earth
systems (Karpatne et al., 2019; Bergen et al., 2019). ISEFlow combines two NN architectures: a Normalizing Flow (Rezende
and Mohamed, 2015) for probability density estimation and quantification of data coverage uncertainty, and a Deep Ensemble
(Lakshminarayanan et al., 2017) of LSTM models (Hochreiter and Schmidhuber, 1997) to generate accurate projections and
quantify emulator uncertainty (Figure 1).

In this study, we categorize uncertainty into two primary types: data coverage uncertainty and emulator uncertainty. Data
coverage uncertainty is typically considered to be an aleatoric sampling uncertainty that arises when the NN model makes
predictions in areas where the training data is sparse or unevenly distributed, meaning the NN model has less information
about how the system behaves under those specific conditions. This reflects how well the training data represents the full range
of possible input scenarios, with greater uncertainty in underrepresented or unexplored parts of the ISMIP6 data distribution.
Emulator uncertainty, on the other hand, refers to epistemic uncertainty, which stems from the emulator’s limited knowledge
due to incomplete data, uncertainties in the model structure, or limitations in the training process (Hiillermeier and Waegeman,
2021). Note that the limited accuracy of ice sheet dynamics models in the ISMIP6 ensemble and their CMIP6 forcing data also
bring in other types of uncertainty (e.g., model bias, scenario uncertainty, intrinsic chaotic variability, etc.), which are not the
focus here. Quantifying data coverage uncertainty and emulator uncertainty allows us to separate uncertainty that arises from
the emulator itself from uncertainty due to sparsity in the training data.

The uncertainty quantification technique employed by ISEFlow is typically used to quantify and separate aleatoric and
epistemic uncertainty (Hiillermeier and Waegeman, 2021). However, as emulators approximate another model—in this case,
ice sheet models—the concept of “aleatoric uncertainty” does not apply in its traditional sense. Aleatoric uncertainty represents
the inherent variability in observed data, but here, the “data” is generated by a model rather than from direct observational
processes. Consequently, the uncertainty being quantified pertains not to natural variability but to the distribution and coverage
of the ISM-generated data, as well as the variability of sea level projections coming from ISMs with the same configurations.
Because of the limited number of simulation projections run, there are very few simulations with the same model configuration
(same ISM characteristics), so the variability within projections with the same configuration will be much less prevalent than
the variability due to differing configurations and the lack of simulations for all possible experiments. Therefore, we use the
term “data coverage uncertainty” to reflect the uncertainty that arises due to an uneven sampling of the input space. This allows
for a clear separation between the uncertainty intrinsic to the emulator and the uncertainty arising from sparsity or unevenness
in the training data.

For each projection, input forcings and ISM characteristics are first passed into a Masked Autoregressive Normalizing
Flow (MAF) (Papamakarios et al., 2017), which consists of a series of learnable, reversible transformations that map the data
distribution to a simple, latent distribution (e.g., a Gaussian distribution is used in ISEFlow). By learning these transformations,
the data distribution can be efficiently sampled and the exact likelihood of the data can be computed, allowing us to estimate the
conditional density of the data distribution given the input data (Rezende and Mohamed, 2015). The Normalizing Flow captures

data coverage uncertainty by measuring the density of data sampling across different regions of the input space, meaning that
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Figure 1. Architecture diagram for ISEFlow-AIS and ISEFlow-GrIS. The input data consists of climate forcings and ice sheet model char-
acteristics. The input data is first passed through a Normalizing Flow to approximate the data density. The resulting latent transformation is
concatenated with the original input data and passed through the deep ensemble. The mean and variance of the resulting ensemble distribu-
tion represents the prediction and emulator uncertainty respectively. The learned data distribution given the inputs is then sampled and the

variance of the learned distribution represents the data coverage uncertainty.

in areas where the data is highly variable, the model expresses higher uncertainty. To calculate the data coverage uncertainty,
we sample the learned distribution given the current input values, and take the variance of the generated samples.

The latent distribution generated from the input data by the Normalizing Flow, along with the input itself, is then passed
through a Deep Ensemble of LSTM models—a type of NN particularly effective for time series data (Hochreiter and Schmid-
huber, 1997; Van Katwyk et al., 2023). Using both the original data and latent space as inputs allows the LSTM models to
leverage both the transformed, more structured latent representation and the original input features, ensuring that potentially
useful information from the raw input is not lost during the transformation process. The mean of the ensemble predictions
from the deep ensemble represents the overall projection, while the variance among the ensemble members quantifies emulator
uncertainty. This hybrid uncertainty quantification approach ensures that both data limitations from the ISM models (via data
coverage uncertainty) and emulator limitations (via emulator uncertainty) are captured. Separate emulators are trained for the
Antarctic Ice Sheet (AIS) and the Greenland Ice Sheet (GrIS) to account for the distinct dynamics and processes of these
systems.

We tested multiple configurations of ISEFlow architectures, including the number of transforms in the Normalizing Flow, the
number of LSTM ensemble members, the training loss, and the architecture of each ensemble member within the Deep Ensem-
ble. Given the large range of possible architectures and hyperparameters, we use Optuna (Akiba et al., 2019), an open-source
framework for Bayesian parameter optimization, to efficiently explore and identify a range of optimal parameter configura-
tions. We finalize the architecture using a grid search with the optimal parameter ranges, choosing the model with the lowest
Mean Squared Error (MSE) on the validation dataset. The final ISEFlow architecture consists of a MAF with 5 flow layers,

and 10 LSTMs of varying number of layers and layer sizes in the Deep Ensemble. Architecture variability within the ensemble
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members is necessary to accurately capture the emulator uncertainty (Lakshminarayanan et al., 2017). We use Python libraries
PyTorch (Paszke et al., 2019) and nflows (Durkan et al., 2020) to implement ISEFlow. For more information on the ISEFlow
architecture for both the AIS and GrIS, see Appendix B1. ISEFlow training was performed using a NVIDIA QuadroRTX GPU

with 256 GB RAM. Training and inference times were determined by logging wall times before and after model runs.
2.3 Comparison with previous emulators

We compare ISEFlow with the two ice sheet emulation tools used heavily in the [IPCC AR6: LARMIP and Emulandice. We run
the LARMIP linear response functions using ISMIP6 AIS global surface air temperature (GSAT) as inputs with the generated
ensemble of 20,000 basal melt forcing time series as specified in Levermann et al. (2020). LARMIP is a method used to
understand ocean-driven basal melting only and is not specifically an emulator, so it requires additional data from ISMIP6.
However, the IPCC AR6 compares LARMIP alongside the Emulandice emulator (Figure 9.18, IPCC AR6 (Fox-Kemper et al.,
2021)), so we follow that precedent here.

We implement a Gaussian Process-based emulator that closely follows the Emulandice architecture presented in Edwards
et al. (2021). We use a Gaussian Process with a power exponential kernel with an optimal alpha (power) parameter of 0.1
with an unbounded nugget kernel to model random variability induced by variables not present in the dataset. We fit the data
to a linear trend, and then train the zero-mean GP on the residuals of the linear function. Following Edwards et al. (2021),
Emulandice is trained on global surface air temperature, as well as a parameterization of glacier retreat for the GrlS and a
sub-shelf basal melt and an ice-collapse boolean flag for the AIS. We also emphasize that the Emulandice model included in
this study refers to the Emulandice architecture, rather than the exact Emulandice implementation presented in Edwards et al.
(2021), as our implementation uses the ISMIP6-processed input forcings to train the emulator rather than the FalR simple
climate model (Smith et al., 2018).

Outputs are aggregated into three regions for the AIS (East Antarctica, West Antarctica, Antarctic Peninsula as defined by
Shepherd et al. (2018)) and one region for the GrIS as was done in Edwards et al. (2021), rather than 18 regions for the AIS
and six regions for the GrIS as is done in ISMIP6 and ISEFlow. All training and testing procedures were carried out on a 256

GB compute node with training and inference times determined by logging wall times.
2.4 Scientific Insights from Emulators

A key contribution of this work is to provide a framework for extracting scientific insights from emulators. We apply SHapley
Additive exPlanations (SHAP) (Lundberg and Lee, 2017) to quantify the approximate contribution of various input features
and ISM characteristics to ISEFlow’s performance. SHAP is an approach that has been used extensively in the Earth Sciences
(Yang et al., 2024) and other scientific domains (Gholami et al., 2024). SHAP calculates the contribution of each input feature
to the ML model prediction by systematically considering predictions under all possible combinations of features and assigning
an average marginal contribution for each feature. When applied to ISEFlow, it quantifies the impact of each climate forcing
and ISM characteristic on the emulator’s output by estimating the difference in the predicted SLE anomaly when a feature is in-

cluded or excluded. Here, we use SHAP to capture an overall approximation of feature importance across all predictions rather
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than for any individual projection, helping us interpret the contribution of different climate forcings and ISM characteristics
within ISEFlow.

It is also important to note that while SHAP provides a detailed measure of each feature’s contribution within the con-
text of all inputs, it does not indicate how well the emulator would perform if certain inputs were used alone or in isolated
combinations. To capture the predictive capabilities of surface air temperature and surface mass balance in isolation, which are
commonly used forcings used in isolation for building climate emulators (Edwards et al., 2021; Fettweis et al., 2013; Aschwan-
den et al., 2019), we run the sensitivity tests reported in Section 3.2. We run SHAP on ISEFlow-AIS and ISEFlow-GrIS to
determine which input forcings and ISM characteristics are most influential on emulator accuracy. We quantify the contribution
of all variables, including aggregate forcings, or forcings that are calculated from other forcings (e.g., surface mass balance),
and the underlying forcings (e.g., precipitation, runoff, evaporation) to provide a comprehensive view of feature importance.
This captures the potentially complex, non-linear influences that individual forcings exert on model output which may be lost
if only the aggregate forcings are used (Coulon et al., 2024). This dual approach allows us to distinguish between the predic-
tive contributions of combined metrics and the complex interactions of individual variables, which are essential for accurately
assessing emulator behavior and performance.

To better understand how ISEFlow-AIS and ISEFlow-GrIS are able to capture sensitivity to carbon emission scenarios under
Representative Concentration Pathway (RCP) 2.6 and RCP 8.5, we train separate models with the same architectural design
as the ISEFlow models that classify the inputs into emission scenarios (i.e., the same inputs from ISEFlow are used but the
target of prediction becomes the emission scenario rather than sea level). Then, by using SHAP on the classifier model, we
are able to determine which input variables are most influential in distinguishing between scenarios (for information on the
training procedure and performance, see Appendix B2). These analyses are useful for understanding which inputs drive the
emulator’s ability to accurately predict sea level, but also provides insights for capturing the uncertainty associated with future
carbon emissions. The results are intended to provide guidance for improving the selection of input features and refining the
architecture for future emulators and future dynamical model simulations of ice sheet models. We note that this work validates
the emulator based on test data that was help out of the original ISMIP6 ensemble: we did not run additional dynamical model

simulations to verify ISEFlow predictions.

3 Results
3.1 Emulation Performance

Emulator results are evaluated based on individual projection accuracy, projection distribution similarity, ability to distinguish
between carbon emission scenarios, and training and inference time. As shown in Table 1 and consistent with previous results
(Van Katwyk et al., 2023), ISEFlow demonstrates superior performance compared to Emulandice and LARMIP. For both the
AIS and GrIS, ISEFlow achieves significantly lower Mean Squared Error (MSE) and Mean Absolute Error (MAE) values than

other emulators, indicating more accurate sea level projections. ISEFlow-AIS achieves an MSE of 1.20, compared to 3.03 for
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Table 1. Performance metrics for ISEFlow (v1.0), Emulandice (Edwards et al., 2021), and LARMIP (Levermann et al., 2020) for the Antarctic
Ice Sheet (AIS) and Greenland Ice Sheet (GrIS). Note that Emulandice refers to the Emulandice architecture trained with the same inputs as

ISEFlow, rather than the original published model, which used a different training dataset and climate forcings.

Ice Sheet Emulator MSE MAE KLD JSD Training Time (min)  Inference Time (sec)
AIS ISEFlow-AIS 1.20 0.53 0.05 0.009 81.9 0.58
Emulandice 3.03 1.10 10.83 0.289 23.6 3.17
LARMIP 4.23 1.17 1.21 0.116 20.3 7.22
GrIS ISEFlow-GrIS 1.02 0.56 0.01 0.001 63.1 0.39
Emulandice 10.14 1.97 0.17 0.047 114 2.25

* KLD and JSD are evaluated at projection year 2100.

Emulandice and 4.23 for LARMIP. Similar improvements are observed for the GrIS, where the MSE for ISEFlow-GrIS is 1.02,
significantly lower than Emulandice’s 10.14.

In addition to projection accuracy, we assess the emulator’s ability to capture the distribution of projections through Kullback-
Leibler (KL) (Kullback and Leibler, 1951) and Jensen-Shannon (JS) divergences (Lin, 1991), which measure the similarity
between the emulator’s projection distribution at the year 2100 and the distribution of the true ISMIP6 projections. The KL
divergence is asymmetric and sensitive to differences in the tails of distributions, while the JS divergence provides a symmetric
and smoother measure of distribution similarity. Using both ensures a more comprehensive evaluation of how well the emula-
tor captures the full range of the projection distribution. As seen in Table 1, ISEFlow consistently achieves lower KL and JS
divergence scores, demonstrating that ISEFlow is not only more accurate for individual projections but also better at capturing
the full distribution of sea level rise projections—a critical aspect of distinguishing sensitivity to emissions scenario.

Emulandice trains faster than ISEFlow, primarily because it emulates fewer regions, which results in less training data.
In contrast, ISEFlow maintains a finer spatial resolution by dividing the data into smaller regions to preserve more spatial
information, which increases the time required for training. However, inference time for ISEFlow is faster than for Emulandice,
making ISEFlow’s improved accuracy and spatial granularity more advantageous without sacrificing prediction efficiency.
Reuse of v1.0 (this version) of ISEFlow-AIS and ISEFlow-GrIS with the pretrained weights provided here will enjoy these

benefits without the additional training costs.
3.2 ISEFlow Sensitivity Testing

To verify that ISEFlow is learning the correct underlying physical relationships between input forcings, ice sheet model char-
acteristics, and sea level, we conduct several additional experiments focusing on identifying variables beyond those that were
included in Emulandice and LARMIP that enable the large accuracy improvements seen in Section 3.1 and the ability to
distinguish between emission scenarios. First, we evaluate the impact of including ISM characteristics as inputs, comparing

the performance of NN emulators trained with and without these characteristics (Table 2). The results show a substantial im-
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Table 2. Results of adding ISM characteristics as inputs to ISEFlow. For both the AIS and GrIS, performance drastically increases in both

projection accuracy and ensemble approximation.

Ice Sheet Emulator MSE MAE KLD JSD (2100) Time to train
AIS NN w/ Characteristics* 1.20 0.53 0.05 0.009 81.9 mins
NN w/o Characteristics 2.14 0.74 0.266 0.026 75.1 mins
GrlIS NN w/ Characteristics* 1.02 0.56 0.01 0.001 63.1 mins
NN w/o Characteristics 4.25 1.23 0.07 0.015 58.4 mins
*ISEFlow

provement in both the projection accuracy and the ensemble approximation when ISM characteristics are included, which is
expected given that the same forcing values can yield different SLE projections depending on the ISM used. Without ISM
characteristics, the emulator tends to predict the average behavior of the ISMIP6 ensemble under similar forcings rather than
capturing the unique responses of individual model configurations. For the AIS, the inclusion of ISM characteristics resulted
in a 43.9% reduction in MSE, improving from 2.14 to 1.20, and a larger reduction was observed for the GrIS, where the MSE
decreased from 4.25 to 1.02. Both KL and JS divergences show substantial reductions when ISM characteristics are included,
confirming that including characteristics not only improves projection accuracy but also better improves the ability to emulate
the distribution of possible sea levels.

We use SHAP to quantify individual ISM characteristics’ contribution to emulator performance for both the AIS and GrIS,
as shown in Figure 2, to determine which characteristics specifically are driving the increase in predictive accuracy. For the
AIS, the most impactful ISM characteristic is which basal melt parameterization is used, followed by initialization method
and model resolution, consistently to what was suggested in previous ISMIP6 analysis by Seroussi et al. (2023). Together,
these three characteristics contribute significantly to the accuracy of the AIS emulator, suggesting that basal melt processes and
initial conditions are important factors in determining future sea level projections. For the GrIS, the ice front retreat sensitivity to
ocean forcing (based on Goelzer et al. (2020); Slater et al. (2020)) is the most important characteristic, followed by initialization
method and the choice of a standard or open ocean forcing framework. Across both ice sheets, both the initialization method
and parameters related to ocean forcing rank highly, emphasizing the role that both initial conditions and sensitivity to oceanic
conditions play in projecting future sea level. Note that these rankings are specific to ISEFlow’s approximation of the ISMIP6
simulation suite, in other applications (e.g., paleoclimatic change or if higher-resolution ocean or atmospheric models are used
to formulate the forcing) the rankings are likely to differ.

Next, we assess the role that additional forcings play in improving projection accuracy and the emulator’s ability to dis-
tinguish between emission scenarios. Specifically, we compare the performance of emulators trained on all available forcings
against emulators trained only on surface air temperature (Temperature) along with parameters for glacier retreat, sub-shelf
basal melt, and ice shelf fracture, as described in Edwards et al. (2021). We also compare against emulators trained with SMB

instead of Temperature to determine whether SMB (which is a function of precipitation, evaporation, sublimation, melt, and
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SHAP Feature Importances of ISM Characteristics
A) Antarctic Ice Sheet B) Greenland Ice Sheet
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Figure 2. SHAP values representing the relative importance of different ISM characteristics for the Antarctic Ice Sheet (AIS, a) and Greenland

Ice Sheet (GrIS, b) on ISEFlow projections.

runoff, and is correlated with surface air temperature) offers more information for modeling SLE. Table 3 shows that across
both ice sheets, emulators that used all available forcings consistently produce more accurate projections and demonstrate a
greater capacity to distinguish between emission scenarios. It is conceivable that additional information (e.g., monthly or daily
temperature forcing instead of annual mean) would continue this trend, but it is outside of the scope of the ISMIP6 design and
thus inaccessible to the emulator, which is much more limited than a dynamical model in extrapolating to situations unlike its
training data.

The Kolmogorov-Smirnov (KS) D statistic (Massey Jr, 1951), which measures the maximum distance between two distri-
butions, is used to evaluate how well each emulator distinguishes between the sea level equivalent (SLE) distributions from
different emission scenarios. Unlike MSE, which assesses overall projection accuracy, a higher D statistic indicates a stronger
ability to differentiate between emission scenarios RCP2.6 and 8.5, reflecting the emulator’s capacity to capture distinct dis-
tributions for each scenario. Across both the AIS and GrIS, the NN emulator consistently outperforms the GP emulator in
projection accuracy. For the AIS, the NN trained on all forcings achieves the best accuracy, with an MSE of 2.14 and a D
statistic of 0.158. Even with only SMB, the NN maintains a similar ability to differentiate between scenarios (D statistic of
0.151) but with a slight decrease in accuracy compared to the all-variable emulator (MSE 2.18). In contrast, training the NN on
temperature alone results in weaker performance, with an MSE of 2.38 and a D statistic of 0.132, showing that the inclusion of
more input forcings is necessary to effectively capture scenario differences and create accurate projections. The GP emulators
are generally less accurate than ISEFlow in predictive accuracy, but the GP trained on all variables demonstrates a similar

ability to distinguish emission scenarios (D statistic of 0.153), although with lower projection accuracy (MSE 2.60).
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Table 3. Comparison of NN and GP emulators trained on input forcings only (no ISM characteristics), as well as categorical representations
of glacier retreat, sub-shelf basal melt, and ice shelf fracture as specified in Edwards et al. (2021). Results show that the NN architecture
consistently outperforms the Gaussian Process in both projection accuracy and scenario sensitivity for both the AIS and GrIS, and adding

more forcings improves performance further.

Ice Sheet Architecture Forcing Inputs MSE KS D Stat
AIS NN All* 2.14 0.158
Temperature 2.38 0.132
SMB 2.18 0.151
GP All 2.60 0.153
Temperature 3.03 0.148
SMB 2.88 0.126
GrIS NN All* 4.25 0.186
Temperature 4.51 0.165
SMB 441 0.171
GP All 7.02 0.201
Temperature 10.14 0.267
SMB 7.56 0.251

*No model characteristics included in inputs

For the GrlIS, the trend in predictive accuracy is similar to the AIS case, with the NN trained on all forcings achieving the
best results, posting an MSE of 4.25 and a D statistic of 0.186. The GP emulator, while less accurate across all forcings,
excels at distinguishing between emission scenarios for the GrIS. The GP trained on temperature forcings (equivalent to
Emulandice) achieves a significantly higher D statistic of 0.267, demonstrating the greatest ability to separate the emission
scenarios, despite having lower accuracy (MSE 10.14). These results reflect the findings in the IPCC AR6, where Emulandice
effectively distinguished between emission scenarios for the GrIS but not for the AIS (Fox-Kemper et al., 2021). These findings
show that NN-based emulators provide enhanced predictive accuracy and are capable of distinguishing between emission
scenarios for both ice sheets. Additionally, they highlight that training ice sheet emulators using temperature alone, while
helpful for distinguishing scenarios in some cases or when additional forcings are unavailable, is insufficient for producing
accurate future sea level projections.

Figure 3 shows the SHAP values for each of the input features in ISEFlow, separated into the following groups: spatiotem-
poral information, climate forcings, and ISM characteristics. For the AIS, spatiotemporal information (sector of the AIS and
projection year) was the most impactful, followed by the climate forcings surface mass balance, ocean salinity, and ocean
thermal forcing. Similarly, for the GrIS, year and surface mass balance were the top contributors. Across both ice sheets,

spatiotemporal information was the feature group with the largest average contribution to model performance. Of the three
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SHAP Input Feature Importances

A) Antarctic Ice Sheet B) Greenland Ice Sheet
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Figure 3. SHAP values for ISEFlow input variables for both the AIS (a) and GrIS (b). Bar color indicates the feature group, consisting of

spatiotemporal features, climate forcings, and ISM characteristics.

feature groups, ISM characteristics were the least impactful on emulator projections, but still contribute enough information to

increase emulator accuracy significantly (Table 2).
3.3 Scenario Sensitivity

A significant advancement of the ISEFlow emulator is its ability to effectively distinguish between different emission scenarios
for both the AIS and GrIS. Figure 4 shows that, unlike Emulandice, which had difficulty differentiating between scenarios for
the AIS in the IPCC ARG, ISEFlow captures the variations in sea level projections across emission scenarios more accurately,
providing a clearer understanding of potential future outcomes. The KS test results (Table 4) further confirm this, demonstrating
that ISEFlow has a strong ability to distinguish between RCP 2.6 and RCP 8.5 scenarios, particularly for the AIS, where the
NN emulator outperforms the GP and Emulandice in both scenario separation and projection accuracy. However, for the GrIS,
the GP emulator trained on temperature forcings excels in distinguishing between emission scenarios, achieving the highest
KS D statistic, although at the cost of lower predictive accuracy. This is likely caused by Emulandice’s inability to emulate the

ensemble spread (Table 1 KLD & JSD), which results in a substantial divide between the distributions of RCP 2.6 projections
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Figure 4. Plot based on IPCC Figures 9.17 and 9.18 (Fox-Kemper et al., 2021) showing the projections of the AIS (a) and GrIS (b) along

with ISMIP6, ISEFlow, Emulandice, and LARMIP median predictions at the year 2100 grouped by emissions scenario. ISEFlow accurately

approximates the spread of each scenario distribution and identifies the difference in median SLE projections between emission scenarios.

Emulandice is unable to distinguish between emission scenarios for the AIS and fails to approximate the ensemble spread. LARMIP, due to

the use of linear response functions, skews to negative SLE anomalies and does not account for any plausibility of projections with positive

SLE anomalies, which leads to an inaccurate approximation of both the median emission scenario differences and the spread of emission

scenario projections.

and RCP 8.5 (Figure 4). Note that a reason for Emulandice’s strong distinction between scenarios is its underestimation of the
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Table 4. Comparison of the ability of ISEFlow, Emulandice, and LARMIP to distinguish between emission scenarios for the Antarctic Ice
Sheet (AIS) and Greenland Ice Sheet (GrIS) using the KS D statistic. A Kolmogorov-Smirnov (KS) test was conducted between predicted
distributions of RCP 2.6 and RCP 8.5 emission scenario projections. The MSE (Ensemble) and MSE (mean) represent the error of approxi-

mating the entire ISMIP ensemble, and the mean of the ISMIP ensemble respectively.

Ice Sheet Emulator MSE (Ensemble) MSE (mean) KS D Stat

AIS ISEFlow 1.20 0.001 0.16
Emulandice 3.03 0.026 0.12
LARMIP-2 423 0.683 0.31

GrIS ISEFlow 1.23 0.007 0.15
Emulandice 10.14 0.060 0.26

spread of the ISMIP6 ensemble which separates the distributions of GrIS outcomes excessively. These findings are consistent
with the IPCC ARG results, where Emulandice was able to distinguish GrIS scenarios more effectively than AIS scenarios.
LARMIP, as a linear response model with a constant SMB, distinguishes between emission scenarios by applying response
functions that link basal melt rates to ice mass loss. However, these linear assumptions introduce limitations by neglecting
key nonlinear self-dampening and amplifying processes (Levermann et al., 2020), which can lead to substantial inaccuracies.
While LARMIP achieves some differentiation across scenarios, its inability to capture nonlinear ice sheet responses results in
notable projection errors, reducing its reliability as an emulator. However, LARMIP’s computational efficiency and ability to
isolate ocean dynamics make it valuable for quickly assessing a wide range of potential outcomes, particularly in preliminary
assessments where the primary goal is to estimate the uncertainty range associated with ocean-driven basal melting.

To identify the drivers of ISEFlow’s ability to distinguish between emission scenarios, we run SHAP on the classification
model mentioned in Section 2.4 (Figure 5). Surface air temperature is the primary driver in distinguishing scenarios for both
the AIS and GrIS. However, the classifier also highlighted that the inclusion of additional variables significantly enhances the
model’s ability to differentiate between scenarios. The values shown in Figure 5 represent the average absolute SHAP values
for each feature, which reflect the average impact of each feature on the model’s output in distinguishing emission scenarios.
These SHAP values do not sum to 1 or any specific target, as they are not proportions or probabilities but rather independent
measures of feature importance and should be interpreted as relative magnitudes compared to the other features. For the AIS,
the average SHAP value of all other features combined is 0.434, while the average contribution from surface air temperature is
0.214. Likewise, for the GrIS, the combined impact of other features (0.153) was nearly equal to that of surface air temperature
(0.182). This finding illustrates that integrating a broader set of climate forcings is essential to improve the model’s sensitivity

to different emission scenarios.
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Emissions Scenario Classifier Feature Importances (AlS)
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Figure 5. SHAP values showing the importance of various features in distinguishing between carbon emission scenarios for the AIS (top)
and GrIS (bottom). Surface air temperature is the most influential forcing for both ice sheets. However, for the AIS, the combined importance
of the remaining forcings is more than twice that of temperature alone, while for the GrIS, the remaining forcings contribute an equal amount

to model prediction as temperature along.

355 3.4 Uncertainty Quantification Comparison of Emulators

To directly compare the quantified uncertainty between ISEFlow and Emulandice, we trained a separate model (Regional ISE-
Flow) with the same architecture as ISEFlow using the same dataset and input variables as Emulandice, including aggregated
regional data and limiting forcings to surface air temperature, glacier retreat, sub-shelf basal melt, and ice shelf fracture (Table
5). This approach ensures a fair comparison between the models in terms of their ability to quantify uncertainty. To evaluate
360 the uncertainty estimates of each emulator, we use several metrics that assess both accuracy and sharpness, ensuring that the
uncertainty predictions are reliable and precise. We primarily compare the regional ISEFlow emulator with the Emulandice to
compare the emulator architecture’s ability to produce accurate uncertainty, but add metrics for the proposed ISEFlow models

to show the usefulness of using more forcings that are higher resolution.
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Table 5. Comparison of emulator uncertainty quantification performance. A separate ISEFlow emulator was trained on the same data as Em-
ulandice (regional projections instead of sector projections, surface temperature forcings, etc.) to provide a fair comparison to the Emulandice
emulator. Metrics include the Continuous Ranked Probability Score (CRPS), Prediction Interval Coverage Probability (PICP), Mean Predic-
tion Interval Width (MPIW), and the Winkler Score. Between the regional ISEFlow emulator and Emulandice, ISEFlow is more accurate
(higher PICP), but has wider intervals (higher MPIW). The Winkler score indicates that the regional ISEFlow models do better at balancing
the width and accuracy of intervals. The full ISEFlow emulators, ISEFlow-AIS and ISEFlow-GrIS are consistently most accurate (lowest
PICP) and approximate the probability distributions best (highest CRPS), showcasing the benefit of including additional higher-resolution

forcings and ISM characteristics.

Ice Sheet Emulator PICP MPIW CRPS Winkler

AIS Regional ISEFlow 0.826 4.168 0.463 10.777
Emulandice 0.918 2.274 0.371 21.561
ISEFlow-AIS* 0.986 4.535 0.235 4.768

GrlIS Regional ISEFlow 0.858 6.647 0.725 16.273
Emulandice 0.541 2.820 0.668 28.817
ISEFlow-GrIS* 0.969 3.786 0.263 4.339

* Trained on all available forcings and ISM characteristics.

Prediction Interval Coverage Probability (PICP) (Khosravi et al., 2011) measures how often the true values fall within
the predicted intervals, offering insight into the model’s reliability. A higher PICP indicates better coverage, but it must be
considered alongside Mean Prediction Interval Width (MPIW) (Pearce et al., 2018), which quantifies the sharpness of the
intervals. While a higher PICP is desirable, excessively wide intervals (higher MPIW) may reflect underconfidence, suggesting
the model is being too conservative with its uncertainty estimates. Similarly, excessively low MPIW may reflect overconfidence.
MPIW helps balance coverage (PICP) with precision by ensuring intervals are precise. A Continuous Ranked Probability Score
(CRPS) (Gneiting and Raftery, 2007) is used to assess the accuracy of probabilistic predictions. It measures the difference
between predicted cumulative distributions and actual outcomes, with lower values indicating better probabilistic performance.
Finally, the Winkler Score (Winkler, 1972) combines coverage and sharpness into a single metric, penalizing both overly wide
intervals and intervals that do not encompass the true values, providing a comprehensive view of the quality of quantified
uncertainty.

When comparing the Regional ISEFlow and Emulandice (Table 5), Regional ISEFlow performs better on PICP, indicating
more reliable coverage of the true outcomes. However, Emulandice achieves narrower intervals (lower MPIW), but at the
expense of significantly worse PICP. This suggests that Emulandice tends to underestimate uncertainty, leading to intervals
that fail to capture the true values consistently. The CRPS values are very close between the two models, but Regional ISEFlow

still slightly outperforms Emulandice.
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When comparing the ISEFlow-AIS and ISEFlow-GrIS to both Regional ISEFlow and Emulandice, ISEFlow-AIS and -
GrIS show significant improvements across nearly all metrics. It achieves the lowest CRPS and Winkler scores, indicating
more accurate and sharper uncertainty quantification. It also attains higher coverage (PICP), balancing reliability and interval
sharpness. While the MPIW for the full ISEFlow emulators is slightly higher than Emulandice, the trade-off is well justified
by the substantial gains in coverage and overall accuracy, as reflected by the Winkler Score. These results demonstrate the
superior uncertainty quantification abilities when using a wider range of input forcings at a higher resolution and including

ISM characteristics in making predictions.

4 Discussion

This study proposes ISEFlow as an accurate and efficient ice sheet emulator, based on prediction accuracy and quality of
quantified uncertainty. ISEFlow extends the work of Van Katwyk et al. (2023) and significantly improves sea level projection
accuracy and uncertainty quantification compared to the widely used emulators (Edwards et al., 2021). For both the Antarctic
Ice Sheet (AIS) and Greenland Ice Sheet (GrIS), ISEFlow achieved lower Mean Squared Error (MSE), indicating greater
predictive accuracy. Our results show that this increase in accuracy stems from both the inclusion of ISM characteristics as
input features, as well as the incorporation of all available ISMIP6 climate forcings.

A primary goal of this study is to determine the ability of ISEFlow to capture the correct underlying processes, and whether
the emulator’s learned approximation of ice sheet dynamics is rooted in physical principles. The SHAP analysis offers a
window into ISEFlow’s internal workings, showing which features have the greatest influence on sea level projections from
2015 to 2100 following the ISMIP6 protocol. This not only allows us to see how ISEFlow is learning, but also enables us to
see which variables or which ISM characteristics have the greatest effect on sea level projections.

From the feature importance analysis (SHAP), it is evident that ISEFlow is learning relationships that align with domain
knowledge of ice sheet dynamics. For both the AIS and GrIS, surface mass balance and ocean thermal forcing are among the
top contributors, which is consistent with the understanding that these are primary drivers of ice sheet changes. We also see
the importance of including forcings that are used to calculate SMB and thermal forcing, as doing so enables the emulator to
learn how components of SMB and ocean thermal forcing change over time (Coulon et al., 2024). Interestingly, we also find
that spatial information plays a more significant role for the AIS, reflecting the greater spatial variability of ice sheet processes
there. In contrast, the GrIS exhibits more spatially homogeneous ice sheet behavior, which is captured by the comparatively
lower importance of spatial information.

For AIS, basal melt parameterizations, particularly the sensitivity of basal melt to ocean forcing, emerge as important model
characteristics, supporting the notion that processes at the ice-ocean interface dominate AIS dynamics. These findings are
consistent with results presented in Seroussi et al. (2023), which focused on isolating uncertainty sources with constant SMB.
Similarly, for the GrIS, SMB-related inputs like runoff and precipitation are dominant, in line with the importance of surface-

driven changes in this region.
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ISEFlow has the potential to significantly enhance the ISMIP6 projection suite by supplementing experiments that could
not be executed within the limited timeline available for the IPCC assessment cycles. For instance, ISMIP6 primarily provided
projections for only two Representative Concentration Pathways (RCP2.6 and RCP8.5), limiting the resolution of future so-
cioeconomic scenarios. ISEFlow could be employed to emulate sea level projections for intermediate Shared Socioeconomic
Pathways (SSPs), which were not included in ISMIP6. This would provide a more detailed understanding of the ice sheet
response across the full spectrum of potential emission scenarios. Additionally, ISEFlow could serve to explore other experi-
ments that were lower priority (e.g., Tier 2 & 3 in Nowicki et al. (2020)), which could provide further insights into ice sheet
dynamics. By filling these gaps, ISEFlow not only augments the comprehensiveness of sea level projections but also ensures
that policymakers have access to a broader, more robust set of scenarios to inform climate action.

This analysis also highlights areas where improvements in ice sheet modeling could enhance emulator projection accuracy.
For the AIS, the results underscore the critical role of basal melt processes and the need for high-fidelity parameterizations
of ice-ocean interactions. The importance of model initialization methods suggests that more consistent or detailed initial
conditions could reduce model variability and improve emulator training. This has implications for ISMIP7, where careful
consideration of initialization practices could enhance the reliability of emulators like ISEFlow. We also highlight that as we
have access to more projections with each model characteristic or a more even sampling of modeling choices across the exper-
imental protocol, the ISEFlow emulator will better approximate the effect that each one has on sea level projections. Likewise,
as modeling groups conduct additional simulations exploring a wider range of model configurations beyond prescribed projec-
tions, emulators like ISEFlow will benefit from a broader data space, further improving their ability to capture the diversity of
ice sheet responses and enhancing the robustness of future projections.

These enhanced capabilities enable ISEFlow to serve multiple purposes in the CMIP7/AR7 cycle. As FalR-Emulandice
was used in AR6 to impute SSPs not simulated in ISMIP6, ISEFlow offers an alternative which can be used for a multi-
emulator assessment. ISEFlow also has other capabilities of use. It has learned to predict behavior based on dynamical model
characteristics, which makes it valuable as a tool in designing ISMIP7 configurations. It also should prove useful in evaluating
CMIP7 forcing products for inclusion into the ISMIP7 ensemble (during CMIP6 this process was based on expert opinion and
CMIP6 input variable-to-observation comparison, not based on any ice sheet model output). As ice sheet models are run after
the CMIP ensemble is mostly complete, it is always a rush to deliver meaningful ice sheet model data in time for the IPCC
assessment report. ISEFlow makes it possible to emulate what the ISMIP6 configurations of all of the dynamical ice sheet
models would have predicted when given any CMIP7 climate model forcing data, and thus it can speed the ice sheet model
ensemble simulation process.

The findings of this study underscore the importance of incorporating a diverse set of input forcings and model characteris-
tics into ice sheet emulators, challenging the assumption that temperature alone is sufficient for accurately capturing ice sheet
responses. The improved performance of ISEFlow suggests that future emulators should integrate a wider range of physical
variables to enhance predictive accuracy and scenario sensitivity. This insight extends beyond ice sheets to other components
of the Earth system where emulators are increasingly used, such as glaciers (Jouvet and Cordonnier, 2023), weather (Li et al.,

2024), and ocean circulation models (Guo et al., 2024). In these domains, relying on a single dominant forcing variable may
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overlook critical interactions and feedback mechanisms, leading to reduced reliability in long-term projections. Furthermore,
the demonstrated success of combining normalizing flows with deep ensembles for uncertainty quantification provides a scal-
able framework for other climate emulation tasks, enabling better separation of model and data-driven uncertainties. As ma-
chine learning-based emulators continue to evolve, these results highlight the necessity of balancing computational efficiency
with physical interpretability to ensure that emulators remain robust and scientifically credible tools for scientific modeling.
Although ISEFlow demonstrates significant advances in emulator accuracy and uncertainty quantification, there are several
limitations to this study that present opportunities for future improvement. First, the training data used to develop ISEFlow
is based solely on ISMIP6 simulations, which, while extensive, represent a limited subset of possible climate forcings and
ice sheet model configurations. This restricts the emulator’s ability to generalize beyond the specific experimental conditions
provided by ISMIP6, potentially limiting its applicability to future or more extreme climate scenarios. The current dataset
does not include enough simulations with varying ISM characteristics to fully disentangle their effects on model outputs. For
example, bedrock topography and stress balance are known to be important factors in accurate dynamical ice sheet modeling,
but these characteristics do not vary often or substantially within the ISMIP6 ensemble data used to train ISEFlow.
Additionally, while we argue that the physics underlying the ice sheet behavior is embedded in the data, as ISMIP6 is com-
posed of physics-based models, ISEFlow itself does not explicitly encode physical constraints. This data-driven approach,
while effective for emulation, may fail to capture phenomena outside the range of training data or enforce physical laws not
well-represented in the data. Furthermore, ML-based models like ISEFlow are inherently challenging to interpret, making it
difficult to fully understand how predictions are generated. While we employ SHAP as a tool to investigate the model’s behav-
ior and identify important features, SHAP provides an approximation of feature importance rather than causal relationships.
Finally, although ISEFlow quantifies emulator and data coverage uncertainties, it does not address other significant sources
of uncertainty, such as those arising from structural errors in the ice sheet models, external forcing uncertainties, or potential
feedbacks between processes not captured by the dataset. Addressing these limitations in future work, such as by expanding
the scope of simulations, incorporating additional sources of uncertainty, or integrating physics-informed constraints, will be

crucial for improving the robustness and applicability of ISEFlow in sea level rise projections.

5 Conclusions

This study presents ISEFlow, a NN-based ice sheet emulator, and demonstrates its ability to produce accurate projections of
future sea levels. We compare ISEFlow to state-of-the-art emulators and show that ISEFlow creates more accurate projections,
is faster to run, and is able to capture climate sensitivity to carbon emission scenarios. The use of SHAP analysis provides a
clear understanding of the key drivers of ISEFlow’s predictions, revealing which input features and ISM characteristics most
influence the accuracy of sea level projections. This not only strengthens confidence in ISEFlow’s predictions but also offers
valuable insights into ice sheet model characteristics and their impact on sea level projections. Another significant contributions
of this study is demonstrating how the emulator can efficiently capture complex ice sheet dynamics while maintaining the ability

to quantify and separate sources of uncertainty. ISEFlow’s ability to quantify both data coverage and emulator uncertainty
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separately ensures that areas of sparse data are properly accounted for, reducing the risk of overconfidence in projections
where data is limited. This hybrid uncertainty quantification provides a more detailed estimate of future sea level changes,
making ISEFlow a powerful tool for scientific research.

There are important opportunities for future work that could further enhance the applicability and impact of ISEFlow. In
the IPCC AR6, Emulandice relied on temperature forcings from the Finite amplitude Impulse Response (FalR) simple climate
model (Smith et al., 2018) because it represents a wider distribution of possible forcing distributions based on more CMIP
models than the six used in ISMIP6. In this study, however, we use the same set of forcings from the six CMIP models
used in ISMIP6 to build each emulator, which enabled a direct comparison between ISEFlow, Emulandice, and LARMIP.
Future work should extend ISEFlow by applying it to a larger selection of CMIP forcings beyond those included in ISMIP,
which could provide a more comprehensive range of projections and ensure that ISEFlow remains adaptable to future climate
scenarios. By applying ISEFlow to a broader set of forcings, we may uncover new insights into the potential differences
between emission scenarios that were previously underrepresented. Future work could also include the further analysis of the
quantified uncertainty from the emulator. Detailed experimentation could be carried out to understand where the emulated
uncertainty originates and what forcings contribute most to quantified uncertainty.

ISEFlow is also able to contribute to future ice sheet projections, including those generated for ISMIP7, which will include
different experiments, different models, and offer a new set of sea level projections to the year 2300. As shown in ISMIP6
Antarctica projections to 2300 (Seroussi et al., 2024), these longer time horizons offer an opportunity to explore how the ice
sheet will respond to various climate scenarios over extended periods. Retraining the model on this updated dataset will enable
us to evaluate how ice sheet dynamics and sensitivities evolve beyond 2100, as widespread retreat and collapse of some West
Antarctic basins are simulated with 30-40% of the ISMIP6 ensemble by 2300. This future work will not only broaden the scope

of ISEFlow’s applications but also reinforce its value as a key tool for understanding ice sheet dynamics.

Code and data availability. The processed datasets and code needed to reproduce the ISMIP6 data processing, model training, evaluation,
and results for both ISEFlow-AIS and ISEFlow-GRIS are archived in a Zenodo repository found at https://doi.org/10.5281/zenodo.14908114
(Van Katwyk et al., 2025). The original ISMIP6 datasets, from which ISEFlow training data was processed, can be found at the following:
https://doi.org/10.5281/zenodo.11176009 (Forcings), https://doi.org/10.5281/zenodo.11176023 (GrIS outputs), and
https://doi.org/10.5281/zenodo.11176027 (AIS outputs).
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Figure A1. Map of Antarctic Ice Sheet sectors as used in ISMIP6 AIS (Seroussi et al., 2020).

Figure A2. Map of Greenland Ice Sheet sectors as used in ISMIP6 GrIS (Goelzer et al., 2020)

Appendix A: Data
Al Ice Sheet Sector Maps

725 Climate forcings and outputted SLE from ISMIP6 are aggregated into distinct sectors on each the Antarctic and Greenland ice

sheets. These sectors are based on those used in ISMIP6 (Nowicki et al., 2016), and are seen in Figures Al and A2.
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Table A1. Ice Sheet Model Characteristics for AIS, per Table 3 of (Seroussi et al., 2020).

Characteristic

Description

Possible Values

Numerics
Stress Balance
Resolution

Initialization

Initial Year

Melt in Partially Floating Cells

Ice Front Migration Model

Open Melt Parameterization

Standard Melt Parameterization

Ocean Forcing

Ocean Sensitivity

Ice Shelf Fracture

Numerical solving method
Stress balance method
Model resolution in kilometers

Initialization method

Initialization starting year
Melt model for partially float-

ing cells

Ice front migration scheme

Basal melt rate in an open

framework

Basal melt in standard frame-

work

Framework for oceanic forcing

Sensitivity of basal melt to

ocean forcing

Inclusion of ice shelf fracturing

Finite difference (FD), finite elements (FE), finite volumes (FV)
Includes Hybrid, HO, L1L2, Stokes, SIA+SSA

Ice sheet model resolution in kilometers

Spin-up (SP), spin-up with ice thickness target values (SP+), data
assimilation (DA), data assimilation with relaxation (DA+), data
assimilation of ice geometry only (DA*), and equilibrium state (Eq)
Year when initialization starts, varies by model (e.g., 1990, 2000)
Melt either applied or not applied over the entire cell based on
floating condition (floating condition) and melt applied based on
a sub-grid scheme (sub-grid) with N/A referring to models without
partially floating cells

Strain rate (StR), retreat only (RO), fixed front (fix), minimum
thickness height (MH) and divergence and accumulated damage
(Div)

Linear function of thermal forcing (lin), quadratic local function
of thermal forcing (quad), PICO parameterization (PICO), PICOP
parameterization (PICOP), plume model (Plume), and nonlocal
parameterization with slope dependence of the melt (nonlocal +
Slope)

Local or nonlocal quadratic function of thermal forcing, and lo-
cal or nonlocal anomalies (Local, Nonlocal, Local anom, Nonlocal
anom)

Open framework (open) where modelers choose their own inter-
pretation, or a standard framework (standard) with a fixed set of
equations

Includes High, Medium, Low, and Pine Island Glacier-Larsen
(PIGL)

True or False

A2 Ice Sheet Model Characteristics
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Table A2. Ice Sheet Model Characteristics for GrIS, per Table A1l of (Goelzer et al., 2020).

Characteristic Description Possible Values

Numerics Numerical solving method Finite difference (FD), finite elements (FE), finite volumes with adap-
tive mesh refinement (FV)

Ice Flow Ice flow model Includes shallow-ice approximation (SIA), shallow shelf approxima-
tion (SSA), higher order (HO), and a combination of SIA and SSA
(HYB)

Initialization Initialization method Includes data assimilation of velocity (DAv), data assimilation of sur-

Initial Year

Initial SMB

Velocity

Bed

Surface/Thickness

Geothermal Heat Flux

Res. Min
Res. Max

Initialization starting year

Initial surface mass balance model

Velocity data used to initialize the
model

Bed topography data used to initalize
the model

Surface elevation and thickness data
Geothermal heat flux model

Model resolution minimum

Model resolution maximum

face elevation (DAs), data assimilation of ice thickness (DAi), spin-
up (SP), transient glacial cycles (CYC), nudging to ice mask (NDm),
and nudging to surface elevation (NDs)

Year when initialization starts, varies by model (e.g., 1990, 2000)
RACMO2.1 (RA1), RACMO2.3 (RA3), HIRHAMS (HIR), MAR
(MAR), BOX reconstruction (BOX), ISMB (implied SMB)

Includes Rignot and Mouginot (RM), Joughin et al. (J)

Includes Morlighem et al. (M), Bamber et al. (G)

Includes Morlighem et al. (M), Bamber et al. (G)
Shapiro and Ritzwoller (SR), Greve (GR), and MIX for mixed models
Minimum resolution, e.g., 4 km, 8 km

Maximum resolution, e.g., 16 km, 32 km
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LSTM Layers LSTM Hidden Units Criterion

1 128 HuberLoss
1 512 HuberLoss
1 512 HuberLoss
2 128 HuberLoss
1 256 L1Loss

1 512 MSELoss
2 128 MSELoss
2 512 MSELoss
1 256 L1Loss

1 64 HuberLoss

Table B2. ISEFlow-GrlIS Deep Ensemble Model Architecture.
LSTM Layers LSTM Hidden Units Criterion

2 128 HuberLoss
2 256 MSELoss
2 128 HuberLoss
2 128 MSELoss
2 256 HuberLoss
1 256 L1Loss

1 128 HuberLoss
2 64 MSELoss
2 256 HuberLoss
1 256 L1Loss

Appendix B: ISEFlow

B1 ISEFlow Architecture

730 Tables B1 and B2 detail the architecture for the Deep Ensemble for ISEFlow-AIS and ISEFlow-GrIS.
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B2 Emission Scenario Predictors

The emission scenario predictors were designed to classify climate forcings and ice sheet model characteristics into their
respective emission scenarios (RCP2.6 or RCP8.5). These models were trained using the same input data as ISEFlow, enabling
a direct evaluation of the features contributing to scenario distinction. The training workflow was implemented in PyTorch,
with the model architecture being similar to a predictor model within ISEFlow.

The model architecture consisted of an input layer with dimension equal to the number of input features, including climate
forcings (e.g., surface air temperature, SMB components, ocean salinity, and thermal forcing) and ISM characteristics (e.g.,
basal melt parameterization and initialization method). The architecture followed the ISEFlow architecture, but with a change
to the output layer, which was a single neuron with a sigmoid activation function for binary classification between RCP2.6 and
RCP8.5.

The training strategy employed the Binary Cross-Entropy Loss (BCELoss) as the loss function and the Adam optimizer with
a learning rate of 1 x 1073, A batch size of 32 was used, and the model was trained for 100 epochs with early stopping based
on validation loss. A cosine annealing learning rate schedule was applied to improve convergence. The model with the lowest

validation loss was saved as the final checkpoint. All training was performed on an NVIDIA QuadroRTX GPU.
Performance Metrics

The performance of the scenario classifiers for the AIS and GrIS is summarized in Table B3. Both models achieved high ac-
curacy and effectively distinguished between RCP2.6 and RCP8.5. The results indicate strong classification performance, with
slightly higher accuracy for the GrlS, reflecting the clearer distinction in forcings between RCP scenarios for the Greenland

region.

Table B3. Emission scenario predictor performance metrics for the AIS and GrIS.

Ice Sheet Accuracy Precision Recall F1-Score Validation Loss

AIS 77.80% 0.90 0.62 0.73 0.46
GrlS 87.92% 0.94 0.82 0.88 0.27
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