https://doi.org/10.5194/egusphere-2025-4910
Preprint. Discussion started: 13 November 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

1 Improving Simulation of Earth System Variability through Weakly

2 Coupled Ocean Data Assimilation in E3SM

3

4 Pengfei Shil”", L. Ruby Leung!*, Zhaoxia Pu?, Samson Hagos', and Karthik Balaguru'

5

6 ! Atmospheric, Climate, and Earth Sciences Division, Pacific Northwest National Laboratory,

7  Richland, Washington, USA

8 2 Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah, USA

10 " To whom correspondence may be addressed. Pengfei Shi (pengfei.shi@pnnl.gov) and L.
11 Ruby Leung (Ruby.Leung@pnnl.gov)



https://doi.org/10.5194/egusphere-2025-4910
Preprint. Discussion started: 13 November 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

12 Abstract. Accurate initialization of ocean states is essential for skillful prediction of Earth
13 system variability across seasonal to decadal timescales. In this study, we evaluate the impact
14 ofanewly developed four-dimensional ensemble variational (4DEnVar)-based weakly coupled
15  ocean data assimilation (WCODA) system within the DOE Energy Exascale Earth System
16  Model version 2 (E3SMv2) on global and regional climate variability. By assimilating monthly
17  ocean temperature and salinity from the EN4.2.1 reanalysis into the fully coupled model, we
18  demonstrate substantial improvements in simulating both interannual and decadal climate
19 variability. Compared to the free-running coupled simulation, the assimilation experiment
20  exhibits markedly enhanced interannual correlations with observations for global mean surface
21  air temperature and precipitation anomalies. The representation of key climate modes,
22 including ENSO, the Indian Ocean Dipole, and multidecadal variability in the Pacific and
23 Atlantic Oceans, also improves significantly. Regional evaluation over the contiguous United
24  States further shows enhanced skill in simulating winter surface air temperature and
25  precipitation variability, particularly in the northern and southern regions, respectively, linked
26 to improved ENSO representation. These findings underscore the critical role of coupled
27  forecasts in the data assimilation cycle for propagating observational information across Earth
28  system components. By integrating ocean observations within a coupled framework, the
29  WCODA system enables cross-component information exchange among the ocean,
30 atmosphere, and land, thereby generating physically consistent initial states. These
31  improvements contribute to more accurate simulations of Earth system variability across
32 multiple timescales and advance the development of more reliable prediction systems in

33 support of societal resilience.
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34 1. Introduction

35 Accurately representing climate variability across multiple timescales remains a major
36  challenge in climate modeling and prediction. The initial conditions (ICs) of the climate system,
37  including the ocean, atmosphere, and land surface, play a crucial role in determining the
38  accuracy and reliability of climate predictions (Boer et al., 2016; Taylor et al., 2012). Among
39  these components, the ocean exhibits the longest memory and exerts a dominant influence on
40  climate variability through its interactions with the atmosphere and other components (Wang,
41  2019). Therefore, improving the initialization of ocean states has been widely recognized as a
42 key approach for enhancing the skill of seasonal to decadal climate predictions (Meehl et al.,
43 2021; Zhu et al., 2017).

44 Data assimilation (DA) methods have been developed to integrate observational data into
45  coupled models, thereby improving the ICs and enhancing predictive skill. Traditionally, ocean
46 DA has been conducted in an uncoupled framework, where ocean observations are assimilated
47  into a standalone ocean model forced by prescribed atmospheric forcings (Carton and Giese,
48  2008). The resulting ocean analyses are then combined with the optimal analyses from other
49  uncoupled components (e.g., atmosphere and land) to generate the ICs for coupled models.
50  However, because each component is initialized independently, this uncoupled approach often
51 leads to inconsistencies and imbalances among the different components, potentially
52 introducing initial shocks that degrade coupled model forecasts (Mulholland et al., 2015; Zhang,
53 2011). To address these limitations, recent studies have increasingly employed coupled data
54  assimilation (CDA) (Wu et al., 2018; Zhang et al., 2012).

55 CDA has emerged as an advanced framework for performing ocean DA directly within the
56  coupled model. CDA methods are generally categorized into weakly coupled data assimilation
57  (WCDA) and strongly coupled data assimilation (SCDA). In WCDA, ocean observations are
58  assimilated separately into the ocean component during the analysis step, but the coupled
59  model is utilized in the forecast step to transfer ocean observational information to other
60  components through multi-component interactions (Browne et al., 2019). The key difference
61  between WCDA and uncoupled DA lies in whether a coupled model is employed to generate

62  the background forecast: WCDA uses a coupled model during the forecast step but assimilates
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63  observations independently within each component, whereas uncoupled DA employs separate
64  component models throughout the entire assimilation cycle (Shi et al., 2024a; Zhang et al.,
65  2020). Unlike uncoupled DA, CDA can produce more balanced and self-consistent ICs and
66  thus enhance forecast skill (Feng et al., 2018; Shi et al., 2022). However, WCDA does not
67  account for cross-component background error covariances during the analysis step, limiting
68 its ability to explicitly correct coupled state errors (Tang et al., 2021). In contrast, SCDA
69  incorporates cross-component background error covariances during the analysis step, enabling
70  observations in one component to instantaneously update the state variables of other
71 components (Penny et al., 2019; Lin and Pu, 2020). By treating the coupled system as an
72 integrated whole, SCDA offers the potential for more pronounced assimilation improvements
73  over WCDA (Han et al., 2013; Sluka et al., 2016; Lin and Pu, 2019). However, the practical
74  implementation of SCDA faces considerable challenges owing to the difficulty of estimating
75  cross-component error statistics, and consequently, WCDA remains more widely adopted in
76  current systems (Zhou et al., 2024).

77 The Energy Exascale Earth System Model (E3SM) is a state-of-the-art Earth system model
78  developed by the U.S. Department of Energy to advance the understanding of Earth system
79  variability and change (Leung et al., 2020). Recently, Shi et al. (2025) developed a new weakly
80  coupled ocean data assimilation (WCODA) system for E3SMv2 utilizing the four-dimensional
81  ensemble variational (4DEnVar) method. Despite this advancement, the impacts of this
82  4ADEnVar-based WCODA system on simulating climate variability have not yet been
83  systematically assessed. The objective of this study is to evaluate the influence of the E3SM
84  coupled ocean data assimilation on the simulation of climate variability across global and
85  regional scales. Specifically, the evaluation focuses on four key aspects: (1) surface air
86  temperature and precipitation anomalies over ocean, land, and global domains; (2) major
87  tropical variability modes, including the Indian Ocean Dipole (IOD) and El Nifio-Southern
88  Oscillation (ENSO); (3) decadal-to-multidecadal variability modes, such as the Pacific Decadal
89  Oscillation (PDO), Interdecadal Pacific Oscillation (IPO), and Atlantic Multidecadal
90  Oscillation (AMO); and (4) regional climate variability over the contiguous United States.

91 The paper is structured as follows. Section 2 describes the E3SMv2 model, datasets, and
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92  experimental design. Section 3 presents the results from analyzing major modes of climate
93  variability. Finally, the conclusions and discussion are provided in Section 4.

94

95 2. Model, data and experimental design

96 2.1 Model description

97 E3SMv2 is a fully coupled Earth system model that includes the atmospheric, ocean, sea

98 ice, land and river transport components. The atmospheric component (EAMv2) is based on a

99  spectral-element dynamical core with 72 vertical levels and is configured on a cubed-sphere
100  grid with approximately 110 km horizontal resolution (Golaz et al., 2022). The ocean
101  component (MPAS-O) employs an unstructured Voronoi mesh with horizontal spacing of ~60
102 km in the midlatitudes and ~30 km near the equator and poles, and includes 60 vertical layers
103 using a z-star coordinate (Reckinger et al., 2015). The sea ice component (MPAS-SI) shares
104  the same horizontal mesh with MPAS-O and provides detailed representations of sea ice
105  thermodynamics and dynamics (Turner et al., 2022). The land component (ELMv2) simulates
106  land surface energy and water fluxes, biophysical processes, and soil hydrological processes
107  (Golaz et al., 2019). The river transport component (MOSARTV2) represents streamflow
108  routing across river basins (Li et al., 2013). These five components are dynamically coupled
109  through the CPL7 coupler, which facilitates the exchange of momentum, heat, and mass fluxes
110  among model components (Craig et al., 2012). The detailed description and assessment of
111 E3SMv2 can be found in Golaz et al. (2022).
112
113 2.2 Datasets
114 Three types of monthly reanalysis datasets are used for evaluation: 1) ERAS reanalysis
115  data, including surface air temperature, 850 hPa winds, and 500 hPa geopotential height. ERAS
116  incorporates a wide range of satellite and in situ observations to produce high-quality global
117  atmospheric fields (Hersbach et al., 2020). 2) Global Precipitation Climatology Project (GPCP)
118  monthly precipitation data. This dataset provides reliable global precipitation estimates based
119  onsatellite microwave, infrared measurements, and surface rain gauge data (Adler et al., 2003).

120  3) Hadley Centre Sea Ice and Sea Surface Temperature (HadISST) data. HadISST offers
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121 monthly sea surface temperature (SST) analysis derived from a combination of in situ
122  measurements and satellite-based retrievals (Rayner et al., 2003).

123

124 2.3 Data assimilation scheme

125 The 4DEnVar method employed in the WCODA system is based on the dimension-reduced
126  projection four-dimensional variational (DRP-4DVar) algorithm (Wang et al., 2010). In DRP-
127  4DVar, the ensemble-based approach is used to replace the adjoint model traditionally required
128  in standard 4D Var, thereby significantly reducing computational cost. The DRP-4DVar method
129  determines the optimal state in the ensemble subspace by fitting observational data to model-
130  generated ensemble samples within a four-dimensional assimilation window (Liu et al., 2011;
131  Shi et al., 2021). Due to its flexibility and efficiency, this method has been widely applied in
132 diverse numerical models to improve the initialization of ocean, land, and atmospheric states
133 (He et al., 2020; Shi et al., 2024b; Zhu et al., 2022).

134 In this study, monthly mean ocean temperature and salinity from the EN4.2.1 reanalysis
135  (Good et al., 2013) are assimilated into the ocean component of the fully coupled E3SMv2
136  model within a one-month assimilation window. Each monthly assimilation cycle consists of
137 the analysis and forecast stages. First, the fully coupled E3SMv2 model is run forward for one
138  month using the background ICs to generate model-derived monthly means of ocean
139  temperature and salinity. In the analysis stage, the differences between these model outputs and
140  the EN4.2.1 reanalysis are calculated to form the observational innovation. The DRP-4DVar
141  scheme then applies this innovation to compute the optimal ICs for the ocean component at the
142 beginning of the assimilation cycle. During the following forecast stage, the fully coupled
143 model is rewound to the start of the month and re-integrated for the same month using the
144 optimized ocean state and the background fields from other components. Through this coupled
145  forecast, ocean observational information is dynamically propagated to influence the state
146  variables of other components (e.g., atmosphere and land) through multi-component
147  interactions. Thus, while assimilation is confined to the ocean, employing the fully coupled
148  E3SMv2 model in the forecast stage enables the transfer of assimilated ocean information to

149  other Earth system components, classifying this system as a WCDA framework (Zhang et al.,
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150  2020). Further technical details of the assimilation system are described in Shi et al. (2025).
151

152 2.4 Numerical experiments

153 Two numerical experiments are conducted to assess the impact of the WCODA system on
154 climate variability: a control experiment (CTRL) and an assimilation experiment (ASSIM). In
155  the CTRL experiment, the fully coupled E3SMv2 model is integrated freely from 1950 to 2021
156  under observed historical external forcings. This experiment serves as the reference for
157  evaluating the influence of the assimilation system. In contrast, the ASSIM experiment
158  assimilates monthly mean ocean temperature and salinity from the EN4.2.1 reanalysis into all
159 60 layers of the ocean component in the fully coupled E3SMv2 model from 1950 to 2021 using
160  a one-month assimilation window. Considering sparse observational coverage and large
161  uncertainties, the Arctic Ocean is excluded from the assimilation process. At the beginning of
162 each month, monthly mean ocean temperature and salinity from the EN4.2.1 reanalysis are
163  assimilated to update the ocean ICs, after which the fully coupled model is integrated freely
164  until the end of the month. During this forecast period, the assimilated ocean information is
165  dynamically propagated to other components through multi-component interactions. Both
166  CTRL and ASSIM experiments are forced with the same historical external forcings prescribed
167 by the CMIP6 protocol (Eyring et al., 2016).

168

169 3. Results

170 3.1 Surface air temperature and precipitation

171 The temporal evolution of detrended annual mean surface air temperature anomalies over
172 ocean, land, and global domains is shown in Fig. 1. Compared to CTRL, ASSIM better captures
173 the interannual variability of observed temperature in all three domains. Over the ocean, the
174 correlation coefficient between ASSIM and observation reaches 0.47, much higher than that of
175  CTRL (0.09). Over land and global domains, the correlation coefficients for ASSIM are 0.44
176  and 0.49, respectively, both of which also exceed those from CTRL (land/global: 0.26/0.18).
177  All three correlations from ASSIM pass the 95% confidence level, indicating significant

178  improvements in simulating observed temperature variability. These results highlight the
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179  effectiveness of ocean data assimilation in enhancing the simulation of interannual temperature
180  variability. The improvement is particularly notable over the ocean, where the assimilated
181  ocean state exerts a direct influence on near-surface atmospheric conditions. Over land, the
182  increased correlations suggest that the benefits of ocean data assimilation extend beyond
183  oceanic regions, reflecting its broader influence on enhancing simulations of interannual
184  temperature variability across all domains.

185 Figure 2 displays the spatial distribution of climatological mean differences in surface air
186  temperature. Compared to observations, CTRL exhibits widespread cold biases over the
187  tropical and subtropical oceans, as well as notable warm biases at high latitudes. In contrast,
188  these biases are significantly reduced in ASSIM, particularly over the North Pacific, North
189  Atlantic, and the midlatitude Southern Ocean. Specifically, the cold bias in the North Pacific
190  decreases from -1.81 °C in CTRL to -0.76 °C in ASSIM, and from -3.23 °C to -1.09 °C in the
191  North Atlantic. The warm bias over the midlatitude Southern Ocean is notably reduced from
192 1.07 °Cin CTRL to 0.13 °C in ASSIM. Improvements are also evident over land regions, such
193 as eastern China, northern Eurasia, northern Africa, and parts of North America. The spatial
194  pattern of reduced surface air temperature bias closely aligns with the reduction in SST bias
195  reported by Shi et al. (2025), underscoring the critical role of realistic ocean states in shaping
196  near-surface temperature patterns.

197 The interannual variability of detrended precipitation anomalies over ocean, land, and
198  global domains is illustrated in Fig. 3. Compared to CTRL, ASSIM shows markedly improved
199  agreement with observed interannual precipitation variability across all three domains. Over
200  the ocean, the correlation with observations increases from 0.11 in CTRL to 0.52 in ASSIM,
201  while over land it improves from 0.27 to 0.60. At the global scale, the correlation rises from
202 0.04 in CTRL to 0.55 in ASSIM. All three correlations from ASSIM are statistically significant
203  at the 95% confidence level. These results suggest that assimilating observed ocean states
204  enhances the simulation of interannual precipitation variability over both ocean and land, with
205  the latter improvement possibly related to atmospheric circulation and moisture transport.
206  Notably, the relatively high correlations for both surface air temperature (0.26) and

207  precipitation (0.27) over land in CTRL suggest some influence of external forcing on land
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208  surface climate variability.

209 Figure 4 shows the spatial distribution of climatological mean precipitation and associated
210  model biases. In the observation (Fig. 4a), major precipitation maxima are located along the
211  Intertropical Convergence Zone (ITCZ) in the equatorial Pacific, the South Pacific
212 Convergence Zone (SPCZ) extending northwest—southeast from the western Pacific, and the
213 tropical Indian Ocean. A dry zone is also evident along the west coast of South America.
214 Compared to observations, CTRL overestimates precipitation over the central Pacific and the
215  southern equatorial Atlantic, while significantly underestimating rainfall over the tropical
216  eastern Indian Ocean and the northern equatorial Atlantic (Figs. 4b & d). In contrast, these
217  biases are substantially reduced in ASSIM (Figs. 4c & ¢). Precipitation in the tropical eastern
218  Indian Ocean is enhanced, improving agreement with observations. Moreover, in the tropical
219  Atlantic, the dry bias over the northern equatorial Atlantic is reduced from -1.27 mm/day in
220  CTRL to -0.34 mm/day in ASSIM, while the wet bias over the southern equatorial Atlantic
221  decreases from 1.81 mm/day to 0.62 mm/day.

222

223 3.2 ENSO

224 ENSO is the dominant mode of interannual climate variability in the tropics and exerts
225  profound impacts on global atmospheric circulation (Chiang and Sobel, 2002). ENSO
226  variability is commonly monitored by the Nifio 3.4 index, defined as the SST anomalies
227  averaged over the equatorial central Pacific (5°S—5°N, 120°W-170°W) (Trenberth and
228  Stepaniak, 2001). To evaluate the representation of ENSO variability, we analyze the time
229  evolutions of the monthly and winter Nifio 3.4 index (Fig. 5). As expected, CTRL exhibits very
230  weak correlations with observations, with correlation coefficients of only 0.02 for the monthly
231  and 0.07 for the winter Nifio 3.4 index, indicating the model’s limited ability to reproduce the
232 evolution of tropical SST variability in the absence of observational constraints. Compared
233 with CTRL, ASSIM exhibits substantial improvements in simulating ENSO variability. The
234 temporal evolution of the Nifio 3.4 index in ASSIM closely matches the observation, with
235  correlations increasing to 0.87 for the monthly and 0.95 for the winter index. These results

236  underscore the critical role of ocean data assimilation in constraining tropical Pacific SST
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237  variability and enhancing ENSO representation in coupled models.

238 Figure 6 further evaluates ENSO characteristics through the power spectra and seasonal
239  cycle of the monthly Nifio 3.4 index. The observed spectrum exhibits a pronounced peak in the
240  3-5 year band, consistent with typical ENSO periodicities (Fig. 6a). This spectral feature is
241  reasonably well reproduced in ASSIM (Fig. 6b). By comparison, CTRL underestimates the
242  variance in this band and produces an unrealistically amplified peak at 2-3 years (Fig. 6c).
243  Beyond its frequency characteristics, ENSO also exhibits a strong seasonal cycle. The observed
244 Niflo 3.4 index shows minimum variance in April and peak amplitude in December, reflecting
245  the well-known phase-locking behavior of ENSO (Fig. 6d). ASSIM capture this seasonal cycle
246  well, although the minimum occurs one month later (Fig. 6¢). In contrast, CTRL exhibits a
247  flatter seasonal cycle with markedly weaker variance during the winter peak, and its seasonal
248  minimum is delayed by two months (Fig. 6f).

249 To further assess the representation of ENSO-related atmospheric variability, we examine
250  the Southern Oscillation Index (SOI), which reflects the east-west seesaw pattern in sea level
251  pressure (SLP) between the western and eastern tropical Pacific. The SOI is commonly defined
252  as the normalized difference in SLP anomalies between Tahiti and Darwin, and serves as the
253  atmospheric counterpart to the Nifio 3.4 index (Hanley et al., 2003). Figure 7 presents the
254 temporal evolution of the monthly and winter SOI from the observation, ASSIM, and CTRL.
255  The observed SOI exhibits pronounced interannual fluctuations associated with ENSO phases.
256  Consistent with its poor simulation of the Nifio 3.4 index, CTRL fails to capture the observed
257  SOI variability, with correlations of -0.02 for the monthly and -0.04 for the winter index. In
258  contrast, ASSIM reproduces the SOI variability more realistically, with correlations increasing
259  to 0.40 for the monthly and 0.62 for the winter index. These improvements indicate that
260  assimilating observed ocean states not only constrains SST but also improves the representation

261  of ENSO-related atmospheric circulation anomalies in coupled models.

262
263 3.310D
264 The Indian Ocean Dipole (IOD) is a prominent mode of interannual variability in the

265  tropical Indian Ocean that strongly influences surrounding climate systems (Saji et al., 2006).

10
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266 It typically begins to develop in boreal summer and reaches its peak during autumn. A widely
267  used metric for quantifying IOD variability is the Dipole Mode Index (DMI), defined as the
268  difference in SST anomalies between the western (S0°E—70°E, 10°S—10°N) and eastern (90°E—
269  110°E, 0°-10°S) equatorial Indian Ocean (Saji et al., 1999). The temporal evolution of the
270  autumn DMI is further shown in Fig. 8. The observed DMI exhibits pronounced interannual
271  variations associated with alternating positive and negative IOD phases. The CTRL simulation
272  substantially overestimates the IOD amplitude and shows a weak correlation of -0.11 with
273  observations. Such overestimation is the common bias in coupled climate models, as noted in
274  previous studies (Ju et al., 2025). In contrast, ASSIM shows notable improvements in both the
275  amplitude and temporal variability of the DMI, with the correlation increasing to 0.56 and
276  exceeding the 95% confidence level. These results highlight the benefits of ocean data
277  assimilation for improving the simulation of IOD variability.

278

279 3.4 PDO, IPO, AMO

280 The Pacific Decadal Oscillation (PDO) is the leading mode of decadal SST variability in
281  the North Pacific, characterized by basin-scale SST anomalies that typically persist for one to
282  two decades. The PDO index is derived as the leading empirical orthogonal function (EOF)
283  mode of detrended SST anomalies over the North Pacific (20°-70°N, 110°E—100°W) (Mantua
284  etal., 1997). Figure 9 illustrates both the temporal evolution and spatial pattern of the annual
285  PDO index from 1965 to 2016. The observed PDO index displays a canonical sequence of
286  phase transitions: a cool phase before the late 1970s, a persistent warm phase extending into
287  the late 1990s, and a return to negative values thereafter (Fig. 9a). These decadal transitions
288  are reasonably captured by ASSIM, yielding a temporal correlation of 0.67 with observations
289  (Fig. 9b). In contrast, CTRL fails to reproduce the observed phase transitions, with a much
290  lower correlation of 0.19 (Fig. 9c). Besides the temporal evolution, the spatial structure of the
291  PDO index is also analyzed. The observed pattern exhibits a horseshoe-shaped structure with
292 cold anomalies in the central North Pacific and warm anomalies along the western coast of
293 North America (Fig. 9d). This spatial pattern is well reproduced in ASSIM, with a spatial
294  correlation of 0.90 (Fig. 9¢). However, the PDO pattern from CTRL exhibits a distorted

11
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295  structure, and its spatial correlation decreases to 0.68 (Fig. 9f). These improvements in both
296  the temporal evolution and spatial structure of the PDO underscore the potential of the
297  assimilation system to enable more skillful decadal climate predictions by providing improved
298  initial states.

299 Beyond the North Pacific, another major mode of decadal variability affecting the entire
300  Pacific basin is the Interdecadal Pacific Oscillation (IPO). Similar to the PDO, the IPO index
301  is obtained from the leading EOF mode of detrended SST anomalies, but computed over the
302  whole Pacific (50°S—50°N, 100°E-70°W) (Doblas-Reyes et al., 2013). The annual evolution
303  of the IPO index is shown in Fig. 10, indicating the basin-wide coherence of Pacific decadal
304  variability. The observed IPO index undergoes distinct decadal shifts, including a negative
305  phase prior to the late 1970s, a prolonged positive phase extending through the 1980s and 1990s,
306 and a return to negative values in the early 2000s. These phase transitions are closely
307  reproduced by ASSIM, which achieves a high temporal correlation of 0.80 with observations.
308  On the other hand, CTRL fails to track the decadal evolution of the observed IPO and shows a
309 much weaker correlation of 0.20. These results highlight the importance of ocean data
310  assimilation in constraining Pacific-basin SST variability on decadal timescales and enhancing
311  the representation of long-term Pacific climate variability.

312 In addition to the Pacific, the North Atlantic also exhibits notable low-frequency SST
313  variability characterized by the Atlantic Multidecadal Oscillation (AMO). The AMO index is
314  computed as the linearly detrended SST anomalies averaged over the North Atlantic (0—60°N,
315  0-80°W) (Enfield et al., 2001). Figure 11 presents the temporal evolution of the annual AMO
316  index from 1965 to 2016. The observed AMO index shows a pronounced negative phase in the
317  1970s and 1980s, followed by a persistent positive phase beginning in the mid-1990s. These
318 phase transitions are more accurately reproduced in ASSIM than in CTRL, particularly the
319  timing and amplitude of the warm shift after the mid-1990s. The temporal correlation with
320  observations is 0.71 in ASSIM, much higher than 0.17 in CTRL. The enhanced representation
321  of AMO phases in ASSIM reinforces its potential for better predicting related climate impacts
322 over the North Atlantic and adjacent regions.

323

12
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324 3.5 U.S. T2m and Precipitation

325 Building on the improved representation of tropical SST variability through ocean data
326  assimilation, we extend our analysis to assess its impact on regional climate over land. Given
327  the well-established influence of ENSO on U.S. winter climate variability (Ropelewski and
328  Halpert, 1986; Higgins et al., 2000), we evaluate model performance in simulating interannual
329  temperature and precipitation variability over the contiguous U.S. during boreal winter (Figs.
330 12 & 13). For winter surface air temperature (Fig. 12), ASSIM exhibits widespread increases
331  intemporal correlation with observations across large portions of the northern and western U.S.,
332 particularly over the Intermountain West and Great Lakes regions. In these areas, correlation
333  improvements commonly exceed 0.3 and locally surpass 0.4. Consistent with the correlation
334  patterns, RMSE reductions in ASSIM are also evident across the northern and central U.S.,
335  with maximum decreases up to 0.6 °C over the central Great Plains.

336 In contrast to temperature, improvements in winter precipitation simulations are more
337  localized but remain pronounced across the southern U.S. (Fig. 13). Compared with CTRL,
338  ASSIM shows higher correlations with observed precipitation over the Southwest, southern
339  Great Plains, and Southeast. In particular, significant enhancements are evident in parts of
340  California, Texas, and Alabama, where correlation increases exceed 0.4 and locally approach
341  0.5. These correlation improvements are accompanied by consistent reductions in RMSE
342 across similar regions. Notably, the largest RMSE reductions, exceeding 0.45 mm/day, are
343  found over coastal California. The spatial coherence of these improvements highlights the
344 critical role of realistic ocean states in better capturing land precipitation variability.

345 To further investigate the mechanisms underlying the improved simulation of U.S. winter
346  climate, we examine the regression of surface air temperature and precipitation onto the Nifio
347 3.4 index during boreal winter (Fig. 14). The observed patterns reveal that ENSO exerts a
348  pronounced influence on U.S. winter climate through large-scale atmospheric responses.
349  During El Nifio events, positive geopotential height anomalies dominate the northern part of
350 the continent, which may suppress the southward intrusion of cold air masses. This circulation
351  pattern could lead to anomalous warming across the northern U.S., producing significant

352  positive correlations with ENSO in these regions (Fig. 14a). Meanwhile, strengthened

13
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353  subtropical westerlies enhance moisture transport into the southern U.S., favoring increased
354  precipitation and yielding strong positive correlations with ENSO across the southern tier of
355  the country (Fig. 14d).

356 These ENSO-related spatial structures are well reproduced in ASSIM (Figs. 14b & e). In
357  particular, the regression patterns of temperature and precipitation in ASSIM closely resemble
358 those in the observations, especially across the northern and southern U.S., respectively.
359  Moreover, the regions with robust ENSO-related signals in ASSIM largely overlap with areas
360 showing improved correlation and reduced RMSE in Figs. 12 and 13, suggesting that enhanced
361  representation of ENSO variability may underpin its superior performance in simulating U.S.
362  winter climate. In contrast, CTRL exhibits notable deviations from the observed ENSO-related
363  patterns, especially in the spatial distribution of temperature responses (Figs. 14¢c & f). These
364  results underscore the importance of accurate ENSO representation for improving simulations
365  of U.S. winter climate variability.

366

367 4 Conclusions

368 Accurate representation of climate variability across multiple timescales is essential for
369  enhancing the reliability of Earth system predictions. One key factor influencing climate
370  variability is the ocean state, owing to its long memory and strong coupling with the
371  atmosphere. While ocean data assimilation has proven effective in improving the simulation of
372 ocean conditions, many existing systems remain uncoupled and thus have limited ability to
373 support coupled forecasts due to imbalances among model components (Mulholland et al.,
374  2015; Zhang et al., 2011). To address this limitation, Shi et al. (2025) recently developed a new
375  4DEnVar-based WCODA system for E3SMv2 that enables direct assimilation of ocean
376  observations within a coupled model framework. Despite this progress, the extent to which the
377  WCODA system improves simulations of global and regional climate variability has not been
378  fully assessed. This study aims to systematically evaluate its impacts on simulating major
379  modes of climate variability and regional climate over the U.S., demonstrating its potential to
380  enhance initialization and predictive capabilities in coupled Earth system models.

381 Our results show that the WCODA system significantly improves the representation of
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382  both interannual and decadal climate variability. Significant enhancements are achieved in
383  capturing interannual variability and reducing model biases of surface air temperature and
384  precipitation over land and ocean domains. Notably, the temporal evolution of major climate
385  modes, including ENSO, IOD, PDO, IPO, and AMO, is markedly improved. Besides better
386  capturing the temporal evolution of various modes, assimilating ocean temperature and salinity
387  also improves the seasonal and interannual variability of ENSO and the spatial pattern of PDO
388  over the North Pacific. Furthermore, regional evaluations over the contiguous U.S. reveal
389 increased skill in reproducing the observed interannual variability of winter surface air
390  temperature in the northern U.S. and precipitation in the southern regions, respectively. The
391  improved simulation of U.S. winter temperature and precipitation is closely associated with
392  enhanced ENSO representation, as indicated by spatially coherent regression patterns between
393  Niilo 3.4 and U.S. winter climate. These findings demonstrate the capability of the WCODA
394 system to deliver more skillful simulations of Earth system variability through improved ocean
395  initial states and cross-component information exchange.

396 Despite these promising results, several limitations remain and offer opportunities for
397  future development. The current assimilation system does not incorporate atmospheric or sea
398  ice observations, which may limit its ability to fully constrain coupled model states. Moreover,
399  the WCODA framework is implemented as a weakly coupled system and does not explicitly
400  consider cross-component background error covariances during the analysis stage.
401  Transitioning towards a strongly coupled ocean data assimilation would further improve the
402  accuracy and physical consistency of initial states. Looking ahead, the WCODA system
403  provides a promising foundation for improving the initialization of large-ensemble hindcast
404  experiments from seasonal to decadal timescales. Future work will also leverage these
405  experiments to systematically assess the impact of accurate ocean initial states on the
406  predictability of climate variability and extreme events. These efforts will have important
407  implications for advancing seamless climate prediction and informing risk management in
408  energy and water systems.

409

410  Code and data availability. The E3SMv2 source code is freely available under an open-source
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411  license and can be accessed via Zenodo at https://zenodo.org/records/16652680. The ERAS
412 reanalysis datasets are accessible from the Copernicus Climate Change Service through the
413  Climate Data Store portal: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-
414  levels-monthly-means?tab=download (Hersbach et al., 2020). Monthly GPCP precipitation
415  data can be obtained from https://psl.noaa.gov/data/gridded/data.gpcp.html (Adler et al., 2003).
416  HadISST sea surface temperature data are available at
417  https://www.metoffice.gov.uk/hadobs/hadisst (Rayner et al., 2003) and EN4.2.1 ocean
418  temperature and salinity data can be accessed from https://www.metoffice.gov.uk/hadobs/en4
419  (Good et al, 2013). Model outputs are available on Zenodo at
420  https://zenodo.org/records/16740831.
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Figure 1. Time series of detrended annual mean surface air temperature anomalies (units: °C)
over (a) ocean, (b) land, and (c) global domains from 1965 to 2016. Black line: observation;
blue line: CTRL; red line: ASSIM. Temperature anomalies are computed by removing both the
climatological mean and long-term trend. The correlation coefficients of CTRL and ASSIM
with the observation are also shown. The asterisk denotes statistically significant correlation at

the 95% confidence level.
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656  Figure 2. Spatial patterns of climatological mean differences in surface air temperature
657  (units: °C) between model simulations and observations for the period 1965-2016. Panel (a)
658  shows the difference between CTRL and observation, and panel (b) shows the difference
659  between ASSIM and observation. Dotted areas denote regions where the differences are

660 statistically significant at the 95% confidence level.
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Figure 3. Time series of detrended annual mean precipitation anomalies (units: mm day ') over
(a) ocean, (b) land, and (c) global domains from 1980 to 2016. Black line: observation; blue
line: CTRL; red line: ASSIM. Precipitation anomalies are computed by removing both the
climatological mean and long-term trend. The correlation coefficients of CTRL and ASSIM
with the observation are also shown. The asterisk denotes statistically significant correlation at

the 95% confidence level.
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668
669  Figure 4. Spatial patterns of (a—c) climatological mean precipitation (units: mm day ') and (d,
670 e) precipitation differences for the period 1980-2016. Panels (a—c) show precipitation
671  climatology from observation, CTRL, and ASSIM, respectively. Panels (d, e) represent
672  precipitation differences between model simulations and observations: (d) CTRL minus
673  observation and (¢) ASSIM minus observation. Dotted areas indicate regions where the

674  differences are statistically significant at the 95% confidence level.

28



https://doi.org/10.5194/egusphere-2025-4910
Preprint. Discussion started: 13 November 2025
(© Author(s) 2025. CC BY 4.0 License.

EGUsphere\

6.0

40 -

-6.0

—— CTRL (0.02)
—— ASSIM (0.87)
——o0BS

6.0

mEaa
965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

—— CTRL (0.07)
| (b) —— ASSIM (0.95)
4.0 N —— OBS
2.0
0.0
20
4.0
6.0 T e
675 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

676  Figure 5. Time series of the (a) monthly and (b) winter Nifio 3.4 index from 1965 to 2016 for

677  the observation (black line), ASSIM (red line), and CTRL (blue line). The correlation

678  coefficients with the observation for ASSIM and CTRL are also shown in parentheses.
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Figure 6. Power spectra (a—c) and seasonal cycle of the standard deviation (d—f) of the monthly
Nifio 3.4 index from the observation (left column), ASSIM (middle column), and CTRL (right
column) for the period 1965-2016. The theoretical Markov "red noise" spectrum is shown as
a solid green line, with the 5% and 95% confidence bounds indicated by dashed blue and red

lines, respectively.
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Figure 7. Time series of the (a—c) monthly and (d) winter Southern Oscillation Index (SOI)
from 1965 to 2016 for the observation (black line), ASSIM (red line), and CTRL (blue line).
Panels (a—c) show individual monthly time series from OBS, ASSIM, and CTRL, respectively,
while panel (d) shows the winter SOI averaged over December—February (DJF). The
correlation coefficients with the observation in ASSIM and CTRL are also indicated in

parentheses.
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693  Figure 8. Time series of the autumn (September—November) Dipole Mode Index (DMI) from
694 1965 to 2016 for (a) the observation, (b) ASSIM, and (c) CTRL. The correlation coefficients
695  of ASSIM and CTRL with the observed DMI are also shown in the upper-right corner.
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Figure 9. Time series and spatial patterns of the Pacific Decadal Oscillation (PDO) index from

1965 to 2016 for (a, d) the observation, (b, €) ASSIM, and (c, f) CTRL. The black lines in

panels (a—) denote the 10-year running mean of the annual PDO index. The numbers at the

top right of (b) and (c) indicate the temporal correlations of ASSIM and CTRL with

observations. The percentage of variance explained by EOF1 is shown at the top right of (d—f),

and the numbers at the top center of (e) and (f) indicate the spatial correlations with the

observed pattern.
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Figure 10. Time series of the Interdecadal Pacific Oscillation (IPO) index from 1965 to 2016
for (a) the observation, (b) ASSIM, and (c) CTRL. The black line in each panel denotes the 10-
year running mean of the annual IPO index. The numbers at the top right of (b) and (c) indicate

the temporal correlations of ASSIM and CTRL with observations.
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Figure 11. Time series of the Atlantic Multidecadal Oscillation (AMO) index from 1965 to
2016 for (a) the observation, (b) ASSIM, and (c) CTRL. The black line denotes the 10-year

running mean. The numbers at the top right of (b) and (c) indicate the temporal correlations of
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Figure 12. Spatial patterns of the differences in (a) correlation coefficients and (b) root-mean-
square errors (RMSE; °C) of detrended winter surface air temperature anomalies between
ASSIM and CTRL with observations from 1980 to 2016 over the contiguous U.S. Dotted areas

indicate regions where the differences are statistically significant at the 90% confidence level.
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Figure 13. Similar to Fig. 12 but for detrended winter precipitation.

0.5
0.4
0.3
0.2

-0.2
-0.3
-0.4
-0.5

EGUsphere®

mm/day

0.45
0.25
0.15
0.05

-0.05
-0.15
-0.25
-0.45



https://doi.org/10.5194/egusphere-2025-4910
Preprint. Discussion started: 13 November 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

T2m-Nino3.4

(d) OBS Precipitation-Nino3.4

50°N 1 50°N 1
45°N 45°N
40°N 40°N
35°N 35°N
30°N 30°N A
25°N > 25°N A b
135°W 120°W 105°W 90°W 75°W 135°W 120°W 105°W 90°W 75°W

(b) ASSIM T2m-Nino3.4 (e) ASSIM
S0°N 1 S 50°N 1 <

I~ 3 \
45°N ) 45°N 1 : 0.1
40°N 4 40°N 4
35°N 4 35°N A 0
30°N 1 30°N 4

=4 =
25°N 4 . \ M 259N 4 7 '/' \ \ '

135°W 120°W 105°W 90°W 75°W 135°W 120°W 105°W 90°W 75°W

(c) CTRL T2m-Nino3.4 Precipitation-Nino3.4
50°N 1 73 50°N 1
45°N 45°N
40°N 40°N
35°N 35°N 1
30°N -’ 30°N A
25°N . . sy 25°N A . . o
135°W 120°W 105°W 90°W 75°W 135°W 120°W 105°W 90°W 75°W

721

722 Figure 14. Regression patterns of winter surface air temperature (left column; shaded) and
723 precipitation (right column; shaded), 500hPa geopotential height (contours), and 850hPa winds
724  (vectors) on the standardized Nifio 3.4 index for (a, d) the observation, (b, ¢) ASSIM, and (c, f)
725  CTRL. Dotted areas indicate regions where the regressions are statistically significant at the

726 95% confidence level.
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