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Abstract. Accurate initialization of ocean states is essential for skillful prediction of Earth 12 

system variability across seasonal to decadal timescales. In this study, we evaluate the impact 13 

of a newly developed four-dimensional ensemble variational (4DEnVar)-based weakly coupled 14 

ocean data assimilation (WCODA) system within the DOE Energy Exascale Earth System 15 

Model version 2 (E3SMv2) on global and regional climate variability. By assimilating monthly 16 

ocean temperature and salinity from the EN4.2.1 reanalysis into the fully coupled model, we 17 

demonstrate substantial improvements in simulating both interannual and decadal climate 18 

variability. Compared to the free-running coupled simulation, the assimilation experiment 19 

exhibits markedly enhanced interannual correlations with observations for global mean surface 20 

air temperature and precipitation anomalies. The representation of key climate modes, 21 

including ENSO, the Indian Ocean Dipole, and multidecadal variability in the Pacific and 22 

Atlantic Oceans, also improves significantly. Regional evaluation over the contiguous United 23 

States further shows enhanced skill in simulating winter surface air temperature and 24 

precipitation variability, particularly in the northern and southern regions, respectively, linked 25 

to improved ENSO representation. These findings underscore the critical role of coupled 26 

forecasts in the data assimilation cycle for propagating observational information across Earth 27 

system components. By integrating ocean observations within a coupled framework, the 28 

WCODA system enables cross-component information exchange among the ocean, 29 

atmosphere, and land, thereby generating physically consistent initial states. These 30 

improvements contribute to more accurate simulations of Earth system variability across 31 

multiple timescales and advance the development of more reliable prediction systems in 32 

support of societal resilience.  33 
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1. Introduction 34 

    Accurately representing climate variability across multiple timescales remains a major 35 

challenge in climate modeling and prediction. The initial conditions (ICs) of the climate system, 36 

including the ocean, atmosphere, and land surface, play a crucial role in determining the 37 

accuracy and reliability of climate predictions (Boer et al., 2016; Taylor et al., 2012). Among 38 

these components, the ocean exhibits the longest memory and exerts a dominant influence on 39 

climate variability through its interactions with the atmosphere and other components (Wang, 40 

2019). Therefore, improving the initialization of ocean states has been widely recognized as a 41 

key approach for enhancing the skill of seasonal to decadal climate predictions (Meehl et al., 42 

2021; Zhu et al., 2017). 43 

    Data assimilation (DA) methods have been developed to integrate observational data into 44 

coupled models, thereby improving the ICs and enhancing predictive skill. Traditionally, ocean 45 

DA has been conducted in an uncoupled framework, where ocean observations are assimilated 46 

into a standalone ocean model forced by prescribed atmospheric forcings (Carton and Giese, 47 

2008). The resulting ocean analyses are then combined with the optimal analyses from other 48 

uncoupled components (e.g., atmosphere and land) to generate the ICs for coupled models. 49 

However, because each component is initialized independently, this uncoupled approach often 50 

leads to inconsistencies and imbalances among the different components, potentially 51 

introducing initial shocks that degrade coupled model forecasts (Mulholland et al., 2015; Zhang, 52 

2011). To address these limitations, recent studies have increasingly employed coupled data 53 

assimilation (CDA) (Wu et al., 2018; Zhang et al., 2012). 54 

    CDA has emerged as an advanced framework for performing ocean DA directly within the 55 

coupled model. CDA methods are generally categorized into weakly coupled data assimilation 56 

(WCDA) and strongly coupled data assimilation (SCDA). In WCDA, ocean observations are 57 

assimilated separately into the ocean component during the analysis step, but the coupled 58 

model is utilized in the forecast step to transfer ocean observational information to other 59 

components through multi-component interactions (Browne et al., 2019). The key difference 60 

between WCDA and uncoupled DA lies in whether a coupled model is employed to generate 61 

the background forecast: WCDA uses a coupled model during the forecast step but assimilates 62 
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observations independently within each component, whereas uncoupled DA employs separate 63 

component models throughout the entire assimilation cycle (Shi et al., 2024a; Zhang et al., 64 

2020). Unlike uncoupled DA, CDA can produce more balanced and self-consistent ICs and 65 

thus enhance forecast skill (Feng et al., 2018; Shi et al., 2022). However, WCDA does not 66 

account for cross-component background error covariances during the analysis step, limiting 67 

its ability to explicitly correct coupled state errors (Tang et al., 2021). In contrast, SCDA 68 

incorporates cross-component background error covariances during the analysis step, enabling 69 

observations in one component to instantaneously update the state variables of other 70 

components (Penny et al., 2019; Lin and Pu, 2020). By treating the coupled system as an 71 

integrated whole, SCDA offers the potential for more pronounced assimilation improvements 72 

over WCDA (Han et al., 2013; Sluka et al., 2016; Lin and Pu, 2019). However, the practical 73 

implementation of SCDA faces considerable challenges owing to the difficulty of estimating 74 

cross-component error statistics, and consequently, WCDA remains more widely adopted in 75 

current systems (Zhou et al., 2024). 76 

    The Energy Exascale Earth System Model (E3SM) is a state-of-the-art Earth system model 77 

developed by the U.S. Department of Energy to advance the understanding of Earth system 78 

variability and change (Leung et al., 2020). Recently, Shi et al. (2025) developed a new weakly 79 

coupled ocean data assimilation (WCODA) system for E3SMv2 utilizing the four-dimensional 80 

ensemble variational (4DEnVar) method. Despite this advancement, the impacts of this 81 

4DEnVar-based WCODA system on simulating climate variability have not yet been 82 

systematically assessed. The objective of this study is to evaluate the influence of the E3SM 83 

coupled ocean data assimilation on the simulation of climate variability across global and 84 

regional scales. Specifically, the evaluation focuses on four key aspects: (1) surface air 85 

temperature and precipitation anomalies over ocean, land, and global domains; (2) major 86 

tropical variability modes, including the Indian Ocean Dipole (IOD) and El Niño-Southern 87 

Oscillation (ENSO); (3) decadal-to-multidecadal variability modes, such as the Pacific Decadal 88 

Oscillation (PDO), Interdecadal Pacific Oscillation (IPO), and Atlantic Multidecadal 89 

Oscillation (AMO); and (4) regional climate variability over the contiguous United States. 90 

    The paper is structured as follows. Section 2 describes the E3SMv2 model, datasets, and 91 
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experimental design. Section 3 presents the results from analyzing major modes of climate 92 

variability. Finally, the conclusions and discussion are provided in Section 4. 93 

 94 

2. Model, data and experimental design 95 

2.1 Model description 96 

    E3SMv2 is a fully coupled Earth system model that includes the atmospheric, ocean, sea 97 

ice, land and river transport components. The atmospheric component (EAMv2) is based on a 98 

spectral-element dynamical core with 72 vertical levels and is configured on a cubed-sphere 99 

grid with approximately 110 km horizontal resolution (Golaz et al., 2022). The ocean 100 

component (MPAS-O) employs an unstructured Voronoi mesh with horizontal spacing of ~60 101 

km in the midlatitudes and ~30 km near the equator and poles, and includes 60 vertical layers 102 

using a z-star coordinate (Reckinger et al., 2015). The sea ice component (MPAS-SI) shares 103 

the same horizontal mesh with MPAS-O and provides detailed representations of sea ice 104 

thermodynamics and dynamics (Turner et al., 2022). The land component (ELMv2) simulates 105 

land surface energy and water fluxes, biophysical processes, and soil hydrological processes 106 

(Golaz et al., 2019). The river transport component (MOSARTv2) represents streamflow 107 

routing across river basins (Li et al., 2013). These five components are dynamically coupled 108 

through the CPL7 coupler, which facilitates the exchange of momentum, heat, and mass fluxes 109 

among model components (Craig et al., 2012). The detailed description and assessment of 110 

E3SMv2 can be found in Golaz et al. (2022). 111 

 112 

2.2 Datasets 113 

    Three types of monthly reanalysis datasets are used for evaluation: 1) ERA5 reanalysis 114 

data, including surface air temperature, 850 hPa winds, and 500 hPa geopotential height. ERA5 115 

incorporates a wide range of satellite and in situ observations to produce high-quality global 116 

atmospheric fields (Hersbach et al., 2020). 2) Global Precipitation Climatology Project (GPCP) 117 

monthly precipitation data. This dataset provides reliable global precipitation estimates based 118 

on satellite microwave, infrared measurements, and surface rain gauge data (Adler et al., 2003). 119 

3) Hadley Centre Sea Ice and Sea Surface Temperature (HadISST) data. HadISST offers 120 
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monthly sea surface temperature (SST) analysis derived from a combination of in situ 121 

measurements and satellite-based retrievals (Rayner et al., 2003). 122 

 123 

2.3 Data assimilation scheme 124 

    The 4DEnVar method employed in the WCODA system is based on the dimension-reduced 125 

projection four-dimensional variational (DRP-4DVar) algorithm (Wang et al., 2010). In DRP-126 

4DVar, the ensemble-based approach is used to replace the adjoint model traditionally required 127 

in standard 4DVar, thereby significantly reducing computational cost. The DRP-4DVar method 128 

determines the optimal state in the ensemble subspace by fitting observational data to model-129 

generated ensemble samples within a four-dimensional assimilation window (Liu et al., 2011; 130 

Shi et al., 2021). Due to its flexibility and efficiency, this method has been widely applied in 131 

diverse numerical models to improve the initialization of ocean, land, and atmospheric states 132 

(He et al., 2020; Shi et al., 2024b; Zhu et al., 2022). 133 

    In this study, monthly mean ocean temperature and salinity from the EN4.2.1 reanalysis 134 

(Good et al., 2013) are assimilated into the ocean component of the fully coupled E3SMv2 135 

model within a one-month assimilation window. Each monthly assimilation cycle consists of 136 

the analysis and forecast stages. First, the fully coupled E3SMv2 model is run forward for one 137 

month using the background ICs to generate model-derived monthly means of ocean 138 

temperature and salinity. In the analysis stage, the differences between these model outputs and 139 

the EN4.2.1 reanalysis are calculated to form the observational innovation. The DRP-4DVar 140 

scheme then applies this innovation to compute the optimal ICs for the ocean component at the 141 

beginning of the assimilation cycle. During the following forecast stage, the fully coupled 142 

model is rewound to the start of the month and re-integrated for the same month using the 143 

optimized ocean state and the background fields from other components. Through this coupled 144 

forecast, ocean observational information is dynamically propagated to influence the state 145 

variables of other components (e.g., atmosphere and land) through multi-component 146 

interactions. Thus, while assimilation is confined to the ocean, employing the fully coupled 147 

E3SMv2 model in the forecast stage enables the transfer of assimilated ocean information to 148 

other Earth system components, classifying this system as a WCDA framework (Zhang et al., 149 
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2020). Further technical details of the assimilation system are described in Shi et al. (2025). 150 

 151 

2.4 Numerical experiments 152 

    Two numerical experiments are conducted to assess the impact of the WCODA system on 153 

climate variability: a control experiment (CTRL) and an assimilation experiment (ASSIM). In 154 

the CTRL experiment, the fully coupled E3SMv2 model is integrated freely from 1950 to 2021 155 

under observed historical external forcings. This experiment serves as the reference for 156 

evaluating the influence of the assimilation system. In contrast, the ASSIM experiment 157 

assimilates monthly mean ocean temperature and salinity from the EN4.2.1 reanalysis into all 158 

60 layers of the ocean component in the fully coupled E3SMv2 model from 1950 to 2021 using 159 

a one-month assimilation window. Considering sparse observational coverage and large 160 

uncertainties, the Arctic Ocean is excluded from the assimilation process. At the beginning of 161 

each month, monthly mean ocean temperature and salinity from the EN4.2.1 reanalysis are 162 

assimilated to update the ocean ICs, after which the fully coupled model is integrated freely 163 

until the end of the month. During this forecast period, the assimilated ocean information is 164 

dynamically propagated to other components through multi-component interactions. Both 165 

CTRL and ASSIM experiments are forced with the same historical external forcings prescribed 166 

by the CMIP6 protocol (Eyring et al., 2016). 167 

 168 

3. Results 169 

3.1 Surface air temperature and precipitation 170 

    The temporal evolution of detrended annual mean surface air temperature anomalies over 171 

ocean, land, and global domains is shown in Fig. 1. Compared to CTRL, ASSIM better captures 172 

the interannual variability of observed temperature in all three domains. Over the ocean, the 173 

correlation coefficient between ASSIM and observation reaches 0.47, much higher than that of 174 

CTRL (0.09). Over land and global domains, the correlation coefficients for ASSIM are 0.44 175 

and 0.49, respectively, both of which also exceed those from CTRL (land/global: 0.26/0.18). 176 

All three correlations from ASSIM pass the 95% confidence level, indicating significant 177 

improvements in simulating observed temperature variability. These results highlight the 178 

https://doi.org/10.5194/egusphere-2025-4910
Preprint. Discussion started: 13 November 2025
c© Author(s) 2025. CC BY 4.0 License.



 8 

effectiveness of ocean data assimilation in enhancing the simulation of interannual temperature 179 

variability. The improvement is particularly notable over the ocean, where the assimilated 180 

ocean state exerts a direct influence on near-surface atmospheric conditions. Over land, the 181 

increased correlations suggest that the benefits of ocean data assimilation extend beyond 182 

oceanic regions, reflecting its broader influence on enhancing simulations of interannual 183 

temperature variability across all domains. 184 

    Figure 2 displays the spatial distribution of climatological mean differences in surface air 185 

temperature. Compared to observations, CTRL exhibits widespread cold biases over the 186 

tropical and subtropical oceans, as well as notable warm biases at high latitudes. In contrast, 187 

these biases are significantly reduced in ASSIM, particularly over the North Pacific, North 188 

Atlantic, and the midlatitude Southern Ocean. Specifically, the cold bias in the North Pacific 189 

decreases from -1.81 °C in CTRL to -0.76 °C in ASSIM, and from -3.23 °C to -1.09 °C in the 190 

North Atlantic. The warm bias over the midlatitude Southern Ocean is notably reduced from 191 

1.07 °C in CTRL to 0.13 °C in ASSIM. Improvements are also evident over land regions, such 192 

as eastern China, northern Eurasia, northern Africa, and parts of North America. The spatial 193 

pattern of reduced surface air temperature bias closely aligns with the reduction in SST bias 194 

reported by Shi et al. (2025), underscoring the critical role of realistic ocean states in shaping 195 

near-surface temperature patterns. 196 

    The interannual variability of detrended precipitation anomalies over ocean, land, and 197 

global domains is illustrated in Fig. 3. Compared to CTRL, ASSIM shows markedly improved 198 

agreement with observed interannual precipitation variability across all three domains. Over 199 

the ocean, the correlation with observations increases from 0.11 in CTRL to 0.52 in ASSIM, 200 

while over land it improves from 0.27 to 0.60. At the global scale, the correlation rises from 201 

0.04 in CTRL to 0.55 in ASSIM. All three correlations from ASSIM are statistically significant 202 

at the 95% confidence level. These results suggest that assimilating observed ocean states 203 

enhances the simulation of interannual precipitation variability over both ocean and land, with 204 

the latter improvement possibly related to atmospheric circulation and moisture transport. 205 

Notably, the relatively high correlations for both surface air temperature (0.26) and 206 

precipitation (0.27) over land in CTRL suggest some influence of external forcing on land 207 
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surface climate variability. 208 

    Figure 4 shows the spatial distribution of climatological mean precipitation and associated 209 

model biases. In the observation (Fig. 4a), major precipitation maxima are located along the 210 

Intertropical Convergence Zone (ITCZ) in the equatorial Pacific, the South Pacific 211 

Convergence Zone (SPCZ) extending northwest–southeast from the western Pacific, and the 212 

tropical Indian Ocean. A dry zone is also evident along the west coast of South America. 213 

Compared to observations, CTRL overestimates precipitation over the central Pacific and the 214 

southern equatorial Atlantic, while significantly underestimating rainfall over the tropical 215 

eastern Indian Ocean and the northern equatorial Atlantic (Figs. 4b & d). In contrast, these 216 

biases are substantially reduced in ASSIM (Figs. 4c & e). Precipitation in the tropical eastern 217 

Indian Ocean is enhanced, improving agreement with observations. Moreover, in the tropical 218 

Atlantic, the dry bias over the northern equatorial Atlantic is reduced from -1.27 mm/day in 219 

CTRL to -0.34 mm/day in ASSIM, while the wet bias over the southern equatorial Atlantic 220 

decreases from 1.81 mm/day to 0.62 mm/day. 221 

 222 

3.2 ENSO 223 

    ENSO is the dominant mode of interannual climate variability in the tropics and exerts 224 

profound impacts on global atmospheric circulation (Chiang and Sobel, 2002). ENSO 225 

variability is commonly monitored by the Niño 3.4 index, defined as the SST anomalies 226 

averaged over the equatorial central Pacific (5°S–5°N, 120°W–170°W) (Trenberth and 227 

Stepaniak, 2001). To evaluate the representation of ENSO variability, we analyze the time 228 

evolutions of the monthly and winter Niño 3.4 index (Fig. 5). As expected, CTRL exhibits very 229 

weak correlations with observations, with correlation coefficients of only 0.02 for the monthly 230 

and 0.07 for the winter Niño 3.4 index, indicating the model’s limited ability to reproduce the 231 

evolution of tropical SST variability in the absence of observational constraints. Compared 232 

with CTRL, ASSIM exhibits substantial improvements in simulating ENSO variability. The 233 

temporal evolution of the Niño 3.4 index in ASSIM closely matches the observation, with 234 

correlations increasing to 0.87 for the monthly and 0.95 for the winter index. These results 235 

underscore the critical role of ocean data assimilation in constraining tropical Pacific SST 236 
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variability and enhancing ENSO representation in coupled models. 237 

    Figure 6 further evaluates ENSO characteristics through the power spectra and seasonal 238 

cycle of the monthly Niño 3.4 index. The observed spectrum exhibits a pronounced peak in the 239 

3–5 year band, consistent with typical ENSO periodicities (Fig. 6a). This spectral feature is 240 

reasonably well reproduced in ASSIM (Fig. 6b). By comparison, CTRL underestimates the 241 

variance in this band and produces an unrealistically amplified peak at 2–3 years (Fig. 6c). 242 

Beyond its frequency characteristics, ENSO also exhibits a strong seasonal cycle. The observed 243 

Niño 3.4 index shows minimum variance in April and peak amplitude in December, reflecting 244 

the well-known phase-locking behavior of ENSO (Fig. 6d). ASSIM capture this seasonal cycle 245 

well, although the minimum occurs one month later (Fig. 6e). In contrast, CTRL exhibits a 246 

flatter seasonal cycle with markedly weaker variance during the winter peak, and its seasonal 247 

minimum is delayed by two months (Fig. 6f). 248 

    To further assess the representation of ENSO-related atmospheric variability, we examine 249 

the Southern Oscillation Index (SOI), which reflects the east–west seesaw pattern in sea level 250 

pressure (SLP) between the western and eastern tropical Pacific. The SOI is commonly defined 251 

as the normalized difference in SLP anomalies between Tahiti and Darwin, and serves as the 252 

atmospheric counterpart to the Niño 3.4 index (Hanley et al., 2003). Figure 7 presents the 253 

temporal evolution of the monthly and winter SOI from the observation, ASSIM, and CTRL. 254 

The observed SOI exhibits pronounced interannual fluctuations associated with ENSO phases. 255 

Consistent with its poor simulation of the Niño 3.4 index, CTRL fails to capture the observed 256 

SOI variability, with correlations of -0.02 for the monthly and -0.04 for the winter index. In 257 

contrast, ASSIM reproduces the SOI variability more realistically, with correlations increasing 258 

to 0.40 for the monthly and 0.62 for the winter index. These improvements indicate that 259 

assimilating observed ocean states not only constrains SST but also improves the representation 260 

of ENSO-related atmospheric circulation anomalies in coupled models. 261 

 262 

3.3 IOD 263 

    The Indian Ocean Dipole (IOD) is a prominent mode of interannual variability in the 264 

tropical Indian Ocean that strongly influences surrounding climate systems (Saji et al., 2006). 265 
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It typically begins to develop in boreal summer and reaches its peak during autumn. A widely 266 

used metric for quantifying IOD variability is the Dipole Mode Index (DMI), defined as the 267 

difference in SST anomalies between the western (50°E–70°E, 10°S–10°N) and eastern (90°E–268 

110°E, 0°–10°S) equatorial Indian Ocean (Saji et al., 1999). The temporal evolution of the 269 

autumn DMI is further shown in Fig. 8. The observed DMI exhibits pronounced interannual 270 

variations associated with alternating positive and negative IOD phases. The CTRL simulation 271 

substantially overestimates the IOD amplitude and shows a weak correlation of -0.11 with 272 

observations. Such overestimation is the common bias in coupled climate models, as noted in 273 

previous studies (Ju et al., 2025). In contrast, ASSIM shows notable improvements in both the 274 

amplitude and temporal variability of the DMI, with the correlation increasing to 0.56 and 275 

exceeding the 95% confidence level. These results highlight the benefits of ocean data 276 

assimilation for improving the simulation of IOD variability. 277 

 278 

3.4 PDO, IPO, AMO 279 

    The Pacific Decadal Oscillation (PDO) is the leading mode of decadal SST variability in 280 

the North Pacific, characterized by basin-scale SST anomalies that typically persist for one to 281 

two decades. The PDO index is derived as the leading empirical orthogonal function (EOF) 282 

mode of detrended SST anomalies over the North Pacific (20°–70°N, 110°E–100°W) (Mantua 283 

et al., 1997). Figure 9 illustrates both the temporal evolution and spatial pattern of the annual 284 

PDO index from 1965 to 2016. The observed PDO index displays a canonical sequence of 285 

phase transitions: a cool phase before the late 1970s, a persistent warm phase extending into 286 

the late 1990s, and a return to negative values thereafter (Fig. 9a). These decadal transitions 287 

are reasonably captured by ASSIM, yielding a temporal correlation of 0.67 with observations 288 

(Fig. 9b). In contrast, CTRL fails to reproduce the observed phase transitions, with a much 289 

lower correlation of 0.19 (Fig. 9c). Besides the temporal evolution, the spatial structure of the 290 

PDO index is also analyzed. The observed pattern exhibits a horseshoe-shaped structure with 291 

cold anomalies in the central North Pacific and warm anomalies along the western coast of 292 

North America (Fig. 9d). This spatial pattern is well reproduced in ASSIM, with a spatial 293 

correlation of 0.90 (Fig. 9e). However, the PDO pattern from CTRL exhibits a distorted 294 
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structure, and its spatial correlation decreases to 0.68 (Fig. 9f). These improvements in both 295 

the temporal evolution and spatial structure of the PDO underscore the potential of the 296 

assimilation system to enable more skillful decadal climate predictions by providing improved 297 

initial states. 298 

    Beyond the North Pacific, another major mode of decadal variability affecting the entire 299 

Pacific basin is the Interdecadal Pacific Oscillation (IPO). Similar to the PDO, the IPO index 300 

is obtained from the leading EOF mode of detrended SST anomalies, but computed over the 301 

whole Pacific (50°S–50°N, 100°E–70°W) (Doblas-Reyes et al., 2013). The annual evolution 302 

of the IPO index is shown in Fig. 10, indicating the basin-wide coherence of Pacific decadal 303 

variability. The observed IPO index undergoes distinct decadal shifts, including a negative 304 

phase prior to the late 1970s, a prolonged positive phase extending through the 1980s and 1990s, 305 

and a return to negative values in the early 2000s. These phase transitions are closely 306 

reproduced by ASSIM, which achieves a high temporal correlation of 0.80 with observations. 307 

On the other hand, CTRL fails to track the decadal evolution of the observed IPO and shows a 308 

much weaker correlation of 0.20. These results highlight the importance of ocean data 309 

assimilation in constraining Pacific-basin SST variability on decadal timescales and enhancing 310 

the representation of long-term Pacific climate variability. 311 

    In addition to the Pacific, the North Atlantic also exhibits notable low-frequency SST 312 

variability characterized by the Atlantic Multidecadal Oscillation (AMO). The AMO index is 313 

computed as the linearly detrended SST anomalies averaged over the North Atlantic (0–60°N, 314 

0–80°W) (Enfield et al., 2001). Figure 11 presents the temporal evolution of the annual AMO 315 

index from 1965 to 2016. The observed AMO index shows a pronounced negative phase in the 316 

1970s and 1980s, followed by a persistent positive phase beginning in the mid-1990s. These 317 

phase transitions are more accurately reproduced in ASSIM than in CTRL, particularly the 318 

timing and amplitude of the warm shift after the mid-1990s. The temporal correlation with 319 

observations is 0.71 in ASSIM, much higher than 0.17 in CTRL. The enhanced representation 320 

of AMO phases in ASSIM reinforces its potential for better predicting related climate impacts 321 

over the North Atlantic and adjacent regions. 322 

 323 
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3.5 U.S. T2m and Precipitation 324 

    Building on the improved representation of tropical SST variability through ocean data 325 

assimilation, we extend our analysis to assess its impact on regional climate over land. Given 326 

the well-established influence of ENSO on U.S. winter climate variability (Ropelewski and 327 

Halpert, 1986; Higgins et al., 2000), we evaluate model performance in simulating interannual 328 

temperature and precipitation variability over the contiguous U.S. during boreal winter (Figs. 329 

12 & 13). For winter surface air temperature (Fig. 12), ASSIM exhibits widespread increases 330 

in temporal correlation with observations across large portions of the northern and western U.S., 331 

particularly over the Intermountain West and Great Lakes regions. In these areas, correlation 332 

improvements commonly exceed 0.3 and locally surpass 0.4. Consistent with the correlation 333 

patterns, RMSE reductions in ASSIM are also evident across the northern and central U.S., 334 

with maximum decreases up to 0.6 °C over the central Great Plains. 335 

    In contrast to temperature, improvements in winter precipitation simulations are more 336 

localized but remain pronounced across the southern U.S. (Fig. 13). Compared with CTRL, 337 

ASSIM shows higher correlations with observed precipitation over the Southwest, southern 338 

Great Plains, and Southeast. In particular, significant enhancements are evident in parts of 339 

California, Texas, and Alabama, where correlation increases exceed 0.4 and locally approach 340 

0.5. These correlation improvements are accompanied by consistent reductions in RMSE 341 

across similar regions. Notably, the largest RMSE reductions, exceeding 0.45 mm/day, are 342 

found over coastal California. The spatial coherence of these improvements highlights the 343 

critical role of realistic ocean states in better capturing land precipitation variability. 344 

    To further investigate the mechanisms underlying the improved simulation of U.S. winter 345 

climate, we examine the regression of surface air temperature and precipitation onto the Niño 346 

3.4 index during boreal winter (Fig. 14). The observed patterns reveal that ENSO exerts a 347 

pronounced influence on U.S. winter climate through large-scale atmospheric responses. 348 

During El Niño events, positive geopotential height anomalies dominate the northern part of 349 

the continent, which may suppress the southward intrusion of cold air masses. This circulation 350 

pattern could lead to anomalous warming across the northern U.S., producing significant 351 

positive correlations with ENSO in these regions (Fig. 14a). Meanwhile, strengthened 352 

https://doi.org/10.5194/egusphere-2025-4910
Preprint. Discussion started: 13 November 2025
c© Author(s) 2025. CC BY 4.0 License.



 14 

subtropical westerlies enhance moisture transport into the southern U.S., favoring increased 353 

precipitation and yielding strong positive correlations with ENSO across the southern tier of 354 

the country (Fig. 14d). 355 

    These ENSO-related spatial structures are well reproduced in ASSIM (Figs. 14b & e). In 356 

particular, the regression patterns of temperature and precipitation in ASSIM closely resemble 357 

those in the observations, especially across the northern and southern U.S., respectively. 358 

Moreover, the regions with robust ENSO-related signals in ASSIM largely overlap with areas 359 

showing improved correlation and reduced RMSE in Figs. 12 and 13, suggesting that enhanced 360 

representation of ENSO variability may underpin its superior performance in simulating U.S. 361 

winter climate. In contrast, CTRL exhibits notable deviations from the observed ENSO-related 362 

patterns, especially in the spatial distribution of temperature responses (Figs. 14c & f). These 363 

results underscore the importance of accurate ENSO representation for improving simulations 364 

of U.S. winter climate variability. 365 

 366 

4 Conclusions 367 

    Accurate representation of climate variability across multiple timescales is essential for 368 

enhancing the reliability of Earth system predictions. One key factor influencing climate 369 

variability is the ocean state, owing to its long memory and strong coupling with the 370 

atmosphere. While ocean data assimilation has proven effective in improving the simulation of 371 

ocean conditions, many existing systems remain uncoupled and thus have limited ability to 372 

support coupled forecasts due to imbalances among model components (Mulholland et al., 373 

2015; Zhang et al., 2011). To address this limitation, Shi et al. (2025) recently developed a new 374 

4DEnVar-based WCODA system for E3SMv2 that enables direct assimilation of ocean 375 

observations within a coupled model framework. Despite this progress, the extent to which the 376 

WCODA system improves simulations of global and regional climate variability has not been 377 

fully assessed. This study aims to systematically evaluate its impacts on simulating major 378 

modes of climate variability and regional climate over the U.S., demonstrating its potential to 379 

enhance initialization and predictive capabilities in coupled Earth system models. 380 

    Our results show that the WCODA system significantly improves the representation of 381 
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both interannual and decadal climate variability. Significant enhancements are achieved in 382 

capturing interannual variability and reducing model biases of surface air temperature and 383 

precipitation over land and ocean domains. Notably, the temporal evolution of major climate 384 

modes, including ENSO, IOD, PDO, IPO, and AMO, is markedly improved. Besides better 385 

capturing the temporal evolution of various modes, assimilating ocean temperature and salinity 386 

also improves the seasonal and interannual variability of ENSO and the spatial pattern of PDO 387 

over the North Pacific. Furthermore, regional evaluations over the contiguous U.S. reveal 388 

increased skill in reproducing the observed interannual variability of winter surface air 389 

temperature in the northern U.S. and precipitation in the southern regions, respectively. The 390 

improved simulation of U.S. winter temperature and precipitation is closely associated with 391 

enhanced ENSO representation, as indicated by spatially coherent regression patterns between 392 

Niño 3.4 and U.S. winter climate. These findings demonstrate the capability of the WCODA 393 

system to deliver more skillful simulations of Earth system variability through improved ocean 394 

initial states and cross-component information exchange. 395 

    Despite these promising results, several limitations remain and offer opportunities for 396 

future development. The current assimilation system does not incorporate atmospheric or sea 397 

ice observations, which may limit its ability to fully constrain coupled model states. Moreover, 398 

the WCODA framework is implemented as a weakly coupled system and does not explicitly 399 

consider cross-component background error covariances during the analysis stage. 400 

Transitioning towards a strongly coupled ocean data assimilation would further improve the 401 

accuracy and physical consistency of initial states. Looking ahead, the WCODA system 402 

provides a promising foundation for improving the initialization of large-ensemble hindcast 403 

experiments from seasonal to decadal timescales. Future work will also leverage these 404 

experiments to systematically assess the impact of accurate ocean initial states on the 405 

predictability of climate variability and extreme events. These efforts will have important 406 

implications for advancing seamless climate prediction and informing risk management in 407 

energy and water systems. 408 

 409 

Code and data availability. The E3SMv2 source code is freely available under an open-source 410 
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license and can be accessed via Zenodo at https://zenodo.org/records/16652680. The ERA5 411 

reanalysis datasets are accessible from the Copernicus Climate Change Service through the 412 

Climate Data Store portal: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-413 

levels-monthly-means?tab=download (Hersbach et al., 2020). Monthly GPCP precipitation 414 

data can be obtained from https://psl.noaa.gov/data/gridded/data.gpcp.html (Adler et al., 2003). 415 

HadISST sea surface temperature data are available at 416 

https://www.metoffice.gov.uk/hadobs/hadisst (Rayner et al., 2003) and EN4.2.1 ocean 417 

temperature and salinity data can be accessed from https://www.metoffice.gov.uk/hadobs/en4 418 

(Good et al., 2013). Model outputs are available on Zenodo at 419 

https://zenodo.org/records/16740831. 420 
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 648 

Figure 1. Time series of detrended annual mean surface air temperature anomalies (units: °C) 649 

over (a) ocean, (b) land, and (c) global domains from 1965 to 2016. Black line: observation; 650 

blue line: CTRL; red line: ASSIM. Temperature anomalies are computed by removing both the 651 

climatological mean and long-term trend. The correlation coefficients of CTRL and ASSIM 652 

with the observation are also shown. The asterisk denotes statistically significant correlation at 653 

the 95% confidence level.  654 
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 655 
Figure 2. Spatial patterns of climatological mean differences in surface air temperature 656 

(units: °C) between model simulations and observations for the period 1965–2016. Panel (a) 657 

shows the difference between CTRL and observation, and panel (b) shows the difference 658 

between ASSIM and observation. Dotted areas denote regions where the differences are 659 

statistically significant at the 95% confidence level.  660 
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 661 

Figure 3. Time series of detrended annual mean precipitation anomalies (units: mm day⁻¹) over 662 

(a) ocean, (b) land, and (c) global domains from 1980 to 2016. Black line: observation; blue 663 

line: CTRL; red line: ASSIM. Precipitation anomalies are computed by removing both the 664 

climatological mean and long-term trend. The correlation coefficients of CTRL and ASSIM 665 

with the observation are also shown. The asterisk denotes statistically significant correlation at 666 

the 95% confidence level.  667 
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 668 

Figure 4. Spatial patterns of (a–c) climatological mean precipitation (units: mm day⁻¹) and (d, 669 

e) precipitation differences for the period 1980–2016. Panels (a–c) show precipitation 670 

climatology from observation, CTRL, and ASSIM, respectively. Panels (d, e) represent 671 

precipitation differences between model simulations and observations: (d) CTRL minus 672 

observation and (e) ASSIM minus observation. Dotted areas indicate regions where the 673 

differences are statistically significant at the 95% confidence level.  674 
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 675 
Figure 5. Time series of the (a) monthly and (b) winter Niño 3.4 index from 1965 to 2016 for 676 

the observation (black line), ASSIM (red line), and CTRL (blue line). The correlation 677 

coefficients with the observation for ASSIM and CTRL are also shown in parentheses.  678 
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 679 
Figure 6. Power spectra (a–c) and seasonal cycle of the standard deviation (d–f) of the monthly 680 

Niño 3.4 index from the observation (left column), ASSIM (middle column), and CTRL (right 681 

column) for the period 1965–2016. The theoretical Markov "red noise" spectrum is shown as 682 

a solid green line, with the 5% and 95% confidence bounds indicated by dashed blue and red 683 

lines, respectively.  684 
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 685 
Figure 7. Time series of the (a–c) monthly and (d) winter Southern Oscillation Index (SOI) 686 

from 1965 to 2016 for the observation (black line), ASSIM (red line), and CTRL (blue line). 687 

Panels (a–c) show individual monthly time series from OBS, ASSIM, and CTRL, respectively, 688 

while panel (d) shows the winter SOI averaged over December–February (DJF). The 689 

correlation coefficients with the observation in ASSIM and CTRL are also indicated in 690 

parentheses.  691 
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 692 
Figure 8. Time series of the autumn (September–November) Dipole Mode Index (DMI) from 693 

1965 to 2016 for (a) the observation, (b) ASSIM, and (c) CTRL. The correlation coefficients 694 

of ASSIM and CTRL with the observed DMI are also shown in the upper-right corner.  695 
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 696 
Figure 9. Time series and spatial patterns of the Pacific Decadal Oscillation (PDO) index from 697 

1965 to 2016 for (a, d) the observation, (b, e) ASSIM, and (c, f) CTRL. The black lines in 698 

panels (a–c) denote the 10-year running mean of the annual PDO index. The numbers at the 699 

top right of (b) and (c) indicate the temporal correlations of ASSIM and CTRL with 700 

observations. The percentage of variance explained by EOF1 is shown at the top right of (d–f), 701 

and the numbers at the top center of (e) and (f) indicate the spatial correlations with the 702 

observed pattern.  703 
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 704 

Figure 10. Time series of the Interdecadal Pacific Oscillation (IPO) index from 1965 to 2016 705 

for (a) the observation, (b) ASSIM, and (c) CTRL. The black line in each panel denotes the 10-706 

year running mean of the annual IPO index. The numbers at the top right of (b) and (c) indicate 707 

the temporal correlations of ASSIM and CTRL with observations.  708 
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 709 
Figure 11. Time series of the Atlantic Multidecadal Oscillation (AMO) index from 1965 to 710 

2016 for (a) the observation, (b) ASSIM, and (c) CTRL. The black line denotes the 10-year 711 

running mean. The numbers at the top right of (b) and (c) indicate the temporal correlations of 712 

ASSIM and CTRL with observations.  713 
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 714 

Figure 12. Spatial patterns of the differences in (a) correlation coefficients and (b) root-mean-715 

square errors (RMSE; °C) of detrended winter surface air temperature anomalies between 716 

ASSIM and CTRL with observations from 1980 to 2016 over the contiguous U.S. Dotted areas 717 

indicate regions where the differences are statistically significant at the 90% confidence level.  718 
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 719 

Figure 13. Similar to Fig. 12 but for detrended winter precipitation.  720 
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 721 
Figure 14. Regression patterns of winter surface air temperature (left column; shaded) and 722 

precipitation (right column; shaded), 500hPa geopotential height (contours), and 850hPa winds 723 

(vectors) on the standardized Niño 3.4 index for (a, d) the observation, (b, e) ASSIM, and (c, f) 724 

CTRL. Dotted areas indicate regions where the regressions are statistically significant at the 725 

95% confidence level. 726 
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