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Abstract. Gravitational sinking of particulate organic matter (POM) is a key mechanism of the vertical transport of carbon in

the deep ocean and its subsequent sequestration. The size spectrum of these particles is formed in the euphotic layer by primary
production and various mechanisms, including food web consumption. The masses of the particles, as they descend, change
under aggregation, fragmentation, and bacterial decomposition. These processes depend on the water temperature and oxygen

5 concentration, particle sinking velocity, ages of the organic particles, ballasting and other factors. In this work, we developed
a simple Eulerian—Lagrangian approach to solving equations for sinking particulate matter when the effects of the sizes and
ages of the particles, temperature and oxygen concentration on their dynamics and degradation processes are considered. The
model considers feedback between the degradation rate and the particle sinking velocity. We rely on known parameterizations,

but our Eulerian—Lagrangian approach for solving the problem differs, which enables the algorithm to be incorporated into

10 biogeochemical global ocean models with relative ease. Two novel analytical solutions of a system of one-dimensional Euler
equations for the POM concentration and Lagrange equations for the particle mass and position were obtained for constant

and age-dependent degradation rates. The feedback between the degradation rate and sinking velocity leads to significant
differences in the vertical profiles of the POM concentration and sinking flux, in contrast to the solutions obtained at a constant
sinking velocity, where the concentration and flux profiles of the POM are similar. The calculation results are compared with

15 the available measurement data for the POM and POM flux for the latitude bands of 20-30°N in the Atlantic and Pacific
Oceans and 50-60°S in the Southern Ocean. The dependence of the degradation rate on temperature significantly affected the
profiles of the POM concentration and sinking flux by enhancing the degradation of sinking particles in the ocean’s upper
layer and suppressing it in the deep layer of the ocean. In all cases considered, the influence of the oxygen concentration was

insignificant compared to that of the distribution of temperature with depth.
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1 Introduction

Gravitational sinking of particulate organic matter (POM) is a key mechanism of the vertical transport of carbon in the deep
ocean (gravitational biological pump) and its subsequent sequestration (Siegel et al., 2023). The biological pump mechanism
provides not only the transfer and burial of carbon but also nutrients, trace metals, and natural and artificial radionuclides
through a scavenging mechanism (Roca-Marti and Puigcorbé, 2024; De Soto et al., 2018; Maderich et al., 2022). In addition
to the processes of sorption and desorption, the mechanism of scavenging is controlled by the sizes of the sinking particles,
their densities, the sinking velocity, and the processes of organic particle degradation (Maderich et al., 2021).

The size spectrum of the sinking particles is formed in the euphotic layer by primary production and various mecha-
nisms, including aggregation and fragmentation under the influence of mechanical factors (Burd , 2024) and through food
web consumption. The masses of the particles, as they descend in deep layers of the ocean, decrease under the influence
of grazing by filter feeders and bacterial decomposition, which depends on the water temperature and oxygen concentration
(Cram et al., 2018), particle falling velocity (Alcolombri et al., 2021), ages of the organic particles (Jokulsdottir and Archer,
2016; Aumont et al., 2017) and other factors, such as ballasting (Armstrong et al., 2002; Cram et al., 2018; Maerz et al., 2020).
The POM degradation rate can be proportional to the particle mass (volume) (DeVries et al., 2014; Cram et al., 2018) or surface
area (Omand et al., 2020; Alcolombri et al., 2021).

Many biogeochemical models assume that the settling velocity of particles is constant or increases linearly with depth (e.g.,
Aumont et al., 2015). Then, depending on the degradation rate, the vertical profiles of the POM concentration and sinking flux
can be determined. At a constant degradation rate, the corresponding vertical profiles of the particle mass concentration and
mass flux are exponential (Banse, 1990; Lutz et al., 2002). Assuming that the degradation rate is inversely proportional to the
age of the particles (Middelburg, 1989), the vertical profiles of the particle mass concentration and mass flux can be described by
a power law (Cael et al. , 2021). This power law corresponds to the well-known empirical "Martin curve" (Martin et al., 1987).
However, as the particle mass decreases due to degradation, the sinking velocity also decreases. This feedback, along with
other factors, is taken into account in several mechanistic models (e.g., DeVries et al., 2014; Cram et al., 2018; Omand et al.,
2020; Alcolombri et al., 2021); however, these models do not consider the ages of the particles.

An analytical solution to the equation for the distribution of POM by particle size was obtained by DeVries et al. (2014) for
a constant degradation rate. However, as noted by DeVries et al. (2014), the values of the vertical flux of the POM mass at great
depths were 1-2 orders of magnitude less than those observed. This discrepancy can be assumed to be due to the constancy of
the degradation rate with depth in the model. A decrease in the rate of degradation can also be caused by a decrease in water
temperature (e.g., Cram et al., 2018) or an increase in the ages of the sinking particles with depth.

In this work, we developed a simple Eulerian—Lagrangian approach for solving equations for sinking particulate matter when
the effects of the sizes and ages of the particles, temperature and oxygen concentration on their dynamics and degradation
processes are considered. We relied on known parameterizations (Kriest and Oshlies, 2008; DeVries et al., 2014; Cram et al.,
2018), but our Eulerian—Lagrangian approach for solving the problem is different. Our approach involves solving the Euler

equation for the concentration of particles of a given size and the Lagrange equations for a sinking organic particle under the
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influence of microbiological degradation. This enables the incorporation of the proposed algorithm into biogeochemical global
ocean models with relative ease. The remainder of the paper is organized as follows: The equations of the model for sinking
particulate organic matter are presented in Sect. 2. Analytical solutions for constant and age-dependent degradation rates are
obtained and compared with available data on the vertical concentration and mass flux of the POM in Sect. 3. A numerical
Eulerian—Lagrangian method for the generalized model is presented in Sect. 4. The results of the simulations are discussed in
Sect. 5. Our findings are summarized in Sect. 6. The equivalence of the obtained solution and the solution in (DeVries et al.,

2014) for a constant rate of degradation is shown in Appendix A.

2 Model equations

We consider the vertical flux of organic particles caused by gravitational forces. Focusing on the development of a numerical
Eulerian—Lagrangian method and finding analytical solutions, we limit ourselves to a fairly simple one-dimensional formula-
tion of the problem away from areas of intense currents. The vertical distribution of these particles below the euphotic layer z.,,
is governed by the flux of settling particles equilibrated by particle degradation due to bacterial decomposition. The processes
of aggregation, fragmentation and ballasting are not included in the model. We limit ourselves to large-scale climatological
processes that cover the water column below the euphotic layer to the bottom. We assume that the effects of time variability on
the POM flux are relatively small far from this layer, and we consider the steady states of these fluxes.

The Euler particle concentration transport equation and the Lagrange equations for the individual particles are solved. The
Euler equation for the POM spectral concentration C,, 4 (unit: mass per volume per particle size increment [kg m~*]) for

particles of equivalent spherical diameter d [m] is written as

oW, aC

IWp,dp,d + ’YC 4= 0, )
0z’

where W, 4 [m d—1is the settling velocity of a particle of diameter d, 2z’ [m] is the vertical coordinate directed downwards

from the depth of the euphotic zone (2’ = z — z,, ), and 7y [d—1] is the degradation rate. The boundary condition for Eq. (1) is

Z/ =0: Cp d = Cp’d(O), (2)

)

where C), 4(0) is the prescribed POM concentration at the lower boundary of the euphotic layer 2.
We consider the particle dynamics in the Lagrangian coordinate system. The porosity of organic particle aggregates increases
with increasing particle size (Mullin, 1966). The relationship between the organic matter mass my and diameter d of porous

particles can be parameterized according to the particle fractal dimension
Mg = CpmdS. 3)

Here, ¢ (¢ < 3) is a dimensionless scaling argument, and ¢,, is a prefactor coefficient (Alldredge and Gotschalk , 1988).
The Stokes-type settling velocity W), ; depends on the difference between the density of water and the density of the par-

ticle, the particle size and shape, and the kinematic viscosity. To consider the entire ensemble of aforementioned factors that
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impact sinking, we approximate the sinking law by power dependence, which is widely used in particle flux models (e.g.,

DeVries et al., 2014):
Wp,d = cypd", 4

where 7 (7 < 2) is a dimensionless scaling argument and c,, [m!~"7 d~!] is a prefactor coefficient. The measurements of
(McDonnell and Buesseler, 2010) show that formulations of sinking velocity as a function of only equivalent particle size can
be insufficient because the shapes of the particles (e.g., faecal pellets) can significantly affect the sinking velocity. Fig. 1 from
(Cael et al. , 2021) also demonstrates the difficulties of describing the sinking velocities of particles of various sizes, shapes
and structures with a single universal dependence. Therefore, Eq. (4) should be considered only a first approximation when
describing the complex dynamics of particles.

We consider the case in which the mass of a particle that is sinking with velocity W), 4 decreases over time ¢ as a result of
microbial degradation. This process can be described by a first-order reaction with a reaction rate of v [d~!]. The corresponding

equation for my [kg] is written as

om
atd = _7(9)m37 (5)

Parameter # = 1 when the degradation rate is proportional to the particle mass, and § = 2/3 when the degradation rate is
proportional to the surface area of the particle (Omand et al., 2020).
In general, the degradation rate depends on many factors. Here, we consider only several of them: the age of the organic

particle ¢ [d], the temperature of the sea water T' [°C], and the concentration of oxygen [O2] [1M];

v =7(tT(2),[02] () ©)

The parameterization used in Eq. (6) is presented in detail in Sect. 4.

3 Analytical solutions
3.1 Age-independent degradation rate

First, we consider the case in which the degradation rate of the particle is age independent (age-independent degradation rate
(AID) model). Furthermore, we suppose that the mass loss is proportional to the mass of the particle (v = 7y, § = 1) and does

not depend on temperature or oxygen concentration (g = const). Then, the solution of Eq. (5) is
ma = moqexp (—yot), (7

where mgq = cmdg is the initial value of the particle mass for diameter dy. Initially, the particle is placed at depth z’ = 0.

Combining Eq. (7) and Eq. (3) yields the change in the particle diameter over time as

d(t) = doexp (_’Ygt) . )]
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Assuming the quasiequilibrium sinking of the particle in the Stokes regime, as described by Eq. (4), and taking into account
that particle trajectory in Lagrangian system of coordinates is described as 9z’/9t = W), 4, we estimate the dependence of the

particle depth 2’ on ¢ using Eqgs. (4) and (8):

0z’ 70t
= Cwd( exp <C . ©))
By integrating Eq. (9) from the initial particle depth 2’ = 0 at ¢t = 0, we find the vertical path travelled by the particle:
wdy) t

L [1exp (W’ﬂ (10)

Y0 ¢
By eliminating time from Egs. (8) by using Eq. (10) and then substituting Eq. (8) to Eq. (4), we obtain I/}, 4 and d as functions
of 2’
Wp.a=H (2 )ewd] (1 -2, (11)

d=H()do(1—22')7, (12)

where

70

= 0. 13

(0 Cond] > (13)

Solutions (11) and (12) describe the vertical distribution of W, 4 and d in the layer of finite thickness hg = 1= below which
there are only trivial solutions W), 4 =0 and d = 0. To consider this finding, the Heaviside function is used. The Heaviside
functionis H(2') = 1if 2’ <¢~tand H(z') = 0if 2/ > ¢y~ 1. Taking into account Eq. (11), we solve Eq. (1) with the boundary
condition in Eq. (2) to obtain

¢=n

Cpa=H(")Cpa(0) (1 —¢2) 7 . (14)

The solution (14) describes the vertical profile of the POM concentration for particles of diameter d under the prescribed
particle size distribution N (dp) [m~*] at 2’ = 0. The distribution N(dy) was approximated in such a way that the number of

particles decreased with increasing particle size according to power law scaling
N(dy) = Mody ©, (15)

where € is a power-law exponent and M is a constant that can be estimated from the total concentration of sinking POM at
z' = 0. The power law distribution is typically observed in the mixed layer (e.g., Kostadinov et al., 2009). Then, the distribution

Cp,q(0) can be represented as a product of particle size distribution N (dp) and mass of particle mg 4 :
Cyp,a(0) = Modg “mo,q = Mocd§ ™. 16)

Considering a small increment of particle size Ady we assume that the concentration C, 4(0) is uniform within the interval
Adp. The total concentration C}, [kg m~3] is calculated as the sum of concentrations C), ;, multipled by increment of particle

size Ady in the k-th interval over the total number of n4 intervals:

ng nd —n
Co(2) = Cprhdy = Moc S dS 3 H(Z') (1= 02') T Ady, (17)
k=0 k=0


vladm
Highlight

vladm
Highlight

vladm
Highlight

vladm
Highlight

vladm
Highlight

vladm
Highlight

vladm
Highlight

vladm
Highlight


145

150

155

160

where dg , = kAdy+dJ"", Ady = (d*** —dJ""™) /ng, and d*"™ and df**® are the minimal and maximal values, respectively,
of do. At Adgy — 0, the total concentration of sinking POM C, in the range from df*'" to dj*®® can be calculated as

dg)nam
C—

(=) = Mocn / & H(Z) (1= 2) 7" ddo, (18)

min
dO

The total mass flux F}, [kg m~2d '] can be calculated in a similar way:

ng nd
e <
Fy(2) = ZCp7kWp7kAd0 = MyCmCu ngjf H(z')(1—42)" Ady. (19)
k=0 k=0

Here, W, . is the sinking velocity in the k-th interval of size d over a total of ng intervals. At Ady — 0,
agree
Fp(2) = Mocmcw / QIS H(2) (1= 2') 7 ddo, (20)
dgrin
The problem for which we obtained the solution (14) for the POM concentration C), 4 is similar to that solved by DeVries et al.

(2014) for the particle size spectrum equation. In Appendix A, we show the equivalence of these solutions.
3.2 Age-dependent degradation rate

The degradation rate as a function of POM age ¢ [d] can be described by following Middelburg (1989) as

B

_ 21
a+t’ 2D

v(t)

where « [d] and /3 are empirical constants. We define such a model as an age-dependent degradation rate (ADD) model. The
time dependencies of d and W), 4 = 92'/Jt with parameterization of the degradation rate Eq. (21) are obtained similarly to

those in Section 3.1. They are expressed as

o \P/¢
d=dy <a+t> ; (22)
82’ a nB/¢
Oy (Mt) . 23)
Integrating Eq. (23) from the initial particle depth 2z’ = 0 at ¢ = 0, we find the path travelled by a sinking particle as
(C—nB)/¢
4
z/:cwdg% KHO‘) 1]. (24)
By eliminating time from Egs. (21), (22) and (23), we obtain depth-dependent solutions in the same way as in Egs. (11)-(12):
__n8_
Wh.a(') = cudy (1+62) T 7, 25)
! ﬂ ! -
W) == (1462) 7, (26)
3
A=) = do (14 2') &7, @7)
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where

(=P

aleyd])’

¢

(28)

The parameter ¢ [m~'] characterizes the vertical scale of attenuation W), 4(2"),7(z") and d(z’) with depth.
By integrating Eq. (1) with the boundary condition in Eq. (2) and considering Egs. (25) and (26), we obtain the following
solution for C), 4:

=98
C_

Cpa(2) =Cpa, (14 ¢2") <% . (29)

The density of the distribution of the particle mass concentration at z’ = 0 is assumed to be approximated by a power law (15).

We can obtain the total concentration of sinking POM C), in the range of dy from dJ¥" to d'** as

dgz,a:c
~ n=9B
C,(2') = Mocp, / A5 (14 ¢2') <% ddy. (30)

min
dO

The corresponding total mass flux F,(z) is written as

d;r)nn,.’l: dgm:n

(Y= | W, uC,addo =M A1 (14 ¢2') T dd 1

p\# ) - p,d“p,d0UQ = 0CmCw 0 ( +¢Z ) 0- (3 )
dgz’in dgzin

3.3 Comparison of analytical solutions

The obtained analytical solutions have several important properties. First, we compare these solutions with the solutions ob-

tained under the assumption of a constant sinking velocity when
Wp,d = deg.

The solution of Eq. (1) for a constant degradation rate y corresponds to the exponential profile of the particle concentration

/
Co(2,do) = C,p(0,do) exp (— %Zn) , (32)
cwd
whereas the time-dependent degradation rate (21) corresponds to the power-law distribution of the POM concentration
acyd! \’?
Cp(#',do) = Cp(0,do) | ——m—— ) . 33
p(Z; O) p( ’ 0) (CEdeg+Z/> ( )

Both of these solutions are frequently used to approximate observed particle flux profiles, e.g., (Martin et al., 1987; Lutz et al.,
2002). Notably, a solution of the form (33) can alternatively be obtained under the assumption of a constant degradation rate
and a linear increase in the sinking velocity (Kriest and Oshlies, 2008; Cael and Bisson , 2018).

The corresponding profiles of C,(z’,dy) and F,(z’,dy) were obtained by summing the ng profiles in Egs. (32) and (33)
similarly Eqgs. (17) and (19). The values of C},(0,dy) were calculated using Eq. (16). The model parameters (1, ¢, Yo, Cw, €,
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Table 1. Baseline model parameters.

Parameters  Value/range  Unit Reference

1.17 - Smayda (1970)
¢ 2.28 - Mullin (1966)
Yo 0.03 d=! Kriest and Oshlies (2008)
Cw 2.2-10° m'~7d~"  Kriest and Oshlies (2008)
€ 4.2 - Kostadinov et al. (2009)
Q1o 2-3 - Cram et al. (2018)
Tref 4 °C Cram et al. (2018)
Ko 8 uM Cram et al. (2018)
o 30 d Aumont et al. (2017)
153 1 - Aumont et al. (2017)
dg® 2000 pm DeVries et al. (2014)
dgvin 20 pum DeVries et al. (2014)
nd 990 - DeVries et al. (2014)

a, B, dgt*®, dg”", and ny) in Table 1 were the same as in (DeVries et al., 2014) and (Aumont et al., 2017). As shown in Fig.
1, with these parameters, C), and F}, decay much faster for the AID model than for the ADD model. Notably, C', and F}, tend
to exhibit exponential or power-law profiles only at great depths. Moreover, at a constant particle velocity, the mass-weighted

sinking velocity of particles

e

increases with depth.

The presence of feedback between y and W), 4 leads to significant changes in the C}, and F}, profiles. In the case of a constant
Yo, the vertical distribution of the concentration C,, 4 for one surface fraction of POM size dj is limited by a finite layer of
thickness ho = ((cwdg)(nv0) ~!. The particles in this layer sink at a linearly decreasing velocity. The masses of the particles
also decrease with depth until a depth at which they are completely remineralized is reached. The size distribution for a single
class of particles at depth 2’ is N(d,2') = Cp gmy ' ~ (1—12") "1 At 2’ — ho, N(d,z") — oo as mg — 0. The finite thickness
of the layer of sinking particles with the parameters given in Table 1 varies from 45.4 m at dyp = 20 pm to 9937 m at dy = 2000
pm. Notably, the solution to the problem in a different formulation (Omand et al., 2020) has the same qualitative character.
However, the total POM concentration and total POM flux decay asymptotically approaching exponential profiles , in contrast
to the profiles (14) and (11) for one class of particle sizes dg on 2z’ = 0. The total concentration and flux profiles, normalized
to values at the base of the euphotic layer, are shown in Fig. 1, where the C), and F}, profiles were obtained via the summation
of the ng4 profiles in Egs. (17) and (19). The baseline parameters for the calculation are presented in Table 1. These parameter

values match those used by DeVries et al. (2014). Therefore, the curves in Fig. 1 also coincide with the corresponding curves
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Figure 1. Normalized total POM concentration C), (a), total POM flux F}, (b), and weighted vertical velocities of the particles (c) for the AID
(blue lines) and ADD (red lines) models calculated from the analytical and numerical solutions. The dashed lines correspond to the solutions
of (1) at constant Wp,(do), whereas the solid line corresponds to the solution of the problem at variable W), 4. The small circles correspond

to the numerical solutions obtained via the AID and ADD models.

in Fig. 1c from (DeVries et al., 2014), which were calculated using an equivalent formulation of the same problem, as shown
in the Appendix.

In contrast to the AID model solution (17), the POM concentration profile (29) decays asymptotically with depth at { > 7
and ¢ > nf for the ADD model (21). These conditions are met for the parameters listed in Table 1. The rate of degradation
also decays with depth. Unlike the models (Kriest and Oshlies, 2008; Cael and Bisson, 2018) that use the same "Martin curve"
power-law dependence (33) for the concentration and mass flux of POM with the exponent (3, the exponent in the obtained
solution (29) depends not only on 3 but also on the parameters that characterize the sinking velocity (1) and the particle mass
fractal dimension (¢).

The sensitivity of the AID model parameters was considered by DeVries et al. (2014). They reported that four parameters
(1, ¢, 0, and €) control the flux profile and that the most significant factor is the slope of the particle distribution € on 2z’ = 0,
which has the greatest influence on the depth distribution of the particles. In Fig. 2, the variables are presented in logarithmic
coordinates. Only the vertical distribution of C), is close to the power distribution with an exponent of approximately 1, whereas
the distribution with depth of F}, significantly deviates from power law (Martin’s law). The sensitivity of the concentration and
flux profiles to the values of parameters « and [ is examined in Figure 2. An increase in « leads to a deepening of the
concentration and particle flux profiles, whereas an increase in /3 leads to a shallowing of these profiles.

The relative maximal absolute errors [%] of the calculated AID and ADD solutions for C,, and F), are presented in Table
S1. We compare the solutions at spectral resolutions ng = 100 and ng = 10 with the baseline calculation at ngy = 990. These
estimates demonstrate the necessity of fine resolution of the spectre of particles at the lower boundary of the euphotic zone for
obtaining accurate profiles of the POM concentration and sinking flux. In this case, the particle concentration profile is more

sensitive to the spectral resolution than the sinking flux profile is.
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Figure 2. Sensitivity of the normalised total particle concentration C}, (a) and total particle flux F}, (b) to parameters o and .

4 Numerical model
4.1 Numerical algorithm

The model discussed in the previous section is based on several simplifying assumptions that make obtaining analytical so-
Iutions to the system of equations possible. However, when we expand the model to include new important factors in the
processes of sinking and remineralization of POM, analytical solutions to the problem can no longer be obtained. Therefore, a
new numerical Eulerian—Lagrangian approach for solving this problem was developed.

Here, we consider the case in which the degradation rate depends on the age of the organic particle (ADD model), the

temperature of the sea water 7" and the concentration of oxygen [Os]:

Y=t @0d ) = (25 (@) (225 G4

where Q1 is the temperature coefficient, T;.. s is a reference temperature, and Ko [¢M] is an oxygen dependence parameter

(Cram et al., 2018). When ~ does not depend on age (AID model), then

T—T,c¢ [02] )

_ 10 ) 35
Y Y0 (QIO > (KO + [02] ( )
The system of Lagrange equations for particle depth and size derived from Eqgs. (4)-(5) is as follows:

od 7, T(2'),[0:] (2))
- _ d 36
ot ¢ ’ (36)
07
— = cud. 37
ot ¢ 37)

10
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Figure 3. Eulerian—Lagrangian method flow chart for equations of sinking particulate organic matter.

The initial conditions are thatat t =0: 2’ =0and d = dy ;.

The procedure for determining the profiles of C,,(z’) and F,(z’) is presented in Fig. 3. It includes 11 steps.
Step 1 The model parameters and temperature and oxygen concentration profiles are read from the input files.
Step 2 A regular Eulerian grid z’ is established from 0 to the ocean depth D with n, equal intervals Az with levels 2/ = 7- Az,
where j = (0,n). The particle size spectrum at the lower boundary of the euphotic layer is divided into n4 equal intervals of
size Ad in the range from d,, iy, t0 dyqq. For every particle size do i, k = (0,n4).
Step 3 Steps 4-9 are performed for every do i, where k = (0,n4). Then, Step 10 is performed.
Step 4 The initial conditions are set for the Lagrangian particle depth 2’ (¢;) and size d = dj ;, equations at t; = 0.
Step 5 If the Lagrangian particle depth z’(¢;) is equal to or greater than the ocean depth D or the particle diameter at this depth
level d = dy 1, is equal to or less than 1% of the minimum diameter d,,,,, Step 8 is performed; otherwise, Step 6 is performed.
Step 6 The timescale is divided into intervals At;, i = (0,n;) over which Egs. (36)-(37) are integrated. To align the resulting
Z1;’ (t;) and regular depth grid z’, the i-th timestep duration is calculated as At; j, = Az/ (cwdz k)

11
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Step 7 The Lagrangian formulation with respect to time ¢ is used to solve the system of equations (36)-(37) via the Runge—Kutta
method of the 4th order. Cubic spline interpolation is used to calculate the temperature and oxygen concentration at 23’ (¢;).
Step 8 The wy, (2 (ti+1)) and y(Z;’ (t;41)) profiles on the Lagrangian grid are interpolated via a cubic spline over the Eulerian
grid z'.

Step 9 Cp, 4(Z') is calculated by solving the Euler equation (1) via the Runge—Kutta method over the regular grid z’. Then, Step
3 is performed.

Step 10 The total POM concentration C,,(z') and POM flux F,(Z') are obtained via numerical integration of Cp 4(Z’) and
wp(Z')) by using the composite Simpson’s 1/3 rule.

Step 11 The model outputs the total POM concentration C,,(z') and POM flux F,(Z’).

The code for the proposed algorithm, along with the data used in this study, is archived on Zenodo (Kovalets et al., 2025a, b).

4.2 Numerical model setup

Simulations were carried out for a water column with a depth of D = 5000 m and Az =1 m. We calculated the vertical
profiles of the POM concentration C}, and flux F}, using AID and ADD models for the degradation rate. The remaining model
parameters, with the exception of 7, were adopted from Table 1. The profiles of C}, and F), were calculated via the above
algorithm with 7 = 1.17 for comparison with the analytical solutions with the AID and ADD parameters from Table 1. As
shown in Fig. 1, the numerical and analytical profiles coincide.

The calculation results were compared with the available measurement data for C}, and F}, for the latitude bands of 20-30°N
in the Atlantic and Pacific Oceans and 50-60°S in the Southern Ocean. These calculations aimed to assess the relative effects
of the vertical distributions of temperature and oxygen in the Atlantic, Pacific and Southern Oceans on the profiles of C}, and
F},. For the Atlantic Ocean, the C), and F}, data are compiled in (Aumont et al., 2017) and (Lutz et al., 2002). For the Pacific
Ocean, these values are presented in (Martin et al., 1987) and (Druffel et al., 1992). The Southern Ocean data for the Pacific
and Atlantic sectors are presented in (Aumont et al., 2017) and (Lutz et al., 2002). The calculations required for averaging
over the region and time profiles of 7" and [O2] were performed with the measurement data from (Boyer et al. , 2018). These
averaged profiles are shown in Fig. S1 in the Supplement. Notably, there is great uncertainty not only in the choice of model
parameter values but also in the parameterization of the processes. This is explained by both an insufficient understanding of
the physical and biogeochemical processes and the lack of a sufficient number of measurements in the deep layers of the ocean.
In particular, the observation results (Cael et al. , 2021) show large deviations in the parameters of the sinking velocity—particle
size relationship (4). In recent models, the parameter 7 has varied from 0.26 (Alcolombri et al., 2021) to 2 (Omand et al., 2020).
Therefore, in the simulations, we compared the effects of 7 on the C), and F}, profiles for two values: 7 = 1.17 (Smayda, 1970)

and 7 = 0.63 (Cael et al. , 2021).
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Figure 4. Normalized total POM concentration C), (a—c) and total POM flux F}, (d—f) versus measurement data in the Atlantic Ocean at
20-30°N (Aumont et al., 2017; Lutz et al., 2002). Three columns of panels correspond to the model without dependency of temperature and

oxygen (panels a and d), additional temperature dependence (panels b and e), and both additional dependencies (panels ¢ and f).

5 Modelling results
285 5.1 Comparison of simulations with measurements

Figures 4-6 show the profiles of C), and F), normalized to C}(zey,) and Fj,(z.,,). They were calculated using the numerical

algorithm described in Sect. 4.1. These profiles are compared with normalized measurements in the subtropical zones of the

Atlantic (Fig. 4) and Pacific (Fig. 5) Oceans and in the Atlantic and Pacific sectors of the Southern Ocean (Fig. 6) to consider

the effects of temperature and oxygen concentration on POM. When the modelling results are compared with the measurement

290 data, the significant scatter of the measurement data presented in Figs. 4-6 must be noted. This scatter is due both to the

difficulties of measuring the concentration and flux of particles and to regional differences in the influx of particles and in the
surrounding ocean.

The C,, and F), profiles in Figures 4-6 were obtained for three variants of the degradation model. In the first variant (plots

a and d), C,, and F), do not depend on the temperature or oxygen concentration. In the second variant (plots b and e), they
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Figure 5. Normalized total POM concentration C), (a—c) and total POM flux F}, (d—f) versus measurement data in the Pacific Ocean at
20-30°N (Martin et al., 1987; Druffel et al., 1992). Three columns of panels correspond to the model without dependency of temperature and

oxygen (panels a and d), additional temperature dependence (panels b and e), and both additional dependencies (panels ¢ and f).

do not depend on the oxygen concentration, and in the third variant (c and f), they depend on the temperature and oxygen
concentration. The first variant is described by analytical solutions for the AID and ADD models. The features of these solutions
are discussed in Section 3.3. The profiles of C, and F}, are sensitive to the value of 7. The solutions with = 0.63 decay more
slowly than those with n = 1.17 do, as shown by the analytic solutions in Figs. 4a, 4d, 5a, 5d, 6a, and 6d.

The use of the AID model led to a more rapid decay of C), with depth than was observed in all the ocean profiles. Moreover,
the application of the ADD model resulted in smoother profiles in all oceans; however, the AID and ADD profiles are qualita-
tively close. As shown in Figs. 4b, 4e, 5b, Se, 6b, and 6e, the dependence of the degradation rate on temperature significantly
affected the C), and F}, profiles; namely, it enhanced the degradation of sinking particles in the upper layers of the ocean and
suppressed it in the deep layers of the ocean. The influence of the oxygen concentration in all the cases considered (Figs. 4c,
4f, Sc, 51, 6¢, and 6f) was less significant than that of the distribution of temperature with depth. Overall, including temperature
and concentration dependence in the degradation rate relationship improved the agreement with ocean measurements. The

normalized mean bias errors (MBEs) when considering the dependence of the degradation rate on temperature and oxygen
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Figure 6. Normalized total POM concentration C), (a—c) and total POM flux F}, (d—f) versus measurement data in the Southern Ocean at
50-60°N (Aumont et al., 2017; Lutz et al., 2002). Three columns of panels correspond to the model without dependency of temperature and

oxygen (panels a and d), additional temperature dependence (panels b and e), and both additional dependencies (panels c and f).

concentration (third variant) decreased from 9% to -3% compared to those of the first variant, when this dependence was not
considered. For the third variant, the root mean square deviation (RMSD) decreased by half compared with that of the first
variant.

Notably, both the AID and ADD models somewhat underestimated F}, when the dependence on temperature was considered.
As shown in Figs. 4-6, the use of the AID model led to a more rapid decay of C}, with depth than was observed in all ocean
profiles. Moreover, the decay of F}, with depth occurred more slowly in most of the measured profiles. The use of the ADD
model (Figs. 4-6) resulted in smoother profiles; however, qualitatively, the AID and ADD profiles are similar. Notably, profiles
C)p and F, in Fig. 3c, 3f and 4c, 4f are quite close despite the differences between the temperature and oxygen concentration
profiles in the 20-30°N band of the Atlantic and Pacific Oceans (Fig. S1a-S1b). These profiles in the colder, oxygen-saturated

waters of the Southern Ocean (Fig. S1c) attenuate more slowly with depth.
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5.2 Sensitivity study

As shown in Figs. 4-6, the model output was sensitive to parameters with high uncertainty, such as 7. Therefore, a sensitivity
study was carried out for the model parameters in Table S1. We used the one-at-a-time method to quantify the effect of
variation in a given parameter on the model output while all other parameters were kept at their initial values (Hamby, 1994;
Lenhart et al., 2002; Soares and Calijuri , 2021). The effects of variations in these parameters were estimated for the particle
transfer efficiency (T'E). T E1¢qo is defined as the ratio of the POM flux at the lower level of the euphotic layer z.,, to the flux
at the lower boundary of the mesopelagic layer z = 1000, and T E5 is defined as the ratio of the POM flux at the lower level
of the euphotic layer to the flux in the bottom layer at z = 5000m. The ranges for the parameters were defined for a constant
ratio 7 > 1. The minimum parameter value p,,;, was set to be proportional to the reference value p;..y with a ratio value of
1/r, whereas the maximum value p,,,, Was set to be proportional to the reference value p,.; with a ratio value of r. For the
parameters in Table S1, the value of r was chosen to be the same (r = 1.25), which satisfies the ranges of all the parameters.

The model output sensitivity was estimated using a sensitivity index (SI) defined as

TE(pmax) - TE(pmzn)
TE(prey) ’

ST = (38)

where TE(pmaz)s TE(Pmin) and T E(pyc5) are the simulation results for the maximal py,qe, minimal py,;,,, and reference
Dres parameter values, respectively. Calculations of ST were carried out for the Pacific Ocean for the AID and ADD models
with the reference, maximal and minimal values of the parameters from Table S2.

The sensitivity index SI(T Ejpo0) is shown in Fig. 7a for the parameters of the AID model. As shown in the figure,
SI(TFE1000) was most sensitive to the exponent ¢ in the power law dependence of the particle mass on the particle size
(3) and to the exponent ¢ in the power law dependence of the particle size distribution at the lower boundary of the euphotic
layer (16). The sign of the index indicates whether the model reacted codirectionally to the input parameter change, i.e.,
whether the parameter increase/decrease corresponded to an increase/decrease in the model output parameter. The nature of
the dependence of SI(T E1gp) on ¢ and € was different. An increase in ¢ resulted in an increase in T'E1gqq, i.€., an increase
in the mass of a particle increased the transfer efficiency. Moreover, an increase in € resulted in a decrease in T'F1¢qp, i.€., an
increase in the slope of the spectral particle size distribution led to a decrease in the transfer efficiency. The dependence of
SI(T Eip00) on Tyc5 and Ko was weak (ST << 1), whereas the dependence on 7, 17 and Q19 was moderate. The sensitivity
index SI(T Esooo) for the parameters of the AID model is shown in Fig. 7b. As shown in the figure, it is qualitatively similar
to that in Fig. 7a. Four parameters (o, (,7, and ¢) showed strong sensitivity.

The sensitivity index SI(T E1000) values for the parameters of the ADD model are shown in Fig. 7c. Similar to the results in
Fig. 7a, T E1000 was most sensitive to ¢ and €; however, the amplitudes of ST (T E1¢q) were less than those for AID model. The
sensitivity of the ADD model parameters (« and 3) was moderate. The sensitivity index ST(T Esoq) values for the parameters
of the ADD model are shown in Fig. 7d. Similar to SI(T E1goo) for this model, the magnitudes of the ST(T E5go0) values
were greater than the magnitudes of the SI(T E5o00) values. Additional details on the sensitivity study are presented in the

Supplement.
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Figure 7. Sensitivity indexes SI (T E1000) and SI(T Esoo0) for parameters given in Table S2. Panels a and b correspond to the AID model,

whereas panels ¢ and d correspond to the ADD model.

6 Discussion and conclusions

In this work, we considered a simple Eulerian—Lagrangian approach for solving equations that describe the gravitational sink-
ing of organic particles under the effects of the sizes and ages of the particles, temperature and oxygen concentration on their
dynamics and degradation processes. In contrast to other approaches, our approach does not solve particle size spectrum equa-
tions (e.g., DeVries et al., 2014) explicitly or introduce power-law particle size distribution assumptions below the euphotic
layer (e.g., Kriest and Evans , 1999; Maerz et al., 2020). Note that the particular form of size spectrum dependence N (dy) may
differ from the power law (15). Unlike (Omand et al., 2020), we do not assume a priori the constancy of the particle flux in
depth in steady state. Instead, solutions are found for the Euler equation for the concentration of particles of a given size and
the Lagrange equations for a sinking organic particle under the influence of microbiological degradation. In the stationary case,

the problem is reduced to solving a system of ordinary differential equations of the first order, in contrast to (DeVries et al.,
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2014), where the solution of the hyperbolic equation of the first order for the particle distribution is found. In addition, the total
concentration and flux of the POM are found by summation over the particle distribution at 2’ = 0, whereas in (DeVries et al.,
2014) the summation is carried out over all depths. As shown in Table 3 from the review (Burd , 2024), in CMIP6 Eulerian
biogeochemical models, the sinking velocity is either assumed to be constant or it increases linearly with depth. Our hybrid
approach considers the interaction between the sinking and degradation processes of POM particles in Lagrangian variables
and POM concentration in the Eulerian coordinate system, making particle transport models compatible with large-scale Eu-
lerian biogeochemical models. It also provides an opportunity to solve the non-stationary problem in the future using Eq. (1)
complemented by the time derivative of C), 4 and necessary parameterizations of the POM sinking processes.

Novel analytical solutions of the system of the one-dimensional Eulerian equation for the POM concentration and Lagrangian
equations for the particle mass and depth were obtained for constant and age-dependent degradation rates. The feedback
between the degradation rate and sinking velocity results in significant changes in the POM concentration and flux profiles. In
the case of a constant 9 (AID model), the vertical distribution of the concentration C), 4 for a single fraction of the POM size
dy at ze, is limited by a finite layer, unlike the exponential profile of the particle concentration that corresponds to a constant
sinking velocity. Particles in such a finite layer sink at a linearly decreasing velocity. Moreover, the distributions of the total
particle concentration C), and flux F}, approach exponential trends with depth for increasing dy fractions.

In contrast to those for the AID model, the vertical distributions of the concentration and vertical velocity decay asymp-
totically with depth for the ADD model. The rates of degradation of the Eulerian variables decay with depth; however, the
corresponding exponent depends not only on the parameter (3, as in the models with constant sinking velocity (Cael et al. ,
2021), but also on the parameters that characterize the vertical velocity n and porosity ¢ of the particles. With the baseline
parameters, the vertical distribution of C), is close to the power distribution with an exponent of approximately 1, whereas the
distribution with the depth of the total particle flow F}, deviates significantly from the power law dependence (‘“Martin’s law”).
Direct comparison with other models is difficult owing to differences in the parameterizations of processes, with the exception
of the model (DeVries et al., 2014) for which the solutions of the equations for the particle spectrum and concentration are
established (Appendix A).

A new Eulerian-Lagrangian numerical approach for solving the problem in general cases was presented. The algorithm
includes time steps for Lagrangian variables (sinking velocity and particle mass) and Eulerian depth steps for the concentration
of particles of size d. This enables the inclusion of different parameterizations of interacting degradation and sinking processes
(e.g., DeVries et al., 2014; Cram et al., 2018; Omand et al., 2020; Alcolombri et al., 2021). However, in this study, we limited
ourselves to the case where the degradation rate depends on the age of the organic particle, the temperature of the sea water
and the concentration of oxygen. Notably, the developed numerical algorithm is suitable for arbitrary dependencies of mass
and sinking velocity on the particle diameter. The proposed numerical method was tested on the obtained analytical solutions.

The calculation results were compared with the available measurement data for the POM concentrations and POM fluxes
for the latitude bands of 20-30°N in the Atlantic and Pacific Oceans and 50-60°S in the Southern Ocean. The dependence
of the degradation rate on temperature affects the profiles of the total particle concentration and flux significantly; it enhances

the degradation of sinking particles in the upper layers of the ocean and suppresses it in the deep layers of the ocean. Overall,
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including temperature and concentration dependence in the degradation rate relationship improves the agreement with ocean
measurements. In particular, the normalized MBEs when considering the dependence of the degradation rate on temperature
and oxygen concentration were reduced from 9% to -3% compared with cases in which this dependence was not taken into
account. Similarly, on average, the RMSD decreased by half when temperature stratification was considered.

The discrepancies between the model predictions and observations were caused by incomplete descriptions of processes
and uncertainties in model parameters, as well as variability in the measured POM concentration and flux profiles owing to
vertical and horizontal variability in the ocean fields. We used the one-at-a-time method to quantify the effect of the variation
of one parameter from the set (79,7, (, €, Tref, @10, Ko, o, ) on the model output, with all other parameters kept at their initial
values. The effects of variations in these parameters on the particle transfer efficiency T'E/ were estimated as the ratio of the
POM flux at z.,, to the value at a depth of 1000 m or 5000 m. The model output sensitivity was estimated via the sensitivity
index SI (38). Calculations for the Pacific Ocean revealed that T'F'19og and T E5900 are most sensitive to the parameters ¢ and
€, respectively, for both models. Therefore, these parameters should be primarily calibrated and optimized. Therefore, it was
important to assess the sensitivity of the calculations to the values of the model parameters.

Notably, to obtain analytical solutions and demonstrate the numerical Eulerian—Lagrangian approach, significant simplifi-
cations were made in the description of the particle dynamics. In particular, the particle sinking velocity was described in
the Stokes approximation. The aggregation and fragmentation of particles, mineral ballasting, ocean density stratification, and
temporal changes in particle fluxes were not considered. While some simplifications can be eliminated by using a numerical
approach, others require significant generalization. This applies particularly to the description of particle ballasting mecha-
nisms. On the one hand, ballast affects the sinking of particles, but on the other hand, ballast minerals can protect organic
matter from degradation (Cram et al., 2018). The processes of fragmentation and consumption of sinking particles, which are
important in the upper mesopelagic layer, are poorly understood (Burd , 2024). Comparison of calculation results for different
parameter values (e.g. 1) did not reveal the advantage of one parameter value for both C}, and F},, which may be due to the
incompleteness of the description of the processes of the simplified model used. Therefore, for the effective application of the
proposed approach in biogeochemical models, a parameterization of the main process controls of the biological carbon pump

mechanism based on data from natural and laboratory measurements is necessary.

Code and data availability. The exact version of the model that was used to produce the results presented in this paper is archived on Zenodo:
https://doi.org/10.5281/zenodo.15464336 (Kovalets et al., 2025a), and the input data that were used to run the model and generate the plots
for all the simulations presented in this paper were archived on Zenodo: https://doi.org/10.5281/zenodo.15464730 (Kovalets et al., 2025b).

Appendix A: Derivation of the spectral solution for the size distribution (DeVries et al., 2014)

Here, we show that the analytical solution (14) for C), 4 is equivalent to the solution (8) from (DeVries et al., 2014) of the

spectral equation for the particle size distribution. To find the particle size distribution at 2/, we first rearrange Eq. (12) to
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obtain the relationship between dy and d at depth 2:

%0 1/n
dozd(l—i—cc dnz’) ) (AD)

The size distribution N (d, z) [m~*] is related to Cp,q and my as
Cp’dAdo = deAd, (A2)

where Ad is a small increment. Combining Egs. (14), (3), (12), and (A2) yields

n—e

Cp.alAdy  Ady _ 770 "
N(d,z)="2"—="——"Myd;°|(1 ! . A3
(7)== ad ~ Aa Mok ( T Cendn” (&3
At the limit of Ad — 0, we obtain
1=n
Ady - d - Mo\ "
A Ng T ad®™ <1 Y ewdn” : (A4)
Then, Eq.(A3) can be written as
no_ —e o v
N(d,z") = Myd <1+<denz) . (A5)

This solution for IV coincides with that obtained by DeVries et al. (2014).

Author contributions. VM-conceptualization; VM and IB-methodology; KK and KOK-software; SS—visualization; KOK, KK, and SS—
investigation; VM, IB, and KK—writing (original draft); KOK and SS—writing (review and editing); and VM—supervision. All authors con-

tributed to the interpretation of the findings and the writing of the paper.

Competing interests. The corresponding author declares that none of the authors have any competing interests.

Acknowledgements. Authors are grateful to the Editor and three anonymous reviewers for useful suggestions that helped to improve the

manuscript.

20


vladm
Highlight


445

450

455

460

465

470

475

References

Alcolombri, U., Peaudecerf, F.J., Fernandez, V.I. Behrendt, L., Lee K. S., and Stocker, R.: Sinking enhances the degradation of organic
particles by marine bacteria, Nat. Geosci. 14, 775-780. https://doi.org/10.1038/s41561-021-00817-x, 2021.

Armstrong, R.A., Lee, C., Hedges, J.I., Honjo, S., and Wakeham, S.G.: A new, mechanistic model for organic carbon fluxes in the ocean
based on the quantitative association of POC with ballast minerals, Deep-Sea Res. 11, 49, 219-236, 2002.

Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem
studies, Geosci. Model Dev., 8, 2465-2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015.

Aumont, O., van Hulten, M., Roy-Barman, M., Dutay, J.-C., Ethé, C., and Gehlen, M.: Variable reactivity of particulate organic matter in a
global ocean biogeochemical model, Biogeosciences, 14, 2321-2341, https://doi.org/10.5194/bg-14-2321-2017, 2017.

Banse, K.: New views on the degradation and disposition of organic particles as collected by sediment traps in the open ocean, Deep Sea
Res. A 37, 1177-1195, https://doi.org/10.1016/0198-0149(90)90058-4, 1990.

Boyer, T.P., Baranova,0.K., Coleman, C. , Garcia, H.E., Grodsky, A., Locarnini, R.A., Mishonov, A.V., Paver, C.R., Reagan, J.R., Seidov,
D., Smolyar, 1.V., Weathers, K., and Zweng,M.M.: World Ocean Database 2018. A.V. Mishonov, Technical Ed., NOAA Atlas NESDIS
87. https://www.ncei.noaa.gov/sites/default/files/2020-04/wod_intro_0.pdf, 2018.

Burd, A. B.: Modeling the vertical flux of organic carbon in the global ocean, Annu. Rev. Mar. Sci. 16:135-161.
https://doi.org/10.1146/annurev-marine-022123-102516, 2024.

Cael, B. B., Cavan, E. L., and Britten, G. L.: Reconciling the size dependence of marine particle sinking speed, Geophysical Research Letters,
48, €2020GL091771. https://doi.org/10.1029/2020GL091771, 2021.

Cael, B. B. and Bisson, K.: Particle flux parameterizations: quantitative and mechanistic similarities and differences. Front. Mar. Sci., 5,395.
https://doi.org/10.3389/fmars.2018.00395, 2018.

Cram, J. A., Weber, T., Leung, S. W., McDonnell, A. M. P, Liang, J.-H., and Deutsch, C.: The role of particle size, ballast, temperature, and
oxygen in the sinking flux to the deep sea, Global Biogeochemical Cycles, 32, 858—876. https://doi.org/10.1029/2017GB005710, 2018.
De Soto F., Ceballos-Romero E., Villa-Alfageme M.: A microscopic simulation of particle flux in ocean waters: Application to radioactive

pair disequilibrium. Geochim. Cosmochim. Acta 239, 136-158. https://doi.org/10.1016/j.gca.2018.07.031, 2018.

DeVries, T., Liang, J. H., and Deutsch, C.: A mechanistic particle flux model applied to the oceanic phosphorus cycle. Biogeosciences, 11,
5381-5398. https://doi.org/10.5194/bg-11-5381-2014, 2014.

Druffel, E., Williams, P., Bauer, J., and Ertel, J.: Cycling of dissolved and particulate organic matter in the open ocean, J. Geophys. Res., 97,
15639-15659, https://doi.org/10.1029/92JC01511, 1992.

Alldredge, A. L., and Gotschalk, C.: In situ settling behavior of marine snow. Limnol. Oceanogr. 33, 339-351.
https://doi.org/10.4319/10.1988.33.3.0339, 1988.

Hamby, D. M.: A review of techniques for parameter sensitivity analysis of environmental models, Environ. Monit. Assess. 32, 135-154,1994

Jokulsdottir, T. and Archer, D.: A stochastic, Lagrangian model of sinking biogenic aggregates in the ocean (SLAMS 1.0): model formulation,
validation and sensitivity, Geosci. Model Dev., 9, 1455-1476, https://doi.org/10.5194/gmd-9-1455-2016, 2016.

Kostadinov, T. S., Siegel, D. A., and Maritorena, S.: Retrieval of the particle size distribution from satellite ocean color observations, J.
Geophys. Res., 114, C09015, https://doi.org/10.1029/2009JC005303, 2009.

Kovalets, K., Maderich, V., Brovchenko, I, Seo, S., and Kim, K. O.: KKovalets/EuLag: Eulag (v0.4.0). Zenodo.
https://doi.org/10.5281/zenodo.15464336, 2025a.

21



480

485

490

495

500

505

510

Kovalets, K., Maderich, V., Brovchenko, I., Seo, S., and Kim, K. O.: KKovalets/EuLag_DataSet: EuLag_DataSet (v1.0.0). Zenodo.
https://doi.org/10.5281/zenodo.15464730, 2025b.

Kriest, I. and Evans, G.: Representing phytoplankton aggregates in biogeochemical models, Deep-Sea Res. I, 46, 1841-1859, 1999.

Kiriest, L., and Oschlies, A.: On the treatment of particulate organic matter sinking in large-scale models of marine biogeochemical cycles,
Biogeosciences, 5, 5572, https://doi.org/10.5194/bg-5-55-2008, 2008.

Lenhart, T., Eckhardt, K., Fohrer, N. and Frede, H. G.: Comparison of two different approaches of sensitivity analysis, Phys. Chem. Earth,
27, 645-654. https://doi.org/10.1016/S1474-7065(02)00049-9, 2002.

Lutz, M. J., Dunbar, R. B., and Caldeira, K.: Regional variability in the vertical flux of particulate organic carbon in the ocean interior, Global
Biogeochem. Cycles, 16, 1037, https://doi.org/10.1029/2000GB001383, 2002.

Maerz, J., Six, K. D., Stemmler, I., Ahmerkamp, S., and Ilyina, T.: Microstructure and composition of marine aggregates as co-determinants
for vertical particulate organic carbon transfer in the global ocean. Biogeosciences, 17, 1765-1803, https://doi.org/10.5194/bg-17-1765-
2020, 2020.

Maderich, V., Kim, K. O., Brovchenko, L., Kivva, S., and Kim, H.: Scavenging processes in multicomponent medium with first-order reaction
kinetics: Lagrangian and Eulerian modeling. Environmental Fluid Mechanics, 21, 817-842 . https://doi.org/10.1007/s10652-021-09799-1,
2021.

Maderich, V., Kim, K. O., Brovchenko, 1., Jung, K.T., Kivva, S., and Kovalets, K.: Dispersion of particle-reactive elements caused by the
phase transitions in scavenging, Journal Geophys. Res., 127, €2022JC019108.https://doi.org/10.1029/2022JC019108, 2022.

Martin, J., Knauer, G. K., D., and Broenkow, W.: VERTEX: carbon cycling in the northeast Pacific, Deep-Sea Res., 34, 267-285, 1987.

McDonnell, A. M., and Buesseler, K. O.: Variability in the average sinking velocity of marine particles, Limnol. Oceanogr., 55(5), 2085—
2096. https://doi.org/10.4319/10.2010.55.5.2085, 2010.

Middelburg, J.: A simple rate model for organic matter decomposition in marine sediments, Geochim. Cosmochim. Ac., 53, 1577-1581,
https://doi.org/10.1016/0016-7037(89)90239-1, 1989

Mullin, M., Sloan, P. R., and Eppley, R. W.: Relationship between carbon content, cell volume, and area in phytoplankton, Limnol. Oceanogr.,
11, 307-311, 1966.

Omand, M. M., Govindarajan, R., He, J., and Mahadevan, A.: Sinking flux of particulate organic matter in the oceans: sensitivity to particle
characteristics, Sci. Rep. 10, 5582. https://doi.org/10.1038/s41598-020-60424-5, 2020.

Roca-Marti, M., and Puigcorbé, V.: Combined use of short-lived radionuclides (>**Th and 2!°Po) as tracers of sinking particles in the ocean,
Annu. Rev. Mar. Sci. 16, 551-575. https://doi.org/10.1146/annurev-marine-041923-013807, 2024.

Sheldon, R.,W., Prakash, A., and Sutcliffe, Jr., W.: The size distribution of particles in the ocean, Limnol. Oceanogr., 17, 327-339,1972.

Siegel, D. A., DeVries, T., Cetini, 1., and Bisson, K. M.: Quantifying the ocean’s biological pump and its carbon cycle impacts on global
scales, Annu. Rev. Mar. Sci. 15, 329-356. https://doi.org/10.1146/annurev-marine-040722-115226, 2023.

Smayda, T.: The suspension and sinking of phytoplankton in the sea, Oceanogr. Mar. Biol., 8, 353-414, 1970.

Soares, L. M. V., and Calijuri, M. C.: Sensitivity and identifiability analyses of parameters for water quality modeling of subtropical reser-

voirs, Ecol. Modell. 458, 109720. https://doi.org/10.1016/j.ecolmodel.2021.109720, 2021.

22





