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Abstract. Coastal areas, such as the Salish Sea, are becoming increasingly vulnerable to compound flooding due to the 

interaction between storm surge, tides, and river outflow. This hazard is anticipated to increase under sealevel rise and climate 10 

change. This research offers a high-resolution flood hazard mapping for King and Pierce Counties of Washington State (United 

States of America) using the SFINCS (Super-Fast INundation of CoastS) model to facilitate a Continuous Flood Response 

Modeling (CFRM) framework wherein decades of dynamic coastal and fluvial processes are simulated. By applying a cell-

by-cell extreme value analysis, we predict flood areas for return periods  of 1-100 years and compute the Expected Annual 

Flooded Area (EAFA) as a probability-weighted indicator of flood exposure. Model validation against National Oceanic and 15 

Atmospheric Administration (NOAA) and United States Geological Survey (USGS) gauge data demonstrates skill (RMSE: 

14–17 cm for coastal water levels; unbiased RMSE: 49–116 cm for river water levels), and comparison with FEMA Special 

Flood Hazard Areas shows high spatial agreement of flooding (hit rates: 0.75–0.83). The timing statistics of the flooding reveal 

that the December 28, 2022, event was responsible for most historically observed flooding across the area. Climate simulations 

for today show EAFA ranges from 56 to 200 hectares in King County and from 250 to 644 hectares in Pierce County. Future 20 

projections show that sea level rise is the main contributor to increasing flood extent, whereas climate change drivers such as 

storm pattern change have little additional effect. We also identified a threshold around 100–150 cm of sea level rise at which 

the flood-exposed area increases substantially. Additionally, simplified deterministic flood maps can underestimate flood 

hazard by up to 0.5 m if not all relevant drivers are included. These results support the use of probabilistic, event-independent 

flood metrics such as EAFA to inform more rational and spatially responsive flood risk management. 25 

1 Introduction 

Coastal and estuarine communities face increasing vulnerability to flooding due to the combined effects of sealevel rise (SLR), 

storm surges, high tides, and fluvial discharge. Globally, over 600 million people live within 10 m of sea level, a number 

projected to exceed 1 billion by 2050, and accelerating SLR could displace many and incur trillions of dollars in annual flood 

damages by the end of the century (Barnard et al., 2019). In the Pacific Northwest (PNW) of the United States, including the 30 

Puget Sound region of King and Pierce Counties (Washington State, United States of America), this threat is acute with 

important implications for these two most populous counties in Washington State and the Ports of Seattle and Tacoma (Miller 

et al., 2023). King and Pierce Counties border the Salish Sea, a large, transboundary estuarine system including Puget Sound, 
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the Strait of Juan de Fuca, and the Strait of Georgia, with complex bathymetry, strong tides, and variable meteorological 

forcing (Grossman et al., 2023). Anticipated future rise in mean sea level and intensification of winter storms (Tohver et al., 35 

2014) will likely increase coastal flood hazards (Ruggiero, 2013). When SLR along the shoreline (from tides and surges) 

combines with high river discharge, the resultant compound flooding is far more devastating compared to flooding by any 

single driver alone (Wahl et al., 2015). Recent research reveals that most flood events at most U.S. coastlines involve more 

than one driver happening simultaneously, and compound events carry a disproportionate share of flood damages (Ali et al., 

2025). An increase in the rate of urban development and loss of natural flood buffers in flood-prone coastal plains increases 40 

still further the flood risk of towns, amplifying the urgency for managing these risks under climate change (Wing et al., 2022). 

 

Effectively managing compound flood hazards is challenging because most traditional flood assessments do not capture the 

joint and temporally variable nature of these events. Common practice in the majority of engineering studies and flood mapping 

efforts is to use single-event (deterministic) scenarios (e.g., the ‘100-year’ design storm), treating flood drivers in isolation 45 

(Green et al., 2025). While this event-based method is straightforward and widespread, it misrepresents the flood risk since 

such methods fail to consider the chances of multiple extremes blending into a single event or co-occurring. For instance, 

"design floods" are often unable to account for the time difference between different physical drivers, such as the moment of 

the tide, storm surge peak, or river flood wave. As a result, such deterministic scenarios fail to incorporate compounding effects 

and mischaracterize flood hazard. This limitation is particularly significant in the Salish Sea, where high water levels are tightly 50 

controlled by interactions of tides, storm surges, and freshwater runoff.  

 

Earlier studies, such as those of Yang et al. (2020) and Soontiens et al. (2016), have modeled 34 and 5 extreme events, 

respectively, based on event-based models in efforts to model surge dynamics. The earlier studies, though, involved pre-

selecting certain storms to model, which was limited by the area’s high tidal range. For instance, Abeysirigunawardena et al. 55 

(2011) indicated that 5% of the maximum surges in Canadian waters of the Salish Sea occurred at high tide. This is an 

indication of how important it is to represent tidal amplitudes and phasing, surges, timing, and compound tide–surge 

interactions in representing the overall description of flood risk. Furthermore, the intricate system of estuaries, basins, and 

channels that constitute the Salish Sea results in significant spatial heterogeneity in the behavior of local water levels under 

forcing from storms. For these reasons, selecting a few events may not be sufficient to represent the complete spatial variety 60 

of possible flood effects across the region.  

 

To better capture these complexities, the scientific and engineering community has increasingly shifted from deterministic 

toward probabilistic frameworks. For example, copula techniques are now widely used to preserve interdependence among 

variables (for example, wave height and period, but also storm surge and river discharge) in the event generation process (e.g., 65 

Couasnon et al., 2020). A well-established example in this direction for tropical cyclones is the Joint Probability Method 

(JPM), which synthetically creates many storm scenarios with different landfall locations, intensities, and angles to acquire 
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flood frequency estimates (Resio and Irish, 2015). These probabilistic forcing-based methods provide more robust estimates 

of hazards than single-event methods by integrating across the full variability of driver combinations.  

 70 

From this foundation, response-based evaluations of flood hazards take the next step by dynamically simulating the flooding 

for an extensive set of synthetic events, and subsequently empirically determining flood probabilities from simulated outcomes 

(Gori et al., 2020). Flood probabilities are calculated at each location in the area of interest, and no assumption of 

“extremeness” for events is used.  Rather, this method allows the system response to determine risk rather than inferring risk 

from statistics of driver attributes alone. Advances in computation in recent years and cost-effective hydrodynamic solvers 75 

have rendered such ensemble simulations more viable. For example, Santamaria-Aguilar et al. (2025) performed over 5,000 

compound flood simulations with an SFINCS implementation on the graphics processing unit (GPU), producing probabilistic 

flood maps that account for both temporal and spatial uncertainty. Similarly, Nederhoff et al. (2024) utilized a response-based 

probabilistic method for compound flood risk assessment along the southeast coast of the U.S. for both tropical and 

extratropical events. One of the benefits of this approach is the inclusion of low-probability but high-consequence scenarios  80 

(e.g., a 10,000-year cyclone landfall). Rare events can thus be integrated with frequent ones into a single modeling framework 

that consistently evaluates their contribution to flooding hazard and risk. 

 

Parallel to these developments, continuous simulation (CS) approaches have emerged as an alternative to event-based flood 

estimation, offering closer links to physical processes and avoiding assumptions about conditions (Viviroli et al., 2022). A 85 

natural evolution is to combine response-based compound flood modeling with continuous simulation in what we term 

Continuous Flood Response Modeling (CFRM). CFRM applies decades-long, continuous boundary forcing and includes tides, 

surge, and river discharge to coupled hydrologic–hydrodynamic models. This approach eliminates the need to pre-select design 

events or construct synthetic joint probability scenarios. Unlike traditional approaches, CFRM captures the co-occurrence, 

sequencing, and persistence of flood drivers physically and temporally, without relying on predefined storm hydrographs (Dent 90 

et al., 2011). Continuous simulation has been used extensively in riverine flood studies but has rarely been applied to compound 

coastal and estuarine flooding due to computational demands. CFRM may thus represent one of the first implementations of a 

fully continuous, decades-long simulation approach specifically for compound flood hazard assessment in a complex estuarine 

setting. 

 95 

Building on these principles, we develop and apply a CFRM framework for compound flood hazard assessment in King and 

Pierce Counties, Washington. Our approach uses the Super-Fast INundation of CoastS (SFINCS) model (Leijnse et al., 2021) 

and uses its computational efficiency to simulate continuous water levels and flows under decades of climate variability. This 

implementation is based on the Coastal Storm Modeling System (CoSMoS), a widely used modeling framework first 

developed for California (Barnard et al., 2019; O'Neill et al., 2018). Our study extends the Puget Sound implementation (PS-100 

CoSMoS) of Nederhoff et al. (2024), which developed regional-scale storm hazard projections for Whatcom County, by 
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improving the representation of coastal–riverine interactions and porting the approach to a new geography. Specifically, we 

focus on overland flood dynamics in King and Pierce Counties and demonstrate how such a method can be used in other 

sheltered estuarine habitats around the world. Using SFINCS, we simulate continuous water levels and flows across the study 

area under decades of climate variability, allowing every grid cell to experience the full range of tide, surge, and river discharge 105 

combinations over the multi-decade period. This enables a cell-specific extreme value analysis, wherein flood frequency 

statistics (e.g., 100-year water levels) are derived at each model grid cell from the long-term simulation output, rather than 

being assumed from a single event. The modeling system is first validated against observed water levels and flood extents to 

ensure credible performance. We then apply the validated model to quantify both current and future flood hazards under 

various SLR and climate change scenarios. This CFRM approach offers a novel, probabilistic view of compound flooding for 110 

the Salish Sea region. 

2 Study site: King and Pierce County  

Spanning British Columbia, Canada, and Washington State, USA, the Salish Sea is a complex estuarine system formed from 

flooded glacial valleys, including the Strait of Georgia, Puget Sound, and the Strait of Juan de Fuca. The unique arrangement 

of channels, islands, and shoals is fed by numerous freshwater watersheds. Ocean waves reach this basin through the 115 

constricted route of the Strait of Juan de Fuca, and local winds determine the wave climate elsewhere in other fetch-limited 

regions (Grossman et al., 2023). The meandering and irregular shoreline of the Salish Sea demonstrates the dynamic and 

geographically variable setting. It also adds highly exceptional marine biodiversity and benefits the economy and culture of a 

prosperous and growing coastal community in cities such as Seattle and Tacoma, Washington, and Vancouver, British 

Columbia (Oldford et al. 2025). 120 

 

King and Pierce Counties lie within the central Puget Sound region of Washington, which is bound on the west by the Salish 

Sea and Kitsap County, on the north by Snohomish County, and on the south by Thurston & Lewis Counties (Figure 1). The 

counties cover more than 10,000 km2 of heterogeneous geology and ecosystems from coastal estuaries to glaciated volcanic 

peaks. King County, where the largest city, Seattle, is located, and Pierce County, where the largest city, Tacoma, is situated, 125 

have large populations and are economic centers. Both possess high-density populations, urbanized infrastructure, and 

economically valuable resources in the coastal zone and would benefit from accurate risk assessments, allowing shoreline 

planners to better manage the combined impacts of SLR and extreme events. Land use ranges from heavily developed urban 

zones to productive agricultural lands, particularly in the lowland deltas and tidal flats that are vulnerable to erosion and 

flooding (Grossman et al., 2023). 130 

 

Topographically, the county terrain ranges from sea level to over 4,300 meters at the summit of Mount Rainier, an active 

volcano and the state's highest point. Mount Rainier provides sustenance for numerous streams and glaciers that produce 
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river systems of steep gradient and high velocity, carrying water and sediment from alpine to marine environments (Sisson et 

al., 2001). The largest rivers in the area, such as the Duwamish and Green Rivers in King County and the Puyallup River in 135 

Pierce County drain large watersheds that include agricultural fields and urban areas before emptying into Puget Sound. 

These rivers yield to Puget Sound lowlands and form broad estuaries and deltas at their mouths that support an array of 

nearshore and tidal marsh communities. Geological data show that in the past, volcanic lahars from Mount Rainier have 

blanketed the Puyallup Valley, highlighting the connection between mountain and coastal floodplains (Sisson et al., 2001). 

Other important features include Vashon Island within King County, located in the middle of Puget Sound, and parts of the 140 

Kitsap Peninsula in Pierce County. Both geographic features contribute to local coastal processes and ecosystems. Long 

stretches of the shore have eroding bluffs, mixed-sediment beaches, tidal flats, and man-made shoreline structures like 

seawalls. These structures reduce natural wave dissipation and increase direct wave impacts at high tide. Nearly a third of 

Puget Sound's ~4,000 km of shore is armored, often producing steeper, finer beaches, reduced habitat, and perturbed 

sediment transport (Dethier et al., 2016). 145 

 

The Salish Sea tides consist of a mixed semi-diurnal meso-tidal regime, where tidal amplitudes are amplified as they enter 

the system from the Pacific Ocean. Tidal amplitudes increase from about 2.4 m at the ocean mouth to 4.4 m farther inland 

(e.g., Olympia, Washington), with strong currents (often >1 m/s) through restricted passages like Admiralty Inlet (Grossman 

et al., 2023). Storm surges are predominantly a result of severe low-pressure weather systems forming over the eastern 150 

Pacific Ocean that travel onshore between Oregon, USA, and Vancouver Island, British Columbia (Yang et al., 2019). High 

coastal water levels in the Salish Sea are therefore a result of a combination of offshore (Pacific Ocean) steric sea-level 

anomalies (remote SLA), inverse barometer effect, and setup by wind. Maximum surge amplitudes will usually be of up to 

~1 meter (e.g., Grossman et al., 2023). Wave climate in the Salish Sea is complex; the outer coast and western Strait of Juan 

de Fuca are dominated by swell and have wave periods normally >10 s, while Puget Sound is dominated by wind-sea with 155 

wave periods normally <5 s and wave heights <2 m (Crosby et al., 2023). 

 

There are some recent and historic flood events that have demonstrated the vulnerability of the region to both coastal and 

fluvial flooding. For instance, on 28 December 2022, a flooding event resulted in widespread inundation in Seattle's South 

Park neighborhood (Thomas, 2023). Commonly referred to as a 'King Tide' event, it was 3.8 m+ the North American 160 

Vertical Datum of 1988 (NAVD88) above NOAA Seattle tide gauge (#9447130) and had significant impacts in low-lying 

urban areas aggravated by pre-spring snowmelt, a low-pressure system, and stormwater runoff. Among some of the other 

important incidents are the flood in December 1975 that affected the Nisqually and Green Rivers (U.S. Army Corps of 

Engineers, 1977) and the November 1990 flood, when storms during Thanksgiving week caused general riverine flooding 

throughout the whole Pierce County (Hubbard, 1993). These events, both in urban and rural areas, emphasize the importance 165 

of coupled flood modeling and planning initiatives able to capture the spatial and temporal heterogeneity of compound flood 

risk across the Puget Sound region. 
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Figure 1: King and Pierce Counties are located in the Pacific Northwest of the United States of America (panel A). Panel B provides 
an overview of the area of interest in King County (blue domain) and Pierce County (green domain), Washington, and the SFINCS 170 
model domains. Panel C provides a detailed view of Pierce County and Panel D provides a detailed overview of King County. Note 
that there are five inflow boundary conditions in total, but due to partial overlap between panels C and D, some boundaries appear 
duplicated. Two NOAA stations are included 944713 (Seattle) and 9446484 (Tacoma) and 5 USGS stations (12096500, 12101500, 
12113000, 12113344, 12113390) – see NOAA (2025) and U.S. Geological Survey (2025) for more information. Background: Esri 
World Imagery basemap. Sources: Esri, Maxar, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, 175 
swisstopo, and the GIS User Community. 

3 Materials and methods 

3.1 Overview 

This study’s modeling approach builds on CoSMoS (Barnard et al., 2014), originally developed for California and later adapted 

for Washington State (Crosby et al., 2023; Grossman et al., 2023; Nederhoff et al., 2024). Figure 2 displays the conceptual 180 

framework as applied here. Overland flooding was simulated using the open-source model SFINCS (Leijnse et al., 2021), 

which was selected for its computational efficiency and ability to represent dynamic flood processes. Two high-resolution 

model domains were constructed for King and Pierce Counties incorporating high-resolution topobathymetric data and land 

cover (Section 3.2.1). Boundary conditions for water levels and river discharges were provided from multi-century 
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climatological datasets (Section 3.2.2). The modeling was conducted in two phases: first, the reanalysis period was simulated 185 

and validated against observational datasets (Section 4.1). Second, future climate conditions were simulated under multiple 

SLR scenarios. Compound flood outputs from these simulations and extreme value analysis were used to estimate flood 

frequency and were subsequently downscaled to higher spatial resolution (Section 4.2). The following sections describe the 

input data, model components, numerical methods, and computational framework in greater detail. 

 190 

Figure 2. Conceptual workflow of the CoSMoS flood modeling framework. Blue rectangles represent model components, red 
diamonds indicate input data sources, orange hexagons denote analysis steps, and purple rounded diamonds show the main outputs 
of the study. 

3.2 Input data  

3.2.1 Static data: topobathymetry and land roughness 195 

Elevation data for the entirety of the coastal regions of King and Pierce Counties were derived from the Coastal National 

Elevation Database (CoNED) topographic model of Puget Sound (Tyler et al., 2020). The CoNED dataset provides a seamless 

digital elevation model (DEM) at 1-meter resolution, constructed from the latest high-resolution datasets, including light 

detection and ranging (LiDAR) topography, multibeam and single-beam bathymetry, and other topographic and bathymetric 

sources. These datasets were merged into a continuous surface to ensure spatial consistency and accuracy. For this study, 200 

CoNED data were extracted to create DEMs necessary for running the SFINCS model. The CoNED DEM has a root-mean-

square error (RMSE) of 22 cm, which reflects its reliability for this type of coastal hazard analysis. 

 

The subsampled CoNED DEMs were used to characterize the nearshore zone, beach areas, riverine channels, and levees as 

accurately as possible. Elevation data are the first-order control on flood hazard modelling fidelity, and a high resolution and 205 

level of detail are critical for capturing the hydrodynamic processes that govern coastal and riverine flooding. Early model 
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runs, however, revealed inaccuracies in the representation of riverine bathymetry. To address this, additional data were utilized 

to infer riverine bathymetry characteristics for the major river systems. Modified riverine bathymetry was found to improve 

the representation of channel morphology and flow dynamics within the SFINCS simulations. In particular, a trapezoidal 

channel shape was imposed along the Green and Puyallup Rivers to replace the hydro-flattened bathymetry, which was too 210 

shallow. The channel centerlines were defined by digitizing a line along the thalweg, and cross-sections were deepened to a 

trapezoidal profile to improve hydraulic connectivity in the model. 

 

The National Land Cover Database (NLCD; Homer et al., 2020) was utilized to define spatially variable roughness over the 

SFINCS model domain. Comparable translations, as in Nederhoff et al. (2021), were used to convert land cover classes into 215 

friction values. This approach enabled the representation of heterogeneous surface characteristics, with roughness values 

ranging from 0.020 for open water to 0.15 for forests. Open water friction was set to a constant 0.020 value and was thus not 

used for calibration. This spatially variable roughness enhances the model's ability to simulate flood behavior across a variety 

of land cover and hydrologic regimes.  

3.2.2 Dynamic forcing conditions: water levels and discharges 220 

Water levels and wave heights were extracted from regional Delft3D FM and SWAN modeling efforts (Parker et al., in 

preparation). Specifically, a Delft3D Flexible Mesh (Delft3D FM) model was used to compute tides and surges across the 

Salish Sea. The model exhibited high skill in replicating still water levels compared to six National Oceanic and Atmospheric 

Administration (NOAA) tide stations and seven U.S. Geological Survey (USGS) tide gauges across the 2017-2019 validation 

period (Figure 1), with a mean error of approximately 10 cm (Grossman et al., 2023). Still water levels (water levels driven by 225 

tides, steric sea-level anomalies, and storm surges) were directly extracted from the regional Delft3D FM model and imposed 

as time-varying water level boundary conditions along the open coast of our SFINCS domains. Waves were computed as a 

sum of locally generated wind waves and the linear transformation of the Pacific Ocean swell. This approach enables quick 

wave predictions at high spatial resolution, making long-term regional simulations possible, with skills similar to standard 

SWAN implementations (Crosby et al., 2023). Wave height was converted into wave setup through the 20% of the wave height 230 

approximation commonly used in coastal engineering (e.g., Vousdoukas et al., 2018) and added to the still water levels 

computed by the Delft3D model. This simplified approach was chosen for efficiency but could misrepresent run-up in some 

locations. 

 

Stream inflow discharges were simulated using the wflow hydrological modeling framework (van Verseveld et al., 2024). The 235 

wflow model allows for the simulation of key catchment hydrological processes, including precipitation, interception, snow 

accumulation and melt, evapotranspiration, soil water, surface water, and groundwater recharge, within a fully distributed 

environment. Discharges were imposed at five locations (1 in King County and 4 in Pierce County), at approximately +20 m 

NAVD88, which is considered outside the zone of tidal influence (Figure 1 – black circles with white fill). Discharges were 
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typically within a 20% error margin of observed flows, based on the calibration/validation of the wflow model in the region 240 

(Buitink et al., 2025). For more information on this regional modeling work, one is referred to Buitink et al. (2025).  

 

All model domains were forced using meteorological conditions, including wind speed and mean sea-level pressure. These 

meteorological inputs were applied in the upstream/regional models (e.g., atmospheric forcing for Delft3D FM and wflow), 

ensuring that storm effects were represented in the boundary water levels and river inflows passed to SFINCS. No direct wind 245 

or rain forcing was applied within the SFINCS domains. For the hindcast (validation) period from 1941 to 2022, meteorological 

inputs were based on ERA5 reanalysis data (Hersbach et al., 2020). For the projection period, conditions were derived from 

the Coupled Model Intercomparison Project - Phase 6 (CMIP6). An ensemble of 7 CMIP6 models from the High-Resolution 

Model Intercomparison Project (HighResMIP, Haarsma et al., 2016) was used with the SSP5-8.5 greenhouse gas concentration 

scenario. Models from the HighResMIP project were selected for their higher spatial resolution (25–50 km), which is expected 250 

to improve the representation of coastal storm events that are inadequately resolved by the native resolution of most general 

circulation models (GCMs; Roberts et al., 2020). As a compromise for higher resolution, models in the HighResMIP project 

were run for a shorter simulation time (1950-2050) than other CMIP6 models.  Therefore, conclusions regarding temporal 

changes in forcing are limited to this time horizon. More details on the specific CMIP6 model iterations used and their 

implementation in the regional framework can be found in Parker et al. (in preparation).   255 

 

To assess the impact of SLR on flooding in King and Pierce Counties, seven SLR scenarios were selected: 0, 0.25, 0.50, 1.00, 

1.50, 2.00, and 3.00 meters above mean sea level in the year 2005. These scenarios were selected to bracket the potential 

magnitudes of SLR without consideration of particular time frames so that flexibility is provided for future re-analysis as 

relative SLR projections are refined. This response aligns with the suite of SLR projections for the U.S. West Coast through 260 

the year 2100 presented by Sweet et al. (2022) and previous CoSMoS modeling research (Barnard et al., 2014).  

3.3 Validation data 

3.3.1 Coastal water levels: NOAA 

Time series of observed water levels at NOAA stations (Figure 1 – red circles with prefix "NOAA" labeling) across the study 

area were utilized to validate the model. Hourly water levels relative to NAVD88 were obtained from two NOAA stations for 265 

the period 1942–2022. The Seattle, WA station (Station ID: 9447130) has a continuous record, while the Tacoma, WA station 

(Station ID: 9446484) started operating in 1996 (NOAA, 2025). 

3.3.2 Riverine water levels USGS 

Streamgage time series of observed water levels from USGS (Figure 1 – red circles with "USGS" prefix labeling) were used 

to validate the inland conditions model. River stage data from 2007 to 2022 were collected at five USGS stations. Because the 270 
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reference level of stage measurements can be non-uniform, all the comparisons were adjusted to make a fair comparison 

between the model (referenced to NAVD88) and the USGS observed gage heights. 

3.3.3 Flood extent: FEMA maps 

Federal Emergency Management Agency (FEMA) Special Flood Hazard Areas (SFHAs) were used as reference data to 

validate modeled flood extents. SFHAs illustrate zones of a 1% annual chance of flooding (commonly referred to as the "100-275 

year floodplain") and are the primary regulatory flood zones mapped in FEMA's Flood Insurance Program. These zones are 

established through site-specific analysis that commonly involves hydrologic and hydraulic modeling, which may vary from 

simplifying assumptions to complex 1D or 2D simulations depending on local conditions and data availability. In this study, 

FEMA-provided vector shapefiles of the 1% Annual Exceedance Probability (AEP) floodplain were used for comparison with 

simulated flood extents (Federal Emergency Management Agency, 2025). However, there are no detailed metadata available 280 

to describe the underlying data, making it nearly impossible to determine the data’s age, resolution, or methodology for each 

jurisdiction. To allow for pixel-based validation, all FEMA shapefiles were rasterized to a 2-meter resolution grid and 

reclassified into three classes: flooded (wet), not flooded (dry), and no data. These raster FEMA maps enabled pixel-by-pixel 

comparison to modeled flood extents, from which we computed categorical skill metrics (hit rates, false alarm ratios, etc.) 

described in Section 3.3.  285 

3.4 Numerical method: overland flooding with SFINCS 

SFINCS (Leijnse et al., 2021; van Ormondt et al., 2024) was used to simulate compound flooding processes, encompassing 

dynamic hydraulic phenomena such as tidal propagation and river runoff while ensuring computational efficiency (e.g., 

Sebastian et al., 2021). This combination of capabilities made SFINCS an ideal choice for predicting overland flooding in this 

study. Two computational domains were developed for King and Pierce Counties (refer to Figure 1 – panels C and D), each 290 

constructed at a 50-meter resolution, covering an average area of 3000 km². These domains incorporated 1-meter resolution 

CoNED topobathymetric via subgrid tables (which store the elevation at 20 vertical levels) to preserve fine-scale topography 

within each 50 m cell. All simulations were conducted with advection enabled, turning SFINCS into a solver for the Simplified 

Shallow Water Equations (SSWE). 

 295 

No calibration of the SFINCS computations was performed, as simulated regional water levels and riverine inflow discharges 

were directly imposed, and friction in open water was held constant. Overland flooding was allowed to infiltrate at a constant 

2 mm/hr (representing low-permeability soils Rawls et al., 1982), to provide a rudimentary representation of drainage and 

prevent indefinite ponding in flat areas. Rainfall or wind forcing were not directly applied in the model, but these factors were 

used to derive regional boundary conditions for water levels and discharges. 300 
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Simulations were conducted for complete water years (WY; a 12-month period from October 1 through the following 

September 30 and named for the year in which it ends), precdeded by a 7-day initialization period (spin-up period). Key outputs 

recorded during the simulations included the maximum annual water level, the maximum depth-velocity product (m²/s), the 

duration that each cell remained wet using a minimum depth of 10 cm, and the time of maximum water level. 305 

 

The model results were generated using a slightly modified version of the SFINCS "Dollerup" release from November 2023, 

which is available as open-source code on GitHub and through Deltares (van Ormondt et al., 2025; 

https://github.com/Deltares/SFINCS; available from September 1, 2025 on GitHub). In particular, we added new output 

functionality that tracks the moment of high water. These changes have recently been merged into the main trunk of the code 310 

on GitHub. 

 

To account for uncertainty in boundary conditions, an additional two simulations were performed with altered "low" and "high" 

estimates of parameters. The low estimate reduced dynamic coastal water levels by 50 cm, lowered river discharge by 20%, 

and increased weir crest elevations by 50 cm to represent a more conservative (lower hazard) scenario. Conversely, for the 315 

high estimate, the same parameters were adjusted but in the opposite direction to simulate a more demanding (higher hazard) 

boundary condition. These are constructed to simulate a 95% confidence interval, based on normally distributed model 

residuals and ±2 times the root-mean-square error (RMSE) enclosing the likely range of flood response. This allows us to 

examine the sensitivity of predictions of flood extent to uncertainty in the dominant (hydrodynamic) inputs. Results from these 

High/Low hazard simulations are used later to define uncertainty ranges. 320 

3.5 Computational framework, simulation period, and computational expense 

The modeling framework was structured into three distinct phases: (1) reanalysis (hindcast) validation, (2) current climate 

projections, and (3) future climate projections. 

 

During the validation phase, the model was validated over an 82-year reanalysis period spanning water years 1941 through 325 

2022. Coastal water levels were validated using observations from two NOAA tide gauge stations (Seattle and Tacoma, WA), 

while inland water levels were assessed using data from five USGS streamgages distributed across King and Pierce Counties 

(Figure 1). 

 

To support extreme value analysis, the model was driven with 82 years of reanalysis boundary conditions (1941–2022), 330 

enhanced by applying randomized tidal phasing. This approach generated an additional 18 synthetic years, bringing the total 

timeseries to 100 years, ensuring adequate sampling of extreme events. Importantly, this method enabled an empirical 

estimation of 100-year return levels, avoiding the need to fit a theoretical extreme value distribution. In particular, the method 

from Nederhoff et al. (2024) for a synthetic record was utilized by randomly selecting a yearly non-tidal-residual (NTR) signal 
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from the 82-year record. NTR refers to all non-tidal fluctuations in sea level and includes, for example, contributions from 335 

steric sea level anomalies and wind-driven storm surge. A uniform distribution shift from −1 to +1 days was applied to the 

time axis of the NTR to increase variability. Tides were generated from astronomical components computed from the tide-

only regional model results. Discharge and wave conditions were assumed to be completely correlated with NTR, and 

associated wind and wave conditions are directly used in model forcing.   

 340 

In the future climate phase, the model was forced using the pseudo-global-warming (PGW) approach (Brogli et al. 2023). The 

PGW strategy consists of simulating the current conditions with boundary conditions modified by the climate change signal 

(delta). In this case, the same reanalysis 100-year simulation was re-run with all boundary conditions (water levels and riverine 

discharges) modified by a calculated climate change signal. The utilized delta was calculated by running the regional models 

(both water level and streamflow), forced by an ensemble of CMIP6 models. The CMIP6 forced ensemble was run for both a 345 

historical and future period, with the change (the delta in the PGW method) then calculated at all boundary forcing points used 

in this study. The delta was calculated by computing the difference between the future and historical cumulative distribution 

function (CDF) at all quantiles in the CDF, allowing a variable delta across the CDF. This approach allows flexibility in how 

water levels might change, for example, extremes increasing while the average water level stays the same. In essence, this 

applies a quantile-dependent shift to every time step of the historical boundary conditions so that their statistical distribution 350 

matches that projected for mid-century climate. To allow for seasonal differences in the climate change signal, this delta was 

calculated for each month of the year. The full ensemble of calculated deltas (7 climate models, 12 months, all quantiles) was 

reduced by taking the average across the CMIP6 ensemble members, with averaging used to reduce individual CMIP6 bias 

and improve robustness of the resulting calculated delta signal. This delta was then applied to the full timeseries of the current 

climate projections period to produce a new boundary forcing PGW timeseries representing the future period. Simulations 355 

using this PGW future climate were then conducted for multiple SLR scenarios to evaluate the sensitivity of flood hazards to 

different future climate trajectories. In this way, future changes to flood hazards are segmented into 2 signals: a climate change 

forcing signal (provided using the PGW method), and an SLR signal (implemented as a change to Mean Sea Level).  

 

Flood hazards are often defined by wet areas based on a specific flood depth threshold, typically 10 or 15 cm (e.g., Wing et 360 

al., 2017). In this paper, we apply three classes of flood severity: nuisance flooding (depth > 10 cm), hazardous flooding (depth 

>30 cm), and severe flooding (depth >100 cm). The flood hazards were analysed over a full range of return periods from 1 to 

100 years. We also computed the Expected Annual Flooded Area (EAFA), as a probability-weighted sum of flood extents for 

all return periods, and computed this for each severity class separately (Vousdoukas et al., 2023). To focus on event-driven 

flooding, grid cells that flood during regular daily tidal conditions were not included in these calculations. 365 

 

All the simulations were executed on the USGS Hovenweep platform (Falgout et al., 2025). A single simulation run (one water 

year) required approximately 36 hours to finish. We simulated the current climate scenario at mean sea level (0 m SLR) and 
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at one elevated SLR level (1.0 m) to isolate SLR-only effects. Under future climate (PGW conditions), we ran the full set of 

seven SLR scenarios (0 through 3 m). In total, 5,400 yearly simulations (7x SLR scenarios with future climate and 2x SLR for 370 

current climate, 3 uncertainty layers, and 2 domains) were conducted, totaling a computational effort of approximately 194,400 

hours. However, the actual computational burden was an order of magnitude higher due to additional sensitivity tests, 

calibration runs, and model refinements in an iterative stakeholder process. In order to quantify uncertainty in SLR projections, 

each scenario was rerun with both high and low estimates, totalling 2700 simulations. This extensive simulation effort offers 

robust statistical analysis, multiple scenarios to address the requirements of stakeholders, and testing to address both past and 375 

future flood conditions.  

3.6 Model skill  

To quantify the skill of the model to reproduce water levels, several accuracy metrics were calculated: model bias, mean-

absolute-error (MAE; Equation 1), root-mean-square-error (RMSE; Equation 2), and unbiased RMSE (uRMSE; RMSE with 

bias removed from the predicted value) 380 

 

 
𝑀𝐴𝐸 =

1

𝑁
෍(|𝑦௜ − 𝑥௜|)  

 

Equation 1 

 
𝑅𝑀𝑆𝐸 = ඨ

1

𝑁
෍(𝑦௜ − 𝑥௜)ଶ 

 

Equation 2 

where N is the number of data points, yi is the i-th predicted (modeled) value, and xi is the i-th measurement. For stations 

without a reference level, we computed the unbiased RMSE and MAE, also referred to as uRSME and uMAE. Lastly, we 

compute the scatter index (SCI), which is a metric to express RMSE in a relative sense as a fraction of the RMS magnitude of 

the signal. 

 385 

In addition to these continuous metrics, a binary skill classification was used to evaluate the model's ability to correctly predict 

wet and dry conditions (Wing et al., 2017). For this classification, model predictions were compared to observations using a 

contingency table with the following categories: 

 True Positives (TP):  Correctly predicted wet cells (M1B1) 

 True Negatives (TN):  Correctly predicted dry cells (M0B0) 390 

 False Positives (FP):  Predicted wet but dry benchmark cells (M1B0) 

 False Negatives (FN):  Predicted dry but wet benchmark cells (M0B1) 
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From this classification, the following skill metrics were derived: 

 
Hit rate index (H) =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Equation 3 

 
False ratio index (F) =

𝐹𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Equation 4 

 
Critical success index (C) =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

Equation 5 

 
Error bias index (E) =

𝐹𝑃

𝐹𝑁
 

 

Equation 6 

These binary skill metrics complement the continuous accuracy measures and provide a comprehensive evaluation of the 395 

model's performance, particularly for assessing its capability to predict flooding extents. 

4 Results 

4.1 Validation 

4.1.1 Coastal water levels 

Modeled still water levels from WY1942 until WY2022 were validated against gauge data. An example time series of 1 month 400 

of water level at the tide gauge station Seattle, WA (NOAA station #9447130), including the decomposition in tide and NTR, 

is shown in Figure 3. Table 1 contains a summary of skill scores for still water level and tide of 2 NOAA gauges for 84 years 

of modeled water years in terms of RMSE, SCI, MAE, and bias. We estimate an RMSE of 14.0 to 17.1 cm and an SCI of 7.9 

to 10.3%. Errors are driven by a combination of modeled tide and NTR. Tides are reproduced with an RMSE of 8.4 to 8.5 cm, 

indicating a contribution of approximately half of the error. While tides are generally more deterministic and “easier” to model, 405 

the tide signal is also much larger than NTR, so it is unsurprising that it contributes a large fraction of the error. Sources of 

overall water level discrepancy are driven by offsets in NTR (remote SLA and locally generated wind-driven surge; notice 

panel C in Figure 3), inaccuracies in bathymetry and/or frictional effects, or local baroclinic effects that are unaccounted for 

in a depth-averaged model without density differences driven by temperature and salinity. 
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 410 

Figure 3. Comparison of coastal water levels at Seattle, WA (NOAA station #9447130): Comparison of modeled and observed still 
water levels for 1 month, including the decomposition into tidal (tide) and non-tidal residual (NTR) components. Panel (A) shows 
the observed and modeled still water levels, panel (B) highlights the modeled and observed tidal contribution, and panel (C) presents 
the NTR. Determination of the tidal signal was done in the same manner for both the modeled and observed signals. 

Table 1. Comparison of skill scores for modeled water levels at Tacoma (NOAA station #9446484) and Seattle (NOAA station 415 
#9447130; also shown in Figure 3 and indicated here with a *): Summary of skill metrics for still water levels and tide-only 
components at Tacoma and Seattle tide gauge stations. Metrics include Root Mean Square Error (RMSE), Scatter Index (SCI), 
Mean Absolute Error (MAE), and bias.  

 9446484 9447130* 

Name Tacoma Seattle 

RMSE  [cm] 14.0 17.1 

SCI [%] 7.9 10.3 

MAE [cm] 10.9 14.3 

Bias [cm] +2.3 +9.3 

RMSE tide only [cm] 8.5 8.4 

MAE tide only [cm] 6.8 6.7 

Years of data 27 84 
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4.1.2 Inland water levels 420 

Model water levels for October 2007 to the end of WY2022 were validated against gauge data. Two sample time series, each 

three months long, plot water levels at a streamgage on the Duwamish River (USGS station 12113390; U.S. Geological Survey, 

2025) and on the Puyallup River (USGS station 12101500, Figure 4). Table 2 presents skill scores for five inland water levels 

across USGS streamgages for which records extended as far back as 15 years. Errors in the model result from a combination 

of tidal and riverine inflow. The influence of tides appears to be overestimated at both the Duwamish (Figure 4 - panel A) and 425 

the Puyallup (Figure 4 - panel B) stations. This overestimation is most likely a result of errors in riverine bathymetry, which 

allow tidal propagation too far upstream. This is apparent from modeling results, where at the Duwamish River USGS station 

(12113390) tidal oscillations are observed, but their modeled amplitudes are too large. Conversely, at the Puyallup River 

(USGS station 12101500), tidal effects are not observed, but the model simulates some tidal oscillation. Despite these 

disparities, the model captures the timing of heightened riverine discharges and associated stage increases. For the Duwamish 430 

River (USGS station 12113390), the peak flows are a day early in the model versus observations, while timing at the Puyallup 

River (USGS station 12101500) is well captured. Errors derived using the uMAE for the gauges range from 37 to 87 cm and 

represent the combined influence of tidal and riverine error components. 
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Figure 4. Modeled and observed inland water levels: Panel (A) shows water levels at a streamgage on the Duwamish River (USGS 435 
station 12113390), while Panel (B) presents water levels at a streamgage on the Puyallup River (USGS station 12101500; U.S. 
Geological Survey, 2025).  

Table 2. Comparison of skill scores for modeled inland water levels at five USGS stations (U.S. Geological Survey, 2025): 
Performance metrics for modeled water levels are provided for five gauges across the Puyallup and Duwamish watersheds. The 
number of years of available data for validation is also listed. Stations marked with an asterisk (*) are reference locations discussed 440 
in Figure 4.  

 12096500 12101500* 12113000 12113344 12113390* 

Watershed Puyallup Puyallup Duwamish Duwamish Duwamish 

uRMSE [cm] 115.7 69.6 48.7 86.6 58.9 

uMAE [cm] 87.2 53.2 37.6 53.2 38.8 

Years of data 15 15 15 11 9 

 

4.1.3 Flood extents 

The 2-meter resolution flood model was used to determine the 100-year flood extent (1% AEP) in King and Pierce Counties. 

The model was compared to FEMA's SFHA, examining 38.25 million grid cells for King County and 45.69 million for Pierce 445 

County. The Hit Rate Index (H) was 0.746 for King County and 0.827 for Pierce County, indicating that roughly 80% of 

FEMA-mapped flood areas were also identified by the model (Table 3). The Critical Success Index (C), with weight for correct 

predictions but also weighing misses and false alarms, was narrowly lower (0.721 and 0.809, respectively), indicating minimal 

false alarms. In particular, the False Alarm Ratio (F) is minimal for each of the counties (0.044 for King and 0.026 for Pierce). 

The small Error Bias Index reveals that the model underestimates the extent of flooding relative to FEMA maps. Overall, some 450 

discrepancies between these two products are expected because the methodologies differ substantially. 

 

Figure 5 demonstrates this performance spatially and highlights the mixed agreement between SFINCS-modeled and FEMA-

reported flood extents. Panel A highlights the South Park neighborhood in Seattle, WA, where model results show extensive 

flooding along the Duwamish Waterway while FEMA maps suggest no flooding despite its history of inundation (refer to 455 

Section 2 ‘Study Site’). Panel B shows the Oro Bay coastal region on Anderson Island, WA, where the model and FEMA 

alignment are mixed, with both areas flooded by SFINCS and not by FEMA, and vice versa. Panel C presents an upstream 

portion of the Green and Duwamish Rivers near Kent, WA, where both the model and FEMA show strong agreement across 

a broad river floodplain.  

 460 

Table 3. Summary of flood extent validation metrics comparing modeled 100-year flood extents with FEMA Special Flood Hazard 
Areas (SFHA) for King and Pierce Counties. Metrics include the Hit Rate Index (H), False Alarm Ratio (F), Critical Success Index 
(C), and Error Bias Index (E), based on pixel-level agreement.  

 King County Pierce County 

https://doi.org/10.5194/egusphere-2025-4909
Preprint. Discussion started: 11 November 2025
Public domain. CC0 1.0.



18 
 

Hit rate index (H) 0.746 0.827 

False Alarm Ratio index (F) 0.044 0.026 

Critical Success Index (C) 0.721 0.809 

Error Bias Index (E) 0.134 0.127 

Number of total cells analyzed [M] 38.25 45.69 

 

 465 

Figure 5. Comparison of 100-year modeled flood extent by SFINCS with FEMA Special Flood Hazard Areas (SFHA) in selected 
locations across King and Pierce Counties, Washington. Colors represent flood agreement classification: blue for hits (both SFINCS 
and FEMA indicate flooding), red for misses (flooding observed by FEMA but not captured by SFINCS), and orange for false alarms 
(SFINCS predicts flooding not identified in FEMA maps). Panel A: South Park neighborhood in Seattle, WA, adjacent to the 
Duwamish Waterway. Panel B: Oro Bay on Anderson Island, WA, illustrates a coastal setting. Panel C: A reach of the 470 
Green/Duwamish River near Kent, WA. Background: ESRI Satellite Imagery. Sources: Esri, Maxar, GeoEye, i-cubed, USDA FSA, 
USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community. 

4.1.4 Moment of flooding 

Unlike traditional flood hazard assessments that rely on predefined design events (e.g., the "100-year flood"), our approach 

uses the CFRM (Continuous Flood Response Modeling) framework. Both coastal and riverine processes over decades of 475 

climate forcing resolve extremes on a grid-cell basis rather than from a single event. This approach could complicate 
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communication with stakeholders who are used to the FEMA event-based framework, but can provide robust information 

about flooding. Retrieval of the exact date and time when peak flooding occurred across space supports validation and analysis 

of the spatially varying forcing causing the extremes. This approach also provides a spatially robust characterization of 

extremes. The forcing (and type of event) that causes extremes varies spatially across regions. The most natural example of 480 

this is the transition from coastally driven to compound to fluvially driven forcing while moving up a river. A single “design 

storm” modelling approach does not capture this spatial transition in what events are causing extremes.   

 

To support an in-depth analysis of the moment of flooding, a new output variable was introduced into the SFINCS model that 

records the timestamp of the maximum water level for each grid cell. This new variable enables a spatially explicit assessment 485 

of the dominant flood-generating event across the landscape. The resulting analysis is shown in Figure 6, which maps the peak 

water levels to specific historical flood events and is summarized in Table 4. 

 

An event on December 28, 2022, caused the most widespread flooding in the area. The occurrence was driven by the combined 

effects of high coastal water levels and high discharge and is colloquially referred to as a ‘King Tide’ event. This King Tide 490 

event produced the highest water level for the hindcast period in 78.5% of King County grid cells and 83.9% of Pierce County 

grid cells (blue areas of Figure 6). One of the most substantial impacts successfully duplicated by the model was on the 

Duwamish River in Seattle’s South Park neighborhood, where business and urban areas were flooded. NOAA tide gauge 

#9447130 in Seattle recorded water at 3.88 m NAVD88 at 17:00 on 27 December, while SFINCS simulated a high of 4.03 m 

NAVD88 at 16:20, indicating a close match in amplitude and time. The model also captured other critical events. For example, 495 

the event on January 8–9, 2009, led to significant riverine flooding along the Green River, reached a maximum water level in 

7.2% of King County grid cells, and was preceded by warnings of flooding that said the City of Carnation might become an 

island (KOMO, 2020). There was a local urban flooding incident on December 4, 2007, along the lower Duwamish River, 

which contributed to 2% of peak modeled extents in King County. Maximum flooding in 7% of cells, particularly in the 

Nisqually River region, occurred during the flood of November 25–26, 1990, in Pierce County. The event, which took place 500 

over Thanksgiving week, resulted in two fatalities and involved large-scale evacuations (USGS, 1994). The second largest 

event in the record, based on the number of cells reaching their maximum extent on this date, occurred in December 5, 1975, 

as a severe winter storm with heavy rain and snowmelt, resulting in widespread riverine flooding within the Green, Nisqually, 

and Puyallup River systems (STARR, 2015). This 1975 event contributed 10.2% to the highest modeled water levels in King 

County and 6.7% in Pierce County. These events, although less dominant than the 2022 ‘King Tide’ event, demonstrate the 505 

diverse mechanisms and regional variation of historical flood drivers in the Pacific Northwest. 
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Figure 6. Spatial pattern of individual flood extents associated with specific historical events in King (panel A) and Pierce Counties 
(panel B). The colors represent the dominant flood event at each location, determined by the peak modeled flood depth timing. The 
map illustrates the temporal and spatial heterogeneity of flood-generating mechanisms in the region. Background: Esri Gray Canvas 510 
basemap. Sources: Esri, HERE, Garmin, FAO, NOAA, USGS, EPA, NPS, and the GIS User Community. 

Table 4. Summary of the most influential flood-generating events and their areal contribution to peak flood limits in King and Pierce 
Counties. Percentages refer to the proportion of the total area flooded to which the respective event attained the highest modeled 
water level. The December 28, 2022, coastal flood event caused the majority of flood extents in both counties, and other events—
such as the 1975 Green and Nisqually Rivers flood, and the 2009 upper Green River flood—were more restricted in effect. The rest 515 
of the extent was influenced by other, less common events (not shown). 

Date time Areas effects King County Pierce County 

2022-12-28 The majority of coastal areas across the areas of 

interest 

78.5% 83.9% 

2009-01-08 and 09 Green River / Duwamish River 7.2% 0.0% 

2007-12-04 Downtown Seattle 2.4% 0.0% 

1990-11-25 and 26 Upstream Nisqually 0.0% 7.2% 
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1975-12-05 Portions of GreenNisqually, and Puyallup Rivers 10.2% 6.7% 

 All other events 1.7% 2.2% 

    

4.2 Flood hazards 

4.2.1 Current climate conditions 

Flood extents increase consistently with return period in both King County (Figure 7, panel A) and Pierce County (panel B), 520 

illustrating the growing impact of rarer and more intense flood events. In King County, flood extents grow gradually for lower 

return periods (1 to 10 years), particularly in the severe (red, >1 m depth) and hazardous (orange, >30 cm) categories. For 

example, severe flooding increases from 9 hectares at the 1-year event to 656 hectares at 10 years. However, the growth 

becomes more substantial for higher return periods, especially for nuisance flooding (blue, >10 cm), which reaches 1,150 

hectares at the 100-year event. In Pierce County, total flooded areas are generally larger across all severity levels. Nuisance 525 

flooding, for instance, increases from 24 hectares (1 year) to 1,493 hectares (100 years), while severe flooding grows from 13 

hectares to 931 hectares over the same range. The rate of increase slows after moderate events (10–20-year return periods), 

but flood extent continues to grow with larger return periods, indicating that flood-prone areas are not yet fully saturated. 

 

The final bar in each panel represents the Expected Annual Flooded Area (EAFA), a probability-weighted average integrated 530 

across return periods from 1 to 100 years. EAFA provides a more holistic and policy-relevant measure of flood hazard, 

accounting for both event frequency and severity, and is comparable to translating damages to flood risk with the Expected 

Annual Damages (EAD, Rosbjerg, 2024). In King County, EAFA is estimated at 56 hectares for severe flooding, 160 hectares 

for hazardous flooding, and 200 hectares for nuisance flooding. In Pierce County, EAFA values are higher with 250, 531, and 

644 hectares for severe, hazardous, and nuisance flooding, respectively. 535 
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Figure 7. Flooded area (in hectares) as a function of return period for three flood severity levels in King County (panel A) and Pierce 
County (panel B) under current climate conditions. Flood severity is classified as severe (red), hazardous (orange), and nuisance 
(blue). Return periods range from 1 to 100 years, with the final bar labeled EAFA representing the Expected Annual Flooded Area, 
a probability-weighted integration of flood extents across all return periods. Grid cells that are flooded during daily tidal conditions 540 
are removed. 

The results provided in this subsection so far were computed using the CFRM approach. However, deterministic design events 

are often used in practice. An example is the simulation of the 10-year flood based on historical storm records. At Seattle 

(station #9447130), the December 5, 1967, event produced a height of 3.62 m NAVD88 and can be considered the 10-yr event 

based on the Weibull plotting position (Weibull, 1939). When we ran this event through our model and compared the results 545 

with the CFRM‐based estimate for 10 years, we determined that coastal‐zone differences were moderate (simulated high water 

level at Seattle of 3.72 m NAVD88), giving similar local flood areas. However, further inland along the coastal–riverine 

boundary, differences grew significantly. Peak water levels were up to 0.5 m higher in the Duwamish River, flooding a much 

larger area under the deterministic single-event design approach than under the CFRM method. The mean absolute difference 

between the two methods was 19 cm and 15 cm, respectively, in King and Pierce Counties. These results demonstrate the 550 

importance of the selection of the statistical approach in determining extreme‐water‐level estimates and, by extension, the 

spatial extent of flood inundation. 

4.2.2 Future climate conditions: sea level rise versus climate change 

To evaluate how SLR and future climate conditions influence hazardous flooding (≥30 cm water depth), we analyzed four 

scenarios: (1) current climate with no SLR, (2) current climate with 1.0 m SLR, (3) future climate with no SLR, and (4) future 555 

climate with 1.0 m SLR (Figure 8). This approach allows isolation of SLR effects vs. climate-change effects. Results are 

analyzed using the same return periods and the EAFA as in Section 4.2.1. 

 

The results indicate that SLR is the dominant driver of increased hazardous flooding. In King County, EAFA increases from 

161 hectares for the current situation to 787 hectares due to 1.0 m of SLR. Similarly, Pierce County shows an increase from 560 

529 to 931 hectares. These increases are similar for the 10-year event, which nearly increases fivefold in King County (from 

234 ha to 1,241 ha) and increases by more than 50% in Pierce County (from 913 ha to 1,353 ha). The absolute influence of 

SLR is particularly pronounced at higher return periods, while the relative increase is largest at lower return periods. 

 

In contrast, future climate forcing alone results in negligible to slightly negative changes in hazardous areas. In both counties, 565 

EAFA values stay approximately the same (161 to 160 ha for King County and 529 to 531 ha for Pierce County for current 

versus future climate, respectively). Moreover, in King County, the 20-year return period hazardous area decreases from 531 

ha to 481 ha (-9%), while in Pierce County, it increases from 1,065  ha to 1,071 ha (+1%). These results suggest that the future 

climate conditions modeled (up to 2050) do not intensify but rather slightly reduce flooding. This is an important reminder 

that climate change (unlike SLR) does not always mean higher flood risk.   570 

https://doi.org/10.5194/egusphere-2025-4909
Preprint. Discussion started: 11 November 2025
Public domain. CC0 1.0.



23 
 

 

When combining both SLR and future climate (Scenario 4, magenta color in Figure 8), results show only marginal differences 

from SLR alone (Scenario 2, green color in Figure 8), reinforcing that SLR is the overwhelming driver of increased hazardous 

flooding. In King County (Figure 8A), the EAFA in Scenario 4 is 787 hectares, ~7% below the EAFA for Scenario 2, which 

resulted in 738 hectares. In Pierce County (Figure 8B), EAFA increases by ~2% (931 ha vs. 954 ha for Scenarios 2 and 4, 575 

respectively). Across all modeled return periods, King County shows decreases at lower return periods (−21% to −1% for 1–

10 years) but increases at higher return periods (+22% at 20 years and +15% at 50 years), while Pierce County consistently 

shows small increases of up to ~9%. 

 

Figure 8. Flooded area (in hectares) as a function of return period in King County (panel A) and Pierce County (panel B) under 4 580 
different climate and sea level scenarios. Return periods range from 1 to 100 years, with the final bar labeled EAFA representing 
the Expected Annual Flooded Area - a probability-weighted integration of flood extents across all return periods.  

We computed EAFA focused on the hazardous severity class (>30 cm flooding) for King and Pierce Counties as a function of 

7 SLR scenarios and accounting for model uncertainty (Table 5). Analysis reveals a threshold in EAFA hazards between 

roughly 100 cm and 150 cm of SLR, with median hazards increasing by roughly 13-fold in King County and 3-fold in Pierce 585 

County relative to the present-day. This suggests that SLRs exceeding ~1 m, large new areas of low-lying land (e.g., currently 

just above the present flood zone) become vulnerable, especially in King County. Hazard increase is gradual below this 

threshold, but above this threshold, absolute values for EAFA increase steeply. For example, by 300 cm, EAFA ranges from 

4,520 to 6,408 hectares in King County and 3,205 to 4,509 hectares in Pierce County. Uncertainty ranges are largest, in absolute 

terms, at 200 cm SLR for both King and Pierce Counties, while proportionally they peak at 100 cm in King County and 50 cm 590 

in Pierce County. These findings demonstrate the model's sensitivity to thresholds. However, at SLR larger than 200 cm, when 

in absolute terms, uncertainty is large, the proportional spread diminishes, indicating consensus among model scenarios. 
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Table 5. Hazardous flooding class (> 30 cm water depth) Expected Annual Flooded Area (EAFA) for King and Pierce Counties 

under seven sealevel rise (SLR) scenarios. SLR is expressed relative to the mean sea-level in 2005 (cm). All EAFA values are in 595 

hectares (ha). “Low” and “High” represent the lower- and upper-bound estimates from the Low hazard and High hazard 

uncertainty simulations (refer to Section 3.2.2), respectively, while “Median” refers to the central estimate. 

 King [ha] Pierce [ha] 

SLR [cm] Low Median High Low Median High 

0 61 160 411 343 531 773 

25 91 226 639 372 608 935 

50 126 319 1,046 412 685 1,240 

100 243 738 2,294 577 954 2,101 

150 490 2,168 3,814 776 1,661 2,941 

200 1,247 3,696 4,757 1,100 2,698 3,504 

300 4,520 5,422 6,408 3,205 3,830 4,509 

   

5 Discussion 

To facilitate reading and ease of understanding, the discussion is divided into five subsections: (1) model performance and 600 

validation, (2) benefits of Continuous Flood Response Modeling (CFRM) in determining extremes versus traditional design-

event methods; (3) computational trade-offs and limitations; (4) the utility of the Expected Annual Flooded Area (EAFA) 

metric in planning and risk-informed decision-making; and (5) future directions and adaptation research implications. This 

organization allows both the methodological improvements and practical applicability of the proposed modeling framework 

to be considered clearly. 605 

5.1 Model performance and validation 

The validation results demonstrate that the presented workflow skillfully reproduces coastal water levels (Section 4.1.1), inland 

water levels (Section 4.1.2), flood extents (Section 4.1.3), and timing of flooding (Section 4.1.4). Strong model performance 

is attributable to (1) the nesting of the overland flow domains within large-scale coastal and inland models that provide reliable 

boundary conditions and (2) the inclusion of relevant bathymetric features. Computational efficiency was a key design 610 

consideration to enable the usage of the CFRM framework and simulation of thousands of years (i.e., 7+2 SLR scenarios, 3 

uncertainty layers, 2 domains, 100 years = 5400 simulations) of hydrodynamic processes. However, this consideration came 

with trade-offs: the model resolution was constrained to 50×50 meters, with fine-scale flood features resolved using subgrid 

lookup tables based on a 1-meter DEM. We acknowledge that this tradeoff sacrifices, to some degree, the accuracy with which 

water levels are simulated (as gauged in the validation) for better fidelity in extremes and compound events. For example, one 615 
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week of simulation at very high resolution and with a full physics model would produce better validation statistics, but at the 

cost of requiring an event-based strategy that sacrifices fidelity in description of the extremes. This loss of accuracy (decreased 

power to statistically capture extremes) is harder to quantify but must be considered in the choice of a specific workflow. 

5.2 Benefits of Continuous Flood Response Modeling (CFRM) for extreme events 

From an extreme value analysis (EVA) perspective, the chosen approach provides important advantages. The first is that a 620 

continuous 100-year simulation approach enables a cell-by-cell empirical EVA without requiring the fitting of statistical 

distributions. Fitting of an EVA statistical model adds significant uncertainty to predicted extremes, and an EVA model 

(statistical in nature) will underperform relative to a physics-informed model at constraining extremes. Second, abandoning 

the traditional application of a single, one-off "100-year" design event is particularly warranted in dynamic coast–riverine 

settings where diverse combinations of drivers can produce equally hazardous, yet spatially distinct, flood effects. As shown 625 

in Figure 6, a succession of diverse storms contributed importantly to the historical flood record, so a single, representative 

"100-year event" might mistakenly identify vulnerable areas. Our comparison in Section 4.2.1 also makes the point that 

deterministic 10-year design events produced local flood levels that were locally as much as 0.5 m higher than the CFRM-

derived 10-year estimate, demonstrating how extreme water levels and flood extents depend on the method used to derive 

them. Finally, the continuous time-series approach naturally captures compound extreme events where coastal and river 630 

forcings are phase-lagged or decoupled, for example, a coastal surge with a peak days apart from a river flood would most 

likely be underestimated by one design storm. As a result, CFRM provides a robust and spatially representative basis for flood 

hazard assessment and planning. 

 

Secondly, traditional design events typically represented by a single, static, deterministic “100-year” scenario, may not 635 

effectively model dynamic coastal–riverine systems where multiple drivers can produce diverse flood outcomes. As illustrated 

in Figure 6, several distinct storms contributed significantly to the historical flood record. Modeling the region with a single 

design event would therefore underpredict extremes at some locations where the incorrect 100-year storm is being modeled. 

In particular, the difference between the Continuous Flood Response Modeling (CFRM) and the deterministic 10-year design 

event revealed a MAE of ~19 cm with local differences as high as 0.5 m (Section 4.2.1). Additionally, a continuous time-series 640 

approach improves consideration of compound extreme events where fluvial and coastal side forcing may be phase-lagged or 

even decoupled.  

5.3 Limitations and computational trade-offs 

The chosen model configuration  eproduces flooding well across most of the domain, achieving high spatial agreement with 

FEMA flood extents (hit rates: 0.75–0.83). However, in narrow rivers the model introduces localized edge effects that results 645 

in overestimation of the river footprint. These effects are driven by the relatively coarse modeling resolution in combination 

with the usage of weirs. However, these limitations are consistent with other subgrid modeling approaches (e.g., van Ormondt 
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et al., 2024). Incorporating subgrid bathymetry is rapidly becoming the new standard because it allows the user to account for 

more information per grid cell and therefore improves the accuracy of the simulation. Subgrid bathymetry refers to storing and 

using high-resolution elevation information (e.g., 1 m DEM data) inside each larger model grid cell (e.g., 50 m) and allows 650 

the user to simulate on coarser resolutions without significant loss of accuracy. Coastal boundary mismatches are within the 

range of previous efforts (e.g., Nederhoff et al., 2024), driven by both differences in tides and the NTR. The persistent bias at 

Seattle (#9447130) is notable and is hypothesized to result from steric density-driven effects that are not accurately captured 

by the regional model (Parker et al., in preparation). Inland water level offsets stem from uncertainties in total inflow estimates 

(Buitink et al., 2025) and inaccurate riverine bathymetry. In some cases, bathymetry was manually deepened to improve 655 

hydraulic connectivity (refer to Section 3.2). Good-quality bathymetric data at the riverine–coastal interface remains a 

challenge over much of the globe, despite this interface being one of the most vulnerable regions to SLR and climate-driven 

change. 

 

Simplifications in the model and assumptions were required by computational and scale constraints. The SFINCS model used 660 

in this study has no stationary wave solver, infragravity waves, rainfall-runoff processes, sediment transport, or morphological 

change. Also, the SFINCS domains were not calibrated; default parameter values were used throughout. Future calibration of 

parameters such as bottom friction could improve model accuracy. Wave setup was prescribed at the offshore boundary using 

a simple estimate of 20% of the wave height, similar to Vousdoukas et al. (2018), although the accuracy was not assessed. 

Observations of wave setup in mixed sediment, low wave energy environments are sparse, and a case study with more 665 

comprehensive data at the exposed shoreline could provide further insights. The absence of high-fidelity wave and runoff 

modeling likely leads to the underestimation of flood hazards in both coastal and inland zones. A comparison with FEMA 100-

year flood maps yielded hit rates between 0.75 and 0.83, though the bias index (0.13) indicates a tendency to underpredict 

flood extent. 

 670 

While the CFRM approach was chosen for its multiple advantages, it is important to note that we simulated only 100 years of 

hydrodynamic forcing; therefore, by definition, the maximum flood extent observed corresponds to the 100-year event. This 

relatively low number of simulated years restricts the statistical confidence within the higher end of the extreme value 

frequency and does not identify more rare combinations. Extending the length of the simulation would increase the reliability 

of the higher return period estimates and allow for a more comprehensive sampling of tidal and storm interactions. The length 675 

of the simulation was not increased in the present study due to computational cost constraints, which remain a limit on long-

duration, high-resolution flood simulation. However, this framework permits temporal analysis of flooding, which can be used 

for validation (Section 4.1.4) and planning. 
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5.4 Expected Annual Flooded Area (EAFA) and planning relevance 

The Expected Annual Flooded Area (EAFA) is a more insightful, probability-weighted value of flooded area. EAFA captures 680 

contributions over the full range of return periods and is potentially a better tool for planners than fixed-frequency areas of 

flooding. There is a growing consensus that deterministic flood maps, while useful for regulation, are not sufficient for climate-

informed planning (Wing et al., 2022). Binary discretised results (flooded or not flooded) for a single storm do not portray the 

gradient of risk over return periods or the probabilistic nature of flooding. EAFA avoids these restrictions by providing a 

scalable, continuous depiction of flood hazard that is better adapted for cost-benefit analysis and resilience planning. 685 

 

Use of EAFA to estimate spatial flood extent is conceptually equivalent to the Expected Annual Damage (EAD) used in 

economic risk assessment by agencies such as FEMA (Rosbjerg, 2024) to estimate financial damages and is starting to be used 

more frequently (e.g., Vousdoukas et al., 2023). However, by merging EAFA with exposure layers, spatial patterns of expected 

annual impact can be estimated. This synthesis can enable agencies and municipalities to identify high-hazard areas, rank 690 

adaptation investments, and evaluate the performance of proposed interventions over time. EAFA is not meant to substitute 

but to supplement and enrich the planning and readiness of the community. Incorporation of EAFA in long-term planning 

reports, climate change adaptation plans, and capital investment plans can transform flood management from event-based, 

static models to response-based, dynamic risk management. 

5.5 Future research and adaptation implications 695 

This paper considered future flood risk under climate change and SLR scenarios, but not morphological change or societal 

growth like population increase and new infrastructure. The natural system is expected to respond dynamically to these 

pressures; for instance, shoreline and bluff retreat are widely projected under rising seas (e.g., Vitousek et al. 2017). The built 

system will additionally adapt to changing hazards, so experienced flooding will be directly influenced by the adaptation 

measures taken as communities respond to the changing natural system.  700 

 

Our findings indicate that SLR is a much more significant driver of future flood hazard in King and Pierce Counties than other 

climate change-related factors, such as changes in storm patterns, for the period assessed (through 2050 using the HighResMIP 

climate ensemble). Somewhat counterintuitively, the simulations show reduced flooding under future climate forcing alone 

without SLR. For this study, projected climate changes were derived using a cumulative distribution function (CDF) correction 705 

applied to the ensemble mean of 7 high-resolution CMIP6 models, following Parker et al. (in preparation). The relatively 

subdued or even negative storminess‐driven changes in EAFA and return period flood extent under future climate forcing (in 

the absence of SLR) must be interpreted in the context of both methodological and climate‐signal considerations. Similar 

patterns were observed when assessing projected changes in storm surge and wave climate around the Salish Sea using the 

same seven‐member HighResMIP CMIP6 ensemble (Parker et al., in preparation). High spread among individual CMIP6 710 
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members was noted, with several models producing consistently smaller changes than the others; when averaged, these model 

results weakened the ensemble‐mean signal. This high model variability suggests that the ensemble mean may underestimate 

potential changes captured by some members. A second important point is the time‐horizon mismatch between the climate‐

change and SLR scenarios used here. The HighResMIP CMIP6 simulations run only until 2050, whereas SLR increments used 

in our sensitivity analysis could be representative of longer‐term futures. As a consequence, the relative magnitude of 715 

storminess change and SLR is not directly comparable. These findings underscore the importance of caution in interpreting 

ensemble‐mean climate change effects on extremes in the Salish Sea, at least when confined to mid‐century time frames. 

Longer‐term, high‐resolution climate forcing data sets—considering both hydrologic and oceanographic inputs—would be 

required to directly compare century‐scale SLR projections with storminess change on the same time scales. 

 720 

Further modelling efforts could include physical processes not simulated here, such as wave runup and rainfall-runoff routing. 

Higher spatial resolution and more accurate representation of hydrologic and land-sea interaction processes could enhance 

model fidelity, particularly in compound flood settings. More detailed representation of urban drainage infrastructure and 

dynamic groundwater-surface water interactions would be needed for more complete inland flood simulations. Finally, 

combining EAFA or other hazard metrics with dynamic exposure layers (population, assets, critical infrastructure, etc.) would 725 

aid in the development of actionable, risk-based adaptation plans. 

6 Conclusion 

This study addressed growing flood risk in Pacific Northwest estuarine systems, where sea-level rise and changing storm 

systems threaten coastal and riverine communities. Traditional flood estimations with design events (e.g., FEMA's 100-year 

flood) would likely not account for the compound and spatially varying nature of extreme water levels. In an attempt to 730 

overcome this limitation, we utilized a Continuous Flood Response Modeling (CFRM) approach to simulate overland flooding 

in Pierce and King Counties using high-resolution SFINCS models. The approach incorporated many decades worth of 

dynamic boundary forcing data (coastal water levels and riverine inflow), and spatially variable friction, bathymetry, land 

cover, and topography to simulate dynamic flood processes. This approach enabled empirical determination of extreme 

recurrence at per-cell resolution sensitive to the combined effect of coastal and fluvial forcing and independent of statistical 735 

assumptions. Furthermore, the inclusion of a new innovative variable in SFINCS allowed accurate tracing of the timing of 

peak water levels, offering insights into dominant flood-generating events both spatially and temporally, and offering 

additional opportunities for validation. 

 

Validation showed model performance where coastal water levels were simulated with errors of 14 to 17 cm at two NOAA 740 

gauges and inland water levels with RMSEs of 49–116 cm at five USGS streamgages. Agreement with FEMA flood maps was 

high (hit rate indices of 0.75 in King County, 0.83 in Pierce County) with a slight underestimation bias (error bias index ≈0.13). 

https://doi.org/10.5194/egusphere-2025-4909
Preprint. Discussion started: 11 November 2025
Public domain. CC0 1.0.



29 
 

 

Under current climate conditions, the model predicted substantial spatial variation in flood hazards. The Expected Annual 

Flooded Area (EAFA), a probability-weighted sum of all return periods, ranged from 56 to 200 hectares in King County and 745 

250 to 644 hectares in Pierce County based on flood severity. Modeled future climate conditions showed that SLR is the 

dominant variable causing increased flood extent, while simulated climate forcing changes without SLR had negligible or even 

slightly negative effects on area flooded. One important observation in these runs is the presence of a threshold in the 

relationship between SLR and flood risk. Particularly, we detected the largest increases in flood risk between 100 and 150 cm 

SLR. The analysis also revealed that accounting for all relevant drivers (tide, surge, discharge) is essential for accurately 750 

predicting flood risk. A simplified, deterministic mapping approach based on a 10-year design flood resulted in flood depth 

errors of up to 0.5 meters and significantly different spatial extents. 

 

These findings demonstrate the utility of CFRM in flood risk estimation. Furthermore, EAFA provides a quantitative and 

informative index to planners and policymakers, offering a more complete evaluation of flood risk than traditional single–755 

return-period flood maps. Future research could incorporate other drivers, such as direct rainfall and wave behavior, and 

integrate flood hazard projections with exposure and vulnerability data to fully express risk. 
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