https://doi.org/10.5194/egusphere-2025-4909
Preprint. Discussion started: 11 November 2025 EG U
Public domain. CCO 1.0, Sp here
DOMAIN

Beyond the 100-Year Flood: Probabilistic Flood Hazard Assessment

for King and Pierce Counties under Future Climate Scenarios
Kees Nederhoff!, Kai Parker?, Eric Grossman?

! Deltares USA, 8601 Georgia Ave, Silver Spring, MD 20910, USA
5 2U.S. Geological Survey, Pacific Coastal and Marine Science Center, Santa Cruz, CA 95060, USA

Correspondence to: Kees Nederhoff (kees.nederhoff(@deltares-usa.us)

Abstract. Coastal areas, such as the Salish Sea, are becoming increasingly vulnerable to compound flooding due to the
10 interaction between storm surge, tides, and river outflow. This hazard is anticipated to increase under sealevel rise and climate
change. This research offers a high-resolution flood hazard mapping for King and Pierce Counties of Washington State (United
States of America) using the SFINCS (Super-Fast INundation of CoastS) model to facilitate a Continuous Flood Response
Modeling (CFRM) framework wherein decades of dynamic coastal and fluvial processes are simulated. By applying a cell-
by-cell extreme value analysis, we predict flood areas for return periods of 1-100 years and compute the Expected Annual
15 Flooded Area (EAFA) as a probability-weighted indicator of flood exposure. Model validation against National Oceanic and
Atmospheric Administration (NOAA) and United States Geological Survey (USGS) gauge data demonstrates skill (RMSE:
14-17 cm for coastal water levels; unbiased RMSE: 49-116 cm for river water levels), and comparison with FEMA Special
Flood Hazard Areas shows high spatial agreement of flooding (hit rates: 0.75—0.83). The timing statistics of the flooding reveal
that the December 28, 2022, event was responsible for most historically observed flooding across the area. Climate simulations
20 for today show EAFA ranges from 56 to 200 hectares in King County and from 250 to 644 hectares in Pierce County. Future
projections show that sea level rise is the main contributor to increasing flood extent, whereas climate change drivers such as
storm pattern change have little additional effect. We also identified a threshold around 100—-150 cm of sea level rise at which
the flood-exposed area increases substantially. Additionally, simplified deterministic flood maps can underestimate flood
hazard by up to 0.5 m if not all relevant drivers are included. These results support the use of probabilistic, event-independent

25 flood metrics such as EAFA to inform more rational and spatially responsive flood risk management.

1 Introduction

Coastal and estuarine communities face increasing vulnerability to flooding due to the combined effects of sealevel rise (SLR),
storm surges, high tides, and fluvial discharge. Globally, over 600 million people live within 10 m of sea level, a number
projected to exceed 1 billion by 2050, and accelerating SLR could displace many and incur trillions of dollars in annual flood
30 damages by the end of the century (Barnard et al., 2019). In the Pacific Northwest (PNW) of the United States, including the
Puget Sound region of King and Pierce Counties (Washington State, United States of America), this threat is acute with
important implications for these two most populous counties in Washington State and the Ports of Seattle and Tacoma (Miller

et al., 2023). King and Pierce Counties border the Salish Sea, a large, transboundary estuarine system including Puget Sound,
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the Strait of Juan de Fuca, and the Strait of Georgia, with complex bathymetry, strong tides, and variable meteorological
35 forcing (Grossman et al., 2023). Anticipated future rise in mean sea level and intensification of winter storms (Tohver et al.,
2014) will likely increase coastal flood hazards (Ruggiero, 2013). When SLR along the shoreline (from tides and surges)
combines with high river discharge, the resultant compound flooding is far more devastating compared to flooding by any
single driver alone (Wahl et al., 2015). Recent research reveals that most flood events at most U.S. coastlines involve more
than one driver happening simultaneously, and compound events carry a disproportionate share of flood damages (Ali et al.,
40 2025). An increase in the rate of urban development and loss of natural flood buffers in flood-prone coastal plains increases

still further the flood risk of towns, amplifying the urgency for managing these risks under climate change (Wing et al., 2022).

Effectively managing compound flood hazards is challenging because most traditional flood assessments do not capture the
joint and temporally variable nature of these events. Common practice in the majority of engineering studies and flood mapping
45  efforts is to use single-event (deterministic) scenarios (e.g., the ‘100-year’ design storm), treating flood drivers in isolation
(Green et al., 2025). While this event-based method is straightforward and widespread, it misrepresents the flood risk since
such methods fail to consider the chances of multiple extremes blending into a single event or co-occurring. For instance,
"design floods" are often unable to account for the time difference between different physical drivers, such as the moment of
the tide, storm surge peak, or river flood wave. As a result, such deterministic scenarios fail to incorporate compounding effects
50 and mischaracterize flood hazard. This limitation is particularly significant in the Salish Sea, where high water levels are tightly

controlled by interactions of tides, storm surges, and freshwater runoff.

Earlier studies, such as those of Yang et al. (2020) and Soontiens et al. (2016), have modeled 34 and 5 extreme events,
respectively, based on event-based models in efforts to model surge dynamics. The earlier studies, though, involved pre-
55 selecting certain storms to model, which was limited by the area’s high tidal range. For instance, Abeysirigunawardena et al.
(2011) indicated that 5% of the maximum surges in Canadian waters of the Salish Sea occurred at high tide. This is an
indication of how important it is to represent tidal amplitudes and phasing, surges, timing, and compound tide—surge
interactions in representing the overall description of flood risk. Furthermore, the intricate system of estuaries, basins, and
channels that constitute the Salish Sea results in significant spatial heterogeneity in the behavior of local water levels under
60 forcing from storms. For these reasons, selecting a few events may not be sufficient to represent the complete spatial variety

of possible flood effects across the region.

To better capture these complexities, the scientific and engineering community has increasingly shifted from deterministic
toward probabilistic frameworks. For example, copula techniques are now widely used to preserve interdependence among
65 variables (for example, wave height and period, but also storm surge and river discharge) in the event generation process (e.g.,
Couasnon et al., 2020). A well-established example in this direction for tropical cyclones is the Joint Probability Method

(JPM), which synthetically creates many storm scenarios with different landfall locations, intensities, and angles to acquire
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flood frequency estimates (Resio and Irish, 2015). These probabilistic forcing-based methods provide more robust estimates
of hazards than single-event methods by integrating across the full variability of driver combinations.

70
From this foundation, response-based evaluations of flood hazards take the next step by dynamically simulating the flooding
for an extensive set of synthetic events, and subsequently empirically determining flood probabilities from simulated outcomes
(Gori et al., 2020). Flood probabilities are calculated at each location in the area of interest, and no assumption of
“extremeness” for events is used. Rather, this method allows the system response to determine risk rather than inferring risk

75 from statistics of driver attributes alone. Advances in computation in recent years and cost-effective hydrodynamic solvers
have rendered such ensemble simulations more viable. For example, Santamaria-Aguilar et al. (2025) performed over 5,000
compound flood simulations with an SFINCS implementation on the graphics processing unit (GPU), producing probabilistic
flood maps that account for both temporal and spatial uncertainty. Similarly, Nederhoff et al. (2024) utilized a response-based
probabilistic method for compound flood risk assessment along the southeast coast of the U.S. for both tropical and

80 extratropical events. One of the benefits of this approach is the inclusion of low-probability but high-consequence scenarios
(e.g., a 10,000-year cyclone landfall). Rare events can thus be integrated with frequent ones into a single modeling framework

that consistently evaluates their contribution to flooding hazard and risk.

Parallel to these developments, continuous simulation (CS) approaches have emerged as an alternative to event-based flood
85 estimation, offering closer links to physical processes and avoiding assumptions about conditions (Viviroli et al., 2022). A
natural evolution is to combine response-based compound flood modeling with continuous simulation in what we term
Continuous Flood Response Modeling (CFRM). CFRM applies decades-long, continuous boundary forcing and includes tides,
surge, and river discharge to coupled hydrologic—hydrodynamic models. This approach eliminates the need to pre-select design
events or construct synthetic joint probability scenarios. Unlike traditional approaches, CFRM captures the co-occurrence,
90 sequencing, and persistence of flood drivers physically and temporally, without relying on predefined storm hydrographs (Dent
etal., 2011). Continuous simulation has been used extensively in riverine flood studies but has rarely been applied to compound
coastal and estuarine flooding due to computational demands. CFRM may thus represent one of the first implementations of a
fully continuous, decades-long simulation approach specifically for compound flood hazard assessment in a complex estuarine
setting.
95
Building on these principles, we develop and apply a CFRM framework for compound flood hazard assessment in King and
Pierce Counties, Washington. Our approach uses the Super-Fast INundation of CoastS (SFINCS) model (Leijnse et al., 2021)
and uses its computational efficiency to simulate continuous water levels and flows under decades of climate variability. This
implementation is based on the Coastal Storm Modeling System (CoSMoS), a widely used modeling framework first
100 developed for California (Barnard et al., 2019; O'Neill et al., 2018). Our study extends the Puget Sound implementation (PS-
CoSMoS) of Nederhoff et al. (2024), which developed regional-scale storm hazard projections for Whatcom County, by
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improving the representation of coastal-riverine interactions and porting the approach to a new geography. Specifically, we
focus on overland flood dynamics in King and Pierce Counties and demonstrate how such a method can be used in other
sheltered estuarine habitats around the world. Using SFINCS, we simulate continuous water levels and flows across the study
105 areaunder decades of climate variability, allowing every grid cell to experience the full range of tide, surge, and river discharge
combinations over the multi-decade period. This enables a cell-specific extreme value analysis, wherein flood frequency
statistics (e.g., 100-year water levels) are derived at each model grid cell from the long-term simulation output, rather than
being assumed from a single event. The modeling system is first validated against observed water levels and flood extents to
ensure credible performance. We then apply the validated model to quantify both current and future flood hazards under
110  various SLR and climate change scenarios. This CFRM approach offers a novel, probabilistic view of compound flooding for

the Salish Sea region.

2 Study site: King and Pierce County

Spanning British Columbia, Canada, and Washington State, USA, the Salish Sea is a complex estuarine system formed from
flooded glacial valleys, including the Strait of Georgia, Puget Sound, and the Strait of Juan de Fuca. The unique arrangement
115  of channels, islands, and shoals is fed by numerous freshwater watersheds. Ocean waves reach this basin through the
constricted route of the Strait of Juan de Fuca, and local winds determine the wave climate elsewhere in other fetch-limited
regions (Grossman et al., 2023). The meandering and irregular shoreline of the Salish Sea demonstrates the dynamic and
geographically variable setting. It also adds highly exceptional marine biodiversity and benefits the economy and culture of a
prosperous and growing coastal community in cities such as Seattle and Tacoma, Washington, and Vancouver, British

120  Columbia (Oldford et al. 2025).

King and Pierce Counties lie within the central Puget Sound region of Washington, which is bound on the west by the Salish
Sea and Kitsap County, on the north by Snohomish County, and on the south by Thurston & Lewis Counties (Figure 1). The
counties cover more than 10,000 km? of heterogeneous geology and ecosystems from coastal estuaries to glaciated volcanic
125 peaks. King County, where the largest city, Seattle, is located, and Pierce County, where the largest city, Tacoma, is situated,
have large populations and are economic centers. Both possess high-density populations, urbanized infrastructure, and
economically valuable resources in the coastal zone and would benefit from accurate risk assessments, allowing shoreline
planners to better manage the combined impacts of SLR and extreme events. Land use ranges from heavily developed urban
zones to productive agricultural lands, particularly in the lowland deltas and tidal flats that are vulnerable to erosion and

130  flooding (Grossman et al., 2023).

Topographically, the county terrain ranges from sea level to over 4,300 meters at the summit of Mount Rainier, an active

volcano and the state's highest point. Mount Rainier provides sustenance for numerous streams and glaciers that produce
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river systems of steep gradient and high velocity, carrying water and sediment from alpine to marine environments (Sisson et

135 al, 2001). The largest rivers in the area, such as the Duwamish and Green Rivers in King County and the Puyallup River in
Pierce County drain large watersheds that include agricultural fields and urban areas before emptying into Puget Sound.
These rivers yield to Puget Sound lowlands and form broad estuaries and deltas at their mouths that support an array of
nearshore and tidal marsh communities. Geological data show that in the past, volcanic lahars from Mount Rainier have
blanketed the Puyallup Valley, highlighting the connection between mountain and coastal floodplains (Sisson et al., 2001).

140  Other important features include Vashon Island within King County, located in the middle of Puget Sound, and parts of the
Kitsap Peninsula in Pierce County. Both geographic features contribute to local coastal processes and ecosystems. Long
stretches of the shore have eroding bluffs, mixed-sediment beaches, tidal flats, and man-made shoreline structures like
seawalls. These structures reduce natural wave dissipation and increase direct wave impacts at high tide. Nearly a third of
Puget Sound's ~4,000 km of shore is armored, often producing steeper, finer beaches, reduced habitat, and perturbed

145  sediment transport (Dethier et al., 2016).

The Salish Sea tides consist of a mixed semi-diurnal meso-tidal regime, where tidal amplitudes are amplified as they enter
the system from the Pacific Ocean. Tidal amplitudes increase from about 2.4 m at the ocean mouth to 4.4 m farther inland
(e.g., Olympia, Washington), with strong currents (often >1 m/s) through restricted passages like Admiralty Inlet (Grossman
150 etal., 2023). Storm surges are predominantly a result of severe low-pressure weather systems forming over the eastern
Pacific Ocean that travel onshore between Oregon, USA, and Vancouver Island, British Columbia (Yang et al., 2019). High
coastal water levels in the Salish Sea are therefore a result of a combination of offshore (Pacific Ocean) steric sea-level
anomalies (remote SLA), inverse barometer effect, and setup by wind. Maximum surge amplitudes will usually be of up to
~1 meter (e.g., Grossman et al., 2023). Wave climate in the Salish Sea is complex; the outer coast and western Strait of Juan
155 de Fuca are dominated by swell and have wave periods normally >10 s, while Puget Sound is dominated by wind-sea with

wave periods normally <5 s and wave heights <2 m (Crosby et al., 2023).

There are some recent and historic flood events that have demonstrated the vulnerability of the region to both coastal and
fluvial flooding. For instance, on 28 December 2022, a flooding event resulted in widespread inundation in Seattle's South
160  Park neighborhood (Thomas, 2023). Commonly referred to as a 'King Tide' event, it was 3.8 m+ the North American
Vertical Datum of 1988 (NAVD88) above NOAA Seattle tide gauge (#9447130) and had significant impacts in low-lying
urban areas aggravated by pre-spring snowmelt, a low-pressure system, and stormwater runoff. Among some of the other
important incidents are the flood in December 1975 that affected the Nisqually and Green Rivers (U.S. Army Corps of
Engineers, 1977) and the November 1990 flood, when storms during Thanksgiving week caused general riverine flooding
165 throughout the whole Pierce County (Hubbard, 1993). These events, both in urban and rural areas, emphasize the importance
of coupled flood modeling and planning initiatives able to capture the spatial and temporal heterogeneity of compound flood

risk across the Puget Sound region.
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Figure 1: King and Pierce Counties are located in the Pacific Northwest of the United States of America (panel A). Panel B provides

170  an overview of the area of interest in King County (blue domain) and Pierce County (green domain), Washington, and the SFINCS
model domains. Panel C provides a detailed view of Pierce County and Panel D provides a detailed overview of King County. Note
that there are five inflow boundary conditions in total, but due to partial overlap between panels C and D, some boundaries appear
duplicated. Two NOAA stations are included 944713 (Seattle) and 9446484 (Tacoma) and 5 USGS stations (12096500, 12101500,
12113000, 12113344, 12113390) — see NOAA (2025) and U.S. Geological Survey (2025) for more information. Background: Esri

175 World Imagery basemap. Sources: Esri, Maxar, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP,
swisstopo, and the GIS User Community.

3 Materials and methods
3.1 Overview

This study’s modeling approach builds on CoSMoS (Barnard et al., 2014), originally developed for California and later adapted
180 for Washington State (Crosby et al., 2023; Grossman et al., 2023; Nederhoff et al., 2024). Figure 2 displays the conceptual
framework as applied here. Overland flooding was simulated using the open-source model SFINCS (Leijnse et al., 2021),
which was selected for its computational efficiency and ability to represent dynamic flood processes. Two high-resolution
model domains were constructed for King and Pierce Counties incorporating high-resolution topobathymetric data and land

cover (Section 3.2.1). Boundary conditions for water levels and river discharges were provided from multi-century
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185 climatological datasets (Section 3.2.2). The modeling was conducted in two phases: first, the reanalysis period was simulated
and validated against observational datasets (Section 4.1). Second, future climate conditions were simulated under multiple
SLR scenarios. Compound flood outputs from these simulations and extreme value analysis were used to estimate flood
frequency and were subsequently downscaled to higher spatial resolution (Section 4.2). The following sections describe the

input data, model components, numerical methods, and computational framework in greater detail.

Results per

Tide and Surge Model

(Parker et al.,, 2025) SFINCS Wotaivons Validation
Extreme
Value
Analysis
Hydrological model Downscale Flood
(Buittink et al. 2025) Results Hazards

190

Figure 2. Conceptual workflow of the CoSMoS flood modeling framework. Blue rectangles represent model components, red
diamonds indicate input data sources, orange hexagons denote analysis steps, and purple rounded diamonds show the main outputs
of the study.

3.2  Input data
195 3.2.1  Static data: topobathymetry and land roughness

Elevation data for the entirety of the coastal regions of King and Pierce Counties were derived from the Coastal National
Elevation Database (CoNED) topographic model of Puget Sound (Tyler et al., 2020). The CONED dataset provides a seamless
digital elevation model (DEM) at 1-meter resolution, constructed from the latest high-resolution datasets, including light
detection and ranging (LiDAR) topography, multibeam and single-beam bathymetry, and other topographic and bathymetric

200 sources. These datasets were merged into a continuous surface to ensure spatial consistency and accuracy. For this study,
CoNED data were extracted to create DEMs necessary for running the SFINCS model. The CoNED DEM has a root-mean-
square error (RMSE) of 22 cm, which reflects its reliability for this type of coastal hazard analysis.

The subsampled CoNED DEMs were used to characterize the nearshore zone, beach areas, riverine channels, and levees as
205 accurately as possible. Elevation data are the first-order control on flood hazard modelling fidelity, and a high resolution and

level of detail are critical for capturing the hydrodynamic processes that govern coastal and riverine flooding. Early model
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runs, however, revealed inaccuracies in the representation of riverine bathymetry. To address this, additional data were utilized
to infer riverine bathymetry characteristics for the major river systems. Modified riverine bathymetry was found to improve
the representation of channel morphology and flow dynamics within the SFINCS simulations. In particular, a trapezoidal
210 channel shape was imposed along the Green and Puyallup Rivers to replace the hydro-flattened bathymetry, which was too
shallow. The channel centerlines were defined by digitizing a line along the thalweg, and cross-sections were deepened to a

trapezoidal profile to improve hydraulic connectivity in the model.

The National Land Cover Database (NLCD; Homer et al., 2020) was utilized to define spatially variable roughness over the
215 SFINCS model domain. Comparable translations, as in Nederhoff et al. (2021), were used to convert land cover classes into
friction values. This approach enabled the representation of heterogeneous surface characteristics, with roughness values
ranging from 0.020 for open water to 0.15 for forests. Open water friction was set to a constant 0.020 value and was thus not
used for calibration. This spatially variable roughness enhances the model's ability to simulate flood behavior across a variety

of land cover and hydrologic regimes.

220 3.2.2 Dynamic forcing conditions: water levels and discharges

Water levels and wave heights were extracted from regional Delft3D FM and SWAN modeling efforts (Parker et al., in
preparation). Specifically, a Delft3D Flexible Mesh (Delft3D FM) model was used to compute tides and surges across the
Salish Sea. The model exhibited high skill in replicating still water levels compared to six National Oceanic and Atmospheric
Administration (NOAA) tide stations and seven U.S. Geological Survey (USGS) tide gauges across the 2017-2019 validation
225 period (Figure 1), with a mean error of approximately 10 cm (Grossman et al., 2023). Still water levels (water levels driven by
tides, steric sea-level anomalies, and storm surges) were directly extracted from the regional Delft3D FM model and imposed
as time-varying water level boundary conditions along the open coast of our SFINCS domains. Waves were computed as a
sum of locally generated wind waves and the linear transformation of the Pacific Ocean swell. This approach enables quick
wave predictions at high spatial resolution, making long-term regional simulations possible, with skills similar to standard
230 SWAN implementations (Crosby et al., 2023). Wave height was converted into wave setup through the 20% of the wave height
approximation commonly used in coastal engineering (e.g., Vousdoukas et al., 2018) and added to the still water levels
computed by the Delft3D model. This simplified approach was chosen for efficiency but could misrepresent run-up in some

locations.

235  Stream inflow discharges were simulated using the wflow hydrological modeling framework (van Verseveld et al., 2024). The
wflow model allows for the simulation of key catchment hydrological processes, including precipitation, interception, snow
accumulation and melt, evapotranspiration, soil water, surface water, and groundwater recharge, within a fully distributed
environment. Discharges were imposed at five locations (1 in King County and 4 in Pierce County), at approximately +20 m

NAVDS8S, which is considered outside the zone of tidal influence (Figure 1 — black circles with white fill). Discharges were

8
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240 typically within a 20% error margin of observed flows, based on the calibration/validation of the wflow model in the region

(Buitink et al., 2025). For more information on this regional modeling work, one is referred to Buitink et al. (2025).

All model domains were forced using meteorological conditions, including wind speed and mean sea-level pressure. These
meteorological inputs were applied in the upstream/regional models (e.g., atmospheric forcing for Delft3D FM and wflow),
245  ensuring that storm effects were represented in the boundary water levels and river inflows passed to SFINCS. No direct wind
or rain forcing was applied within the SFINCS domains. For the hindcast (validation) period from 1941 to 2022, meteorological
inputs were based on ERAS reanalysis data (Hersbach et al., 2020). For the projection period, conditions were derived from
the Coupled Model Intercomparison Project - Phase 6 (CMIP6). An ensemble of 7 CMIP6 models from the High-Resolution
Model Intercomparison Project (HighResMIP, Haarsma et al., 2016) was used with the SSP5-8.5 greenhouse gas concentration
250 scenario. Models from the HighResMIP project were selected for their higher spatial resolution (25-50 km), which is expected
to improve the representation of coastal storm events that are inadequately resolved by the native resolution of most general
circulation models (GCMs; Roberts et al., 2020). As a compromise for higher resolution, models in the HighResMIP project
were run for a shorter simulation time (1950-2050) than other CMIP6 models. Therefore, conclusions regarding temporal
changes in forcing are limited to this time horizon. More details on the specific CMIP6 model iterations used and their

255 implementation in the regional framework can be found in Parker et al. (in preparation).

To assess the impact of SLR on flooding in King and Pierce Counties, seven SLR scenarios were selected: 0, 0.25, 0.50, 1.00,
1.50, 2.00, and 3.00 meters above mean sea level in the year 2005. These scenarios were selected to bracket the potential
magnitudes of SLR without consideration of particular time frames so that flexibility is provided for future re-analysis as

260 relative SLR projections are refined. This response aligns with the suite of SLR projections for the U.S. West Coast through
the year 2100 presented by Sweet et al. (2022) and previous CoSMoS modeling research (Barnard et al., 2014).

33 Validation data

3.3.1 Coastal water levels: NOAA

Time series of observed water levels at NOAA stations (Figure 1 — red circles with prefix "NOAA" labeling) across the study

265 area were utilized to validate the model. Hourly water levels relative to NAVD88 were obtained from two NOAA stations for
the period 1942-2022. The Seattle, WA station (Station ID: 9447130) has a continuous record, while the Tacoma, WA station
(Station ID: 9446484) started operating in 1996 (NOAA, 2025).

3.3.2 Riverine water levels USGS

Streamgage time series of observed water levels from USGS (Figure 1 — red circles with "USGS" prefix labeling) were used

270  to validate the inland conditions model. River stage data from 2007 to 2022 were collected at five USGS stations. Because the
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reference level of stage measurements can be non-uniform, all the comparisons were adjusted to make a fair comparison

between the model (referenced to NAVD88) and the USGS observed gage heights.

3.3.3  Flood extent: FEMA maps

Federal Emergency Management Agency (FEMA) Special Flood Hazard Areas (SFHAs) were used as reference data to
275  validate modeled flood extents. SFHAS illustrate zones of a 1% annual chance of flooding (commonly referred to as the "100-
year floodplain") and are the primary regulatory flood zones mapped in FEMA's Flood Insurance Program. These zones are
established through site-specific analysis that commonly involves hydrologic and hydraulic modeling, which may vary from
simplifying assumptions to complex 1D or 2D simulations depending on local conditions and data availability. In this study,
FEMA-provided vector shapefiles of the 1% Annual Exceedance Probability (AEP) floodplain were used for comparison with
280 simulated flood extents (Federal Emergency Management Agency, 2025). However, there are no detailed metadata available
to describe the underlying data, making it nearly impossible to determine the data’s age, resolution, or methodology for each
jurisdiction. To allow for pixel-based validation, all FEMA shapefiles were rasterized to a 2-meter resolution grid and
reclassified into three classes: flooded (wet), not flooded (dry), and no data. These raster FEMA maps enabled pixel-by-pixel
comparison to modeled flood extents, from which we computed categorical skill metrics (hit rates, false alarm ratios, etc.)

285 described in Section 3.3.

3.4  Numerical method: overland flooding with SFINCS

SFINCS (Leijnse et al., 2021; van Ormondt et al., 2024) was used to simulate compound flooding processes, encompassing
dynamic hydraulic phenomena such as tidal propagation and river runoff while ensuring computational efficiency (e.g.,
Sebastian et al., 2021). This combination of capabilities made SFINCS an ideal choice for predicting overland flooding in this

290 study. Two computational domains were developed for King and Pierce Counties (refer to Figure 1 — panels C and D), each
constructed at a 50-meter resolution, covering an average area of 3000 km?. These domains incorporated 1-meter resolution
CoNED topobathymetric via subgrid tables (which store the elevation at 20 vertical levels) to preserve fine-scale topography
within each 50 m cell. All simulations were conducted with advection enabled, turning SFINCS into a solver for the Simplified
Shallow Water Equations (SSWE).

295
No calibration of the SFINCS computations was performed, as simulated regional water levels and riverine inflow discharges
were directly imposed, and friction in open water was held constant. Overland flooding was allowed to infiltrate at a constant
2 mm/hr (representing low-permeability soils Rawls et al., 1982), to provide a rudimentary representation of drainage and
prevent indefinite ponding in flat areas. Rainfall or wind forcing were not directly applied in the model, but these factors were

300 used to derive regional boundary conditions for water levels and discharges.



https://doi.org/10.5194/egusphere-2025-4909
Preprint. Discussion started: 11 November 2025 EG U
Public domain. CCO 1.0, Sp here
DOMAIN

Simulations were conducted for complete water years (WY; a 12-month period from October 1 through the following
September 30 and named for the year in which it ends), precdeded by a 7-day initialization period (spin-up period). Key outputs
recorded during the simulations included the maximum annual water level, the maximum depth-velocity product (m?%s), the

305 duration that each cell remained wet using a minimum depth of 10 cm, and the time of maximum water level.

The model results were generated using a slightly modified version of the SFINCS "Dollerup" release from November 2023,
which is available as open-source code on GitHub and through Deltares (van Ormondt et al., 2025;

https://github.com/Deltares/SFINCS; available from September 1, 2025 on GitHub). In particular, we added new output

310 functionality that tracks the moment of high water. These changes have recently been merged into the main trunk of the code

on GitHub.

To account for uncertainty in boundary conditions, an additional two simulations were performed with altered "low" and "high"
estimates of parameters. The low estimate reduced dynamic coastal water levels by 50 cm, lowered river discharge by 20%,
315 and increased weir crest elevations by 50 cm to represent a more conservative (lower hazard) scenario. Conversely, for the
high estimate, the same parameters were adjusted but in the opposite direction to simulate a more demanding (higher hazard)
boundary condition. These are constructed to simulate a 95% confidence interval, based on normally distributed model
residuals and +2 times the root-mean-square error (RMSE) enclosing the likely range of flood response. This allows us to
examine the sensitivity of predictions of flood extent to uncertainty in the dominant (hydrodynamic) inputs. Results from these

320 High/Low hazard simulations are used later to define uncertainty ranges.

3.5 Computational framework, simulation period, and computational expense

The modeling framework was structured into three distinct phases: (1) reanalysis (hindcast) validation, (2) current climate

projections, and (3) future climate projections.

325 During the validation phase, the model was validated over an 82-year reanalysis period spanning water years 1941 through
2022. Coastal water levels were validated using observations from two NOAA tide gauge stations (Seattle and Tacoma, WA),
while inland water levels were assessed using data from five USGS streamgages distributed across King and Pierce Counties

(Figure 1).

330 To support extreme value analysis, the model was driven with 82 years of reanalysis boundary conditions (1941-2022),
enhanced by applying randomized tidal phasing. This approach generated an additional 18 synthetic years, bringing the total
timeseries to 100 years, ensuring adequate sampling of extreme events. Importantly, this method enabled an empirical
estimation of 100-year return levels, avoiding the need to fit a theoretical extreme value distribution. In particular, the method

from Nederhoff et al. (2024) for a synthetic record was utilized by randomly selecting a yearly non-tidal-residual (NTR) signal

11
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335 from the 82-year record. NTR refers to all non-tidal fluctuations in sea level and includes, for example, contributions from
steric sea level anomalies and wind-driven storm surge. A uniform distribution shift from —1 to +1 days was applied to the
time axis of the NTR to increase variability. Tides were generated from astronomical components computed from the tide-
only regional model results. Discharge and wave conditions were assumed to be completely correlated with NTR, and
associated wind and wave conditions are directly used in model forcing.

340
In the future climate phase, the model was forced using the pseudo-global-warming (PGW) approach (Brogli et al. 2023). The
PGW strategy consists of simulating the current conditions with boundary conditions modified by the climate change signal
(delta). In this case, the same reanalysis 100-year simulation was re-run with all boundary conditions (water levels and riverine
discharges) modified by a calculated climate change signal. The utilized delta was calculated by running the regional models

345  (both water level and streamflow), forced by an ensemble of CMIP6 models. The CMIP6 forced ensemble was run for both a
historical and future period, with the change (the delta in the PGW method) then calculated at all boundary forcing points used
in this study. The delta was calculated by computing the difference between the future and historical cumulative distribution
function (CDF) at all quantiles in the CDF, allowing a variable delta across the CDF. This approach allows flexibility in how
water levels might change, for example, extremes increasing while the average water level stays the same. In essence, this

350 applies a quantile-dependent shift to every time step of the historical boundary conditions so that their statistical distribution
matches that projected for mid-century climate. To allow for seasonal differences in the climate change signal, this delta was
calculated for each month of the year. The full ensemble of calculated deltas (7 climate models, 12 months, all quantiles) was
reduced by taking the average across the CMIP6 ensemble members, with averaging used to reduce individual CMIP6 bias
and improve robustness of the resulting calculated delta signal. This delta was then applied to the full timeseries of the current

355 climate projections period to produce a new boundary forcing PGW timeseries representing the future period. Simulations
using this PGW future climate were then conducted for multiple SLR scenarios to evaluate the sensitivity of flood hazards to
different future climate trajectories. In this way, future changes to flood hazards are segmented into 2 signals: a climate change

forcing signal (provided using the PGW method), and an SLR signal (implemented as a change to Mean Sea Level).

360 Flood hazards are often defined by wet areas based on a specific flood depth threshold, typically 10 or 15 cm (e.g., Wing et
al., 2017). In this paper, we apply three classes of flood severity: nuisance flooding (depth > 10 cm), hazardous flooding (depth
>30 cm), and severe flooding (depth >100 cm). The flood hazards were analysed over a full range of return periods from 1 to
100 years. We also computed the Expected Annual Flooded Area (EAFA), as a probability-weighted sum of flood extents for
all return periods, and computed this for each severity class separately (Vousdoukas et al., 2023). To focus on event-driven

365 flooding, grid cells that flood during regular daily tidal conditions were not included in these calculations.

All the simulations were executed on the USGS Hovenweep platform (Falgout et al., 2025). A single simulation run (one water

year) required approximately 36 hours to finish. We simulated the current climate scenario at mean sea level (0 m SLR) and

12
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at one elevated SLR level (1.0 m) to isolate SLR-only effects. Under future climate (PGW conditions), we ran the full set of
370 seven SLR scenarios (0 through 3 m). In total, 5,400 yearly simulations (7x SLR scenarios with future climate and 2x SLR for
current climate, 3 uncertainty layers, and 2 domains) were conducted, totaling a computational effort of approximately 194,400
hours. However, the actual computational burden was an order of magnitude higher due to additional sensitivity tests,
calibration runs, and model refinements in an iterative stakeholder process. In order to quantify uncertainty in SLR projections,
each scenario was rerun with both high and low estimates, totalling 2700 simulations. This extensive simulation effort offers
375 robust statistical analysis, multiple scenarios to address the requirements of stakeholders, and testing to address both past and

future flood conditions.

3.6  Model skill

To quantify the skill of the model to reproduce water levels, several accuracy metrics were calculated: model bias, mean-
absolute-error (MAE; Equation 1), root-mean-square-error (RMSE; Equation 2), and unbiased RMSE (uURMSE; RMSE with

380 Dbias removed from the predicted value)

1 Equation 1
MAE = £ (ly: = i) ;

Equation 2
RMSE =

where N is the number of data points, y; is the i-th predicted (modeled) value, and x; is the i-th measurement. For stations
without a reference level, we computed the unbiased RMSE and MAE, also referred to as uRSME and uMAE. Lastly, we

compute the scatter index (SCI), which is a metric to express RMSE in a relative sense as a fraction of the RMS magnitude of

the signal.
385
In addition to these continuous metrics, a binary skill classification was used to evaluate the model's ability to correctly predict
wet and dry conditions (Wing et al., 2017). For this classification, model predictions were compared to observations using a
contingency table with the following categories:
e True Positives (TP): Correctly predicted wet cells (M1B1)
390 e  True Negatives (TN): Correctly predicted dry cells (MOBO)
e False Positives (FP): Predicted wet but dry benchmark cells (M1BO0)

e False Negatives (FN): Predicted dry but wet benchmark cells (MOB1)
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From this classification, the following skill metrics were derived:

Hit rate index (H) = TPT:I-% Equation 3

False ratio index (F) = % Equation 4
Critical success index (C) = ﬁ Equation 5
Error bias index (E) = % Equation 6

395 These binary skill metrics complement the continuous accuracy measures and provide a comprehensive evaluation of the

model's performance, particularly for assessing its capability to predict flooding extents.

4 Results
4.1 Validation
4.1.1  Coastal water levels

400 Modeled still water levels from WY 1942 until WY2022 were validated against gauge data. An example time series of 1 month
of water level at the tide gauge station Seattle, WA (NOAA station #9447130), including the decomposition in tide and NTR,
is shown in Figure 3. Table 1 contains a summary of skill scores for still water level and tide of 2 NOAA gauges for 84 years
of modeled water years in terms of RMSE, SCI, MAE, and bias. We estimate an RMSE of 14.0 to 17.1 cm and an SCI of 7.9
to 10.3%. Errors are driven by a combination of modeled tide and NTR. Tides are reproduced with an RMSE of 8.4 to 8.5 cm,

405 indicating a contribution of approximately half of the error. While tides are generally more deterministic and “easier” to model,
the tide signal is also much larger than NTR, so it is unsurprising that it contributes a large fraction of the error. Sources of
overall water level discrepancy are driven by offsets in NTR (remote SLA and locally generated wind-driven surge; notice
panel C in Figure 3), inaccuracies in bathymetry and/or frictional effects, or local baroclinic effects that are unaccounted for

in a depth-averaged model without density differences driven by temperature and salinity.
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Figure 3. Comparison of coastal water levels at Seattle, WA (NOAA station #9447130): Comparison of modeled and observed still
water levels for 1 month, including the decomposition into tidal (tide) and non-tidal residual (NTR) components. Panel (A) shows
the observed and modeled still water levels, panel (B) highlights the modeled and observed tidal contribution, and panel (C) presents
the NTR. Determination of the tidal signal was done in the same manner for both the modeled and observed signals.

Table 1. Comparison of skill scores for modeled water levels at Tacoma (NOAA station #9446484) and Seattle (NOAA station
#9447130; also shown in Figure 3 and indicated here with a *): Summary of skill metrics for still water levels and tide-only
components at Tacoma and Seattle tide gauge stations. Metrics include Root Mean Square Error (RMSE), Scatter Index (SCI),

Mean Absolute Error (MAE), and bias.

9446484 9447130*

Name Tacoma Seattle
RMSE [cm] 14.0 17.1

SCI [%] 7.9 103
MAE [cm] 10.9 14.3

Bias [cm] +2.3 +9.3
RMSE tide only [cm] 8.5 8.4

MAE tide only [cm] 6.8 6.7

Years of data 27 84

15
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420 4.1.2 Inland water levels

Model water levels for October 2007 to the end of WY2022 were validated against gauge data. Two sample time series, each
three months long, plot water levels at a streamgage on the Duwamish River (USGS station 12113390; U.S. Geological Survey,
2025) and on the Puyallup River (USGS station 12101500, Figure 4). Table 2 presents skill scores for five inland water levels
across USGS streamgages for which records extended as far back as 15 years. Errors in the model result from a combination
425 of'tidal and riverine inflow. The influence of tides appears to be overestimated at both the Duwamish (Figure 4 - panel A) and
the Puyallup (Figure 4 - panel B) stations. This overestimation is most likely a result of errors in riverine bathymetry, which
allow tidal propagation too far upstream. This is apparent from modeling results, where at the Duwamish River USGS station
(12113390) tidal oscillations are observed, but their modeled amplitudes are too large. Conversely, at the Puyallup River
(USGS station 12101500), tidal effects are not observed, but the model simulates some tidal oscillation. Despite these
430 disparities, the model captures the timing of heightened riverine discharges and associated stage increases. For the Duwamish
River (USGS station 12113390), the peak flows are a day early in the model versus observations, while timing at the Puyallup
River (USGS station 12101500) is well captured. Errors derived using the uMAE for the gauges range from 37 to 87 cm and

represent the combined influence of tidal and riverine error components.
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435  Figure 4. Modeled and observed inland water levels: Panel (A) shows water levels at a streamgage on the Duwamish River (USGS
station 12113390), while Panel (B) presents water levels at a streamgage on the Puyallup River (USGS station 12101500; U.S.

Geological Survey, 2025).

Table 2. Comparison of skill scores for modeled inland water levels at five USGS stations (U.S. Geological Survey, 2025):
Performance metrics for modeled water levels are provided for five gauges across the Puyallup and Duwamish watersheds. The
number of years of available data for validation is also listed. Stations marked with an asterisk (*) are reference locations discussed
in Figure 4.

440

12096500

12101500*

12113000

12113344

12113390*

Watershed

Puyallup

Puyallup

Duwamish

Duwamish

Duwamish

uRMSE [cm]

115.7

69.6

48.7

86.6

58.9

uMAE [cm]

87.2

53.2

37.6

53.2

38.8

Years of data

15

15

15

11

9

4.1.3  Flood extents

The 2-meter resolution flood model was used to determine the 100-year flood extent (1% AEP) in King and Pierce Counties.
445 The model was compared to FEMA's SFHA, examining 38.25 million grid cells for King County and 45.69 million for Pierce
County. The Hit Rate Index (H) was 0.746 for King County and 0.827 for Pierce County, indicating that roughly 80% of
FEMA-mapped flood areas were also identified by the model (Table 3). The Critical Success Index (C), with weight for correct
predictions but also weighing misses and false alarms, was narrowly lower (0.721 and 0.809, respectively), indicating minimal
false alarms. In particular, the False Alarm Ratio (F) is minimal for each of the counties (0.044 for King and 0.026 for Pierce).
450 The small Error Bias Index reveals that the model underestimates the extent of flooding relative to FEMA maps. Overall, some

discrepancies between these two products are expected because the methodologies differ substantially.

Figure 5 demonstrates this performance spatially and highlights the mixed agreement between SFINCS-modeled and FEMA-

reported flood extents. Panel A highlights the South Park neighborhood in Seattle, WA, where model results show extensive
455 flooding along the Duwamish Waterway while FEMA maps suggest no flooding despite its history of inundation (refer to
Section 2 ‘Study Site”). Panel B shows the Oro Bay coastal region on Anderson Island, WA, where the model and FEMA
alignment are mixed, with both areas flooded by SFINCS and not by FEMA, and vice versa. Panel C presents an upstream
portion of the Green and Duwamish Rivers near Kent, WA, where both the model and FEMA show strong agreement across
a broad river floodplain.
460

Table 3. Summary of flood extent validation metrics comparing modeled 100-year flood extents with FEMA Special Flood Hazard
Areas (SFHA) for King and Pierce Counties. Metrics include the Hit Rate Index (H), False Alarm Ratio (F), Critical Success Index
(C), and Error Bias Index (E), based on pixel-level agreement.

King County | Pierce County
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470

475

Hit rate index (H) 0.746 0.827
False Alarm Ratio index (F) 0.044 0.026
Critical Success Index (C) 0.721 0.809
Error Bias Index (E) 0.134 0.127
Number of total cells analyzed [M] | 38.25 45.69

_ Flooding Mask
I FEMA and SFINCS flooded
I FEMA flooded, SFINCS not flooded B
[ FEMA not flooded, SFINCS flooded
ESRI Satellite

500

)
-500.-1;000'm

Figure 5. Comparison of 100-year modeled flood extent by SFINCS with FEMA Special Flood Hazard Areas (SFHA) in selected
locations across King and Pierce Counties, Washington. Colors represent flood agreement classification: blue for hits (both SFINCS
and FEMA indicate flooding), red for misses (flooding observed by FEMA but not captured by SFINCS), and orange for false alarms
(SFINCS predicts flooding not identified in FEMA maps). Panel A: South Park neighborhood in Seattle, WA, adjacent to the
Duwamish Waterway. Panel B: Oro Bay on Anderson Island, WA, illustrates a coastal setting. Panel C: A reach of the
Green/Duwamish River near Kent, WA. Background: ESRI Satellite Imagery. Sources: Esri, Maxar, GeoEye, i-cubed, USDA FSA,
USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community.

4.1.4  Moment of flooding

Unlike traditional flood hazard assessments that rely on predefined design events (e.g., the "100-year flood"), our approach
uses the CFRM (Continuous Flood Response Modeling) framework. Both coastal and riverine processes over decades of

climate forcing resolve extremes on a grid-cell basis rather than from a single event. This approach could complicate

18
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communication with stakeholders who are used to the FEMA event-based framework, but can provide robust information
about flooding. Retrieval of the exact date and time when peak flooding occurred across space supports validation and analysis
of the spatially varying forcing causing the extremes. This approach also provides a spatially robust characterization of
480 extremes. The forcing (and type of event) that causes extremes varies spatially across regions. The most natural example of
this is the transition from coastally driven to compound to fluvially driven forcing while moving up a river. A single “design

storm” modelling approach does not capture this spatial transition in what events are causing extremes.

To support an in-depth analysis of the moment of flooding, a new output variable was introduced into the SFINCS model that
485 records the timestamp of the maximum water level for each grid cell. This new variable enables a spatially explicit assessment
of the dominant flood-generating event across the landscape. The resulting analysis is shown in Figure 6, which maps the peak

water levels to specific historical flood events and is summarized in Table 4.

An event on December 28, 2022, caused the most widespread flooding in the area. The occurrence was driven by the combined
490 effects of high coastal water levels and high discharge and is colloquially referred to as a ‘King Tide’ event. This King Tide
event produced the highest water level for the hindcast period in 78.5% of King County grid cells and 83.9% of Pierce County
grid cells (blue areas of Figure 6). One of the most substantial impacts successfully duplicated by the model was on the
Duwamish River in Seattle’s South Park neighborhood, where business and urban areas were flooded. NOAA tide gauge
#9447130 in Seattle recorded water at 3.88 m NAVDS88 at 17:00 on 27 December, while SFINCS simulated a high of 4.03 m
495 NAVDSS at 16:20, indicating a close match in amplitude and time. The model also captured other critical events. For example,
the event on January 8-9, 2009, led to significant riverine flooding along the Green River, reached a maximum water level in
7.2% of King County grid cells, and was preceded by warnings of flooding that said the City of Carnation might become an
island (KOMO, 2020). There was a local urban flooding incident on December 4, 2007, along the lower Duwamish River,
which contributed to 2% of peak modeled extents in King County. Maximum flooding in 7% of cells, particularly in the
500 Nisqually River region, occurred during the flood of November 25-26, 1990, in Pierce County. The event, which took place
over Thanksgiving week, resulted in two fatalities and involved large-scale evacuations (USGS, 1994). The second largest
event in the record, based on the number of cells reaching their maximum extent on this date, occurred in December 5, 1975,
as a severe winter storm with heavy rain and snowmelt, resulting in widespread riverine flooding within the Green, Nisqually,
and Puyallup River systems (STARR, 2015). This 1975 event contributed 10.2% to the highest modeled water levels in King
505 County and 6.7% in Pierce County. These events, although less dominant than the 2022 ‘King Tide’ event, demonstrate the

diverse mechanisms and regional variation of historical flood drivers in the Pacific Northwest.
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Figure 6. Spatial pattern of individual flood extents associated with specific historical events in King (panel A) and Pierce Counties
(panel B). The colors represent the dominant flood event at each location, determined by the peak modeled flood depth timing. The
map illustrates the temporal and spatial heterogeneity of flood-generating mechanisms in the region. Background: Esri Gray Canvas

basemap. Sources: Esri, HERE, Garmin, FAO, NOAA, USGS, EPA, NPS, and the GIS User Community.

Table 4. Summary of the most influential flood-generating events and their areal contribution to peak flood limits in King and Pierce
Counties. Percentages refer to the proportion of the total area flooded to which the respective event attained the highest modeled
water level. The December 28, 2022, coastal flood event caused the majority of flood extents in both counties, and other events—
such as the 1975 Green and Nisqually Rivers flood, and the 2009 upper Green River flood—were more restricted in effect. The rest
of the extent was influenced by other, less common events (not shown).

Date time Areas effects King County | Pierce County
2022-12-28 The majority of coastal areas across the areas of | 78.5% 83.9%

interest
2009-01-08 and 09 | Green River / Duwamish River 7.2% 0.0%
2007-12-04 Downtown Seattle 2.4% 0.0%
1990-11-25 and 26 | Upstream Nisqually 0.0% 7.2%

20
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1975-12-05 Portions of GreenNisqually, and Puyallup Rivers | 10.2% 6.7%
All other events 1.7% 2.2%

4.2  Flood hazards
4.2.1 Current climate conditions

520 Flood extents increase consistently with return period in both King County (Figure 7, panel A) and Pierce County (panel B),
illustrating the growing impact of rarer and more intense flood events. In King County, flood extents grow gradually for lower
return periods (1 to 10 years), particularly in the severe (red, >1 m depth) and hazardous (orange, >30 cm) categories. For
example, severe flooding increases from 9 hectares at the 1-year event to 656 hectares at 10 years. However, the growth
becomes more substantial for higher return periods, especially for nuisance flooding (blue, >10 cm), which reaches 1,150

525  hectares at the 100-year event. In Pierce County, total flooded areas are generally larger across all severity levels. Nuisance
flooding, for instance, increases from 24 hectares (1 year) to 1,493 hectares (100 years), while severe flooding grows from 13
hectares to 931 hectares over the same range. The rate of increase slows after moderate events (10-20-year return periods),

but flood extent continues to grow with larger return periods, indicating that flood-prone areas are not yet fully saturated.

530 The final bar in each panel represents the Expected Annual Flooded Area (EAFA), a probability-weighted average integrated
across return periods from 1 to 100 years. EAFA provides a more holistic and policy-relevant measure of flood hazard,
accounting for both event frequency and severity, and is comparable to translating damages to flood risk with the Expected
Annual Damages (EAD, Rosbjerg, 2024). In King County, EAFA is estimated at 56 hectares for severe flooding, 160 hectares
for hazardous flooding, and 200 hectares for nuisance flooding. In Pierce County, EAFA values are higher with 250, 531, and

535 644 hectares for severe, hazardous, and nuisance flooding, respectively.
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Figure 7. Flooded area (in hectares) as a function of return period for three flood severity levels in King County (panel A) and Pierce
County (panel B) under current climate conditions. Flood severity is classified as severe (red), hazardous (orange), and nuisance
(blue). Return periods range from 1 to 100 years, with the final bar labeled EAFA representing the Expected Annual Flooded Area,

540  a probability-weighted integration of flood extents across all return periods. Grid cells that are flooded during daily tidal conditions
are removed.

The results provided in this subsection so far were computed using the CFRM approach. However, deterministic design events
are often used in practice. An example is the simulation of the 10-year flood based on historical storm records. At Seattle
(station #9447130), the December 5, 1967, event produced a height of 3.62 m NAVDS88 and can be considered the 10-yr event
545  based on the Weibull plotting position (Weibull, 1939). When we ran this event through our model and compared the results
with the CFRM-based estimate for 10 years, we determined that coastal-zone differences were moderate (simulated high water
level at Seattle of 3.72 m NAVDS8S), giving similar local flood areas. However, further inland along the coastal-riverine
boundary, differences grew significantly. Peak water levels were up to 0.5 m higher in the Duwamish River, flooding a much
larger area under the deterministic single-event design approach than under the CFRM method. The mean absolute difference
550 between the two methods was 19 cm and 15 cm, respectively, in King and Pierce Counties. These results demonstrate the
importance of the selection of the statistical approach in determining extreme-water-level estimates and, by extension, the

spatial extent of flood inundation.

4.2.2  Future climate conditions: sea level rise versus climate change

To evaluate how SLR and future climate conditions influence hazardous flooding (>30 cm water depth), we analyzed four
555 scenarios: (1) current climate with no SLR, (2) current climate with 1.0 m SLR, (3) future climate with no SLR, and (4) future
climate with 1.0 m SLR (Figure 8). This approach allows isolation of SLR effects vs. climate-change effects. Results are

analyzed using the same return periods and the EAFA as in Section 4.2.1.

The results indicate that SLR is the dominant driver of increased hazardous flooding. In King County, EAFA increases from
560 161 hectares for the current situation to 787 hectares due to 1.0 m of SLR. Similarly, Pierce County shows an increase from
529 to 931 hectares. These increases are similar for the 10-year event, which nearly increases fivefold in King County (from
234 ha to 1,241 ha) and increases by more than 50% in Pierce County (from 913 ha to 1,353 ha). The absolute influence of

SLR is particularly pronounced at higher return periods, while the relative increase is largest at lower return periods.

565 In contrast, future climate forcing alone results in negligible to slightly negative changes in hazardous areas. In both counties,
EAFA values stay approximately the same (161 to 160 ha for King County and 529 to 531 ha for Pierce County for current
versus future climate, respectively). Moreover, in King County, the 20-year return period hazardous area decreases from 531
ha to 481 ha (-9%), while in Pierce County, it increases from 1,065 ha to 1,071 ha (+1%). These results suggest that the future
climate conditions modeled (up to 2050) do not intensify but rather slightly reduce flooding. This is an important reminder

570 that climate change (unlike SLR) does not always mean higher flood risk.

22
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When combining both SLR and future climate (Scenario 4, magenta color in Figure 8), results show only marginal differences
from SLR alone (Scenario 2, green color in Figure 8), reinforcing that SLR is the overwhelming driver of increased hazardous
flooding. In King County (Figure 8A), the EAFA in Scenario 4 is 787 hectares, ~7% below the EAFA for Scenario 2, which
575 resulted in 738 hectares. In Pierce County (Figure 8B), EAFA increases by ~2% (931 ha vs. 954 ha for Scenarios 2 and 4,
respectively). Across all modeled return periods, King County shows decreases at lower return periods (—21% to —1% for 1—
10 years) but increases at higher return periods (+22% at 20 years and +15% at 50 years), while Pierce County consistently

shows small increases of up to ~9%.
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580 Figure 8. Flooded area (in hectares) as a function of return period in King County (panel A) and Pierce County (panel B) under 4
different climate and sea level scenarios. Return periods range from 1 to 100 years, with the final bar labeled EAFA representing
the Expected Annual Flooded Area - a probability-weighted integration of flood extents across all return periods.

We computed EAFA focused on the hazardous severity class (>30 cm flooding) for King and Pierce Counties as a function of
7 SLR scenarios and accounting for model uncertainty (Table 5). Analysis reveals a threshold in EAFA hazards between
585 roughly 100 cm and 150 cm of SLR, with median hazards increasing by roughly 13-fold in King County and 3-fold in Pierce
County relative to the present-day. This suggests that SLRs exceeding ~1 m, large new areas of low-lying land (e.g., currently
just above the present flood zone) become vulnerable, especially in King County. Hazard increase is gradual below this
threshold, but above this threshold, absolute values for EAFA increase steeply. For example, by 300 cm, EAFA ranges from
4,520 to 6,408 hectares in King County and 3,205 to 4,509 hectares in Pierce County. Uncertainty ranges are largest, in absolute
590  terms, at 200 cm SLR for both King and Pierce Counties, while proportionally they peak at 100 cm in King County and 50 cm
in Pierce County. These findings demonstrate the model's sensitivity to thresholds. However, at SLR larger than 200 cm, when

in absolute terms, uncertainty is large, the proportional spread diminishes, indicating consensus among model scenarios.
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Table 5. Hazardous flooding class (> 30 cm water depth) Expected Annual Flooded Area (EAFA) for King and Pierce Counties
595 under seven sealevel rise (SLR) scenarios. SLR is expressed relative to the mean sea-level in 2005 (cm). All EAFA values are in
hectares (ha). “Low” and “High” represent the lower- and upper-bound estimates from the Low hazard and High hazard

uncertainty simulations (refer to Section 3.2.2), respectively, while “Median” refers to the central estimate.

King [ha] Pierce [ha]
SLR [ecm] | Low Median | High Low Median | High
0 61 160 411 343 531 773
25 91 226 639 372 608 935
50 126 319 1,046 412 685 1,240
100 243 738 2,294 577 954 2,101
150 490 2,168 3,814 776 1,661 2,941
200 1,247 3,696 4,757 1,100 2,698 3,504
300 4,520 5,422 6,408 3,205 3,830 4,509

5 Discussion

600 To facilitate reading and ease of understanding, the discussion is divided into five subsections: (1) model performance and
validation, (2) benefits of Continuous Flood Response Modeling (CFRM) in determining extremes versus traditional design-
event methods; (3) computational trade-offs and limitations; (4) the utility of the Expected Annual Flooded Area (EAFA)
metric in planning and risk-informed decision-making; and (5) future directions and adaptation research implications. This
organization allows both the methodological improvements and practical applicability of the proposed modeling framework

605 to be considered clearly.

5.1 Model performance and validation

The validation results demonstrate that the presented workflow skillfully reproduces coastal water levels (Section 4.1.1), inland
water levels (Section 4.1.2), flood extents (Section 4.1.3), and timing of flooding (Section 4.1.4). Strong model performance
is attributable to (1) the nesting of the overland flow domains within large-scale coastal and inland models that provide reliable
610 boundary conditions and (2) the inclusion of relevant bathymetric features. Computational efficiency was a key design
consideration to enable the usage of the CFRM framework and simulation of thousands of years (i.e., 7+2 SLR scenarios, 3
uncertainty layers, 2 domains, 100 years = 5400 simulations) of hydrodynamic processes. However, this consideration came
with trade-offs: the model resolution was constrained to 50x50 meters, with fine-scale flood features resolved using subgrid
lookup tables based on a 1-meter DEM. We acknowledge that this tradeoff sacrifices, to some degree, the accuracy with which

615 water levels are simulated (as gauged in the validation) for better fidelity in extremes and compound events. For example, one
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week of simulation at very high resolution and with a full physics model would produce better validation statistics, but at the
cost of requiring an event-based strategy that sacrifices fidelity in description of the extremes. This loss of accuracy (decreased

power to statistically capture extremes) is harder to quantify but must be considered in the choice of a specific workflow.

5.2 Benefits of Continuous Flood Response Modeling (CFRM) for extreme events

620 From an extreme value analysis (EVA) perspective, the chosen approach provides important advantages. The first is that a
continuous 100-year simulation approach enables a cell-by-cell empirical EVA without requiring the fitting of statistical
distributions. Fitting of an EVA statistical model adds significant uncertainty to predicted extremes, and an EVA model
(statistical in nature) will underperform relative to a physics-informed model at constraining extremes. Second, abandoning
the traditional application of a single, one-off "100-year" design event is particularly warranted in dynamic coast-riverine

625 settings where diverse combinations of drivers can produce equally hazardous, yet spatially distinct, flood effects. As shown
in Figure 6, a succession of diverse storms contributed importantly to the historical flood record, so a single, representative
"100-year event" might mistakenly identify vulnerable areas. Our comparison in Section 4.2.1 also makes the point that
deterministic 10-year design events produced local flood levels that were locally as much as 0.5 m higher than the CFRM-
derived 10-year estimate, demonstrating how extreme water levels and flood extents depend on the method used to derive

630 them. Finally, the continuous time-series approach naturally captures compound extreme events where coastal and river
forcings are phase-lagged or decoupled, for example, a coastal surge with a peak days apart from a river flood would most
likely be underestimated by one design storm. As a result, CFRM provides a robust and spatially representative basis for flood

hazard assessment and planning.

635 Secondly, traditional design events typically represented by a single, static, deterministic “100-year” scenario, may not
effectively model dynamic coastal-riverine systems where multiple drivers can produce diverse flood outcomes. As illustrated
in Figure 6, several distinct storms contributed significantly to the historical flood record. Modeling the region with a single
design event would therefore underpredict extremes at some locations where the incorrect 100-year storm is being modeled.
In particular, the difference between the Continuous Flood Response Modeling (CFRM) and the deterministic 10-year design

640 eventrevealed a MAE of ~19 cm with local differences as high as 0.5 m (Section 4.2.1). Additionally, a continuous time-series
approach improves consideration of compound extreme events where fluvial and coastal side forcing may be phase-lagged or

even decoupled.

5.3  Limitations and computational trade-offs

The chosen model configuration eproduces flooding well across most of the domain, achieving high spatial agreement with
645 FEMA flood extents (hit rates: 0.75-0.83). However, in narrow rivers the model introduces localized edge effects that results
in overestimation of the river footprint. These effects are driven by the relatively coarse modeling resolution in combination

with the usage of weirs. However, these limitations are consistent with other subgrid modeling approaches (e.g., van Ormondt
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et al., 2024). Incorporating subgrid bathymetry is rapidly becoming the new standard because it allows the user to account for
more information per grid cell and therefore improves the accuracy of the simulation. Subgrid bathymetry refers to storing and
650 using high-resolution elevation information (e.g., 1 m DEM data) inside each larger model grid cell (e.g., 50 m) and allows
the user to simulate on coarser resolutions without significant loss of accuracy. Coastal boundary mismatches are within the
range of previous efforts (e.g., Nederhoff et al., 2024), driven by both differences in tides and the NTR. The persistent bias at
Seattle (#9447130) is notable and is hypothesized to result from steric density-driven effects that are not accurately captured
by the regional model (Parker et al., in preparation). Inland water level offsets stem from uncertainties in total inflow estimates
655  (Buitink et al., 2025) and inaccurate riverine bathymetry. In some cases, bathymetry was manually deepened to improve
hydraulic connectivity (refer to Section 3.2). Good-quality bathymetric data at the riverine—coastal interface remains a
challenge over much of the globe, despite this interface being one of the most vulnerable regions to SLR and climate-driven

change.

660 Simplifications in the model and assumptions were required by computational and scale constraints. The SFINCS model used
in this study has no stationary wave solver, infragravity waves, rainfall-runoff processes, sediment transport, or morphological
change. Also, the SFINCS domains were not calibrated; default parameter values were used throughout. Future calibration of
parameters such as bottom friction could improve model accuracy. Wave setup was prescribed at the offshore boundary using
a simple estimate of 20% of the wave height, similar to Vousdoukas et al. (2018), although the accuracy was not assessed.

665 Observations of wave setup in mixed sediment, low wave energy environments are sparse, and a case study with more
comprehensive data at the exposed shoreline could provide further insights. The absence of high-fidelity wave and runoff
modeling likely leads to the underestimation of flood hazards in both coastal and inland zones. A comparison with FEMA 100-
year flood maps yielded hit rates between 0.75 and 0.83, though the bias index (0.13) indicates a tendency to underpredict
flood extent.

670
While the CFRM approach was chosen for its multiple advantages, it is important to note that we simulated only 100 years of
hydrodynamic forcing; therefore, by definition, the maximum flood extent observed corresponds to the 100-year event. This
relatively low number of simulated years restricts the statistical confidence within the higher end of the extreme value
frequency and does not identify more rare combinations. Extending the length of the simulation would increase the reliability

675 of the higher return period estimates and allow for a more comprehensive sampling of tidal and storm interactions. The length
of the simulation was not increased in the present study due to computational cost constraints, which remain a limit on long-
duration, high-resolution flood simulation. However, this framework permits temporal analysis of flooding, which can be used

for validation (Section 4.1.4) and planning.
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5.4  Expected Annual Flooded Area (EAFA) and planning relevance

680 The Expected Annual Flooded Area (EAFA) is a more insightful, probability-weighted value of flooded area. EAFA captures
contributions over the full range of return periods and is potentially a better tool for planners than fixed-frequency areas of
flooding. There is a growing consensus that deterministic flood maps, while useful for regulation, are not sufficient for climate-
informed planning (Wing et al., 2022). Binary discretised results (flooded or not flooded) for a single storm do not portray the
gradient of risk over return periods or the probabilistic nature of flooding. EAFA avoids these restrictions by providing a

685  scalable, continuous depiction of flood hazard that is better adapted for cost-benefit analysis and resilience planning.

Use of EAFA to estimate spatial flood extent is conceptually equivalent to the Expected Annual Damage (EAD) used in
economic risk assessment by agencies such as FEMA (Rosbjerg, 2024) to estimate financial damages and is starting to be used
more frequently (e.g., Vousdoukas et al., 2023). However, by merging EAFA with exposure layers, spatial patterns of expected
690 annual impact can be estimated. This synthesis can enable agencies and municipalities to identify high-hazard areas, rank
adaptation investments, and evaluate the performance of proposed interventions over time. EAFA is not meant to substitute
but to supplement and enrich the planning and readiness of the community. Incorporation of EAFA in long-term planning
reports, climate change adaptation plans, and capital investment plans can transform flood management from event-based,

static models to response-based, dynamic risk management.

695 5.5  Future research and adaptation implications

This paper considered future flood risk under climate change and SLR scenarios, but not morphological change or societal
growth like population increase and new infrastructure. The natural system is expected to respond dynamically to these
pressures; for instance, shoreline and bluff retreat are widely projected under rising seas (e.g., Vitousek et al. 2017). The built
system will additionally adapt to changing hazards, so experienced flooding will be directly influenced by the adaptation

700 measures taken as communities respond to the changing natural system.

Our findings indicate that SLR is a much more significant driver of future flood hazard in King and Pierce Counties than other
climate change-related factors, such as changes in storm patterns, for the period assessed (through 2050 using the HighResMIP
climate ensemble). Somewhat counterintuitively, the simulations show reduced flooding under future climate forcing alone
705  without SLR. For this study, projected climate changes were derived using a cumulative distribution function (CDF) correction
applied to the ensemble mean of 7 high-resolution CMIP6 models, following Parker et al. (in preparation). The relatively
subdued or even negative storminess-driven changes in EAFA and return period flood extent under future climate forcing (in
the absence of SLR) must be interpreted in the context of both methodological and climate-signal considerations. Similar
patterns were observed when assessing projected changes in storm surge and wave climate around the Salish Sea using the

710 same seven-member HighResMIP CMIP6 ensemble (Parker et al., in preparation). High spread among individual CMIP6
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members was noted, with several models producing consistently smaller changes than the others; when averaged, these model
results weakened the ensemble-mean signal. This high model variability suggests that the ensemble mean may underestimate
potential changes captured by some members. A second important point is the time-horizon mismatch between the climate-
change and SLR scenarios used here. The HighResMIP CMIP6 simulations run only until 2050, whereas SLR increments used

715 in our sensitivity analysis could be representative of longer-term futures. As a consequence, the relative magnitude of
storminess change and SLR is not directly comparable. These findings underscore the importance of caution in interpreting
ensemble-mean climate change effects on extremes in the Salish Sea, at least when confined to mid-century time frames.
Longer-term, high-resolution climate forcing data sets—considering both hydrologic and oceanographic inputs—would be
required to directly compare century-scale SLR projections with storminess change on the same time scales.

720
Further modelling efforts could include physical processes not simulated here, such as wave runup and rainfall-runoff routing.
Higher spatial resolution and more accurate representation of hydrologic and land-sea interaction processes could enhance
model fidelity, particularly in compound flood settings. More detailed representation of urban drainage infrastructure and
dynamic groundwater-surface water interactions would be needed for more complete inland flood simulations. Finally,

725 combining EAFA or other hazard metrics with dynamic exposure layers (population, assets, critical infrastructure, etc.) would

aid in the development of actionable, risk-based adaptation plans.

6 Conclusion

This study addressed growing flood risk in Pacific Northwest estuarine systems, where sea-level rise and changing storm
systems threaten coastal and riverine communities. Traditional flood estimations with design events (e.g., FEMA's 100-year
730 flood) would likely not account for the compound and spatially varying nature of extreme water levels. In an attempt to
overcome this limitation, we utilized a Continuous Flood Response Modeling (CFRM) approach to simulate overland flooding
in Pierce and King Counties using high-resolution SFINCS models. The approach incorporated many decades worth of
dynamic boundary forcing data (coastal water levels and riverine inflow), and spatially variable friction, bathymetry, land
cover, and topography to simulate dynamic flood processes. This approach enabled empirical determination of extreme
735  recurrence at per-cell resolution sensitive to the combined effect of coastal and fluvial forcing and independent of statistical
assumptions. Furthermore, the inclusion of a new innovative variable in SFINCS allowed accurate tracing of the timing of
peak water levels, offering insights into dominant flood-generating events both spatially and temporally, and offering

additional opportunities for validation.

740 Validation showed model performance where coastal water levels were simulated with errors of 14 to 17 cm at two NOAA
gauges and inland water levels with RMSEs of 49—-116 cm at five USGS streamgages. Agreement with FEMA flood maps was
high (hit rate indices of 0.75 in King County, 0.83 in Pierce County) with a slight underestimation bias (error bias index =0.13).
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Under current climate conditions, the model predicted substantial spatial variation in flood hazards. The Expected Annual
745 Flooded Area (EAFA), a probability-weighted sum of all return periods, ranged from 56 to 200 hectares in King County and
250 to 644 hectares in Pierce County based on flood severity. Modeled future climate conditions showed that SLR is the
dominant variable causing increased flood extent, while simulated climate forcing changes without SLR had negligible or even
slightly negative effects on area flooded. One important observation in these runs is the presence of a threshold in the
relationship between SLR and flood risk. Particularly, we detected the largest increases in flood risk between 100 and 150 cm
750 SLR. The analysis also revealed that accounting for all relevant drivers (tide, surge, discharge) is essential for accurately
predicting flood risk. A simplified, deterministic mapping approach based on a 10-year design flood resulted in flood depth

errors of up to 0.5 meters and significantly different spatial extents.

These findings demonstrate the utility of CFRM in flood risk estimation. Furthermore, EAFA provides a quantitative and
755 informative index to planners and policymakers, offering a more complete evaluation of flood risk than traditional single—
return-period flood maps. Future research could incorporate other drivers, such as direct rainfall and wave behavior, and

integrate flood hazard projections with exposure and vulnerability data to fully express risk.
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