

1 **Oxidation-driven acceleration of NPF-to-CCN conversion**
2 **under polluted atmosphere: Evidence from mountain-top**
3 **observations in Yangtze River Delta**

4 Weibin Zhu^{1,2}, Sai Shang^{1,2}, Jieqi Wang^{1,2}, Yunfei Wu¹, Zhaoze Deng¹, Liang Ran¹, Ye
5 Kuang³, Guiqian Tang¹, Xiangpeng Huang⁴, Xiaole Pan¹, Lanzhong Liu⁵, Weiqi Xu¹,
6 Yele Sun¹, Bo Hu¹, Zifa Wang¹, Zirui Liu*¹

7 ¹State Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric
8 Physics, Chinese Academy of Sciences, Beijing, 100029, China

9 ²University of Chinese Academy of Sciences, Beijing, 100049, China

10 ³Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511400, China

11 ⁴College of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou,
12 213001, China

13 ⁵Shanghuang Atmospheric Boundary Layer and Eco-Environment Observatory, Institute of Atmospheric
14 Physics, Chinese Academy of Sciences, Jinhua, 321203, China

15 *Correspondence to:* Zirui Liu (liuzirui@mail.iap.ac.cn)

16 **Abstract.** To what extent the new particle formation (NPF) contributed to the cloud condensation
17 nuclei (CCN) remained unclear, especially at the boundary layer top (BLT) in polluted atmosphere.
18 Based on measurements at a mountain-top background site in southeastern China during spring
19 2024, this study systematically investigates the nucleation mechanism and subsequent growth
20 dynamics of NPF events under contrasting air masses, and quantifies their role as a source of CCN.
21 Eight NPF events were observed, and three of them occurred in the polluted conditions (NPF-P)
22 which associated with regional transportation while the rest five events appeared in the clean
23 conditions (NPF-C). The average formation rate ($J_{2.5}$: 2.4 vs. $0.7 \text{ cm}^{-3} \text{ s}^{-1}$) and growth rate (GR: 6.8
24 vs. 5.5 nm h^{-1}) were significantly higher in NPF-P events than in NPF-C events, alongside elevated
25 concentrations of sulfuric acid and ammonia. The correlation between $\log J_3$ and $[\text{H}_2\text{SO}_4]$, as well
26 as theoretical simulations with the MALTE_BOX model, indicates that the enhanced nucleation in
27 polluted conditions can be attributed to the participation of ammonia in stabilizing sulfuric acid-
28 based clusters. In addition, much higher CCN enhancement factor was observed in NPF-P (EF_{CCN} :
29 1.6 vs. 0.7 in NPF-C) due to the regional transported of anthropogenic pollutants from the urban
30 cluster regions and their secondary transformation under enhanced atmospheric oxidation capacity.
31 Furthermore, the duration of NPF-to-CCN conversion was quantified using a ‘Time Window (τ)’,
32 revealing that polluted conditions accelerated the conversion by 17.0% ($\tau = 16.4 \text{ h}$ vs. 19.8 h).
33 Nitrate played an important role in maintaining a rapid particle growth rate, thereby shortening τ
34 and enhancing CCN production from NPF—a process that can ultimately influence cloud
35 microphysical properties by increasing the potential cloud droplet number concentration. These
36 findings reveal that polluted air masses enhance both the efficiency and speed of CCN production
37 at the BLT through elevated atmospheric oxidation capacity.

38 **Keywords:** New particle formation, Boundary layer top, Pollution condition, Cloud condensation
39 nuclei, Particle growth, Atmospheric oxidation capacity.

40 **1. Introduction**

41 New Particle Formation (NPF) is the process in which low-volatility gaseous precursors nucleate to
42 form stable nanoparticles, leading to rapid bursts in particle number concentration (Kulmala et al.,
43 2001); these newly formed particles can subsequently grow to larger sizes via condensation of
44 vapors or coagulation (Kerminen et al., 2018; Cai et al., 2024). As an important source of
45 atmospheric particles, NPF profoundly influences cloud microphysical properties, radiative forcing,
46 and precipitation efficiency through its conversion process to Cloud Condensation Nuclei (CCN),
47 thereby regulating regional and even global climate systems (Laaksonen et al., 2005; Kalkavouras
48 et al., 2017; Kalkavouras et al., 2019). Growth process of NPF events contributes to generating
49 substantial CCN, with approximately half of CCN in the global troposphere potentially originating
50 from NPF events (Zhao et al., 2024). Under polluted urban atmosphere, NPF event intensity
51 enhanced, with growth processes potentially persisting for 2-3 days and leading to the formation of
52 more particles capable of growing to CCN sizes (Zhang et al., 2019; Zhu et al., 2023). However, the
53 contribution of NPF events to CCN exhibits considerable regional variability, and NPF may even
54 suppress CCN activity under different conditions. However, high condensation sinks (CS) also
55 resulting from higher background particle concentrations strongly suppress nanoparticle formation
56 intensity, accelerate scavenging of small particles, and may reduce particle hygroscopicity, thereby
57 diminishing contribution of NPF to CCN (Kalivitis et al., 2019). Consequently, while numerous
58 long-term observational studies have established the general importance of NPF as a source of CCN,
59 the specific chemical pathways governing particle formation and subsequent growth into CCN
60 under varying atmospheric conditions, particularly at high-altitude sites influenced by complex
61 pollution regimes, remain inadequately constrained and require further validation through targeted
62 observations.

63 According to abundant field experiment observations, NPF typically manifests as "NPF events"
64 within the global boundary layer; that is, the nucleation of nanoparticles and subsequent growth may
65 occur over horizontal spatial scales extending up to tens or hundreds of kilometers, potentially with
66 significant influence from anthropogenic emissions (Aktypis et al. 2024; Kalkavouras et al. 2021).
67 Currently, observational research on NPF nucleation and growth processes at the atmospheric
68 boundary layer top (BLT) and their contribution to CCN remains limited, which hinders a full
69 understanding of the nucleation mechanisms underlying NPF. Previous studies have observed
70 variations in CCN number concentration (N_{CCN}) under different supersaturation (SS) and identified
71 influences from factors such as chemical composition (Wu et al., 2024) and seasonal emission
72 differences (Hirshorn et al., 2022). Over the past three decades, the observational foundation for
73 NPF has been substantially expanded, and numerous models have been developed to describe the
74 process from both mechanistic and empirical perspectives. However, the contribution of NPF to the
75 CCN budget exhibits pronounced spatial heterogeneity. This variability stems largely from the high
76 sensitivity of the subsequent particle growth process—through which newly formed particles evolve
77 into CCN—to local environmental factors, including precursor chemical composition and growth
78 mechanisms (Shen et al., 2016; Zhang et al., 2019). Consequently, despite advances in
79 understanding NPF itself, constraints on the quantitative pathways from nucleation to CCN remain
80 a significant source of uncertainty in aerosol-climate assessments (Kerminen et al., 2012). Current
81 research typically quantifies NPF's enhancement of N_{CCN} by comparing N_{CCN} before and after NPF

82 events (denoted as $N_{CCN\text{-prior}}$ and $N_{CCN\text{-after}}$ respectively), using an enhancement factor (EF_{CCN})
83 generally ranging 0-10 (Liu et al., 2018). Here, $N_{CCN\text{-prior}}$ represents the average N_{CCN} during the
84 two hours preceding an NPF event burst, while $N_{CCN\text{-after}}$ denotes the average N_{CCN} from the onset
85 to the conclusion of NPF's impact on N_{CCN} (Ren et al., 2021; Sun et al., 2021). However, EF_{CCN}
86 primarily quantifies the net enhancement in CCN concentration resulting from an NPF event. While
87 valuable for assessing the overall impact, this metric does not directly capture the kinetics of the
88 underlying process, specifically, the rate at which the newly formed particles population grows to
89 CCN-active sizes. Anthropogenic pollutants in polluted atmospheres directly enhance the
90 condensational growth rate of newly formed particles by increasing condensable vapor availability,
91 as demonstrated in urban environments (Dinoi et al., 2023; Kalkavouras et al. 2020; Liu et al., 2018).
92 These contrasting findings suggest that precursor abundance, atmospheric oxidation capacity, and
93 background aerosol loading collectively determine whether NPF enhances or suppresses CCN
94 formation. This underscores the need to focus on regions with complex emission mixtures and
95 intense human activity, where both natural and anthropogenic drivers strongly interact.
96 China has emerged as a critical hotspot for studying NPF-to-CCN processes due to its dense urban
97 clusters and complex interactions between anthropogenic and natural emissions. NPF events occur
98 frequently in Chinese urban clusters (Chu et al., 2019), including the Yangtze River Delta (YRD).
99 Yet, their growth to CCN sizes has rarely been examined, and existing studies are largely restricted
100 to near-surface observations. The YRD area in China, as a globally representative region of intense
101 anthropogenic emissions, provides abundant species for NPF nucleation and growth processes due
102 to its high precursor concentrations (SO_2 , NH_3 , VOCs, etc.) and active photochemical oxidation
103 processes (generating gaseous sulfuric acid, gaseous nitric acid, and secondary organic aerosols,
104 among others) (Qi et al., 2018; Yao et al., 2018). Notably, the BLT in this region serves as a critical
105 interface connecting polluted air masses with cleaner free tropospheric air, functioning as an
106 “atmospheric reactor”. Under these conditions, the mechanisms through which NPF events
107 contribute to CCN at the atmospheric BLT may differ significantly from those in surrounding urban
108 clusters and other high-altitude regions. Studies indicate that high NH_3 concentrations (-10 ppbv;
109 Sun et al., 2023) are frequently observed at this region which promotes an increase in nucleation
110 rates. Simultaneously, organic acids and nitrates generated from VOC oxidation can form low-
111 volatility substances, enhancing particle hygroscopic growth capacity (Huang et al., 2024). However,
112 high precursor concentrations and strong atmospheric oxidation capacity inevitably accompany
113 higher background aerosol concentrations and more complex chemical compositions. Therefore, it
114 is critically important to elucidate how atmosphere with strong atmospheric oxidation capacity
115 under polluted conditions at this BLT environment influence new particle formation and growth
116 processes, ultimately determining the efficiency of their contribution to CCN production.
117 This study conducted comprehensive observations at a high-altitude BLT background site in YRD
118 region in China during spring—a season characterized by frequent NPF events (Qi et al., 2015). By
119 integrating data on particle number size distributions (PNSD, 2nm-20 μ m), aerosol chemical
120 composition, and volatile organic compounds (VOCs) with cluster analysis and model simulations,
121 we focused on investigating the relationship between NPF and cloud condensation nuclei (CCN).
122 Specifically, the study aims to quantify the conversion efficiency from NPF to CCN, identify the
123 mechanisms governing this process under polluted conditions, and propose potential indicators to

124 improve the representation of CCN sources in regional climate models.

125 **2. Methodology**

126 **2.1 Experimental site and Instruments**

127 A continuous online observation campaign was conducted at the Shanghuang Ecological and
128 Environmental Observation of the Chinese Academy of Sciences (Shanghuang station; 28.58°N,
129 119.51°E) from April 19 to May 30, 2024 (Figure S1). The station is located in Jinhua City, Zhejiang
130 Province, at an elevation of 1128 meters above sea level. It is characterized by mountainous terrain
131 and forest coverage, representing a typical high-altitude background environment in the YRD region
132 of China, more details about Shanghuang station could be found in Zhang et al. (2024) and Wang et
133 al. (2025).

134 Ambient particles and droplets were initially selected using an advanced aerosol–cloud sampling
135 inlet system, which alternated between the PM₁ cyclone, PM_{2.5} cyclone and total suspended
136 particulate (TSP) passage every 20 min (Xu et al., 2024). To minimize particle loss within the
137 sampling system, the relative humidity (RH) at the inlet was maintained below 30% using a Nafion
138 dryer and a sheath air cycle system. Additionally, diffusion and gravitational losses in the inlet
139 tubing were corrected based on the tubing shape and flow rate (Baron & Willeke, 2001). The particle
140 number size distribution (PNSD) from 2.5 nm to 20 μm was continuously measured using an
141 integrated system. The system consisted of a Neutral Cluster and Air Ion Spectrometer (NAIS, Airel
142 Ltd.) covering a mobility diameter (dm) range of 2.5–42 nm, a scanning mobility particle sizer
143 (SMPS, model 3936, TSI Inc.) for 14.5–710 nm (dm) comprising a model TSI3080 electrostatic
144 classifier and a model TSI 3775 condensation particle counter, and an Aerodynamic Particle Sizer
145 (APS, model 3221, TSI Inc.) for 0.5–20 μm (aerodynamic diameter, da). Prior to and during the
146 campaign, regular zero checks and flow-rate verifications were performed using a calibrated
147 primary flow meter. The NAIS was operated at a sample flow rate of 60 L min⁻¹ to minimize
148 diffusion losses, with data recorded at 10-min resolution (Mirme and Mirme, 2013). The SMPS was
149 run with an aerosol-to-sheath flow ratio of 0.3:3.0 L min⁻¹ (1:10), and the APS with an aerosol flow
150 of 1.0 L min⁻¹ and a sheath flow of 4.0 L min⁻¹ (Liu et al., 2016). Data from the SMPS and APS,
151 recorded at 5-min resolution, were averaged into hourly spectra and merged into a unified particle
152 size spectrum matrix (dm: 14.5 nm to 16,000 nm) following the procedure described by Beddows
153 et al. (2010).

154 To explore the chemical difference of newly formed particles during their growth processes, the
155 volatile characteristic of those particles was measured using the Thermal Denuder (TD) -SMPS
156 system. Volatile analysis helps distinguish between categories of inorganic compounds, such as
157 nitrates and sulfates and can indirectly provide information on aerosol composition (Schmid et al.,
158 2002). By comparing the volumes of heated (300°C) and unheated particles, the volatility
159 characteristics of particles are studied under the assumption that the particles are spherical and
160 characterized using the volume fraction remaining (VFR) of submicron aerosols. The remaining
161 semi-volatile components are mainly organic compounds, while components such as sulfates and
162 nitrates are evaporated at high temperatures, thereby investigating changes in the proportion of
163 semi-volatile components during the NPF growth process.

164 CCN number concentration can be measured by CCN counter (Model CCN-100; Deng et al., 2011).
165 The instrument operated at five supersaturation—0.07%, 0.11%, 0.20%, 0.40%, and 0.80%—with
166 each level maintained for 15 minutes. To ensure data reliability, measurements were filtered based
167 on established quality control criteria addressing SS instability within the growth chamber (Rejano
168 et al., 2021). The total flow rate was maintained at 0.5 L min^{-1} , with an aerosol to sheath flow ratio
169 of 1:10.

170 The chemical composition of non-refractory submicron particles (NR-PM_{2.5}), including organics,
171 sulfate, nitrate, ammonium, and chloride, was measured using an Aerodyne Time-of-Flight Aerosol
172 Chemical Speciation Monitor (ToF-ACSM, Li et al., 2023). The instrument sampled ambient air
173 through the same inlet as the PNSD system, with a flow rate of 0.1 L min^{-1} and a time resolution of
174 10 minutes. The ToF-ACSM was operated with a capture vaporizer, and its ionization efficiency (IE)
175 was calibrated at the start of the campaign using 300 nm ammonium nitrate particles. The default
176 relative ionization efficiencies (RIEs) for nitrate, organics, and chloride (1.1, 1.4, and 1.3,
177 respectively) were applied (Nault et al., 2023). According to the ion efficiency (IE) calibration
178 results using ammonium sulfate, the RIE values of ammonium and sulfate were 5.05 and 0.73,
179 respectively (Zhang et al., 2024). A composition-dependent collection efficiency (CE) was applied
180 to the raw data to correct for particle losses in the aerodynamic lens, following the parameterization
181 established by Middlebrook et al. (2012).

182 The concentrations of major gaseous precursors were measured using the following commercial
183 analyzers: a pulsed UV fluorescence analyzer (Thermo Scientific, Model 43i) for sulfur dioxide
184 (SO₂), a UV photometric analyzer (Thermo Scientific, Model 49i) for ozone (O₃), a
185 chemiluminescence analyzer (Thermo Scientific, Model 42i) for nitrogen oxides (NO_x), and a
186 cavity ring-down spectrometer (Picarro, Model G1103) for ammonia (NH₃). Prior to the campaign,
187 all gaseous analyzers (SO₂, O₃, NO_x, and NH₃) were calibrated with certified reference gases and
188 zero air. In addition, routine calibration checks for these gaseous instruments were performed
189 biweekly throughout the measurement period to ensure continuous accuracy and consistency of the
190 data of gaseous pollutants. Additionally, PM_{2.5} mass concentrations were measured using a
191 continuous ambient particulate monitor (Model 5014i, Thermo Scientific, USA), with a PM_{2.5} size
192 cut-off applied prior to the sampling inlet. Meteorological parameters were recorded during the
193 measurement period using an automated weather observation system (Milos520, Vaisala, Finland)
194 positioned adjacent to the PNSD system. A more comprehensive description of the instruments is
195 available in our previous work (Yang et al., 2021).

196 **2.2 Data processing of NPF**

197 Based on their size, atmospheric aerosol particles are commonly grouped into four modes:
198 nucleation mode (<20 nm), Aitken mode (20–100 nm), accumulation mode (100–1000 nm), and
199 coarse mode (>1 μm). In this study, the number concentration of each mode was obtained by
200 integrating the measured particle number size distribution over the corresponding diameter interval.
201 An NPF event is identified when a distinct and sustained ($\geq 2 \text{ h}$) burst of nucleation-mode
202 particles—particularly in the sub-6 nm size range—is observed, followed by a clear growth of the
203 mode to larger sizes (Dal Maso et al., 2005). Cases failing to meet these criteria were classified as
204 non-NPF events. The formation rate (J_{2.5}), growth rate (GR) and CS were calculated with the

205 commonly used method (Yang et al., 2021). Recognized as a key contributor to particle nucleation,
 206 the concentration of sulfuric acid (H_2SO_4) was estimated via a proxy approach proposed by Lu et al.
 207 (2019). Additionally, to assess how sulfuric acid (H_2SO_4) influences the early-stage particle growth,
 208 its contribution to the initial growth rate was quantitatively evaluated using the equation introduced
 209 by Nieminen et al. (2010).

210 **2.3 Calculation of N_{CCN} , activation diameter and hygroscopic parameter**

211 In this study, the N_{CCN} and activation diameter (Da) was calculated by κ -Köhler theory (Petters &
 212 Kreidenweis, 2007), which simply link the Da with the supersaturation, is applied as follows, when
 213 $\kappa > 0.1$:

214
$$\kappa = \frac{4A^3}{27D_a^3 h^2 S} \quad (1)$$

215
$$A = \frac{4\sigma_\omega M_\omega}{RT\rho_\omega} \quad (2)$$

216 Here, σ_ω denotes the surface tension of the droplet at the activation point ($\sigma_\omega = 0.072 \text{ J}\cdot\text{m}^{-2}$), M_ω is
 217 the molecular weight of water ($M_\omega = 0.018015 \text{ kg}\cdot\text{mol}^{-1}$), T is the temperature of the air parcel, R
 218 represents the universal gas constant ($R = 8.315 \text{ J}\cdot\text{K}^{-1}\cdot\text{mol}^{-1}$), and ρ_ω refers to the density of water
 219 ($\rho_\omega = 997.1 \text{ kg}\cdot\text{m}^{-3}$). The hygroscopicity parameter κ , which reflects the water affinity of aerosols,
 220 is influenced by their chemical composition. In this study, κ was estimated using the Zdanovskii–
 221 Stokes–Robinson (ZSR) mixing rule (Stokes & Robinson, 1966), based on chemical volume
 222 fractions under the assumption of internally mixed particles, following the approach of Gunthe et
 223 al. (2011), as follows:

224
$$\kappa_{chem} = \sum_i \varepsilon_i \kappa_i \quad (3)$$

225 Here, κ_i and ε_i represent the hygroscopicity parameter and volume fraction of each individual dry
 226 component in the mixture, respectively. The κ values and corresponding densities (ρ) used in the
 227 calculations were adopted from Petters & Kreidenweis (2007) and Topping et al. (2005). While the
 228 approach combining the critical dry diameter and bulk aerosol properties may introduce some
 229 degree of uncertainty, previous studies have shown that the discrepancy between predicted and
 230 measured CCN concentrations remains within an acceptable margin of $\pm 20\%$ under both polluted
 231 and pristine atmospheric conditions (Zhang et al., 2017).

232 **2.4 Quantification the contribution of NPF to CCN**

233 **2.4.1 Enhancement in N_{CCN}**

234 The enhancement in N_{CCN} attributed to NPF events, referred to as EF_{CCN} , was assessed following
 235 the methodology described by Kalkavouras et al. (2019) and Ren et al. (2021). The method involves
 236 a comparison between the N_{CCN} after and prior to the NPF event:

237
$$EF_{CCN} = \frac{N_{CCN\text{-after}}}{N_{CCN\text{-prior}}} \quad (4)$$

238 Here, $N_{CCN\text{-prior}}$ represents the two-hour average CCN concentration measured before the onset of
 239 the NPF event, while $N_{CCN\text{-after}}$ corresponds to the mean value during the period influenced by the

240 nucleation process. As a simplified approximation, N_{CCN} was estimated by integrating particle
241 number concentration with a particle size larger than the D_a . The duration over which NPF
242 contributed to CCN was identified by analyzing changes in the time series of N_{CCN} under each
243 applied supersaturation condition. It is important to note that this approach assumes the background
244 level of CCN remains stable throughout the NPF event, thereby neglecting potential influences from
245 alternative aerosol sources or sinks. As a result, the method provides only an approximate evaluation
246 of the NPF impact on N_{CCN} .

247 **2.4.2 Metric to define the duration of NPF to CCN**

248 The impact of NPF on CCN has been frequently assessed using metrics such as the CCN
249 enhancement factor (EF_{CCN}) as mentioned in section 2.4.1. More recently, observational studies have
250 conceptualized the timescale of this process by analyzing the interval between the nucleation burst
251 and the subsequent increase in CCN concentration. For instance, Kalkouras et al. (2019)
252 characterized this period through parameters such as t_{start} and $t_{decoupling}$, which effectively capture the
253 climatological time lag of CCN production from NPF events. Still, those methods do not directly
254 deconvolve or quantify the intrinsic, process-level kinetics of the growth path itself. Building upon
255 this foundation, the present study introduces a complementary, process-oriented metric—the “Time
256 Window (τ)”—to further quantify the intrinsic efficiency of CCN production during NPF. While
257 metrics based on observational time lags reflect the net outcome influenced by both growth
258 dynamics and variable background conditions, τ aims to isolate and quantify the core physical–
259 chemical process: the theoretical time required for a newly formed particle to grow from its initial
260 detectable diameter (D_0) to the critical activation diameter (D_a) at a given supersaturation. The
261 activation diameter is derived from κ -Köhler theory, using an effective hygroscopicity parameter (κ)
262 that represents the chemical composition of the growing nucleation mode. The time window τ (in
263 hours) is calculated as:

264
$$\tau = (D_a - D_0) / GR_{nuc} \quad (5)$$

265 where D_a is the average critical activation diameter during NPF events (07:00–18:00 LT), D_0 is the
266 average diameter of the smallest nucleation mode particles at NPF onset, GR_{nuc} is the average
267 growth rate throughout the NPF growth phase. By directly linking the particle growth rate and its
268 evolving hygroscopicity to the CCN activation threshold, τ provides a standardized, mechanistic
269 measure that enables comparative analysis of NPF-to-CCN conversion efficiency across diverse
270 atmospheric environments and pollution regimes. This approach more clearly describes the dynamic
271 process in which newly formed particles grow via condensation (increasing dry size and/or altering
272 chemical composition) to the critical size and hygroscopicity required to act as CCN at defined
273 supersaturation, and thus extends current methodologies by offering a more process-explicit
274 framework to evaluate how precursor conditions and chemical pathways modulate the climatic
275 impact of NPF.

276 **3. Results and Discussion**

277 **3.1. Characteristic of NPF events**

278 During the intense campaign, eight NPF events were identified across 39 valid observation days
279 from April 19 to May 30 at the Shanghuang station. Note that bursts in the concentration of freshly
280 nucleated sub-6 nm particles were also observed on April 30 and May 16 (see Figure 1d). However,
281 these two episodes were not classified as NPF events because they occurred at night and were not
282 followed by sustained growth of the nucleation mode to larger sizes, which is a key criterion for
283 defining a full NPF event. Meteorological elements (Figures 1e-f) show that southerly winds
284 dominated during the period of observation, with low average wind speeds ($1.9 \text{ m}\cdot\text{s}^{-1}$). The average
285 relative humidity (RH) during the NPF occurrence time (7:00-18:00 LT) was 63% and 75% for NPF
286 days and non-NPF days, respectively, while the temperature was comparable for NPF and non-NPF
287 days (21.0 and 19.7°C). Thus, there was one NPF event in April and seven in May, resulting in an
288 overall NPF frequency of 21%. This value is higher than the observational values for European
289 high-altitude sites (900 ~ 1200 meters above sea level) during the springtime (Zugspitze
290 Schneefernerhaus: 3%; Hohenpeißenberg: 7%; Sun et al., 2024), while it is similar to nearby urban
291 site (Shanghai: 20%; Xiao et al., 2015) and mountain site in North China (Mountain Tai: 21%; Lv
292 et al., 2018).

293 The air mass clustering analysis via backward trajectories (Draxler & Hess, 1998) was performed
294 to track the origination of these NPF events, which identified four distinct air mass categories during
295 the observation period (Figure S2). As showed in Figure S1, Cluster 1 represents the polluted air
296 masses affected by North China Plain urban emissions, Clusters 2 and 4 represent the relative clean
297 air mass affected by western and southern urban emissions, Cluster 3 represents the air masses
298 affected by coastal emissions. Combining trajectory analysis with $\text{PM}_{2.5}$ mass concentrations, we
299 categorized the eight NPF events into two types: NPF-C events (occurred under clean conditions in
300 Cluster 2-4) and NPF-P events (occurred under polluted conditions in Cluster 1), with average $\text{PM}_{2.5}$
301 of NPF-P events 101% higher than during NPF-C events ($12.8 \text{ vs } 6.4 \text{ }\mu\text{g}\cdot\text{m}^{-3}$). As showed in Figure
302 1d, significant variations in 2-6 nm Nucleation mode particles were observed among the eight NPF
303 events, the peak value of which ranged from 246 to 1318 cm^{-3} . The average PNSD during NPF-C
304 events and NPF-P events were fitted as the sum of three mode lognormal distributions (Figures 1a-
305 b, Hussein et al., 2005), and revealed that NPF-P events exhibited higher Aitken mode particle
306 concentrations (3978 cm^{-3}) than NPF-C events (1980 cm^{-3}), while the freshly nucleated sub-6 nm
307 particles were lower in NPF-P (575 cm^{-3} vs. 881 cm^{-3}). In addition, the accumulation mode particles
308 were much higher in NPF-P than in NPF-C (881 cm^{-3} vs. 575 cm^{-3}). These results indicate that NPF-
309 P event is primarily influenced by regional transportation, whereas NPF-C reflects the background
310 atmospheric conditions at the BLT of the mountain site.

311 It is worth noting that the NPF event observed on May 5 (NPF-C) occurred during a cloud interstitial
312 period under persistently high relative humidity ($> 90\%$), accompany with a slightly higher
313 formation rate ($J_{2.5}=0.8 \text{ cm}^{-3}\cdot\text{s}^{-1}$) and growth rate ($\text{GR}=5.7 \text{ nm}\cdot\text{h}^{-1}$) compared with the average value
314 of the other NPF-C events (Table 1). We hypothesize that aqueous-phase chemical processes within
315 the preceding cloud were pivotal. A mechanism analogous to the “post-fog growth” reported in the
316 Arctic may be at play, whereby in-cloud reactions generate semi-volatile organic compounds
317 (SVOCs) that later condense onto particles (Kecorius et al., 2023). While direct measurements of
318 the specific SVOCs are not available, the elevated concentration of isoprene-a key biogenic
319 precursor-on that day (0.3 ppbv compared to the 0.2 ppbv average for other NPF-C events) provides

320 indirect support for enhanced biogenic activity and potential secondary organic aerosol formation
321 pathways. Following cloud dissipation, these cloud-generated condensable vapors were released
322 and, under sustained high humidity, rapidly condensed onto the newly formed nucleation-mode
323 particles. This organic-dominated condensation likely surpassed the nitrate-driven growth observed
324 in other events, facilitating sustained particle growth and enabling a larger fraction of the population
325 to surpass the activation diameter and reach CCN sizes.

326

327 **3.2 Diurnal Comparison of Key Drivers and NPF Metrics between Clean and Polluted Events**

328 To elucidate the factors driving distinct NPF behaviors, this section presents a diurnal comparison
329 of key parameters between clean (NPF-C) and polluted (NPF-P) event days. As shown in Figure 2a,
330 the average formation rate ($J_{2.5}$) during NPF-P events was $2.4 \text{ cm}^{-3} \text{ s}^{-1}$, approximately 3.6 times
331 higher than during NPF-C events ($0.7 \text{ cm}^{-3} \text{ s}^{-1}$). The peak $J_{2.5}$ in NPF-P events ($6.2 \text{ cm}^{-3} \text{ s}^{-1}$ at 12:00
332 LT) was also higher and occurred one hour later than the peak in NPF-C events ($1.8 \text{ cm}^{-3} \text{ s}^{-1}$ at 11:00
333 LT). The most pronounced enhancement—a fivefold increase—was observed at 10:00 LT (2.5 vs.
334 $0.5 \text{ cm}^{-3} \text{ s}^{-1}$). While the average gaseous sulfuric acid (H_2SO_4) concentration was 23 % higher in
335 NPF-P events ($8.1 \times 10^6 \text{ cm}^{-3}$) and the condensation sink (CS) was also elevated (0.013 vs. 0.008 s^{-1}
336 for NPF-C), the significantly stronger formation and growth rates indicate that enhanced production
337 of condensable vapors from anthropogenic pollution was sufficient to overcome the increased sink
338 strength, enabling intense NPF—a phenomenon documented in other polluted environments (Yang
339 et al., 2021). Crucially, the 23 % difference in $[\text{H}_2\text{SO}_4]$ alone cannot account for the ~3.6-fold
340 difference in $J_{2.5}$. Ammonia (NH_3) played a critical role in this enhanced nucleation. The average
341 NH_3 concentration during NPF-P events (8.1 ppbv) was approximately twice that during NPF-C
342 events (4.1 ppbv; Figure 2c). This elevated NH_3 level, coinciding with higher H_2SO_4 , likely
343 contributed to the enhanced nucleation rates observed under polluted conditions by stabilizing
344 sulfuric acid clusters.

345 Concurrently, NPF-P events exhibited a higher event-average of background ozone (O_3)
346 concentration (27.7 ppbv vs. 19.9 ppbv for NPF-C). Although the O_3 difference narrowed during the
347 peak nucleation period (10:00–12:00 LT)—suggesting its primary role is in maintaining an
348 enhanced oxidative environment conducive to precursor oxidation rather than directly driving the
349 instantaneous nucleation burst—the difference expanded again after 15:00 LT, reaching a maximum
350 in the late afternoon (18:00 LT; Figure 2d). This later period coincides with the sustained particle
351 growth phase, where a stronger oxidative capacity likely facilitates the production of low-volatility
352 condensable vapors, thereby influencing condensational growth. Correspondingly, the average
353 particle growth rate (GR) during NPF-P events was 6.8 nm h^{-1} , which is 24% higher than during
354 NPF-C events (5.5 nm h^{-1} ; Figure 2g). The overall elevated GR is consistent with a greater
355 abundance of condensable vapors (e.g., nitrate and photochemically generated organics), which are
356 discussed in the following sections. Compared to typical values reported for a remote boreal forest
357 site (Hyytiälä, Finland: $J_3 = 0.4 \text{ cm}^{-3} \text{ s}^{-1}$, $\text{GR} = 2.3 \text{ nm h}^{-1}$; Kerminen et al., 2018), the formation and
358 growth rates observed at our site are higher by 275% and 126%, respectively. Our values are close
359 to those reported for other Chinese high-altitude background sites like Mount Tai ($J_3 = 1\text{--}2 \text{ cm}^{-3} \text{ s}^{-1}$;

360 Shen et al., 2019), Mount Heng ($J_{15} = 0.15\text{--}0.45 \text{ cm}^{-3} \text{ s}^{-1}$; Nie et al., 2014), and Mount Yulong ($J_3 =$
361 $1.33 \text{ cm}^{-3} \text{ s}^{-1}$; Shang et al., 2018). These differences suggest that the intensity of an NPF event can
362 vary significantly depending on the atmospheric conditions and the regional transport processes
363 involved.

364 To investigate the chemical differences driving nanoparticle growth during the two types of NPF
365 events, the diurnal variations of chemical components (organics, sulfates, nitrates, ammonium,
366 chlorides, and black carbon) were analyzed during NPF evolution (Figures 2h-i). The results show
367 that during NPF-P events, mass concentrations of all major chemical components increased
368 alongside particle growth, with organics and nitrates exhibiting the most pronounced and sustained
369 enhancement (Figures 2h-i). In contrast, NPF-C events displayed weaker and less persistent
370 increases. While organics dominated the non-refractory $\text{PM}_{2.5}$ (NR- $\text{PM}_{2.5}$) mass fraction (accounting
371 for more than half) during the growth phase in both event types, the chemical evolution pathways
372 diverged significantly under anthropogenic influence. The stronger nitrate growth in NPF-P events
373 can be attributed to a more favorable chemical environment. These events were characterized by
374 significantly higher concentrations of NO_2 and NH_3 (Figure 2c). Photochemical modeling indicates
375 that elevated NO_2 under stronger solar radiation leads to enhanced production of gaseous nitric acid
376 (HNO_3) (Figure S3). In the presence of abundant NH_3 , this HNO_3 efficiently partitions to the particle
377 phase via neutralization, forming ammonium nitrate (Wang et al., 2022). This process explains the
378 more than fivefold increase in nitrate peak concentrations during the later growth stages of NPF-P
379 events, where nitrate became a key driver for sustained condensational growth. Similarly, the more
380 substantial organic mass increase during NPF-P events is linked to enhanced secondary organic
381 aerosol (SOA) formation (Shi et al., 2016). Higher daytime O_3 concentrations (Figure 2d) suggest a
382 more intense oxidative environment, which promotes the photochemical oxidation of volatile
383 organic compounds (VOCs). Coupled with elevated ambient VOC levels (e.g., isoprene), this leads
384 to the production of more low-volatility oxygenated organic molecules that readily condense onto
385 growing particles (Kulmala et al., 2012). Therefore, the synergistic enhancement of nitrate and
386 organic precursors under polluted, transport-influenced conditions provides a robust chemical
387 explanation for the faster and more sustained particle growth observed during NPF-P events
388 compared to NPF-C events.

389 Previous field studies have highlighted the importance of organics for new particle growth in remote
390 regions (Pierce et al., 2012). Recent comprehensive analyses from multiple European cities further
391 support this view, demonstrating that the growth of nucleated particles is often driven by the
392 condensation of semi-volatile organic compounds (Trechera et al., 2023). Our findings indicate that
393 in anthropogenically influenced mountain regions, nitrate—primarily as ammonium nitrate
394 (NH_4NO_3)—can serve as a competitive source of low-volatility condensable vapor, partially
395 substituting for organics in driving the mass growth of new particles. This occurs under conditions
396 of elevated NO_2 and NH_3 , where efficient photochemical production and gas-to-particle partitioning
397 of NH_4NO_3 are favored. While the strong hygroscopicity of nitrate plays a secondary role by
398 increasing the particle's wet size (and thus potentially enhancing condensation efficiency under high
399 relative humidity), its primary contribution to growth is through direct vapor condensation.

400 It should be noted that the analysis of chemical drivers for particle growth in this study relies on the
401 bulk non-refractory $\text{PM}_{2.5}$ (NR- $\text{PM}_{2.5}$) composition measured by the ToF-ACSM. While CCN

402 activation at the studied supersaturations primarily involves particles in the Aitken and smaller
403 accumulation modes (< 200 nm), we assert that the bulk PM_{2.5} composition serves as a valid proxy
404 for the condensing vapors during sustained NPF events under our background conditions. This is
405 supported by the fact that during such events, the growth of the nucleation mode is the dominant
406 source of new aerosol mass in the submicron range. Previous study indicates that changes in bulk
407 organic and inorganic mass concentrations correlate well with the condensational needs of growing
408 nanoparticles, making bulk composition a practical and informative metric for identifying dominant
409 growth pathways (Vakkari et al., 2015). We acknowledge that size-dependent compositional
410 differences may exist and represent an important avenue for future research with size-resolved
411 instrumentation.

412 **3.3 Potential formation mechanism of NPF-C and NPF-P events**

413 Gaseous sulfuric acid is recognized as an important specie in nucleation across NPF events (Gracia
414 et al., 2024). The correlation coefficients (R) between $J_{2.5}$ and [H₂SO₄] were 0.77 for NPF-C events
415 and 0.87 for NPF-P events (Figure 3b). This positive dependence of the nucleation rate on sulfuric
416 acid concentration is consistent with observations from remote background sites, though the strength
417 of the correlation varies with the degree of anthropogenic influence (Kulmala et al., 2013). At
418 pristine sites such as Hyytiälä, the correlation is often moderated by the co-involvement of biogenic
419 organic vapors and ions (Kulmala et al., 2025), whereas at background sites in China affected by
420 regional pollution transport, stronger correlations between nucleation and [H₂SO₄] was typically
421 observed (Gao et al., 2025). The high correlations observed here (R = 0.77–0.87) align with the latter
422 pattern, reinforcing that our mountain-top station, although a background site, experiences
423 substantial anthropogenic influence that shapes the nucleation mechanism. However, the moderate
424 difference in [H₂SO₄] alone cannot explain the large difference in $J_{2.5}$ between event types
425 (Section 3.2). Previous studies have also indicated that binary H₂SO₄–H₂O nucleation cannot fully
426 account for atmospheric NPF rates (Kirkby et al., 2011). This points to the importance of additional
427 compounds that stabilize H₂SO₄ clusters and modulate nucleation efficiency. Previous field and
428 chamber studies also proposed that the gaseous species such as ammonia (Kulmala et al., 2013;
429 Kürten et al., 2019) and amines (Metzger et al., 2010; Yao et al., 2018) also promote the nucleation.
430 The elevated NH₃ concentrations measured during NPF-P events (Figure 2b) thus provide a
431 plausible explanation for their higher nucleation rates despite a less-than-proportional increase in
432 [H₂SO₄].

433 To explore the nucleation mechanism in the atmospheric boundary layer top, the relationship
434 between $J_{2.5}$ and [H₂SO₄] was analyzed for NPF-P and NPF-C events and compared with results
435 from CLOUD chamber experiments, which delineate pathways for H₂SO₄–NH₃–H₂O and H₂SO₄–
436 dimethylamine (DMA)–H₂O nucleation (Kürten et al., 2019; Almeida et al., 2013). As shown in
437 Figure 3a, our measured formation rates (solid circles: NPF-P; hollow circles: NPF-C) fall within
438 the [H₂SO₄] range spanned by these two mechanisms in the chamber. Achieving the observed $J_{2.5}$
439 would require either higher DMA levels or higher NH₃ concentrations than those set in the specific
440 CLOUD runs. Given the lack of significant DMA sources in the region (e.g., textile or industrial

activities; Chang et al., 2022), ambient NH_3 (average ~ 5 ppbv during NPF) is the more plausible stabilizing base. However, the CLOUD experiments have not yet performed under similar atmospheric conditions as our field observation (e.g. higher NH_3 levels exceed 1 ppbv) (Kürten et al., 2019). Thus, to evaluate the formation mechanism under rich- NH_3 conditions representative of our site, we performed simulations using the MALTE-BOX model (Boy et al., 2006; McGrath et al., 2012), which couples the Atmospheric Cluster Dynamics Code (ACDC). Input parameters were set to the average conditions during NPF events: condensation sink (CS) = 0.010 s^{-1} , $[\text{NH}_3] = 5 \text{ ppbv}$, RH = 66%, T = 293 K, and pressure = 883 hPa. The model calculates the formation rate for clusters growing past a critical size as a function of $[\text{H}_2\text{SO}_4]$. The simulation results are shown as the yellow line and gray uncertainty band in Figure 3a. Most of our measured $J_{2.5}$ data points fall within or near the model-predicted band, indicating that $\text{H}_2\text{SO}_4\text{-NH}_3$ nucleation is a quantitatively plausible mechanism under the observed conditions. The model predictions tend to be slightly higher than the measured rates. This discrepancy may arise because the model's initial cluster definition (e.g., a $(\text{H}_2\text{SO}_4)_5(\text{NH}_3)_5$ cluster corresponding to $\sim 1.07 \text{ nm}$; Huang et al., 2016) effectively simulates formation at a smaller size than our observational threshold ($J_{2.5}$), and potential uncertainties in cluster binding energies or the omission of other stabilizing species (e.g., organic vapors) in the simulation. Nevertheless, the general agreement supports the conclusion that ammonia-enhanced sulfuric acid nucleation is a dominant pathway at this site.

Independent support for the role of ammonia comes from the field-observed correlations. A pronounced linear relationship exists between $J_{2.5}$ and the product of H_2SO_4 and NH_3 concentrations (Figure 3c). The Pearson correlation coefficient (R) for $J_{2.5}$ versus $[\text{H}_2\text{SO}_4] \times [\text{NH}_3]$ ranges from 0.79 to 0.92, notably higher than the correlation of $J_{2.5}$ with $[\text{H}_2\text{SO}_4]$ alone ($R = 0.77\text{-}0.87$, Figure 3b). This enhanced correlation when NH_3 is included as a co-variable has been observed in other polluted environments; for example, wintertime measurements in Shanghai reported a tighter relationship between $J_{1.34}$ and $[\text{NH}_3]$ ($R^2 = 0.62$) than with $[\text{H}_2\text{SO}_4]$ ($R^2 = 0.38$) (Xiao et al., 2015). Together, the consistency between our observations and the MALTE-BOX simulations, combined with the strong field-based correlation that explicitly includes NH_3 , provides robust evidence that ammonia plays a key role in enhancing sulfuric acid-driven nucleation at this mountain-top site.

3.4. Oxidation-driven acceleration of NPF-to-CCN

This section aims to elucidate the relationship between the growth processes of the two types of NPF events and their efficiency in forming CCN. To quantify the CCN production from NPF events, the N_{CCN} was calculated. Since supersaturation (SS) cannot be measured directly at the site, we employed a sensitivity approach using two representative SS values. These values were selected based on prior aircraft measurements in the regional background atmosphere, which reported a range of 0.1-0.5% (Gong et al., 2023). We performed calculations for SS=0.2% and SS=0.4%, encompassing a common in-cloud condition and a higher activation threshold. For each SS, the critical activation diameter (D_a) was derived using κ -Köhler theory, with the hygroscopicity

478 parameter (κ) estimated from the measured particle chemical composition (Bougiatioti et al., 2011),
479 adjusting for local altitude. The calculated N_{CCN} for both SS levels was then compared with observed
480 N_{CCN} to evaluate the parameterization's performance and to analyze the SS-dependence of CCN
481 production efficiency.

482 **3.4.1 Chemical Drivers of Varied Hygroscopicity and Critical Diameter**

483 The critical diameter for CCN activation (D_a) exhibited a strong dependence on supersaturation (SS),
484 as theoretically expected. For the studied NPF events, D_a at SS=0.4% was substantially lower than
485 at SS=0.2%. Under the lower SS condition (0.2%), D_a varied from 111 to 129 nm, with a higher
486 average in polluted (NPF-P) events (126 nm) compared to clean (NPF-C) events (120 nm). This
487 difference correlated with a lower average hygroscopicity parameter (κ) for NPF-P events (0.18)
488 than for NPF-C events (0.21), originating from a higher organic mass fraction (77% vs. 65 %). At
489 the higher SS of 0.4%, the average D_a decreased to approximately 80 nm (NPF-P) and 76 nm (NPF-
490 C), yet the inverse relationship between D_a and κ persisted.

491 The dependence of D_a on supersaturation has significant implications for NPF-driven CCN
492 production. At a higher SS of 0.4%, the substantially reduced critical diameter shortens the required
493 growth trajectory and timescale, allowing particles to become CCN-active more rapidly in
494 environments with elevated supersaturation. Consequently, the net CCN enhancement (EF_{CCN})
495 during NPF was systematically greater at SS=0.4% than at 0.2%. Notably, while pollution-enhanced
496 CCN production was evident at both SS levels, the relative enhancement of NPF-P over NPF-C
497 events was more pronounced at the lower SS (0.2%). This indicates that the chemically processed,
498 faster-growing particles in polluted air masses are particularly effective at overcoming the greater
499 activation barrier (larger D_a) at low SS. In addition, the chemical composition itself was shaped by
500 the precursor environment. Although the condensation sink (CS) was elevated during NPF-P events
501 (0.013 s^{-1} vs. 0.008 s^{-1} for NPF-C), which typically suppresses nucleation, significantly higher
502 concentrations of gaseous sulfuric acid (H_2SO_4) and nitric acid (HNO_3) were present (Figure 2b,
503 S3). This indicates that the enhanced production of condensable inorganic vapors under pollution
504 transport was sufficient to overcome the increased vapor sink, thereby promoting intense nucleation
505 and growth. Notably, HNO_3 played a dual role. First, it contributed directly to particle growth via
506 the formation of ammonium nitrate. Second, as a strong oxidant, HNO_3 (often in conjunction with
507 other oxidants like OH) enhances the atmospheric oxidation of volatile organic compounds (VOCs),
508 promoting the formation of low-volatility oxygenated organic compounds (LV-OOCs). The
509 condensation of these LV-OOCs further increases the organic mass fraction of the growing particles.
510 This pathway, where HNO_3 indirectly promotes the condensation of low- κ organic material,
511 provides a chemical mechanism for the observed suppression of average particle hygroscopicity (κ)
512 in NPF-P events. Support for this mechanism comes from Thermal Denuder (TD) measurements,
513 which showed a higher volume fraction remaining (VFR) at 300 °C for NPF-P events (Figure 4d),
514 indicating a greater proportion of low-volatility/non-volatile (refractory) material consistent with a
515 processed, low- κ organic fraction.

516
517 **3.4.2 Temporal Evolution of Particle Growth and CCN Activation Efficiency**

518 The efficiency with which newly formed particles evolve into CCN is governed by the interplay
519 between their dynamic growth and concurrent changes in hygroscopicity, as illustrated in Figure 4.
520 During the initial hours of NPF events, particle volatility analysis reveals an elevated non-volatile
521 fraction (high VFR; Figure 4d). This indicates a substantial presence of low-hygroscopicity material,
522 such as highly oxidized organics, which lowers the effective particle hygroscopicity (κ). As a direct
523 consequence, the critical activation diameter (D_a) peaks at ~ 124 nm for NPF-C and ~ 129 nm for
524 NPF-P events in this phase (Figs. 4a, S4a), since less-hygroscopic particles require a larger dry size
525 to activate.

526 The diurnal evolution of the particle population further elucidates the transition from nucleation to
527 CCN production. Total particle number concentration (N_{CN}) begins a rapid increase after $\sim 07:00$ LT,
528 driven by the nucleation burst (Figure 4b). Although N_{CCN} starts to rise concurrently, the explosive
529 production of small nucleation-mode particles initially causes the activation ratio ($AR = N_{CCN}/N_{CN}$)
530 to decline, reflecting the time required for growth to CCN-active sizes. N_{CCN} subsequently peaks
531 around 09:00–10:00 LT, approximately 2–3 hours after the N_{CN} surge, marking the period when a
532 substantial fraction of newly formed particles has grown sufficiently. After $\sim 14:00$ LT, as growth
533 processes intensify (indicated by high GR), an increasing number of particles reach D_a , and the AR
534 begins a gradual recovery (Figures S4b-c).

535 Underlying these dynamics are distinct chemical drivers that shape both growth and volatility.
536 Organic components dominated the particle composition, accounting for over 60 % of NR-PM_{2.5}
537 mass on average across events (Figure 4c). The VFR in the 14–80 nm size range was 10–20 %
538 (Figure 4d), significantly higher than values reported for polluted urban Beijing (~ 5 %; Wu et al.,
539 2017). Because heating to 300 °C effectively removes volatile inorganic salts and semi-volatile
540 organic compounds, a higher VFR primarily reflects a greater abundance of low-volatility organic
541 compounds (LVOCs). At our background site, where local combustion influence is minimal, this
542 points to a more aged, oxidized organic aerosol component (Ehn et al., 2014; Jimenez et al., 2009),
543 consistent with the observed lower κ and higher D_a .

544 A size-resolved perspective reveals how growth pathways shift as particles mature. The contribution
545 of gaseous sulfuric acid to the growth rate (GR) declines sharply with increasing particle size (Figure
546 4d). In NPF-C events, for instance, its contribution drops from ~ 20 % in the 2–6 nm bin to < 8 % in
547 the 15–20 nm bin, indicating that other condensable vapors become dominant for subsequent growth
548 (Yang et al., 2021; Zhu et al., 2023). In NPF-P events, the sulfuric acid contribution is consistently
549 lower than in NPF-C events (e.g., 6 % vs. 8 % in the 9–12 nm bin), suggesting a greater role for
550 alternative vapors—such as nitrate and oxidized organics—under polluted conditions. Concurrently,
551 the non-volatile fraction (1-VFR) increases with particle diameter, approaching 90 % in the 60–
552 120 nm bin. This trend underscores the growing importance of low-volatility material in driving
553 particles to CCN sizes as they mature. The slightly lower non-volatile VFR during NPF-P events
554 further highlights the significant contribution of organic components at the boundary-layer top,
555 which helps explain the persistently high D_a observed during the initial stage of NPF.

556 **3.4.3 Quantitative Assessment of NPF-to-CCN Conversion Efficiency and Kinetics**

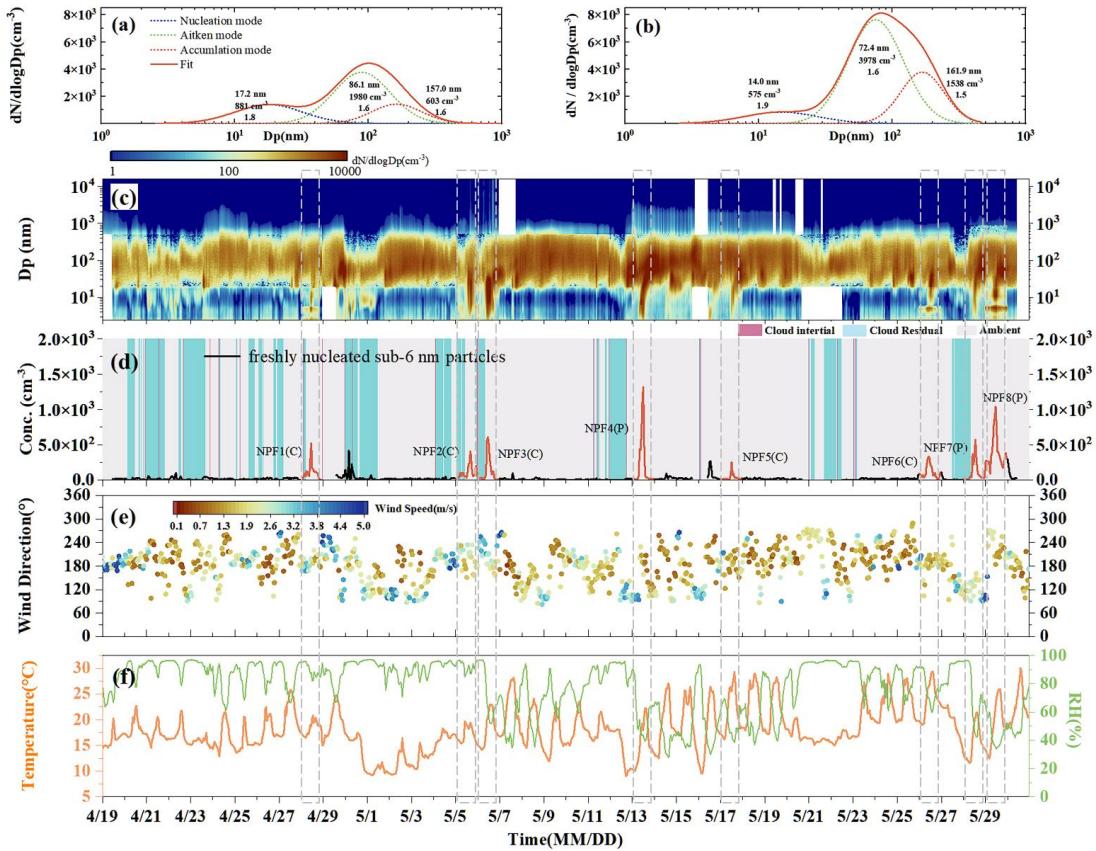
557 The distinct chemical pathways observed under clean and polluted conditions translate into

558 quantifiable differences in the efficiency and speed of CCN production. To evaluate the net impact
559 of NPF on the CCN budget, we first employed the established CCN enhancement factor (EF_{CCN}),
560 which characterizes the relative increase in CCN number concentration following an NPF event.
561 The EF_{CCN} revealed a strong dependence on pollution level: the average EF_{CCN} for polluted (NPF-P)
562 events (1.8) was 161% higher than for clean (NPF-C) events (0.7), confirming that precursor
563 enrichment has a significant promoting effect on CCN formation. This trend aligns with other
564 studies where higher EF_{CCN} typically correlates with enhanced anthropogenic influence (Rejano et
565 al., 2021). However, it is important to note that EF_{CCN} represents an aggregate outcome integrating
566 contributions from both newly formed and pre-existing particles, where the latter can introduce
567 substantial deviations in estimated CCN enhancements (Kalkavouras et al., 2019).

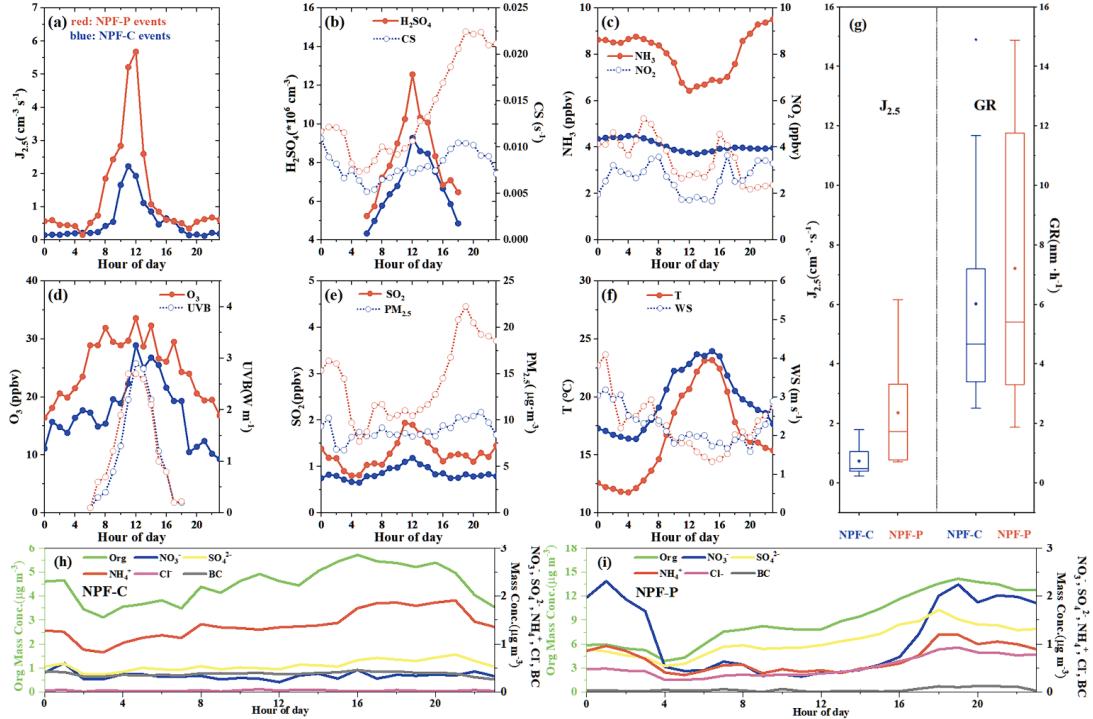
568 While EF_{CCN} quantifies the net CCN enhancement, it does not capture the dynamics of the
569 conversion process. To address this, we introduced the "Time Window (τ)", which quantifies the
570 duration required for newly formed particles to grow from their initial size to the critical activation
571 diameter (D_a). This kinetic metric showed substantial variability across events (15.1–22.2 h), with
572 the average τ for NPF-P events (16.4 h) being 17% shorter than for NPF-C events (19.8 h). This
573 directly demonstrates that polluted conditions accelerate the NPF-to-CCN conversion. A lower τ
574 value, driven by strong atmospheric oxidation capacity, accelerates CCN conversion within a shorter
575 timeframe—coupling effectively with daytime boundary layer cloud cycles to boost CCN supply
576 efficiency (Kommula et al., 2024). The relationship between these metrics is illustrated in Figure
577 5a, where a shorter τ (faster growth) correlates strongly with a higher EF_{CCN} (greater CCN
578 enhancement). This inverse relationship underscores that the efficiency of CCN production is
579 intrinsically linked to the speed of particle growth. Further analysis linked these metrics to pollution
580 intensity. Figure 5b shows a positive correlation between EF_{CCN} and local $PM_{2.5}$ mass concentration,
581 indicating that elevated precursor concentrations enhance NPF growth and intensify nanoparticle
582 conversion to CCN. Figure 5c reveals a clear negative correlation between τ and the particle growth
583 rate (GR), confirming that faster growth universally shortens the conversion timescale, regardless
584 of activation state and initial diameter.

585 The accelerated kinetics in NPF-P events can be attributed to the synergistic effects of elevated
586 precursor concentrations and enhanced atmospheric oxidation. While transported oxidation
587 products like highly oxygenated organic molecules (HOMs) may slightly suppress particle
588 hygroscopicity, the concurrent surge in condensable inorganic vapors—particularly ammonium
589 nitrate, as evidenced by the growing nitrate fraction in the afternoon and evening (Figs. 4e-f)—
590 provides a powerful and sustained driver for rapid condensational growth. Once partitioned into the
591 particle phase, ammonium nitrate increases the overall particle hygroscopicity(κ). This
592 physicochemical effect counteracts the hygroscopicity suppression by organics, effectively lowering
593 the critical activation diameter (D_a) at a given supersaturation and facilitating the activation of
594 growing particles into CCN. This combination of factors enables particles to overcome the initial
595 hygroscopicity limitation and efficiently reach CCN sizes. In contrast, under cleaner conditions
596 (NPF-C), the nitrate fraction remains low and stable (Figure 4e), signifying a minimal role in the
597 growth process and leading to slower growth that extends the CCN conversion window.

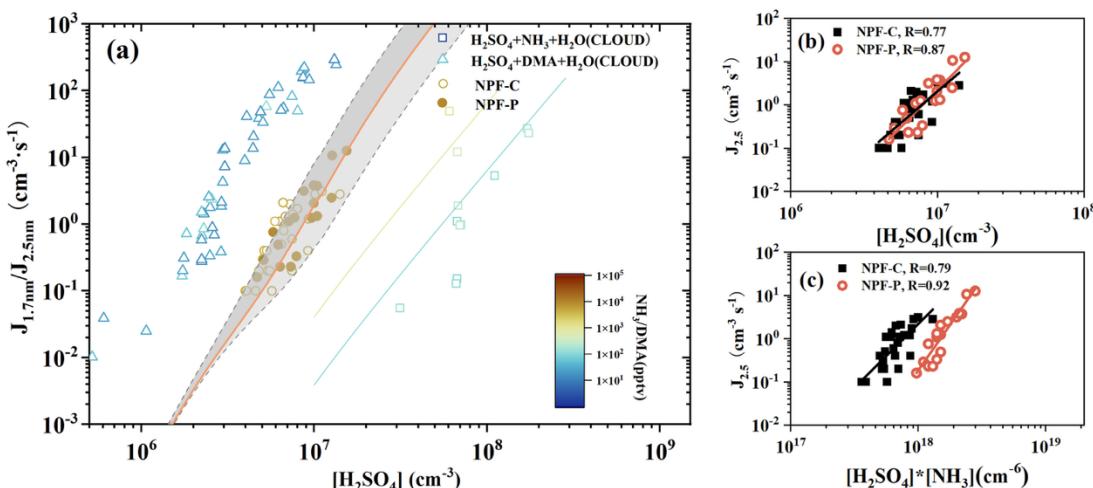
598 To assess the general applicability of the τ -GR relationship, we conducted parallel analyses on


599 published datasets from multiple European sites representing diverse environmental regimes under
600 comparable supersaturation conditions (SS = 0.4%). The sites included: Leipzig-TROPOS (LTR,
601 urban background), Bösel (BOS, urban background), Melpitz (MEL, regional background),
602 Neuglobsow (NEU, regional background), Hohenpeißenberg (HPB, high-altitude), Schauinsland
603 (SCH, high-altitude), and Zugspitze Schneefernerhaus (ZSF, high-altitude; Sun et al., 2024). A
604 statistically significant negative correlation between aerosol lifetime (τ) and growth rate (GR) was
605 consistently observed across all sites, indicating that enhanced growth kinetics promote accelerated
606 cloud condensation nuclei (CCN) activation. This consistent pattern confirms that the inverse τ -GR
607 relationship is a robust feature across varied atmospheric environments, extending beyond the
608 specific conditions of our primary study site.

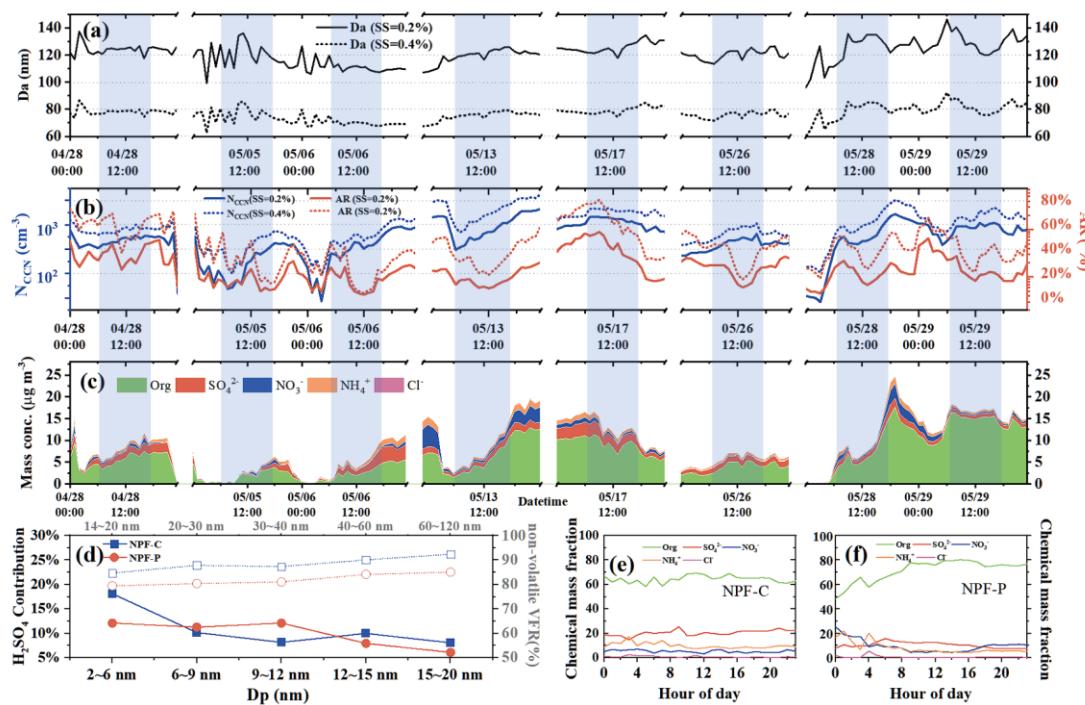
609 In conclusion, while some studies suggest CCN production from NPF can be suppressed in intensely
610 polluted urban cores, our findings demonstrate that in background regions receiving aged pollution
611 plumes, the transported pollutants create a chemical environment that simultaneously enhances
612 nucleation rates and accelerates subsequent particle growth. This dual effect is quantified by a
613 significantly higher EF_{CCN} and a substantially shortened Time Window (τ), leading to a more
614 efficient and faster coupling between NPF and CCN production. This oxidation-driven acceleration
615 mechanism represents a key pathway through which anthropogenic emissions can intensify aerosol-
616 cloud interactions in downwind regions.


617 **4. Conclusion**

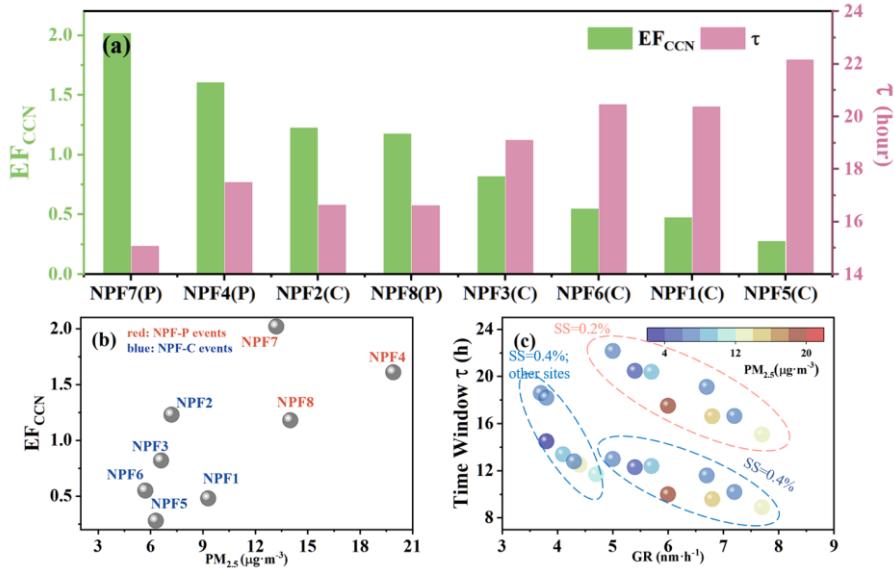
618 Our intensive mountain-top observations in the YRD demonstrate that polluted air masses
619 substantially accelerate NPF and its conversion to cloud condensation nuclei (CCN). Across eight
620 identified NPF events, those under polluted conditions (NPF-P) exhibited a 360% higher nucleation
621 rate ($J_{2.5} = 2.5$ vs. $0.7 \text{ cm}^{-3} \text{ s}^{-1}$) and a 24% faster growth rate ($GR = 6.8$ vs. 5.5 nm h^{-1}) compared
622 with clean events (NPF-C). These enhancements were accompanied by elevated NH_3 concentrations
623 (8.1 vs. 4.1 ppb) and higher gaseous H_2SO_4 ($8.2 \times 10^6 \text{ cm}^{-3}$, 23% higher than NPF-C), confirming
624 ternary $\text{H}_2\text{SO}_4\text{-NH}_3\text{-H}_2\text{O}$ nucleation as the dominant mechanism, consistent with MALTE-BOX
625 simulations. The polluted events further yielded a markedly larger CCN enhancement factor (EF_{CCN}
626 = 1.6 vs. 0.7 in clean cases), reflecting the strong contribution of anthropogenic oxidation products
627 and secondary nitrate condensation. Using the novel “Time Window (τ)”, we show that polluted air
628 masses shortened the NPF-to-CCN conversion timescale by 17% ($\tau = 16.4 \text{ h}$ vs. 19.8 h), enabling
629 nascent particles to reach activation sizes within the diurnal cloud cycle. Notably, nitrate
630 accumulation during afternoon growth phases sustained high GR, compressing τ and ensuring
631 efficient CCN supply. These results together suggest that cross-regional pollutant transport enhances
632 precursor abundance, boosts atmospheric oxidation capacity, and accelerates both the magnitude
633 and timing of CCN production at the BLT. Collectively, these results suggest that cross-regional
634 pollutant transport enriches precursor concentrations, elevates the atmospheric oxidation capacity,
635 and thereby enhances both the magnitude and advances the timing of CCN production at the
636 boundary layer top. Crucially, while previous studies have indicated that intense local pollution can
637 suppress CCN formation from NPF, our findings demonstrate that in oxidizing, transport-influenced
638 environments such as the one studied here, aged pollution plumes can instead amplify CCN yields.


639 Accurately representing these oxidation-driven growth pathways in atmospheric models is therefore
 640 essential for constraining aerosol-cloud-climate feedbacks in rapidly developing regions.
 641
 642

643
 644 Figure 1: Overview of atmospheric conditions and new particle formation (NPF) events at the mountain-
 645 top station. The dashed-line frame represents the NPF events days. (a-b) Lognormal-fitted particle
 646 number size distributions for representative (a) clean (NPF-C) and (b) polluted (NPF-P) NPF events.
 647 Fitted modes are color-coded: nucleation (<20nm, blue), Aitken (20-100nm, green), and accumulation
 648 (100-1000nm, orange). (c) Time series of observed particle number size distributions ($dN/d\log D_p$) during
 649 the entire campaign. (d) Temporal evolution of particle types: cloud interstitial (dark red), cloud residual
 650 (light blue), and non-cloud periods (Ambient, light gray). The occurrence of sub-6nm particles (fresh
 651 nucleation) is overlaid as red lines, highlighting identified NPF event days. (e) Wind direction time series,
 652 where color intensity represents wind speed magnitude. (f) Time series of temperature and relative
 653 humidity.



654
655 Figure 2: Diurnal comparison of key parameters and new particle formation (NPF) metrics between clean
656 (NPF-C) and polluted (NPF-P) event days. (a) formation rate ($J_{2.5}$); (b) H_2SO_4 concentration and
657 condensation sink (CS); (c) NH_3 and NO_2 concentration (d) O_3 concentrations and UV-B radiation
658 intensity; (e) SO_2 concentration and $PM_{2.5}$ mass concentration; (f) Temperature (T) and wind speed (WS);
659 (g) Box plots of formation rate ($J_{2.5}$) and growth rate (GR), where boxes show the interquartile range
660 (25th-75th percentile), internal lines denote the median, dots represent the arithmetic mean, and whiskers
661 extend to the 10th and 90th percentiles. (h-i) Mean diurnal profiles of non-refractory $PM_{2.5}$ chemical
662 composition (organics, sulfate, nitrate, ammonium, chloride) and black carbon (BC) mass concentration
663 for (h) NPF-C and (i) NPF-P events.
664


665
666 Figure 3: Nucleation mechanism analysis at Shanghuang station. (a) Comparison of formation rates as a
667 function of H_2SO_4 concentration among field observations, CLOUD chamber experiments, and
668 theoretical predictions. Field measurements are presented as the 2.5 nm formation rate ($J_{2.5}$; colored
669

669 circles: hollow for NPF-C events, solid for NPF-P events). These are compared with the 1.7 nm formation
 670 rate ($J_{1.7}$; squares and triangles) from CLOUD experiments conducted at 278 K and 38% RH under
 671 controlled precursor conditions: H_2SO_4 - NH_3 - H_2O ternary nucleation (squares, NH_3 =0.1 ppbv and 1 ppbv)
 672 and H_2SO_4 -DMA- H_2O ion-mediated nucleation (triangles, DMA=13-140 pptv) (Kürten et al., 2019;
 673 Almeida et al., 2013). DMA denotes dimethylamine. Color gradients indicate NH_3 (blue) and DMA (red)
 674 mixing ratios in the chamber. The yellow line shows the MALTE-BOX model prediction for H_2SO_4
 675 nucleation with 5 pptv NH_3 ; the gray band represents the uncertainty in cluster binding energy
 676 ($\pm 1 \text{ kcal mol}^{-1}$). (b) Formation rates ($J_{2.5}$) versus H_2SO_4 concentration for NPF-C (black squares)
 677 and NPF-P (red hollow circles). (c) Formation rates ($J_{2.5}$) as a function of the H_2SO_4 and NH_3
 678 concentration for NPF-C (black squares) and NPF-P (red hollow circles), with Pearson correlation
 679 coefficients (R) indicated.

680
 681 Figure 4: CCN-related parameters and chemical compositions across eight NPF events. (a) The solid line
 682 and the dashed line denote to the activation diameters at supersaturation (SS=0.2%) and supersaturation
 683 (SS=0.4%) during eight NPF events, respectively. (b) Temporal evolution of N_{CCN} (blue solid line and
 684 blue dashed line) and its activation ratio ($\text{AR} = N_{\text{CCN}}/N_{\text{CN}}$, red solid and solid line). The solid line
 685 represents SS=0.2% and the dashed line represents SS=0.4%. (c) Time-resolved mass concentrations of
 686 particulate chemical constituents (organics, sulfate, nitrate, ammonium and chlorine) during the eight
 687 NPF events. (d) Solid line represents the fractional contribution of H_2SO_4 to GR within 2 ~ 20 nm
 688 particles; dashed line represents the non-volatile volume fraction remaining (1-VFR) in the 14 ~ 120 nm
 689 size bin. The blue line denotes to NPF-C events and blue line denotes to NPF-P events. (e-f) Diurnal
 690 variations in mass fraction contributions of chemical constituents during NPF-C and NPF-P events,
 691 respectively.

692

693

694 Figure 5: Relationships between CCN enhancement factors, Time Window (τ), and environmental
 695 parameters. (a) Scatter plot of the CCN enhancement factor (EF_{CCN}) versus the Time Window (τ) for
 696 particle growth to CCN size across all eight NPF events. (b) Correlation between the $PM_{2.5}$ mass
 697 concentration and EF_{CCN} , where individual data points are color-coded to distinguish between NPF
 698 events occurring under polluted (red font) and clean (blue font) conditions. (c) Relationship between the
 699 particle growth rate (GR) and τ . The color gradient represents the concurrent $PM_{2.5}$ mass concentration
 700 at the Shanghuang station for data at supersaturations of 0.2% and 0.4%. Data from other sites (shown
 701 for SS=0.4%) are included for comparison.

702 Table 1: Summary of NPF events. For each event, the table lists the date, event type classification
 703 (NPF-C/NPF-P), start time, average formation rate at 2.5 nm ($J_{2.5}$), average growth rate (GR),
 704 condensation sink (CS), sulfuric acid (SA) concentration, key meteorological parameters (temperature,
 705 T; relative humidity, RH; wind speed, WS), and the average number concentrations of nucleation(NUC),
 706 Aitken(AIT), and accumulation(ACC) mode particles.

			start	$J_{2.5}$	GR	CS	SA	T	RH	WS	NUC	AIT	ACC
	date	type	time	($\text{cm}^{-3} \text{s}^{-1}$)	(nm h^{-1})	(s^{-1})	(cm^{-3})	($^{\circ}\text{C}$)	(%)	(m s^{-1})	(cm^{-3})	(cm^{-3})	(cm^{-3})
NPF-1	2024/4/28	C	9:00	0.6	4.8	0.007	6.1E+6	19.1	87	2.2	305	766	741
NPF-2	2024/5/5	C	6:00	0.8	5.7	0.004	6.2E+6	16.0	90	2.1	985	1552	304
NPF-3	2024/5/6	C	7:00	1.3	6.7	0.006	1.0E+7	20.2	65	2.6	3229	3105	554
NPF-4	2024/5/13	P	7:00	3.4	6.0	0.015	1.0E+7	16.2	47	1.7	1771	5231	1330
NPF-5	2024/5/17	C	9:00	0.3	5.0	0.014	5.5E+6	25.2	68	1.4	382	1835	1920
NPF-6	2024/5/26	C	8:00	0.7	5.4	0.007	6.3E+6	26.6	69	1.5	482	2476	644
NPF-7	2024/5/28	P	7:00	1.3	7.7	0.011	7.1E+6	17.6	60	2.2	522	2706	1073
NPF-8	2024/5/29	P	6:00	2.4	6.8	0.014	8.2E+6	22.5	43	1.6	1399	3123	1424

707

708

709 **Author contributions.**

710 ZR and WB designed the experiments, and WB, SS, JQ, YF, ZZ, RL, KY, GQ, XP, XL, LZ, WQ,
711 YL, ZF and HB carried out the field measurements and data analysis. ZR performed the MALTE-
712 BOX model simulation. WB and ZR interpreted the data and wrote the paper. All the authors
713 contributed to discussing results and commenting on the paper.

714 **Competing interests.**

715 The authors declare that they have no known competing financial interests or personal relationships
716 that could have appeared to influence the work reported in this paper.

717 **Financial support.**

718 This work was supported by the Strategic Priority Research Program of the Chinese Academy of
719 Sciences (Grant No. XDB0760200), the National Natural Science Foundation of China [grant
720 numbers 42275120, 42075111, and 42330605] and the National Key Research and Development
721 Program [grant number 2023YFC3706101].

722 **Reference.**

723 Aktypis, A., Kaltsoudis, C., Patoulas, D., Kalkavouras, P., Matrali, A., Vasilakopoulou, C. N., ...
724 & Pandis, S. N. (2024). Significant spatial gradients in new particle formation frequency in Greece
725 during summer. *Atmospheric Chemistry and Physics*, 24(1), 65-84, <https://doi.org/10.5194/acp-24-65-2024>.

727 Almeida, J., Schobesberger, S., Kürten, A., Ortega, I. K., Kupiainen-Määttä, O., Praplan, A. P., ... &
728 Kirkby, J. (2013). Molecular understanding of sulphuric acid–amine particle nucleation in the
729 atmosphere. *Nature*, 502(7471), 359-363, <https://doi.org/10.1038/nature12663>.

730 Baron, P. A., & Willeke, K. (2001). *Aerosol measurement: principles, techniques, and applications*,
731 <https://doi.org/10.1002/9781118001684>.

732 Beddows, D. C., Dall'Osto, M., & Harrison, R. M. (2010). An enhanced procedure for the merging
733 of atmospheric particle size distribution data measured using electrical mobility and time-of-flight
734 analysers. *Aerosol Science and Technology*, 44(11), 930-938,
735 <https://doi.org/10.1080/02786826.2010.502159>.

736 Bougiatioti, A., Nenes, A., Fountoukis, C., Kalivitis, N., Pandis, S. N., & Mihalopoulos, N. (2011).
737 Size-resolved CCN distributions and activation kinetics of aged continental and marine aerosol.
738 *Atmospheric Chemistry and Physics*, 11(16), 8791-8808, <https://doi.org/10.5194/acp-11-8791-2011>.

739 Boy, M., Hellmuth, O., Korhonen, H., Nilsson, E. D., ReVelle, D., Turnipseed, A., ... & Kulmala,
740 M. (2006). MALTE–model to predict new aerosol formation in the lower troposphere. *Atmospheric
741 Chemistry and Physics*, 6(12), 4499-4517, <https://doi.org/10.5194/acp-6-4499-2006>.

- 742 Cai, J., Sulo, J., Gu, Y., Holm, S., Cai, R., Thomas, S., ... & Bianchi, F. (2024). Elucidating the
743 mechanisms of atmospheric new particle formation in the highly polluted Po Valley, Italy.
744 *Atmospheric Chemistry and Physics*, 24(4), 2423-2441, <https://doi.org/10.5194/acp-24-2423-2024>.
- 745 Chang, Y., Wang, H., Gao, Y., Jing, S., Lu, Y., Lou, S., et al. (2022). Nonagricultural emissions
746 dominate urban atmospheric amines as revealed by mobile measurements. *Geophysical Research
747 Letters*, 49, e2021GL097640, <https://doi.org/10.1029/2021GL097640>.
- 748 Chu, B., Kerminen, V. M., Bianchi, F., Yan, C., Petäjä, T., & Kulmala, M. (2019). Atmospheric new
749 particle formation in China. *Atmospheric Chemistry and Physics*, 19(1), 115-138,
750 <https://doi.org/10.5194/acp-19-115-2019>.
- 751 Dal Maso, M., Kulmala, M., Riipinen, I., Wagner, R., Hussein, T., Aalto, P. P., & Lehtinen, K. E.
752 (2005). Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution
753 data from SMEAR II, Hyytiälä, Finland. *Boreal environment research*, 10(5), 323.
- 754 Deng, Z. Z., Zhao, C. S., Ma, N., Liu, P. F., Ran, L., Xu, W. Y., ... & Wiedensohler, A. (2011). Size-
755 resolved and bulk activation properties of aerosols in the North China Plain. *Atmospheric Chemistry
756 and Physics*, 11(8), 3835-3846, <https://doi.org/10.5194/acp-11-3835-2011>.
- 757 Dinoi, A., Gulli, D., Weinhold, K., Ammoscato, I., Calidonna, C. R., Wiedensohler, A., & Contini,
758 D. (2023). Characterization of ultrafine particles and the occurrence of new particle formation
759 events in an urban and coastal site of the Mediterranean area. *Atmospheric Chemistry and Physics*,
760 23(3), 2167-2181, <https://doi.org/10.5194/acp-23-2167-2023>.
- 761 Draxler, R. R., & Hess, G. D. (1998). An overview of the HYSPLIT_4 modelling system for
762 trajectories. *Australian meteorological magazine*, 47(4), 295-308.
- 763 Ehn, M., Thornton, J. A., Kleist, E., Sipilä, M., Junninen, H., Pullinen, I., ... & Mentel, T. F. (2014).
764 A large source of low-volatility secondary organic aerosol. *Nature*, 506(7489), 476-479,
765 <https://doi.org/10.1038/nature13032>.
- 766 Gao, Z., Wang, F., Du, W., Wang, S., Sun, Y., Yang, W., ... & Bai, Z. (2025). Elucidating particle
767 number concentrations and unveiling source mechanisms at a prominent national background site
768 on the northeastern Qinghai-Tibetan Plateau. *Science of The Total Environment*, 969, 178928,
769 <https://doi.org/10.1016/j.scitotenv.2025.178928>.
- 770 Garcia-Marlès, M., Lara, R., Reche, C., Pérez, N., Tobías, A., Savadkoohi, M., ... & Querol, X.
771 (2024). Source apportionment of ultrafine particles in urban Europe. *Environment international*, 194,
772 109149, <https://doi.org/10.1016/j.envint.2024.109149>.
- 773 Gong, X., Wang, Y., Xie, H., Zhang, J., Lu, Z., Wood, R., ... & Wang, J. (2023). Maximum
774 supersaturation in the marine boundary layer clouds over the North Atlantic. *AGU advances*, 4(6),
775 e2022AV000855, <https://doi.org/10.1029/2022AV000855>.
- 776 Gunthe, S. S., Rose, D., Su, H., Garland, R. M., Achtbert, P., Nowak, A., ... & Pöschl, U. (2011).
777 Cloud condensation nuclei (CCN) from fresh and aged air pollution in the megacity region of
778 Beijing. *Atmospheric Chemistry and Physics*, 11(21), 11023-11039, <https://doi.org/10.5194/acp-11-11023-2011>.

- 779 11023-2011.
- 780 Hirshorn, N. S., Zuromski, L. M., Rapp, C., McCubbin, I., Yu, F., & Hallar, A. G. (2022). Seasonal
781 significance of new particle formation impacts on cloud condensation nuclei at a mountaintop
782 location. *Atmospheric Chemistry and Physics Discussions*, 2022, 1-26, <https://doi.org/10.5194/acp-22-15909-2022>.
- 784 Huang, H., Xie, X., Xiao, F., Liu, B., Zhang, T., Feng, F., ... & Zhang, C. (2024). A critical review
785 of deep oxidation of gaseous volatile organic compounds via aqueous advanced oxidation processes.
786 *Environmental Science & Technology*, 58(42), 18456-18473,
787 <https://doi.org/10.1021/acs.est.4c07202>.
- 788 Huang, X., Zhou, L., Ding, A., Qi, X., Nie, W., Wang, M., ... & Boy, M. (2016). Comprehensive
789 modelling study on observed new particle formation at the SORPES station in Nanjing, China.
790 *Atmospheric Chemistry and Physics*, 16(4), 2477-2492, <https://doi.org/10.5194/acp-16-2477-2016>.
- 791 Hussein, T., Dal Maso, M., Petäjä, T., Koponen, I. K., Paatero, P., Aalto, P. P., ... & Kulmala, M.
792 (2005). Evaluation of an automatic algorithm for fitting the particle number size distributions.
793 *Boreal environment research*, 10(5), 337.
- 794 Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll, J. H., ... &
795 Worsnop, D. R. (2009). Evolution of organic aerosols in the atmosphere. *science*, 326(5959), 1525-
796 1529, <https://doi.org/10.1126/science.1180353>.
- 797 Kalivitis, N., Kerminen, V. M., Kouvarakis, G., Stavroulas, I., Tzitzikalaki, E., Kalkavouras, P., ...
798 & Mihalopoulos, N. (2019). Formation and growth of atmospheric nanoparticles in the eastern
799 Mediterranean: results from long-term measurements and process simulations. *Atmospheric
800 Chemistry and Physics Discussions*, 2018, 1-38, <https://doi.org/10.5194/acp-19-2671-2019>.
- 801 Kalkavouras, P., Bossioli, E., Bezantakos, S., Bougiatioti, A., Kalivitis, N., Stavroulas, I., ... &
802 Tombrou, M. (2017). New particle formation in the southern Aegean Sea during the Etesians:
803 importance for CCN production and cloud droplet number. *Atmospheric Chemistry and Physics*,
804 17(1), 175-192, <https://doi.org/10.5194/acp-17-175-2017>.
- 805 Kalkavouras, P., Bougiatioti, A., Grivas, G., Stavroulas, I., Kalivitis, N., Liakakou, E., ... &
806 Mihalopoulos, N. (2020). On the regional aspects of new particle formation in the Eastern
807 Mediterranean: A comparative study between a background and an urban site based on long term
808 observations. *Atmospheric Research*, 239, 104911, <https://doi.org/10.1016/j.atmosres.2020.104911>.
- 809 Kalkavouras, P., Bougiatioti, A., Hussein, T., Kalivitis, N., Stavroulas, I., Michalopoulos, P., &
810 Mihalopoulos, N. (2021). Regional new particle formation over the eastern mediterranean and
811 middle east. *Atmosphere*, 12(1), 13, <https://doi.org/10.3390/atmos12010013>.
- 812 Kalkavouras, P., Bougiatioti, A., Kalivitis, N., Stavroulas, I., Tombrou, M., Nenes, A., &
813 Mihalopoulos, N. (2019). Regional new particle formation as modulators of cloud condensation
814 nuclei and cloud droplet number in the eastern Mediterranean. *Atmospheric Chemistry and Physics*,
815 19(9), 6185-6203, <https://doi.org/10.5194/acp-19-6185-2019>.

- 816 Kecorius, S., Hoffmann, E. H., Tilgner, A., Barrientos-Velasco, C., van Pinxteren, M., Zeppenfeld,
817 S., ... & Herrmann, H. (2023). Rapid growth of Aitken-mode particles during Arctic summer by fog
818 chemical processing and its implication. *PNAS nexus*, 2(5), pgad124,
819 <https://doi.org/10.1093/pnasnexus/pgad124>.
- 820 Kerminen, V. M., Chen, X., Vakkari, V., Petäjä, T., Kulmala, M., & Bianchi, F. (2018). Atmospheric
821 new particle formation and growth: review of field observations. *Environmental Research Letters*,
822 13(10), 103003, <https://doi.org/10.1088/1748-9326/aadf3c>.
- 823 Kerminen, V.-M., Paramonov, M., Anttila, T., Riipinen, I., Fountoukis, C., Korhonen, H., et al.
824 (2012). Cloud condensation nuclei production associated with atmospheric nucleation: A synthesis
825 based on existing literature and new results. *Atmospheric Chemistry and Physics*, 12, 12037–12059,
826 <https://doi.org/10.5194/acp-12-12037-2012>.
- 827 Kirkby, J., Curtius, J., Almeida, J., Dunne, E., Duplissy, J., Ehrhart, S., ... & Kulmala, M. (2011).
828 Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. *Nature*,
829 476(7361), 429-433, <https://doi.org/10.1038/nature10343>.
- 830 Kommula, S. M., Buchholz, A., Gramlich, Y., Mielonen, T., Hao, L., Pullinen, I., ... & Virtanen, A.
831 (2024). Effect of long-range transported fire aerosols on cloud condensation nuclei concentrations
832 and cloud properties at high latitudes. *Geophysical Research Letters*, 51(6), e2023GL107134,
833 <https://doi.org/10.1029/2023GL107134>.
- 834 Kulmala, M., Kontkanen, J., Junninen, H., Lehtipalo, K., Manninen, H. E., Nieminen, T., ... &
835 Worsnop, D. R. (2013). Direct observations of atmospheric aerosol nucleation. *Science*, 339(6122),
836 943-946, <https://doi.org/10.1126/science.1227385>.
- 837 Kulmala, M., Maso, M. D., Mäkelä, J. M., Pirjola, L., Väkevä, M., Aalto, P., ... & O'dowd, C. D.
838 (2001). On the formation, growth and composition of nucleation mode particles. *Tellus B*, 53(4),
839 479-490, <https://doi.org/10.3402/tellusb.v53i4.16622>.
- 840 Kulmala, M., Petäjä, T., Nieminen, T., Sipilä, M., Manninen, H. E., Lehtipalo, K., ... & Kerminen,
841 V. M. (2012). Measurement of the nucleation of atmospheric aerosol particles. *Nature protocols*,
842 7(9), 1651-1667, <https://doi.org/10.1038/nprot.2012.091>.
- 843 Kulmala, M., Wei, D., Zhang, X., Zhang, T., Xia, M., Wang, Y., ... & Kokkonen, T. (2025).
844 Understanding atmospheric processes: insights from the comparison between Beijing and Hyytiälä.
845 *Npj Clean Air*, 1(1), 26, <https://doi.org/10.1038/s44407-025-00020-x>.
- 846 Kürten, A. (2019). New particle formation from sulfuric acid and ammonia: nucleation and growth
847 model based on thermodynamics derived from CLOUD measurements for a wide range of
848 conditions. *Atmospheric chemistry and physics*, 19(7), 5033-5050, <https://doi.org/10.5194/acp-19-5033-2019>.
- 850 Laaksonen, A., Hamed, A., Joutsensaari, J., Hiltunen, L., Cavalli, F., Junkermann, W., ... & Facchini,
851 M. C. (2005). Cloud condensation nucleus production from nucleation events at a highly polluted
852 region. *Geophysical Research Letters*, 32(6), <https://doi.org/10.1029/2004GL022092>.

- 853 Li, Y., Lei, L., Sun, J., Gao, Y., Wang, P., Wang, S., ... & Sun, Y. (2023). Significant reductions in
854 secondary aerosols after the three-year action plan in Beijing summer. *Environmental Science &*
855 *Technology*, 57(42), 15945-15955, <https://doi.org/10.1021/acs.est.3c02417>.
- 856 Liu, F., Choi, S., Li, C., Fioletov, V. E., McLinden, C. A., Joiner, J., ... & da Silva, A. M. (2018). A
857 new global anthropogenic SO₂ emission inventory for the last decade: a mosaic of satellite-derived
858 and bottom-up emissions. *Atmospheric Chemistry and Physics*, 18(22), 16571-16586,
859 <https://doi.org/10.5194/acp-18-16571-2018>
- 860 Liu, P., Song, M., Zhao, T., Gunthe, S. S., Ham, S., He, Y., ... & Martin, S. T. (2018). Resolving the
861 mechanisms of hygroscopic growth and cloud condensation nuclei activity for organic particulate
862 matter. *Nature communications*, 9(1), 4076, <https://doi.org/10.1038/s41467-018-06622-2>.
- 863 Liu, Z., Hu, B., Zhang, J., Yu, Y., & Wang, Y. (2016). Characteristics of aerosol size distributions
864 and chemical compositions during wintertime pollution episodes in Beijing. *Atmospheric Research*,
865 168, 1-12, <https://doi.org/10.1016/j.atmosres.2015.08.013>.
- 866 Lu, Y., Yan, C., Fu, Y., Chen, Y., Liu, Y., Yang, G., ... & Wang, L. (2019). A proxy for atmospheric
867 daytime gaseous sulfuric acid concentration in urban Beijing. *Atmospheric Chemistry and Physics*,
868 19(3), 1971-1983, <https://doi.org/10.5194/acp-19-1971-2019>.
- 869 Lv, G., Sui, X., Chen, J., Jayaratne, R., & Mellouki, A. (2018). Investigation of new particle
870 formation at the summit of Mt. Tai, China. *Atmospheric Chemistry and Physics*, 18(3), 2243-2258,
871 <https://doi.org/10.5194/acp-18-2243-2018>.
- 872 McGrath, M. J., Olenius, T., Ortega, I. K., Loukonen, V., Paasonen, P., Kurtén, T., ... & Vehkamäki,
873 H. (2012). Atmospheric Cluster Dynamics Code: a flexible method for solution of the birth-death
874 equations. *Atmospheric Chemistry and Physics*, 12(5), 2345-2355, <https://doi.org/10.5194/acp-12-2345-2012>.
- 876 Metzger, A., Verheggen, B., Dommen, J., Duplissy, J., Prevot, A. S., Weingartner, E., ... &
877 Baltensperger, U. (2010). Evidence for the role of organics in aerosol particle formation under
878 atmospheric conditions. *Proceedings of the National Academy of Sciences*, 107(15), 6646-6651,
879 <https://doi.org/10.1073/pnas.0911330107>.
- 880 Middlebrook, A. M., Bahreini, R., Jimenez, J. L., & Canagaratna, M. R. (2012). Evaluation of
881 composition-dependent collection efficiencies for the aerodyne aerosol mass spectrometer using
882 field data. *Aerosol Science and Technology*, 46(3), 258-271,
883 <https://doi.org/10.1080/02786826.2011.620041>.
- 884 Mirme, S., & Mirme, A. (2013). The mathematical principles and design of the NAIS—a
885 spectrometer for the measurement of cluster ion and nanometer aerosol size distributions.
886 *Atmospheric Measurement Techniques*, 6(4), 1061-1071, <https://doi.org/10.5194/amt-6-1061-2013>.
- 887 Nault, B. A., Croteau, P., Jayne, J., Williams, A., Williams, L., Worsnop, D., ... & Canagaratna, M.
888 (2023). Laboratory evaluation of organic aerosol relative ionization efficiencies in the aerodyne
889 aerosol mass spectrometer and aerosol chemical speciation monitor. *Aerosol Science and*

- 890 Technology, 57(10), 981-997, <https://doi.org/10.1080/02786826.2023.2223249>.
- 891 Nie, W., Ding, A., Wang, T., Kerminen, V. M., George, C., Xue, L., ... & Kulmala, M. (2014).
892 Polluted dust promotes new particle formation and growth. *Scientific reports*, 4(1), 6634,
893 <https://doi.org/10.1038/srep06634>.
- 894 Nieminen, T., Lehtinen, K. E. J., & Kulmala, M. (2010). Sub-10 nm particle growth by vapor
895 condensation—effects of vapor molecule size and particle thermal speed. *Atmospheric Chemistry*
896 and Physics, 10(20), 9773-9779, <https://doi.org/10.5194/acp-10-9773-2010>.
- 897 Pierce, J. R., Leaitch, W. R., Liggio, J., Westervelt, D. M., Wainwright, C. D., Abbatt, J. P. D., et al.
898 (2012). Nucleation and condensational growth to CCN sizes during a sustained pristine biogenic
899 SOA event in a forested mountain valley. *Atmospheric Chemistry and Physics*, 12, 3147–3163.
900 <https://doi.org/10.5194/acp-12-3147-2012>, <https://doi.org/10.5194/acp-12-3147-2012>.
- 901 Qi, X. M., Ding, A. J., Nie, W., Petäjä, T., Kerminen, V. M., Herrmann, E., ... & Kulmala, M. (2015).
902 Aerosol size distribution and new particle formation in the western Yangtze River Delta of China:
903 2 years of measurements at the SORPES station. *Atmospheric chemistry and physics*, 15(21),
904 12445-12464.<https://doi.org/10.5194/acp-15-12445-2015>, <https://doi.org/10.5194/acp-15-12445-2015>.
- 905
- 906 Qi, X., Ding, A., Roldin, P., Xu, Z., Zhou, P., Sarnela, N., ... & Boy, M. (2018). Modelling studies
907 of HOMs and their contributions to new particle formation and growth: comparison of boreal forest
908 in Finland and a polluted environment in China. *Atmospheric Chemistry and Physics*, 18(16),
909 11779-11791, <https://doi.org/10.5194/acp-18-11779-2018>.
- 910 Rejano, F., Titos, G., Casquero-Vera, J. A., Lyamani, H., Andrews, E., Sheridan, P., ... & Olmo, F. J.
911 (2021). Activation properties of aerosol particles as cloud condensation nuclei at urban and high-
912 altitude remote sites in southern Europe. *Science of the Total Environment*, 762, 143100,
913 <https://doi.org/10.1016/j.scitotenv.2020.143100>.
- 914 Ren, J., Chen, L., Fan, T., Liu, J., Jiang, S., & Zhang, F. (2021). The NPF effect on CCN number
915 concentrations: A review and re-evaluation of observations from 35 sites worldwide. *Geophysical*
916 *Research Letters*, 48(19), e2021GL095190, <https://doi.org/10.1029/2021GL095190>.
- 917 Schmid, O., Eimer, B., Hagen, D. E., & Whitefield, P. D. (2002). Investigation of volatility method
918 for measuring aqueous sulfuric acid on mixed aerosols. *Aerosol Science & Technology*, 36(8), 877-
919 889, <https://doi.org/10.1080/02786820290038519>.
- 920 Shang, D., Hu, M., Zheng, J., Qin, Y., Du, Z., Li, M., ... & Guo, S. (2018). Particle number size
921 distribution and new particle formation under the influence of biomass burning at a high altitude
922 background site at Mt. Yulong (3410 m), China. *Atmospheric Chemistry and Physics*, 18(21),
923 15687-15703, <https://doi.org/10.5194/acp-18-15687-2018>.
- 924 Shen, L., Wang, H., Yin, Y., Chen, J., & Chen, K. (2019). Observation of atmospheric new particle
925 growth events at the summit of mountain Tai (1534 m) in Central East China. *Atmospheric*
926 *Environment*, 201, 148-157, <https://doi.org/10.1016/j.atmosenv.2018.12.051>.

- 927 Shen, X., Sun, J., Zhang, X., Zhang, Y., Zhang, L., & Fan, R. (2016). Key features of new particle
928 formation events at background sites in China and their influence on cloud condensation nuclei.
929 *Frontiers of Environmental Science & Engineering*, 10(5), 5, <https://doi.org/10.1007/s11783-016-0833-2>.
- 931 Stokes, R. H., & Robinson, R. A. (1966). Interactions in aqueous nonelectrolyte solutions. I. Solute-
932 solvent equilibria. *The Journal of Physical Chemistry*, 70(7), 2126-2131.
933 <https://doi.org/10.1021/j100879a010>, 1966, <https://doi.org/10.1021/j100879a010>.
- 934 Sun, J., Hermann, M., Weinhold, K., Merkel, M., Birmili, W., Yang, Y., ... & Wiedensohler, A.
935 (2024). Measurement report: Contribution of atmospheric new particle formation to ultrafine
936 particle concentration, cloud condensation nuclei, and radiative forcing—results from 5-year
937 observations in central Europe. *Atmospheric Chemistry and Physics*, 24(18), 10667-10687,
938 <https://doi.org/10.5194/acp-24-10667-2024>.
- 939 Sun, J., Hermann, M., Yuan, Y., Birmili, W., Collaud Coen, M., Weinhold, K., ... & Wiedensohler,
940 A. (2021). Long-term trends of black carbon and particle number concentration in the lower free
941 troposphere in Central Europe. *Environmental Sciences Europe*, 33(1), 47.
942 <https://doi.org/10.1186/s12302-021-00488-w>, 2021, <https://doi.org/10.1186/s12302-021-00488-w>.
- 943 Sun, Q., Gu, M., Wu, D., Yang, T., Wang, H., & Pan, Y. (2023). Concurrent measurements of
944 atmospheric ammonia concentrations in the megacities of Beijing and Shanghai by using cavity
945 ring-down spectroscopy. *Atmospheric Environment*, 307, 119848,
946 <https://doi.org/10.1016/j.atmosenv.2023.119848>.
- 947 Topping, D. O., McFiggans, G. B., & Coe, H. (2005). A curved multi-component aerosol
948 hygroscopicity model framework: Part 1-Inorganic compounds. *Atmospheric Chemistry and
949 Physics*, 5(5), 1205-1222. <https://doi.org/10.5194/acp-5-1205-2005>,
950 2005, <https://doi.org/10.5194/acp-5-1205-2005>.
- 951 Trechera, P., Garcia-Marlès, M., Liu, X., Reche, C., Pérez, N., Savadkoohi, M., ... & Querol, X.
952 (2023). Phenomenology of ultrafine particle concentrations and size distribution across urban
953 Europe. *Environment international*, 172, 107744, <https://doi.org/10.1016/j.envint.2023.107744>.
- 954 Vakkari, V., Tiitta, P., Jaars, K., Croteau, P., Beukes, J. P., Josipovic, M., ... & Laakso, L. (2015).
955 Reevaluating the contribution of sulfuric acid and the origin of organic compounds in atmospheric
956 nanoparticle growth. *Geophysical Research Letters*, 42(23), 10-486,
957 <https://doi.org/10.1002/2015GL066459>.
- 958 Wang, M., Xiao, M., Bertozzi, B., Marie, G., Rörup, B., Schulze, B., ... & Donahue, N. M. (2022).
959 Synergistic HNO₃–H₂SO₄–NH₃ upper tropospheric particle formation. *Nature*, 605(7910), 483-
960 489, <https://doi.org/10.1038/s41586-022-04605-4>.
- 961 Wang, Z., Pan, X., Sun, Y., Xin, J., Su, H., Cao, J., ... & Liu, L. (2025). Atmospheric Boundary
962 Layer Eco-Environment Shanghuang Observatory: An Integrated Multiscale Research Platform in
963 Southeastern China for Understanding Boundary Layer Processes, Atmospheric Chemistry
964 Feedback, and Extreme Weather–Climate Linkages, <https://doi.org/10.1007/s00376-025-5307-7>.

- 965 Wu, Z. J., Ma, N., Größ, J., Kecorius, S., Lu, K. D., Shang, D. J., ... & Zhang, Y. H. (2017).
966 Thermodynamic properties of nanoparticles during new particle formation events in the atmosphere
967 of North China Plain. *Atmospheric research*, 188, 55-63,
968 <https://doi.org/10.1016/j.atmosres.2017.01.007>.
- 969 Wu, Z., Wang, H., Yin, Y., Shen, L., Chen, K., Chen, J., ... & Lin, W. (2024). Impacts of the aerosol
970 mixing state and new particle formation on CCN in summer at the summit of Mount Tai (1534m)
971 in Central East China. *Science of The Total Environment*, 918, 170622,
972 <https://doi.org/10.1016/j.scitotenv.2024.170622>.
- 973 Xiao, S., Wang, M. Y., Yao, L., Kulmala, M., Zhou, B., Yang, X., ... & Wang, L. (2015). Strong
974 atmospheric new particle formation in winter in urban Shanghai, China. *Atmospheric Chemistry
975 and Physics*, 15(4), 1769-1781, <https://doi.org/10.5194/acp-15-1769-2015>.
- 976 Xu, W., Kuang, Y., Xu, W., Zhang, Z., Luo, B., Zhang, X., ... & Sun, Y. (2024). Hygroscopic growth
977 and activation changed submicron aerosol composition and properties in the North China Plain.
978 *Atmospheric Chemistry and Physics*, 24(16), 9387-9399, <https://doi.org/10.5194/acp-24-9387-2024>.
- 979 Yang, S., Liu, Z., Clusius, P. S., Liu, Y., Zou, J., Yang, Y., ... & Wang, Y. (2021). Chemistry of new
980 particle formation and growth events during wintertime in suburban area of Beijing: Insights from
981 highly polluted atmosphere. *Atmospheric Research*, 255, 105553,
982 <https://doi.org/10.1016/j.atmosres.2021.105553>.
- 983 Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., ... & Wang, L. (2018).
984 Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity. *Science*,
985 361(6399), 278-281, <https://doi.org/10.1126/science.aoa4839>.
- 986 Zhang, F., Ren, J., Fan, T., Chen, L., Xu, W., Sun, Y., et al. (2019). Significantly enhanced aerosol
987 CCN activity and number concentrations by nucleation-initiated haze events: A case study in urban
988 Beijing. *Journal of Geophysical Research: Atmospheres*, 124. <https://doi.org/10.1029/2019JD031457>.
- 990 Zhang, F., Wang, Y., Peng, J., Ren, J., Collins, D., Zhang, R., ... & Li, Z. (2017). Uncertainty in
991 predicting CCN activity of aged and primary aerosols. *Journal of Geophysical Research: Atmospheres*,
992 122(21), 11-723, <https://doi.org/10.1002/2017jd027058>.
- 993 Zhang, Z., Xu, W., Zhang, Y., Zhou, W., Xu, X., Du, A., ... & Sun, Y. (2024). Measurement report:
994 Impact of cloud processes on secondary organic aerosols at a forested mountain site in southeastern
995 China. *Atmospheric Chemistry and Physics*, 24(14), 8473-8488, <https://doi.org/10.5194/acp-24-8473-2024>.
- 997 Zhao, B., Donahue, N. M., Zhang, K., Mao, L., Shrivastava, M., Ma, P. L., ... & Wang, L. (2024).
998 Global variability in atmospheric new particle formation mechanisms. *Nature*, 631(8019), 98-105,
999 <https://doi.org/10.1038/s41586-024-07547-1>.
- 1000 Zhu, W., Hu, B., Liu, Z., Pan, Y., Han, J., Li, C., ... & Wang, Y. (2023). Reduction of anthropogenic
1001 emissions enhanced atmospheric new particle formation: Observational evidence during the Beijing

1002 2022 Winter Olympics. Atmospheric Environment, 314, 120094,
1003 <https://doi.org/10.1016/j.atmosenv.2023.120094>.