Authors’response to referee comments #1 regarding ‘An improved Bayesian inversion to estimate
daily NOx emissions of Paris from TROPOMI NO2 observations between 2018-2023’ by Mols et
al. (2025).

The reviewer’s comments are in black, the authors’ replies in blue.

Reviewer #1

This article presents an new, improved method for estimating NOx emissions over urban areas
based on TROPOMI or other high-resolution spaceborne NO2 data. The method builds on a
previous method (Lorente et al. 2019) but introduces a well-thought Bayesian framework for the
optimization of NOx emissions and lifetimes. In this way, the various uncertainties are taken into
consideration, and overfitting is avoided. The advantages of the method are shown by tests
(OSSE) using synthetic observations generated by a high-resolution model. Next, the method is
applied to the estimation of NOx emissions over Paris using TROPOMI data. The results lead to
several interesting insights on the emissions, including their trends, seasonal and weekly cycles,
and variability due to covid-19 lockdowns. Overall, the manuscript is well-written, the
methodology is clearly presented, with a few minor reservations (see below), and the results
appear robust and useful to the top-down emission community. | see no reason why this method
could be applied to many other cities and industrial centers worldwide. | recommend publication
in this journal, provided that the authors address the following minor comments listed below.

We thank the reviewer for their encouraging words and suggestions for additions to the
manuscript. Please see below for replies to the specific comments.

Minor comments

l. 1112 and L. 321: The decrease is -27% based on the 2018 and 2023 totals, not 17.5 or 18%.
Please clarify.

We are glad that this reviewer spotted this error. This value was indeed wrong, we changed it to -
27%, also in the results and conclusions.

Abstract and Conclusions: Can this method be applied to other large cities or industrial centers?
A bit of discussion would be welcome.

We agree that a discussion about the applicability of the method to other NOx sources is a good
and needed addition to our manuscript. We added the following paragraph at the last part of the
conclusion:

“In the future, the superposition model can be applied to estimate NO,emissions from other large
cities or industrial centers, provided that emissions from a given source are clearly attributable to
that source. This requires that the NO, plume signal exceeds the detection threshold, and that
the origin of the NO, plume can be linked to a spatially distinct city or emission source. In cases
where multiple plumes from different sources overlap, the current model is not applicable.
However, future model developments may allow for the separation of overlapping emission
signals from multiple sources. Also, with new, high resolution geostationary satellites, it will
become easier to attribute NO, plumes to specific sources. For example, ESA’s TANGO mission,
scheduled for launch in 2027, will detect NO, at a spatial resolution of 300 x 300 m over Europe,
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enabling much more detailed information on emission sources and their variability (Landgraf et
al., 2020).”

. 23 NO2+0OH is not the only major sink, also formation of PAN (for example) might be important
in VOC-rich areas. PAN and other compounds may play the role of NOx reservoirs, which might
partly invalidate the assumptions of the superposition model. | think that this issue should be
mentioned and possibly discussed.

The superposition model is designed to estimate effective NO, emissions and lifetimes from
TROPOMI NO, enhancements over urban areas. Itis notintended to explicitly resolve all chemical
pathways, but rather to capture the dominant processes controlling NO, removal on spatial and
temporal scales relevant to TROPOM I retrievals.

We note that (except in cold conditions) PAN formation is not a permanent sink for NO,. PAN is a
reversible NO; reservoir: CH;O, + NO, + M <-> PAN + M (e. g. Fischer et al., 2014). Once formed,
PAN decomposes rapidly in the warm urban air masses and releases NO; at the timescale of
minutes to an hour. Moreover, the city centre of Paris is generally VOC-limited (e.g. Johnson et al.,
2024), and the dominant sink for NO, in these conditions is oxidation to nitric acid.

We agree that the issue deserves to be mentioned, and we do that now in section 2.1 right after
introducing the rate constant of daytime chemical NO loss: “PAN formation is not explicitly
consideredinthis framework, asitis a reversible NOy reservoir rather than a permanent sink:(e.g.,
Fischer et al., 2014). In the warm, VOC-limited conditions typical of central Paris (e.g., Johnson
et al., 2024), PAN decomposes rapidly and contributes little to net NOx loss. The dominant NO,
sink under these conditions is oxidation to HNOs.

l. 24 Dry and wet deposition of HNO3 are about equally important sinks (see e.g.
https://doi.org/10.1029/2018JD029133)

We have added dry deposition as well here: “Due to its high water solubility, HNOj is efficiently
removed from the atmosphere, primarily through precipitation and direct deposition onto
surfaces (Seinfeld and Pandis, 2016).”

l. 90 Why not adopt a temperature-dependent rate for NO2+OH? The rate is higher in cold
conditions (~10% higher at 283K compared to 298K)

We calculate the reaction rate of the NO, + OH +M -> HNO; + M reaction using the rate constants
from Burkholder et al., 2020 (page 434). We use the following equation to obtain the second-order
rate constant for a certain temperature and pressure. We use a total gas concentration [M] at
1atm=2.5*10"° molecules cm™.
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270K 2.74x10% 2.5x10™" 1.193x10™
288K 2.26x10% 2.5x10™" 1.101x10™
298K 2.04x10% 2.5x10™" 1.053x10™

In our model, we use k’=1.1x10"" cm® molecule/s, so the rate constant for 288K, a quite average
yearly daily max temperature for Paris. Indeed, as the reviewer indicates, the rate constant is
higher at colder conditions, around 8% higher for 270K, and it is lower for higher temperatures,
4.5% lower for 298K. This temperature dependence on the reaction rate constant is relatively
small, and we only use it to calculate a prior estimate of the reaction rate, which we fit later
together with the NO, emissions using our inverse model. We assume that this small error is
captured by the 30% uncertainty that we apply during the inversion.

L. 206-208 Based on Fig. 4, the prior is very close to the truth. Why is that? This might contribute
to explain why the Bayesian inversion results are closer to the truth, due to the constraint from
the first term of the cost function (Eqg. 3). What would happen if the prior was more different from
the truth?

The reviewer raises an important point here. Our primary goal with the OSSEs for Symcity was to
assess whether the simple inversion method can reliably infer emissions and lifetimes when the
prior is accurate. However, we acknowledge that in realistic scenarios, prior information is not
known with a high degree of certainty. To investigate the sensitivity of our results to deviations in
the prior, we conducted an additional test. Specifically, we repeated the OSSEs for both Symcity
cases 50 times, introducing a +20% deviation in either the prior lifetime or emissions. We then
analyzed the performance of both the Bayesian and Least-Squares inversion methods.

In the first sensitivity test, we evaluated the accuracy of the inferred NOx emissions and lifetimes
when the prior emissions were biased by 20%. The resulting posterior emission and lifetime

posterior—true

deviations (calculated as * 100%) for both inversion approaches are presented in

Table 1 below. The results from the least-squares inversion are not dependent on the prior
emission and thus remain unchanged from the case with a known prior. For the Bayesian
inversion, we used the same uncertainty settings as described in Section 3.2 of the manuscript.

Least-squares | Bayesian

Prior = True | Prior = True | Prior E+20% Prior E -20%

values values
Emissions case1 | 14% £ 22% 1% = 7% 0.8% +6.3% -6.7% £ 6.2%
Emissions case 2 | 26% * 34% -5% = 11% -4.6% = 10% -11% £ 6.8%
Lifetimes case 1 2% = 46% 32% =31 % -1.6% = 8.2% 31% = 24%
Lifetimescase2 | -19x37% 13% £ 61% 2.5% = 25% 22% + 45%

Table 1: Errors in the posterior NOx emissions and lifetimes inferred using the 2 inversion methods, using prior
emissions that deviate +20% from the true emissions. Errors are (calculated as (posterior-true)/true*100%).

We did the same sensitivity test for a bias in the prior NO lifetimes. The results for both inversion
approaches are shown in Table 2 below.

Least-squares Bayesian




Prior Prior tau | Prior tau - | Prior Prior tau | Prior tau -
known +20% 20% known +20% 20%
Emissions | 14% +22% | 8.4%*17% | 13% *20% |-1%*7% -4.8+7.6 2.1% £ 6.0%
case 1
Emissions | 26% +34% | 7.4%+*26% | 29% *35% | -5%+*11% -9.6% 7.4 | -0.5% *8.8%
case 2
Lifetimes 2% = 46% 4.5% =54% | -9.7 +34% 32% +31% | 28%+27% |-4.3%+18%
case 1
Lifetimes 19% £37% | 2.9% *48% | -29% +30% | 13%x61% | 17% *14% | -7.5%*17%
case 2

Table 2: Errors in the posterior NOx emissions and lifetimes inferred using the 2 inversion methods, using prior lifetimes
that deviate +20% from the true lifetimes. Errors are (calculated as (posterior-true)/true*100%).

These sensitivity tests show that increasing or decreasing the prior emissions by 20% results in a
posterior bias of no more than 6% compared to the case with a known prior. This confirms that
the Bayesian inversion method uses both the prior and the observations effectively. Even with
deviating prior emissions, the Bayesian inversion method still outperforms the Least-Squares
approach, producing  smaller biases and a smaller  standard deviation.
Also when the prior lifetime is varied (Table 2), the Bayesian inversion retrieves posterior
the than the

In practice, when applying the superposition model to real cases, one would typically also have

emissions much closer to true values Least-Squares inversion.
some estimate of the prior uncertainty. These uncertainties can be reflected in the values of oa,e
and oa,« to prevent the Bayesian inversion from relying too heavily on a potentially inaccurate

prior.

Unlike the Least-Squares approach, which fits the line densities directly, the Bayesian method
balances observational data with prior knowledge. Even if the prior is not perfectly accurate, it
can still help guide the solution in the right direction, leading to more consistent and reliable
estimates.

We appreciate that the reviewer raised this point, as it demonstrates the robustness of the
Bayesian approach under more realistic conditions. We added this analysis to the supplementary
to it at the end of 3.2:
“To investigate the sensitivity of our results to deviations in the prior, we conducted an additional

material, and now refer in the manuscript section
test. We repeated the OSSEs for both Symcity cases 50 times, introducing a +20% deviation in
either the prior lifetime or emissions. The results can be found in section 2 of the Supplementary
Material. These sensitivity tests show that increasing or decreasing the prior emissions by 20%
results in a posterior bias of no more than 6\% compared to the case with a known prior.” ... “The
sensitivity tests show that also with deviating prior information, the Bayesian inversion method
outperforms the Least-Squares approach, producing smaller biases and a smaller standard

deviation.”

L. 247 Some more explanation (or maybe a reference) might be needed regarding the rotation and
re-scaling step.

We agree, and added some more explanation on this step. We now added the following section
on this to the manuscript:




“For the calculation of the line densities, the TROPOMI NO2 data is first rotated towards the
effective wind direction (elaborated in the next section) and re-scaled into grid cells of 0.05x0.05°.
Specifically, we do this by generating a target grid with a 0.05° x 0.05° resolution, aligned parallel
to the wind direction at the time of the TROPOMI overpass. The TROPOMI NO2 data are then
regridded onto this new grid, using weights based on the overlapping areas between the original
and target grids.”

l. 264 CAMS NOx data are used for the domain average NOx/NO2 ratio. At what altitude above
ground?

We use the boundary layer mean NO and NO2 values for this. We added this to the manuscript.

L. 275 "The NO2 concentrations (...) never completely decreased to the original levels": | do not
follow here. Do you mean "increased"?

The reviewer is correct, we changed this. Also, for more clarity we changed ‘original’ to ‘pre-Covid’
here.

L. 288 What altitude for CAMS OH? Or is it an average weighted by the NO2 profile?
We use the boundary layer mean OH values for this. We added this to the manuscript.

. 319-320 The higher variability of posterior emissions is expected due to uncertainties in their
derivation.

We agree with this, but argue that the higher variability is expected because of 1) uncertainties
(as the reviewer points out), but also 2) because posterior emissions reflect real day-to-day and
even diurnal variability, whereas prior is inherently less variable because it represents
climatological emissions. We therefore added the following lines to the manuscript:

“The monthly average posterior NOyx emissions exhibit more variability than the prior. Higher
variability of posterior emissions is expected because of uncertainties in their derivation.
Additionally, posterior emissions reflect real day-to-day and diurnal fluctuations, while prior
emissions are based on climatological averages and are therefore inherently less variable. This
difference between prior and posterior NO, emissions indicates that factors beyond the month
and day of the week influence the emissions.”

l. 345 and elsewhere in this paragraph: are the weekend reduction calculated relative to the
weekly (7-day) average, or relative to Mon-Fri average?

We agree that this is not completely clear in the text and thank the reviewer for pointing this out.
The weekend reduction is calculated as the weekend average relative to the Mon-Fri average. We
added this clarification to this line.

. 350-351 | don't see how the higher cold start emissions in winter would reduce the weekend
effect. It would be the other way around since traffic emissions are (expected to be) more strongly
reduced during weekends. Therefore, only residential heating would have to explain the much
weaker weekly cycle in winter compared to summer. Is this reasonable? What are the relative
shares of the different sectors in the Paris area?



We thank the reviewer for this comment, and we agree that this section indeed calls for some
further discussion. The statement about the colds starts that we give now does not explain the
reduced weekend effect in winter. And indeed, in the Paris area, traffic has a share of ~50%, and
residential heating ~15% (AirParif, 2021: https://www.airparif.fr/surveiller-la-pollution/les-

emissions). This is a year-round average, so the traffic share and residential heating share are

closer together in winter, but still residential heating alone can probably not explain the much
weaker weekly cycle in winter compared to summer.

We looked further into the cold starts and argue that cold starts in winter dampen the weekend
effect because the diurnal cycle of emissions is different on weekend days than on weekdays (see
Figure 1 below of the CAMS-TEMPO scaling factors from Guevara et al., 2021). On weekdays,
people start their car in the early morning, whereas on weekend days the cars are started on
average later in the morning, closer to the TROPOMI overpass time, and therefore this shows up
as apparently higher weekend day emissions than otherwise.
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Figure 1: CAMS tempo diurnal scaling factors for weekdays and weekend days
We added this paragraph to the manuscript:

“In Summer, the decrease in NOy emissions in the weekend is much larger 39% than in Winter
11%. This is likely because of a higher contribution of traffic emissions to the total emissions in
the Summer months. In Winter the share of traffic emissions is smaller because of local
residential heating and power generation. In Winter, our posterior weekend reduction is lower
than in the prior inventory. This, again, points to an underestimation of residential heating
emissions in the prior inventory. Additionally, the weaker weekly emission cycle observed in
winter could be influenced by the effect of vehicle cold starts. On weekdays, vehicles are typically
started early in the morning, while on weekends, car usage tends to begin later, closer to the
TROPOMI overpass time. Weekend day emissions could then show up higher than without cold
starts, dampening the weekly cycle.”



Technical / language comments

. 6 MicroHH: what does the name stands for? MicroHH is the name of the CDF model itself and
is to our knowledge not an abbreviation. But for clarity in the abstract, we added that it is a
computational fluid dynamics model.

L. 49 "to estimate the NOx and predict CO2 emissions...": not clear why one is estimated and the
other predicted. You could replace by "estimate NOx and CO2 emissions".

This has been corrected as suggested.

Legend of Fig. 1: why "grey arrow"? There are several (apparently) black arrows.
This has been changed to “black arrows”.

L. 95 Delete second "on"

This has been corrected.

Fig. 3 Use same distance units (preferably km) for all panels

The axis units have been changed to km for all panels of Figure 3, as well as Figure 2.
l. 139 "the observed NO2 columns"

This has been corrected as suggested.

l. 152 Make a new sentence "It amounts to..."

This has been corrected as suggested.

L. 210 Figure 4b,d (not 4c,d)

This has been corrected.

L. 243 "Computation of..."

This has been corrected

L. 244 Remove the first sentence since this step is elaborated in the following paragraph.

This has been corrected. We removed this sentence and moved the information about the quality
filtering to the previous section.

L. 275 "in between"

This has been corrected.

L. 317 Missing dot after parenthesis.

This has been corrected.

L. 340 Did you really filter data for weekdays? Isn't it for weekends?

We agree that this was phrased unclearly. We changed the phrasing to “We filtered the data by
excluding weekends, lockdown periods and the Summer holiday period”.
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Authors’response to referee comments #2 regarding ‘An improved Bayesian inversion to estimate
daily NOx emissions of Paris from TROPOMI NO2 observations between 2018-2023’ by Mols et
al. (2025).

The reviewer’s comments are in black, the authors’ replies in blue

Reviewer #2

Title: An improved Bayesian inversion to estimate daily NO, emissions of Paris from
TROPOMI NO, observations between 2018-2023

Author(s): Alba Mols et al.
MS No.: egusphere-2025-49
General Comments

Mols et al. introduce a Bayesian inversion method which determines urban
NO, emissions at daily scale from along-wind line densities. These line densities are
produced by integrating TROPOMI NO, vertical column densities in the cross-wind
direction. The study first shows that a simple forward model can represent the
relationship between emissions at each cell and the retrieved line densities. Then, a
Bayesian approach is introduced where the inversion of this forward model with
measured line densities is used to find emissions. Generally, the spatial distribution of
NO, depends on both lifetime and emissions. A significant advantage of this study’s
approach is the incorporation of prior information on lifetime and emissions into the cost
function of the inversion. These priors avoid the overestimation of emissions due to
unrealistic representations of the lifetime. The above method is shown to prevent the
overfitting of a simpler least-squares inversion, which overpredicted emissions
compared to simulated data. The determination of NO, emissions over Paris between
2018-2023 illustrates interesting effects due to the COVID-19 lockdowns, the low-
emission zone, and temperature. The differences between the findings of Lorente et al.
and this study are discussed well. The idea is interesting. | recommend publication after
attention to the items below.

We thank the reviewer for their insightful comments and suggestions. The points raised
have contributed a lot to improving the clarity and quality of the manuscript. Please see
below for replies to the specific comments.

Major comments

e The assumption that the TROPOMI retrieval is accurate enough to support the
authors’ analysis should be further explored. The role of a number of resolution
dependent aspects of the a priori used in retrievals that would result in systematic
biases between city centers and their surroundings have been reported in the
literature. It is important to note that these biases always reduce gradients



between peaks in urban plumes and their surroundings. They are not simple
random uncertainties. Examples are listed in the references below.

Using low-resolution input in AMF calculations can lead to "resolution dampening,"
particularly when surface albedo (~50 km) and a priori NO,, profiles (~100 km) are much
coarserthan the TROPOMI NO, pixel (~5 km). However, here we use TROPOMI v2.4, which
incorporates high-resolution (0.125°) surface albedo from the DLER database (Tilstra et
al., 2023) and high-resolution (0.1°) a priori NO, profiles from CAMS (Douros et al., 2021).
These improvements mitigate concerns about insufficient spatial detail. For example,
Lange et al. (2023) demonstrated that the v2.3 retrieval using CAMS 0.1° profiles (IUP
2.02.02.01 REG) showed strong agreement with AirMAP NO, columns in the Ruhr Area.
Similar performance is expected over Paris. A corresponding clarification has been
added at the end of the introduction.

Nevertheless, errors in the NO; retrieval are indeed not exclusively random. We recently
investigated the issue in Rijsdijk et al. (2025) and found that there likely is a modest
degree of spatial error correlation stemming from the surface albedo climatology
extending over at least 2 TROPOMI pixels. We have accounted for this in Eq. (6), where we
introduce an uncertainty on top of the MicroHH-simulated NO; columns. This uncertainty
that we assign has a random part (originating from measurement noise) and a systematic
part (accounting from AMF uncertainties). The systematic part is correlated between
adjacent cells, with a Gaussian-like shape between adjacent cells with a spatial
correlation length (where the correlation falls to 1/e) of 7km. We added this last
clarification to the manuscript in the description of Eq. 6.

e« There are many variations of the fitting approach described by Lorente et alin the
literature that also aim to reduce the same biases in lifetime and emissions this
paper aims to reduce. The paper should include a more complete summary of
these approaches and their strengths and weaknesses relative to the stated goals.
Recent papers from De Foy, et al. Liu et al, and Zhu et al. are examples, but there
are many others.

We have expanded the discussion in the introduction to include a broader range of recent
literature on satellite-based estimation of NOx emissions and lifetimes. However, we
emphasize that the purpose of this study is not to provide a comprehensive review of
existing methods, but to demonstrate and evaluate a specific, observation-driven
approach. A full methodological comparison is beyond the scope of this paper.

The introduction was extended as follows: “These methods have nonetheless been
evaluated using synthetic data, with studies such as De Foy et al. (2014) and Liu et al.
(2022) showing that inferred NOx emissions and lifetimes remain broadly consistent with
the known model input. In a complementary approach, Zhu et al. (2022) inferred long-
term changes in NOx lifetime from decadal OMI NO2 observations, using machine
learning to relate NO2 columns to OH concentrations.”

e The paper rightly identifies correlation between NO, concentration (and
emissions) and lifetime as key. It should report on trends in the lifetime with
reductions in NO,. These are likely of the same magnitude as the emission
reductions but are nonlinear as shown by Zhu et al. (and others). Also, the paper
indicates increases in Oz as an important effect on lifetime. The authors should
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compare the effect of increased ozone to the effect of differences in NO, and VOC
at the two comparison points. It is likely that an increased source of OH from O3
photolysis is the smallest contributor of these effects, that VOC changes are also
small and that NO, changes dominate.

We appreciate the reviewer’s insightful comment regarding possible lifetime trends in the
context of changing NO, emissions. Our Bayesian inversion framework jointly retrieves
NOyx emissions and an effective NOy lifetime by fitting modeled NO, line densities to
satellite-observed line densities. While this setup captures broad trends, we caution
against overinterpreting the retrieved lifetime values as chemically precise quantities.

As demonstrated in our end-to-end test (Table 3 and Figure 4), the lifetime retrievals are
subject to significant biases --up to 30%-- highlighting the limitations of the method. This
bias stems from the inherent asymmetry in the inversion sensitivity: the NO, line density
is strongly and directly influenced by the strength of the NOx emissions, whereas the
lifetime exerts a more subtle control through the dampening of the increase in line
densities with distance. In practice, the signal from NOyx emissions dominates the
inversion, while the NOy lifetime estimate is more a regularization parameter that
prevents overfitting than a robust diagnostic of possible changes in atmospheric
chemistry.

As suggested by the reviewer, we examined trends in both prior and posterior NO, lifetime
estimates over Paris. The CAMS prior suggests a modest increase in lifetime from 2.9
hoursin summer 2018 to 3.5 hoursin summer 2023. In contrast, our posterior (top-down)
estimates indicate relatively stable NOy lifetimes of 2.7 hours for both summers.

This apparent stability, despite a substantial decline in NO, emissions, is consistent with
the hypothesis of a transition out of the NO,-saturated regime, as proposed by Zhu et al.
(2022) and Johnson et al. (2024). In such a regime, NOy reductions can lead to stable or
higher OH levels due to reduced titration.

However, AirParif measurements at the Eiffel Tower (~300 m altitude) show a ~20%
decrease in O, concentrations and no significant change in NO4:NO, ratios between the
Summers of 2018 and 2023. This suggests that while NO, reductions would favor a
shorter lifetime, concurrent decreases in O, could partly counteract this by limiting OH
production. The net effect on OH --and thus on NOy lifetime-- is likely small and falls
within the uncertainty bounds of our inversion framework. We now include a sub-panel
in Figure 5 (shown below) showing the time series of prior and posterior NOy lifetime
estimates over Paris to illustrate this point and discuss the implications along the lines of
the above text at the end of section 4.2.1.

—®— Prior lifetime
—e— Posterior lifetime
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e The reported improved performance is based on using the domain average
lifetime of the simulation as the prior for the inversion. When applying to
measured TROPOMI data, the prior lifetime is estimated from the average OH
concentration in CAMS. However, a domain average lifetime is a poor
approximation to a lifetime that is an explicit non-linear function of NO2.

We acknowledge that using a domain-average OH concentration is a simplification since
the effective NOy lifetime exhibits spatial variability across an urban domain (Figure 3).
However, this simplification is explicitly recognized in our framework: the CAMS-based
prior is treated as an initial estimate, and we assign substantial uncertainty to it for
exactly this reason. The role of the prior is to regularize the inversion, not to dictate its
outcome. The posterior lifetime is ultimately constrained by the satellite NO,
observations and reflects the actual spatial NO, distribution more realistically.

To better support this, we now include in Table 1 the mean and 1-c spread in NOy lifetimes
from the high-resolution MicroHH simulations, which show about 50% spatial variation
in lifetime across the domain (see also Figure 3(a) and 3(d)). This spatial spread confirms
that while there is local variability, the domain-mean value remains a reasonable
approximation within the context of the uncertainty assigned to the prior.

Therefore, the inversion corrects for biases in the prior, and the posterior reflects the
lifetimes consistent with the observed NO, gradients, providing a robust estimate of
effective NOy lifetime over the city.

e Sincethe prioris shownto have a significantimpact on the inversion, the changing
controls on lifetime should be discussed in the context of conclusions on
NO, emissions during different seasons and across long-term trends.

We agree that the prior lifetime influences the inversion outcome and that the chemical
controls on NOy lifetime are a factor in interpreting seasonal and long-term emission
trends. As mentioned earlier, we have added a panel to Figure 5 showing the time series
of both prior and posterior NOy lifetime estimates over Paris and include a discussion of
their relationship.

Our inversion’s sensitivity to lifetime is inherently weaker than to emissions due to the
asymmetry in how these two parameters affect NO, line densities. Emissions influence
the absolute magnitude of the column, while the lifetime modulates the downwind
gradient more subtly. Our discussion emphasizes that the inversion consistently
retrieves shorter posterior lifetimes than the CAMS prior in summer months, and lower
posterior emissions year-round. The fact that both quantities decrease relative to the
prior strengthens the conclusion of a real and substantial decline in NO4 pollution over
Paris from 2018 to 2023. Thus, the seasonal pattern in the posterior relative to the prior
provides meaningful insight: the inversion's outcome is consistent with a chemically
evolving atmosphere in which reduced NO, emissions contribute both directly and
indirectly to observed NO, concentration trends.



Specific Comments

Line 43: Other methods of simultaneous lifetime/emission derivation have been
demonstrated and evaluated with satellite measured NO;columns. A more
comprehensive summary of the literature and prior analysis is needed here.

We added the below text to the introduction to better discuss other methods:

“Research and refinement of inversion methods for estimating NOx emissions and
lifetimes are crucial, especially for initiatives like the Copernicus CO2M mission (Sierk et
al., 2021), which will utilize NO2 plumes to enhance CO2 monitoring by more accurately
pinpointing emission sources. Several studies have quantified NOx emissions based on
satellite NO2 retrievals by analyzing downwind plumes of NO2 from large sources, using
inverse modeling computations with atmospheric chemical transport models (CTMs)
(e.g., Brioude et al., 2013; Cheng et al., 2021; Kurokawa et al., 2009; Krol et al., 2024; Zhu
et al., 2022). However, because CTMs can present accessibility challenges and require
significant computational resources, alternative methods that do not rely on CTMs have
been developed and applied to estimate NOx emissions and lifetimes (e.g., de Foy et al.,
2014; Beirle et al., 2011).”

Line 115: The ability of the superposition forward model to accurately represent the
emissions/column relationship is tested in section 2.2. Photolysis representative for
Riyadh is used in the MicroHH simulation, but the application city is Paris. This is
confusing. Why was this choice made? Are there any city or latitude specific aspects of
the model that are not directly transferrable and affect the interpretation?

This is a fair point. Ideally, the OSSE would have been conducted under conditions
representative of Paris. We used the MicroHH simulation for Riyadh primarily for practical
reasons: it was already available to us and provided a realistic, urban, and polluted
environment to test the superposition model on synthetic data without requiring
additional computationally expensive simulations.

This is also the first time the superposition model is tested against such high-resolution
synthetic observations. Our goal here is to evaluate whether the model can reproduce
the relationship between NO, emissions, lifetimes, and NO, columns in a controlled but
realistic setting. For that purpose, we believe the Riyadh case is suitable.

We acknowledge that differences between Riyadh and Paris, such as photolysis rates,
humidity, and emission characteristics (e.g. the VOC/NO, emission ratios), can affect
atmospheric chemistry and thus the details of model performance. That said, the
fundamental behavior of the model should remain applicable. We also note that the
winter conditions in Riyadh (case 2) may resemble summer in Paris in terms of
photochemical regime, suggesting some regime overlap and comparability. While even
testing the OSSE in multiple cities would have been ideal, it was beyond the scope of this
study.

Figure 1: Add description of black arrows; are these wind vectors at different locations
over Paris?



The black arrows are indeed the wind vectors at different locations. We added the
following line to the caption of figure 1: “The black arrows indicate the wind speed (from
the north-east)”

Line 124: This implies that the symcity line densities are spaced by 5 km. In figure 3 c and
f, The line densities are shown at a closer spacing of ~3 km.

We are glad that the reviewer spotted this. We indeed made the grid 10 times courser, so
the initial MicroHH resolution was 300x300m and the coarsened one is 3x3km. We
corrected this in the manuscript.

Line 186: “We use a prior lifetime uncertainty s, of 30%”. This uncertainty is used for the
inversion of the forward model described by equations 1 and 2, where k is the chemical
loss rate constant in units of inverse time. With this wording and notation, it is unclear
whether sax is referring to the uncertainty in the lifetime or in k. Since lifetime is the
inverse of k, a 30% uncertainty in one value corresponds to a 233% uncertainty in the
other. Further, the covariance in concentration and lifetime uncertainties is an element
of the atmospheric chemistry. What are the downsides of not explicitly addressing this
issue?

This is indeed the uncertainty in the lifetime of 30%, not in the decay rate. We corrected
this throughout the manuscript to oar.

Our superposition model indeed treats lifetime as a separate parameter from emissions
(and thus concentration), and assigns uncertainties to both independently. This
simplifies the inversion but may neglect some nonlinearities or feedbacks that exist in
the real atmosphere. Nevertheless, the simplification keeps our inversion framework
manageable and remains appropriate for the spatial and temporal scales considered
here. Also, the assigned uncertainties in emissions and lifetime implicitly capture part of
this variability, and sensitivity tests confirm the robustness of our results to this
assumption.

Line 198: Comment on how appropriate it is to treat the systematic uncertainty in the
AMF error as random uncertainty used to draw from a normal distribution. At pixels with
high emissions, the AMF error generally leads to VCDs that are biased low. This could lead
to improper fitting of forward model parameters at those pixels.

Please see our response on the first major comment.

Line 235: Recommended to be reworded. To some readers, this may imply that the
TROPOMI V2.4.0 product uses CAMS NO: profiles even though it uses profiles from TM5-
MP at 1° x 1. Emphasize that the product used is the European product described in
Douros et al. with 0.1°x 0.1° resolution profiles.

We agree and reworded this paragraph to:
“We use the European TROPOMI NO;product that uses CAMS a priori NO; profiles in the
air mass factor and averaging kernel calculation. This productis based on the operational
TROPOMI NOZ2 (v2.4.0) version, and is described in Douros et al. (2022).”

Line 238: More context could be provided for the correction of TROPOMI bias. What was
the existing TROPOMI bias at emission hotspots, and how much of this is corrected for
with the 30% increase?



We included some more details on the TROPOMI bias, as described by Douros et al.
(2022):

“Douros et al. (2022) compared the standard and European TROPOMI NO, products with
nine MAX-DOAS instruments, finding an average bias of -31% for the standard product
and -19% for the European version. The European product reduces the bias by 5-18% at
most stations and yields up to 30% higher NO, columns in emission hotspots, especially
in winter. This supports its use for NO, emission estimates. We note that a bias is not
necessarily a TROPOMI concern: a persistent low bias over urban areas may also stem
from representativity differences: ground-based instruments sample narrow, localized air
masses, while the TROPOMI pixel averages NO, over a larger and more heterogeneous
area, often smoothing out urban pollution peaks.”

Line 288: See general comments; this is an area where more discussion of using CAMS
OH for this purpose is warranted.

The CAMS 0.4° forecast productis part of the Copernicus Atmosphere Monitoring Service
and provides global 5-day forecasts of atmospheric composition at approximately 0.4°
(~40 km) resolution. It includes key chemical species such as NOy, NO,, O,, CO, and OH,
among others. Using CAMS OH and NO,/NO, ratios as priors in our Bayesian inversion is
justified by their physical coherence, spatiotemporal completeness, and compatibility
with the scale of the rotated line densities and superposition column model, which
requires one single effective NOy lifetime. We now include this discussion as requested.

Line 293: Expand on the justification of using a 30% uncertainty for the prior lifetime
when the common value is 50%. The current explanation is that 30% encompasses most
of the expected 50% uncertainty, but is the 50% uncertainty not also a type of standard
deviation? If not, then clarify this.

The section that the reviewer is referring to is this:
“To incorporate the uncertainty in OH concentrations and its impact on the NOx lifetimes,
we choose a standard deviation of 30% on the prior lifetime (0.) This selection aligns with
the typical range of uncertainty observed in NOx lifetimes, which commonly falls within
50% (Lorente et al., 2019). By adopting a standard deviation of 30%, we encompass the
majority of uncertainties within the expected 50% range, while also allowing for larger
deviations in exceptional cases.”

We clarify why we choose the value of 30%:
The previous study by Lorente et al. (2019) that we are referring to here, uses the 50%
uncertainty on the NOy lifetimes as a strict cut off. In their method of fitting the
superposition column model, the lifetime can not vary by more than 50%. In our study,
we use a prior lifetime uncertainty (o.x ) of 30%, meaning that 95% (two standard
deviations) of the lifetimes will fall within a 60% uncertainty, so our Bayesian cost
function allows for slightly more deviation from the prior than in Lorente et al. (2019), as
long as this improves the fit enough.

Table 4 caption: The standard deviation of the posterior is estimated using a specific
date in the summer. Were other dates tested? The prescribed uncertainties may be
expected to change throughout the year, such as during winter when the NOx lifetime is
longer and its absolute uncertainty increases.



The reviewer raises a good point, and we agree that using only a single date is not very
representative. As suggested, we repeated the same Monte Carlo test (50 runs) for 8
different dates throughout 2022. The results are shown in the table below.

Stdev emissions (% | Stdev lifetime (%
deviation from mean) deviation from mean)
Current 16/06/2023 15% 13%
Feb 2022 | 05/02/2022 2.0% 1.9%
26/02/2022 0.3% 1.6%
Apr2022 | 11/04/2022 11% 4.0%
22/04/2022 10% 4.5%
Jul 2022 04/07/2022 2.9% 2.3%
11/07/2022 3.9% 2.3%
Oct 2022 | 04/10/2022 2.9% 1.9%
25/10/2022 6.6% 3.2%
Average 6.1% 3.9%

We do not observe a clear seasonal trend in the posterior error across these dates. This
is likely because the prescribed uncertainties on the prior lifetimes and emissions (both
set to 30%) are kept constant throughout the year in our main analysis, and we applied
the same approach in this Monte Carlo sensitivity test.

To make the posterior error in our manuscript more representative, we have updated
Table 4 in the manuscript to show the average posterior errors across these 8 days.

Technical Corrections

Line 95: Remove repeated “on”

This has been corrected.

Line 115: Change “Riaydh” to “Riyadh”

This has been corrected.

Figure 3 caption: Should be “symcity” instead of “simcity” for consistency?
This has been corrected.

Table 1: Add units to column “Total Enox”

Units have been added.

Line 275: Should this be “never completely increased to their original levels”?

Indeed, this has been corrected.
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