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Authors’ response to referee comments #1 regarding ‘An improved Bayesian inversion to estimate 
daily NOx emissions of Paris from TROPOMI NO2 observations between 2018-2023’ by Mols et 
al. (2025). 

The reviewer’s comments are in black, the authors’ replies in blue. 

Reviewer #1 
This article presents an new, improved method for estimating NOx emissions over urban areas 
based on TROPOMI or other high-resolution spaceborne NO2 data. The method builds on a 
previous method (Lorente et al. 2019) but introduces a well-thought Bayesian framework for the 
optimization of NOx emissions and lifetimes. In this way, the various uncertainties are taken into 
consideration, and overfitting is avoided. The advantages of the method are shown by tests 
(OSSE) using synthetic observations generated by a high-resolution model. Next, the method is 
applied to the estimation of NOx emissions over Paris using TROPOMI data. The results lead to 
several interesting insights on the emissions, including their trends, seasonal and weekly cycles, 
and variability due to covid-19 lockdowns. Overall, the manuscript is well-written, the 
methodology is clearly presented, with a few minor reservations (see below), and the results 
appear robust and useful to the top-down emission community. I see no reason why this method 
could be applied to many other cities and industrial centers worldwide. I recommend publication 
in this journal, provided that the authors address the following minor comments listed below. 

We thank the reviewer for their encouraging words and suggestions for additions to the 
manuscript. Please see below for replies to the specific comments. 

Minor comments 

l. 11-12 and l. 321: The decrease is -27% based on the 2018 and 2023 totals, not 17.5 or 18%. 
Please clarify.  

We are glad that this reviewer spotted this error. This value was indeed wrong, we changed it to -
27%, also in the results and conclusions. 

Abstract and Conclusions: Can this method be applied to other large cities or industrial centers? 
A bit of discussion would be welcome. 

We agree that a discussion about the applicability of the method to other NOx sources is a good 
and needed addition to our manuscript. We added the following paragraph at the last part of the 
conclusion: 

“In the future, the superposition model can be applied to estimate NOx emissions from other large 
cities or industrial centers, provided that emissions from a given source are clearly attributable to 
that source. This requires that the NO₂ plume signal exceeds the detection threshold, and that 
the origin of the NO₂ plume can be linked to a spatially distinct city or emission source. In cases 
where multiple plumes from diBerent sources overlap, the current model is not applicable. 
However, future model developments may allow for the separation of overlapping emission 
signals from multiple sources. Also, with new, high resolution geostationary satellites, it will 
become easier to attribute NO2 plumes to specific sources. For example, ESA’s TANGO mission, 
scheduled for launch in 2027, will detect NO₂ at a spatial resolution of 300 × 300 m over Europe, 
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enabling much more detailed information on emission sources and their variability (Landgraf et 
al., 2020).” 

l. 23 NO2+OH is not the only major sink, also formation of PAN (for example) might be important 
in VOC-rich areas. PAN and other compounds may play the role of NOx reservoirs, which might 
partly invalidate the assumptions of the superposition model. I think that this issue should be 
mentioned and possibly discussed. 

The superposition model is designed to estimate e`ective NOₓ emissions and lifetimes from 
TROPOMI NO₂ enhancements over urban areas. It is not intended to explicitly resolve all chemical 
pathways, but rather to capture the dominant processes controlling NOₓ removal on spatial and 
temporal scales relevant to TROPOMI retrievals. 

We note that (except in cold conditions) PAN formation is not a permanent sink for NOx. PAN is a 
reversible NO2 reservoir: CH3O2 + NO2 + M <-> PAN + M (e. g. Fischer et al., 2014). Once formed, 
PAN decomposes rapidly in the warm urban air masses and releases NO2 at the timescale of 
minutes to an hour. Moreover, the city centre of Paris is generally VOC-limited (e.g. Johnson et al., 
2024), and the dominant sink for NO2 in these conditions is oxidation to nitric acid. 

We agree that the issue deserves to be mentioned, and we do that now in section 2.1 right after 
introducing the rate constant of daytime chemical NOx loss: “PAN formation is not explicitly 
considered in this framework, as it is a reversible NOx reservoir rather than a permanent sink:(e.g., 
Fischer et al., 2014). In the warm, VOC-limited conditions typical of central Paris (e.g., Johnson 
et al., 2024), PAN decomposes rapidly and contributes little to net NOx loss. The dominant NO2 
sink under these conditions is oxidation to HNO3. 

l. 24  Dry and wet deposition of HNO3 are about equally important sinks (see e.g. 
https://doi.org/10.1029/2018JD029133) 

We have added dry deposition as well here: “Due to its high water solubility, HNO3 is eBiciently 
removed from the atmosphere, primarily through precipitation and direct deposition onto 
surfaces (Seinfeld and Pandis, 2016).” 

l. 90  Why not adopt a temperature-dependent rate for NO2+OH? The rate is higher in cold 
conditions (~10% higher at 283K compared to 298K) 

We calculate the reaction rate of the NO2 + OH +M -> HNO3 + M reaction using the rate constants 
from Burkholder et al., 2020 (page 434). We use the following equation to obtain the second-order 
rate constant for a certain temperature and pressure. We use a total gas concentration [M] at 
1atm=2.5*1019 molecules cm-3. 

 

 
 

k0  
[cm3/molecule/s] 

K∞  
[cm3/molecule/s] 

K (1atm, T) 
[cm3/molecule/s] 



3 
 

270K 2.74 x 10-30 2.5 x 10-11 1.193 x 10-11 

288K 2.26 x 10-30 2.5 x 10-11 1.101 x 10-11 

298K 2.04 x 10-30 2.5 x 10-11 1.053 x 10-11 

 
In our model, we use k’ = 1.1x10-11 cm3/molecule/s, so the rate constant for 288K, a quite average 
yearly daily max temperature for Paris. Indeed, as the reviewer indicates, the rate constant is 
higher at colder conditions, around 8% higher for 270K, and it is lower for higher temperatures, 
4.5% lower for 298K. This temperature dependence on the reaction rate constant is relatively 
small, and we only use it to calculate a prior estimate of the reaction rate, which we fit later 
together with the NOx emissions using our inverse model. We assume that this small error is 
captured by the 30% uncertainty that we apply during the inversion.   

l. 206-208  Based on Fig. 4, the prior is very close to the truth. Why is that? This might contribute 
to explain why the Bayesian inversion results are closer to the truth, due to the constraint from 
the first term of the cost function (Eq. 3).  What would happen if the prior was more di`erent from 
the truth? 

The reviewer raises an important point here. Our primary goal with the OSSEs for Symcity was to 
assess whether the simple inversion method can reliably infer emissions and lifetimes when the 
prior is accurate. However, we acknowledge that in realistic scenarios, prior information is not 
known with a high degree of certainty. To investigate the sensitivity of our results to deviations in 
the prior, we conducted an additional test. Specifically, we repeated the OSSEs for both Symcity 
cases 50 times, introducing a ±20% deviation in either the prior lifetime or emissions. We then 
analyzed the performance of both the Bayesian and Least-Squares inversion methods. 
 
In the first sensitivity test, we evaluated the accuracy of the inferred NOx  emissions and lifetimes 
when the prior emissions were biased by 20%. The resulting posterior emission and lifetime 

deviations (calculated as !"#$%&'"&($&)%
$&)%

∗ 100%) for both inversion approaches are presented in 

Table 1 below. The results from the least-squares inversion are not dependent on the prior 
emission and thus remain unchanged from the case with a known prior. For the Bayesian 
inversion, we used the same uncertainty settings as described in Section 3.2 of the manuscript. 

 Least-squares Bayesian 
 Prior = True 

values 
Prior = True 
values 

Prior E +20% Prior E -20% 

Emissions case 1 14% ± 22% -1% ± 7% 0.8%  ± 6.3% -6.7% ± 6.2% 
Emissions case 2 26% ± 34% -5% ± 11% -4.6% ± 10% -11% ± 6.8% 
Lifetimes case 1 2% ± 46% 32% ± 31 % -1.6% ± 8.2% 31% ± 24% 
Lifetimes case 2 -19 ± 37% 13% ± 61% 2.5% ± 25% 22% ± 45% 

Table 1: Errors in the posterior NOx  emissions and lifetimes inferred using the 2 inversion methods, using prior 
emissions that deviate ±20% from the true emissions. Errors are  (calculated as (posterior-true)/true*100%).  

We did the same sensitivity test for a bias in the prior NOx lifetimes. The results for both inversion 
approaches are shown in Table 2 below. 

 Least-squares Bayesian 
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 Prior 
known 

Prior tau 
+20% 

Prior tau -
20% 

Prior 
known 

Prior tau 
+20% 

Prior tau -
20% 

Emissions 
case 1 

14% ± 22% 8.4% ± 17% 13% ± 20% -1% ± 7% -4.8 ± 7.6 2.1% ± 6.0% 

Emissions 
case 2 

26% ± 34% 7.4% ± 26% 29% ± 35% -5% ± 11% -9.6% ± 7.4 -0.5% ± 8.8% 

Lifetimes 
case 1 

2% ± 46% 4.5% ± 54% -9.7 ± 34% 32% ± 31 % 28% ± 27% -4.3% ± 18% 

Lifetimes 
case 2 

-19% ± 37% 2.9% ± 48% -29% ± 30% 13% ± 61% 17% ± 14% -7.5% ± 17% 

Table 2: Errors in the posterior NOx  emissions and lifetimes inferred using the 2 inversion methods, using prior lifetimes 
that deviate ±20% from the true lifetimes. Errors are  (calculated as (posterior-true)/true*100%). 

These sensitivity tests show that increasing or decreasing the prior emissions by 20% results in a 
posterior bias of no more than 6% compared to the case with a known prior. This confirms that 
the Bayesian inversion method uses both the prior and the observations e`ectively. Even with 
deviating prior emissions, the Bayesian inversion method still outperforms the Least-Squares 
approach, producing smaller biases and a smaller standard deviation. 
Also when the prior lifetime is varied (Table 2), the Bayesian inversion retrieves posterior 
emissions much closer to the true values than the Least-Squares inversion. 
In practice, when applying the superposition model to real cases, one would typically also have 
some estimate of the prior uncertainty. These uncertainties can be reflected in the values of σₐ,E 
and σₐ,k to prevent the Bayesian inversion from relying too heavily on a potentially inaccurate 
prior. 

Unlike the Least-Squares approach, which fits the line densities directly, the Bayesian method 
balances observational data with prior knowledge. Even if the prior is not perfectly accurate, it 
can still help guide the solution in the right direction, leading to more consistent and reliable 
estimates. 

We appreciate that the reviewer raised this point, as it demonstrates the robustness of the 
Bayesian approach under more realistic conditions. We added this analysis to the supplementary 
material, and now refer to it in the manuscript at the end of section 3.2: 
 “To investigate the sensitivity of our results to deviations in the prior, we conducted an additional 
test. We repeated the OSSEs for both Symcity cases 50 times, introducing a ±20% deviation in 
either the prior lifetime or emissions. The results can be found in section 2 of the Supplementary 
Material. These sensitivity tests show that increasing or decreasing the prior emissions by 20% 
results in a posterior bias of no more than 6\% compared to the case with a known prior.” … “The 
sensitivity tests show that also with deviating prior information, the Bayesian inversion method 
outperforms the Least-Squares approach, producing smaller biases and a smaller standard 
deviation.” 

l. 247 Some more explanation (or maybe a reference) might be needed regarding the rotation and 
re-scaling step. 

We agree, and added some more explanation on this step. We now added the following section 
on this to the manuscript:  
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“For the calculation of the line densities, the TROPOMI NO2 data is first rotated towards the 
eBective wind direction (elaborated in the next section) and re-scaled into grid cells of 0.05x0.05°. 
Specifically, we do this by generating a target grid with a 0.05° × 0.05° resolution, aligned parallel 
to the wind direction at the time of the TROPOMI overpass. The TROPOMI NO2 data are then 
regridded onto this new grid, using weights based on the overlapping areas between the original 
and target grids.” 

l. 264 CAMS NOx data are used for the domain average NOx/NO2 ratio. At what altitude above 
ground? 

We use the boundary layer mean NO and NO2 values for this. We added this to the manuscript. 

l. 275 "The NO2 concentrations (...) never completely decreased to the original levels": I do not 
follow here. Do you mean "increased"? 

The reviewer is correct, we changed this. Also, for more clarity we changed ‘original’ to ‘pre-Covid’ 
here. 

l. 288 What altitude for CAMS OH? Or is it an average weighted by the NO2 profile? 

We use the boundary layer mean OH values for this. We added this to the manuscript. 

l. 319-320 The higher variability of posterior emissions is expected due to uncertainties in their 
derivation. 

We agree with this, but argue that the higher variability is expected because of 1) uncertainties 
(as the reviewer points out), but also 2) because posterior emissions reflect real day-to-day and 
even diurnal variability, whereas prior is inherently less variable because it represents 
climatological emissions. We therefore added the following lines to the manuscript: 

“The monthly average posterior NOx emissions exhibit more variability than the prior. Higher 
variability of posterior emissions is expected because of uncertainties in their derivation. 
Additionally, posterior emissions reflect real day-to-day and diurnal fluctuations, while prior 
emissions are based on climatological averages and are therefore inherently less variable. This 
diBerence between prior and posterior NOx emissions indicates that factors beyond the month 
and day of the week influence the emissions.” 

l. 345 and elsewhere in this paragraph: are the weekend reduction calculated relative to the 
weekly (7-day) average, or relative to Mon-Fri average?  

We agree that this is not completely clear in the text and thank the reviewer for pointing this out. 
The weekend reduction is calculated as the weekend average relative to the Mon-Fri average. We 
added this clarification to this line. 

l. 350-351 I don't see how the higher cold start emissions in winter would reduce the weekend 
e`ect. It would be the other way around since tra`ic emissions are (expected to be) more strongly 
reduced during weekends. Therefore, only residential heating would have to explain the much 
weaker weekly cycle in winter compared to summer. Is this reasonable? What are the relative 
shares of the di`erent sectors in the Paris area? 



6 
 

We thank the reviewer for this comment, and we agree that this section indeed calls for some 
further discussion. The statement about the colds starts that we give now does not explain the 
reduced weekend e`ect in winter. And indeed, in the Paris area, tra`ic has a share of ~50%, and 
residential heating ~15% (AirParif, 2021: https://www.airparif.fr/surveiller-la-pollution/les-
emissions). This is a year-round average, so the tra`ic share and residential heating share are 
closer together in winter, but still residential heating alone can probably not explain the much 
weaker weekly cycle in winter compared to summer.  

We looked further into the cold starts and argue that cold starts in winter dampen the weekend 
e`ect because the diurnal cycle of emissions is di`erent on weekend days than on weekdays (see 
Figure 1 below of the CAMS-TEMPO scaling factors from Guevara et al., 2021). On weekdays, 
people start their car in the early morning, whereas on weekend days the cars are started on 
average later in the morning, closer to the TROPOMI overpass time, and therefore this shows up 
as apparently higher weekend day emissions than otherwise. 

 
Figure 1: CAMS tempo diurnal scaling factors for weekdays and weekend days 

We added this paragraph to the manuscript: 

“In Summer, the decrease in NOx emissions in the weekend is much larger 39% than in Winter 
11%. This is likely because of a higher contribution of tra`ic emissions to the total emissions in 
the Summer months. In Winter the share of tra`ic emissions is smaller because of local 
residential heating and power generation. In Winter, our posterior weekend reduction is lower 
than in the prior inventory. This, again, points to an underestimation of residential heating 
emissions in the prior inventory. Additionally, the weaker weekly emission cycle observed in 
winter could be influenced by the e`ect of vehicle cold starts. On weekdays, vehicles are typically 
started early in the morning, while on weekends, car usage tends to begin later, closer to the 
TROPOMI overpass time. Weekend day emissions could then show up higher than without cold 
starts, dampening the weekly cycle.” 
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Technical / language comments 

l. 6  MicroHH: what does the name stands for? MicroHH is the name of the CDF model itself and 
is to our knowledge not an abbreviation. But for clarity in the abstract, we added that it is a 
computational fluid dynamics model. 

l. 49 "to estimate the NOx and predict CO2 emissions...": not clear why one is estimated and the 
other predicted. You could replace by "estimate NOx and CO2 emissions".  

This has been corrected as suggested. 

Legend of Fig. 1: why "grey arrow"? There are several (apparently) black arrows.  

This has been changed to “black arrows”. 

l. 95 Delete second "on" 

 This has been corrected. 

Fig. 3 Use same distance units (preferably km) for all panels  

The axis units have been changed to km for all panels of Figure 3, as well as Figure 2. 
l. 139 "the observed NO2 columns"  

This has been corrected as suggested. 

l. 152 Make a new sentence "It amounts to..."  

This has been corrected as suggested. 

l. 210 Figure 4b,d (not 4c,d) 

 This has been corrected. 

l. 243 "Computation of..."  

This has been corrected 

l. 244 Remove the first sentence since this step is elaborated in the following paragraph.  

This has been corrected. We removed this sentence and moved the information about the quality 
filtering to the previous section. 

l. 275 "in between"  

This has been corrected. 

l. 317 Missing dot after parenthesis.  

This has been corrected. 

l. 340 Did you really filter data for weekdays? Isn't it for weekends?  

We agree that this was phrased unclearly. We changed the phrasing to “We filtered the data by 
excluding weekends, lockdown periods and the Summer holiday period”. 
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Authors’ response to referee comments #2 regarding ‘An improved Bayesian inversion to estimate 
daily NOx emissions of Paris from TROPOMI NO2 observations between 2018-2023’ by Mols et 
al. (2025). 

The reviewer’s comments are in black, the authors’ replies in blue 

 

Reviewer #2 

 

Title: An improved Bayesian inversion to estimate daily NOx emissions of Paris from 
TROPOMI NO2 observations between 2018-2023 

Author(s): Alba Mols et al. 

MS No.: egusphere-2025-49 

General Comments 

Mols et al. introduce a Bayesian inversion method which determines urban 
NOx emissions at daily scale from along-wind line densities. These line densities are 
produced by integrating TROPOMI NO2 vertical column densities in the cross-wind 
direction. The study first shows that a simple forward model can represent the 
relationship between emissions at each cell and the retrieved line densities. Then, a 
Bayesian approach is introduced where the inversion of this forward model with 
measured line densities is used to find emissions. Generally, the spatial distribution of 
NO2 depends on both lifetime and emissions. A significant advantage of this study’s 
approach is the incorporation of prior information on lifetime and emissions into the cost 
function of the inversion. These priors avoid the overestimation of emissions due to 
unrealistic representations of the lifetime. The above method is shown to prevent the 
overfitting of a simpler least-squares inversion, which overpredicted emissions 
compared to simulated data. The determination of NOx emissions over Paris between 
2018-2023 illustrates interesting eSects due to the COVID-19 lockdowns, the low-
emission zone, and temperature. The diSerences between the findings of Lorente et al. 
and this study are discussed well. The idea is interesting. I recommend publication after 
attention to the items below. 

We thank the reviewer for their insightful comments and suggestions. The points raised 
have contributed a lot to improving the clarity and quality of the manuscript. Please see 
below for replies to the specific comments. 

Major comments 

• The assumption that the TROPOMI retrieval is accurate enough to support the 
authors’ analysis should be further explored. The role of a number of resolution 
dependent aspects of the a priori used in retrievals that would result in systematic 
biases between city centers and their surroundings have been reported in the 
literature. It is important to note that these biases always reduce gradients 
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between peaks in urban plumes and their surroundings. They are not simple 
random uncertainties. Examples are listed in the references below. 

Using low-resolution input in AMF calculations can lead to "resolution dampening," 
particularly when surface albedo (~50 km) and a priori NO₂ profiles (~100 km) are much 
coarser than the TROPOMI NO₂ pixel (~5 km). However, here we use TROPOMI v2.4, which 
incorporates high-resolution (0.125°) surface albedo from the DLER database (Tilstra et 
al., 2023) and high-resolution (0.1°) a priori NO₂ profiles from CAMS (Douros et al., 2021). 
These improvements mitigate concerns about insuSicient spatial detail. For example, 
Lange et al. (2023) demonstrated that the v2.3 retrieval using CAMS 0.1° profiles (IUP 
2.02.02.01 REG) showed strong agreement with AirMAP NO₂ columns in the Ruhr Area. 
Similar performance is expected over Paris. A corresponding clarification has been 
added at the end of the introduction. 

Nevertheless, errors in the NO2 retrieval are indeed not exclusively random. We recently 
investigated the issue in Rijsdijk et al. (2025) and found that there likely is a modest 
degree of spatial error correlation stemming from the surface albedo climatology 
extending over at least 2 TROPOMI pixels. We have accounted for this in Eq. (6), where we 
introduce an uncertainty on top of the MicroHH-simulated NO2 columns. This uncertainty 
that we assign has a random part (originating from measurement noise) and a systematic 
part (accounting from AMF uncertainties). The systematic part is correlated between 
adjacent cells, with a Gaussian-like shape between adjacent cells with a spatial 
correlation length (where the correlation falls to 1/e) of 7km. We added this last 
clarification to the manuscript in the description of Eq. 6. 

• There are many variations of the fitting approach described by Lorente et al in the 
literature that also aim to reduce the same biases in lifetime and emissions this 
paper aims to reduce. The paper should include a more complete summary of 
these approaches and their strengths and weaknesses relative to the stated goals. 
Recent papers from De Foy, et al. Liu et al, and Zhu et al. are examples, but there 
are many others. 

We have expanded the discussion in the introduction to include a broader range of recent 
literature on satellite-based estimation of NOx emissions and lifetimes. However, we 
emphasize that the purpose of this study is not to provide a comprehensive review of 
existing methods, but to demonstrate and evaluate a specific, observation-driven 
approach. A full methodological comparison is beyond the scope of this paper. 

The introduction was extended as follows: “These methods have nonetheless been 
evaluated using synthetic data, with studies such as De Foy et al. (2014) and Liu et al. 
(2022) showing that inferred NOx emissions and lifetimes remain broadly consistent with 
the known model input. In a complementary approach, Zhu et al. (2022) inferred long-
term changes in NOx lifetime from decadal OMI NO2 observations, using machine 
learning to relate NO2 columns to OH concentrations.” 

• The paper rightly identifies correlation between NO2 concentration (and 
emissions) and lifetime as key. It should report on trends in the lifetime with 
reductions in NO2. These are likely of the same magnitude as the emission 
reductions but are nonlinear as shown by Zhu et al. (and others). Also, the paper 
indicates increases in O3 as an important eSect on lifetime. The authors should 
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compare the eSect of increased ozone to the eSect of diSerences in NO2 and VOC 
at the two comparison points. It is likely that an increased source of OH from O3 
photolysis is the smallest contributor of these eSects, that VOC changes are also 
small and that NO2 changes dominate. 

We appreciate the reviewer’s insightful comment regarding possible lifetime trends in the 
context of changing NOx emissions. Our Bayesian inversion framework jointly retrieves 
NOₓ emissions and an eSective NOₓ lifetime by fitting modeled NO₂ line densities to 
satellite-observed line densities. While this setup captures broad trends, we caution 
against overinterpreting the retrieved lifetime values as chemically precise quantities.  

As demonstrated in our end-to-end test (Table 3 and Figure 4), the lifetime retrievals are 
subject to significant biases --up to 30%-- highlighting the limitations of the method. This 
bias stems from the inherent asymmetry in the inversion sensitivity: the NO₂ line density 
is strongly and directly influenced by the strength of the NOx emissions, whereas the 
lifetime exerts a more subtle control through the dampening of the increase in line 
densities with distance. In practice, the signal from NOx emissions dominates the 
inversion, while the NOx lifetime estimate is more a regularization parameter that 
prevents overfitting than a robust diagnostic of possible changes in atmospheric 
chemistry. 

As suggested by the reviewer, we examined trends in both prior and posterior NOₓ lifetime 
estimates over Paris. The CAMS prior suggests a modest increase in lifetime from 2.9 
hours in summer 2018 to 3.5 hours in summer 2023. In contrast, our posterior (top-down) 
estimates indicate relatively stable NOₓ lifetimes of 2.7 hours for both summers. 

This apparent stability, despite a substantial decline in NOₓ emissions, is consistent with 
the hypothesis of a transition out of the NOₓ-saturated regime, as proposed by Zhu et al. 
(2022) and Johnson et al. (2024). In such a regime, NOₓ reductions can lead to stable or 
higher OH levels due to reduced titration. 

However, AirParif measurements at the EiSel Tower (~300 m altitude) show a ~20% 
decrease in O₃ concentrations and no significant change in NOₓ:NO₂ ratios between the 
Summers of 2018 and 2023. This suggests that while NOₓ reductions would favor a 
shorter lifetime, concurrent decreases in O₃ could partly counteract this by limiting OH 
production. The net eSect on OH --and thus on NOₓ lifetime-- is likely small and falls 
within the uncertainty bounds of our inversion framework. We now include a sub-panel 
in Figure 5 (shown below) showing the time series of prior and posterior NOₓ lifetime 
estimates over Paris to illustrate this point and discuss the implications along the lines of 
the above text at the end of section 4.2.1. 
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• The reported improved performance is based on using the domain average 
lifetime of the simulation as the prior for the inversion. When applying to 
measured TROPOMI data, the prior lifetime is estimated from the average OH 
concentration in CAMS. However, a domain average lifetime is a poor 
approximation to a lifetime that is an explicit non-linear function of NO2. 

We acknowledge that using a domain-average OH concentration is a simplification since 
the eSective NOₓ lifetime exhibits spatial variability across an urban domain (Figure 3). 
However, this simplification is explicitly recognized in our framework: the CAMS-based 
prior is treated as an initial estimate, and we assign substantial uncertainty to it for 
exactly this reason. The role of the prior is to regularize the inversion, not to dictate its 
outcome. The posterior lifetime is ultimately constrained by the satellite NO₂ 
observations and reflects the actual spatial NO₂ distribution more realistically. 

To better support this, we now include in Table 1 the mean and 1-σ spread in NOₓ lifetimes 
from the high-resolution MicroHH simulations, which show about 50% spatial variation 
in lifetime across the domain (see also Figure 3(a) and 3(d)). This spatial spread confirms 
that while there is local variability, the domain-mean value remains a reasonable 
approximation within the context of the uncertainty assigned to the prior.  

Therefore, the inversion corrects for biases in the prior, and the posterior reflects the 
lifetimes consistent with the observed NO₂ gradients, providing a robust estimate of 
eSective NOₓ lifetime over the city. 

• Since the prior is shown to have a significant impact on the inversion, the changing 
controls on lifetime should be discussed in the context of conclusions on 
NOx emissions during diSerent seasons and across long-term trends. 

We agree that the prior lifetime influences the inversion outcome and that the chemical 
controls on NOₓ lifetime are a factor in interpreting seasonal and long-term emission 
trends. As mentioned earlier, we have added a panel to Figure 5 showing the time series 
of both prior and posterior NOₓ lifetime estimates over Paris and include a discussion of 
their relationship. 

Our inversion’s sensitivity to lifetime is inherently weaker than to emissions due to the 
asymmetry in how these two parameters aSect NO₂ line densities. Emissions influence 
the absolute magnitude of the column, while the lifetime modulates the downwind 
gradient more subtly. Our discussion emphasizes that the inversion consistently 
retrieves shorter posterior lifetimes than the CAMS prior in summer months, and lower 
posterior emissions year-round. The fact that both quantities decrease relative to the 
prior strengthens the conclusion of a real and substantial decline in NOₓ pollution over 
Paris from 2018 to 2023. Thus, the seasonal pattern in the posterior relative to the prior 
provides meaningful insight: the inversion's outcome is consistent with a chemically 
evolving atmosphere in which reduced NOₓ emissions contribute both directly and 
indirectly to observed NO₂ concentration trends. 
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Specific Comments 

Line 43: Other methods of simultaneous lifetime/emission derivation have been 
demonstrated and evaluated with satellite measured NO2 columns. A more 
comprehensive summary of the literature and prior analysis is needed here. 

We added the below text to the introduction to better discuss other methods: 

“Research and refinement of inversion methods for estimating NOx emissions and 
lifetimes are crucial, especially for initiatives like the Copernicus CO2M mission (Sierk et 
al., 2021), which will utilize NO2 plumes to enhance CO2 monitoring by more accurately 
pinpointing emission sources. Several studies have quantified NOx emissions based on 
satellite NO2 retrievals by analyzing downwind plumes of NO2 from large sources, using 
inverse modeling computations with atmospheric chemical transport models (CTMs) 
(e.g., Brioude et al., 2013; Cheng et al., 2021; Kurokawa et al., 2009; Krol et al., 2024; Zhu 
et al., 2022). However, because CTMs can present accessibility challenges and require 
significant computational resources, alternative methods that do not rely on CTMs have 
been developed and applied to estimate NOx emissions and lifetimes (e.g., de Foy et al., 
2014; Beirle et al., 2011).” 

Line 115: The ability of the superposition forward model to accurately represent the 
emissions/column relationship is tested in section 2.2. Photolysis representative for 
Riyadh is used in the MicroHH simulation, but the application city is Paris. This is 
confusing. Why was this choice made? Are there any city or latitude specific aspects of 
the model that are not directly transferrable and aSect the interpretation? 

This is a fair point. Ideally, the OSSE would have been conducted under conditions 
representative of Paris. We used the MicroHH simulation for Riyadh primarily for practical 
reasons: it was already available to us and provided a realistic, urban, and polluted 
environment to test the superposition model on synthetic data without requiring 
additional computationally expensive simulations. 

This is also the first time the superposition model is tested against such high-resolution 
synthetic observations. Our goal here is to evaluate whether the model can reproduce 
the relationship between NOx emissions, lifetimes, and NO₂ columns in a controlled but 
realistic setting. For that purpose, we believe the Riyadh case is suitable. 

We acknowledge that diSerences between Riyadh and Paris, such as photolysis rates, 
humidity, and emission characteristics (e.g. the VOC/NOx emission ratios), can aSect 
atmospheric chemistry and thus the details of model performance. That said, the 
fundamental behavior of the model should remain applicable. We also note that the 
winter conditions in Riyadh (case 2) may resemble summer in Paris in terms of 
photochemical regime, suggesting some regime overlap and comparability. While even 
testing the OSSE in multiple cities would have been ideal, it was beyond the scope of this 
study. 

Figure 1: Add description of black arrows; are these wind vectors at diSerent locations 
over Paris? 
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The black arrows are indeed the wind vectors at diSerent locations. We added the 
following line to the caption of figure 1: “The black arrows indicate the wind speed (from 
the north-east)” 

Line 124: This implies that the symcity line densities are spaced by 5 km. In figure 3 c and 
f, The line densities are shown at a closer spacing of ~3 km. 

We are glad that the reviewer spotted this. We indeed made the grid 10 times courser, so 
the initial MicroHH resolution was 300x300m and the coarsened one is 3x3km. We 
corrected this in the manuscript. 

Line 186: “We use a prior lifetime uncertainty sA,k of 30%”. This uncertainty is used for the 
inversion of the forward model described by equations 1 and 2, where k is the chemical 
loss rate constant in units of inverse time. With this wording and notation, it is unclear 
whether sA,k is referring to the uncertainty in the lifetime or in k. Since lifetime is the 
inverse of k, a 30% uncertainty in one value corresponds to a 233% uncertainty in the 
other. Further, the covariance in concentration and lifetime uncertainties is an element 
of the atmospheric chemistry. What are the downsides of not explicitly addressing this 
issue? 

This is indeed the uncertainty in the lifetime of 30%, not in the decay rate. We corrected 
this throughout the manuscript to σA,τ.  

Our superposition model indeed treats lifetime as a separate parameter from emissions 
(and thus concentration), and assigns uncertainties to both independently. This 
simplifies the inversion but may neglect some nonlinearities or feedbacks that exist in 
the real atmosphere. Nevertheless, the simplification keeps our inversion framework 
manageable and remains appropriate for the spatial and temporal scales considered 
here. Also, the assigned uncertainties in emissions and lifetime implicitly capture part of 
this variability, and sensitivity tests confirm the robustness of our results to this 
assumption. 

Line 198: Comment on how appropriate it is to treat the systematic uncertainty in the 
AMF error as random uncertainty used to draw from a normal distribution. At pixels with 
high emissions, the AMF error generally leads to VCDs that are biased low. This could lead 
to improper fitting of forward model parameters at those pixels. 

Please see our response on the first major comment. 

Line 235: Recommended to be reworded. To some readers, this may imply that the 
TROPOMI V2.4.0 product uses CAMS NO2 profiles even though it uses profiles from TM5-
MP at 1° x 1. Emphasize that the product used is the European product described in 
Douros et al. with 0.1° x 0.1° resolution profiles. 

We agree and reworded this paragraph to:  
“We use the European TROPOMI NO2 product that uses CAMS a priori NO2 profiles in the 
air mass factor and averaging kernel calculation. This product is based on the operational 
TROPOMI NO2 (v2.4.0) version, and is described in Douros et al. (2022).” 

Line 238: More context could be provided for the correction of TROPOMI bias. What was 
the existing TROPOMI bias at emission hotspots, and how much of this is corrected for 
with the 30% increase? 
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We included some more details on the TROPOMI bias, as described by Douros et al. 
(2022): 

“Douros et al. (2022) compared the standard and European TROPOMI NO₂ products with 
nine MAX-DOAS instruments, finding an average bias of –31% for the standard product 
and –19% for the European version. The European product reduces the bias by 5–18% at 
most stations and yields up to 30% higher NO₂ columns in emission hotspots, especially 
in winter. This supports its use for NOₓ emission estimates. We note that a bias is not 
necessarily a TROPOMI concern: a persistent low bias over urban areas may also stem 
from representativity diderences: ground-based instruments sample narrow, localized air 
masses, while the TROPOMI pixel averages NO₂ over a larger and more heterogeneous 
area, often smoothing out urban pollution peaks.”  

Line 288: See general comments; this is an area where more discussion of using CAMS 
OH for this purpose is warranted. 

The CAMS 0.4° forecast product is part of the Copernicus Atmosphere Monitoring Service 
and provides global 5-day forecasts of atmospheric composition at approximately 0.4° 
(~40 km) resolution. It includes key chemical species such as NOₓ, NO₂, O₃, CO, and OH, 
among others. Using CAMS OH and NOₓ/NO₂ ratios as priors in our Bayesian inversion is 
justified by their physical coherence, spatiotemporal completeness, and compatibility 
with the scale of the rotated line densities and superposition column model, which 
requires one single eSective NOₓ lifetime. We now include this discussion as requested. 

Line 293: Expand on the justification of using a 30% uncertainty for the prior lifetime 
when the common value is 50%. The current explanation is that 30% encompasses most 
of the expected 50% uncertainty, but is the 50% uncertainty not also a type of standard 
deviation? If not, then clarify this. 

The section that the reviewer is referring to is this:  
“To incorporate the uncertainty in OH concentrations and its impact on the NOx lifetimes, 
we choose a standard deviation of 30% on the prior lifetime (σa,k) This selection aligns with 
the typical range of uncertainty observed in NOx lifetimes, which commonly falls within 
50% (Lorente et al., 2019). By adopting a standard deviation of 30%, we encompass the 
majority of uncertainties within the expected 50% range, while also allowing for larger 
deviations in exceptional cases.” 

We clarify why we choose the value of 30%: 
The previous study by Lorente et al. (2019) that we are referring to here, uses the 50% 
uncertainty on the NOx lifetimes as a strict cut oS. In their method of fitting the 
superposition column model, the lifetime can not vary by more than 50%. In our study, 
we use a prior lifetime uncertainty (σa,k ) of 30%, meaning that 95% (two standard 
deviations) of the lifetimes will fall within a 60% uncertainty, so our Bayesian cost 
function allows for slightly more deviation from the prior than in Lorente et al. (2019), as 
long as this improves the fit enough. 

Table 4 caption: The standard deviation of the posterior is estimated using a specific 
date in the summer. Were other dates tested? The prescribed uncertainties may be 
expected to change throughout the year, such as during winter when the NOx lifetime is 
longer and its absolute uncertainty increases. 
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The reviewer raises a good point, and we agree that using only a single date is not very 
representative. As suggested, we repeated the same Monte Carlo test (50 runs) for 8 
diSerent dates throughout 2022. The results are shown in the table below. 

  Stdev emissions (% 
deviation from mean) 

Stdev lifetime (% 
deviation from mean) 

Current 16/06/2023 15% 13% 
Feb 2022 05/02/2022 2.0% 1.9% 

26/02/2022 0.3% 1.6% 
Apr 2022 11/04/2022 11% 4.0% 

22/04/2022 10% 4.5% 
Jul 2022 04/07/2022 2.9% 2.3% 

11/07/2022 3.9% 2.3% 
Oct 2022 04/10/2022 2.9% 1.9% 

25/10/2022 6.6% 3.2% 
Average 6.1% 3.9% 

 
We do not observe a clear seasonal trend in the posterior error across these dates. This 
is likely because the prescribed uncertainties on the prior lifetimes and emissions (both 
set to 30%) are kept constant throughout the year in our main analysis, and we applied 
the same approach in this Monte Carlo sensitivity test. 

To make the posterior error in our manuscript more representative, we have updated 
Table 4 in the manuscript to show the average posterior errors across these 8 days. 

 

Technical Corrections 

Line 95: Remove repeated “on” 

This has been corrected. 

Line 115: Change “Riaydh” to “Riyadh” 

This has been corrected. 

Figure 3 caption: Should be “symcity” instead of “simcity” for consistency? 

This has been corrected. 

Table 1: Add units to column “Total ENOx” 

Units have been added. 

Line 275: Should this be “never completely increased to their original levels”? 

Indeed, this has been corrected. 
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