Emergent constraints on climate sensitivity and recent record-breaking

warm years

Supplementary Material

S1 Derivations

S1.1 The Two-Layer Energy Balance Model

The one- and two-layer (referred to as one- and two-box) energy balance climate models (Caldeira and Myhrvold, 2013;
Geoftroy et al., 2013; Gregory, 2000; Winton et al., 2010) provide the theoretical framework predicting a relationship between
the change in GMST and climate sensitivity (Jiménez-de-la-Cuesta and Mauritsen, 2019; Nijsse et al., 2020; Tokarska et al.,
2020). The two-layer model consists of two differential equations; with each one describing the temperature evolution over
time in each layer. Physically, the top layer corresponds to the composite of both the atmosphere and the upper ocean, whereas

the bottom layer corresponds to the deep ocean. The model is given by
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where each equation represents the equilibrium energy balance in the top and bottom layers respectively. Here, T is the top
layer temperature anomaly, Tj the deep-ocean temperature anomaly, Q is the radiative forcing, A is the feedback parameter, &
is the ocean heat uptake efficacy, and vy is the ocean heat uptake. The parameters C and Cy are the heat capacities of the upper
and deep oceans, respectively. In the case of there being a radiative imbalance, we can define N as the total rate of change of
energy flux of the system,

N = CdT/dt + CodTy/dt 2)

which physically represents the top-of-the-atmosphere radiative flux which has to leave in order to maintain energetic conserva-
tion. To develop a diagnostic model, we follow the assumptions outlined in Williamson et al., 2018 and Jiménez-de-la-Cuesta
and Mauritsen, 2019, namely that the deep-ocean temperature is constant (7p = 0), and that the upper ocean is in equilibrium
(dT /dt = 0). These assumptions are valid for timescales which are longer than a decade, but shorter than a century. The
diagnostic equations are therefore
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From these equations, we are able to diagnose both climate sensitivity metrics.

S1.1.1 TCR

In the case of a 1 % rise in CO,, the cumulative concentration of CO, will increase exponentially over time. However, due

to the logarithmic relationship between Q and changes in the concentration of CO, (Huang and Bani Shahabadi, 2014), the



resulting temporal relationship of Q is linear. Therefore, a given n-fold increase in CO, will always occur at a set time after
t = 0. Calculation of the TCR uses a doubling of CO, as a reference, therefore, the time taken for a doubling of CO, to happen,

trx, is given by

tyx = ]nl(n]% = 69.67yr. )
at which time the forcing is exactly Q(#>x) = Qsx. By defining the TCR as the change in temperature when Q(z) = Q»x, We
obtain
TCR = 22 (5)
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We also observe that the relationship between any change of Q and the resulting change in 7 is linear. % = (1—¢&y)~! which

allows us to write the TCR as
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where s = Q> /AQ is the emergent proportionality constant, referred to as the forcing parameter. For the purposes of fitting,

we allow for an intercept of the TCR axis to account for model offsetting, so the equation becomes
TCR = sAT + 1, @)

where 7 is an arbitrary constant.

S1.1.2 ECS

An abrupt n-fold increase in CO; results in the radiative forcing resembling a Heaviside step-function, with the instantaneous
increase in forcing to a value Q¢ occurring at ¢t = 0. ECS is normally quoted in terms of a doubling of CO,, where Q¢ = Q.

Since ECS characterises a long term temperature change, the ocean is assumed to be in equilibrium. Therefore
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Using this to elimatatie A from the diagnostic equations, we obtain
AT AT
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where e = £y/Qax is the ocean uptake parameter. Equation (9) has an asymptote at the value AT = 1/se, and then turns
negative for AT > 1/se. As negative ECS values are unphysical, the domain is restricted to ECS < 1/se. By combining both

equations, we can express the ECS in terms of the TCR:

TCR
ECS = ———— 1
s 1 - eTCR (10)

S1.2 Ordinary Least-Squares Linear Regression

The basis for Ordinary Least-Squares (OLS) fitting is well established (e.g., Wofram Mathworld), and the emergent relationships
both have the following linear form:

Yn =a+ bx, (11)

which we model using
f(x)=a+bx (12)

Finding the coefficients a and b involves minimising the least-squares sum

1 N
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where N is the number of data points, and we divide by a factor of N — 2 to account for the number of degrees of freedom. For

our analysis, we are interested in the best fit gradient b and standard error o, of this fit. These are given by
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Here, 02 = var(x) = Zf:’zl (x, —X)?/N is the variance of x,, and Oxy = cov(x,y) = Zf:]:] (x, = X%)(yn — ¥)/N is the covariance

of x,, and y,,, with means of ¥ and j respectively. We assume that best fit gradient follows a normal distribution, with mean b

and variance o-l%

P(b) =
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Using the both the variance in the datasets as well as the uncertainty in the best-fit parameters, we can calculate the resulting

or(x) =s1/1 +%+ ();V;f)’ a7

which represents the uncertainty in a prediction using our model f(x) for a known value of x

o - G 4007),
2770'% (x) ZO—J% (x)

uncertainty of our model f(x), o:

P(ylx) = (18)

Finally, to generate the full PDF of our constrained variable y, we must make use of a known value of our observable. This
can be characterised in terms of a PDF for x, P(x). Assuming that this also follows a normal distribution centred on x,ps With
a known error, oy, , then P(y), can be calculating by integrating the product of the two the probabilities across the entire

domain of x:

P(y) = / " POyl P(x)dx (19)



S2 Robustness of TCR

S2.1 TCR Dependence on Start Year, Window size and End Year
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Figure S1: TCR robustness checks based on sensitivity to various parameter choices. Unless stated otherwise, the central start
year is 1980 and all years up to 2024 are used. Except for the two central plots, where the smoothing window is varied, the top
three plots use a default 5-year smoothing window, while the bottom three use an 11-year window. Left: Varying central start
year from 1970 until 2008. Middle: Varying smoothing window from 3 to 21 years. Right: Varying central end year from
1990 to the latest year possible for the given smoothing window (i.e., 2022 for the 5-year window and 2019 for the 11-year

window).

S2.2 TCR Dependence on SSP Run

S2.2 shows the dependence of the final TCR result on the SSP scenario.

SSP Scenario Number of Models TCR 1975-2019 [K] TCR 1975-2024 [K]

SSP1-2.6 28 1.74 (1.23-2.24) 1.75 (1.28-2.22)
SSP2-4.5 31 1.76 (1.21-2.30) 1.81 (1.28-2.33)
SSP3-7.0 27 1.76 (1.21-2.31) 1.83 (1.31-2.33)
SSP5-8.5 30 1.75 (1.22-2.27) 1.76 (1.26-2.27)

Table S1: TCR estimates by SSP scenario, showing median and 5-95% range for each period.



S2.3 TCR Dependence on Ensemble Member Combinations
Figure S2 shows the TCR result for a sample of 10000 of the 2.92 x10'! combinations of available ensemble member runs.
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Figure S2: Model realisation permutations using Monte Carlo Simulations.
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