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Abstract. The ubiquity of the fundamental characteristic of turbulence, intermittency, is increasingly recognized in many fields.

The multifractal analysis of various turbulence data, particularly from lab experiments and atmospheric sensed data, has rather

constantly yielded a multifractality index of α≈ 1.5 and a mean codimension of C1 ≈ 0.25, but with a given uncertainty. To

reduce this uncertainty and understand the dynamical origin of these estimates, the multifractality of turbulence is investigated

with the help of the deterministic Scaling Gyroscope Cascade (SGC) model. In this study, the forced SGC model is run with5

cascade levels of up to 14 and a duration of 2.5× 104 large eddy turnover times. These simulations exhibit extreme spatial-

temporal intermittency. Multifractal analysis confirms the empirical values α≈ 1.5,C1 ≈ 0.25, showing almost independence

on the forcing. It raises doubts about the Log-normal model, at least for hydrodynamic turbulence. Besides, the remaining

uncertainty in multifractality resulting from the discrete numerical simulation method is investigated.

1 Introduction10

Batchelor and Townsend (Batchelor and Townsend, 1949) described the strong inhomogeneity of turbulence, which high-

lights a limitation of homogenoeus approaches, in particular in Kolmogorov’s K41 theory (Obukhov, 1941), which assumes a

temporally and spatially uniform energy dissipation rate, ϵ, in turbulent flows. Although intermittency was initially regarded

as a fundamental nonlinear dynamics phenomenon specific to natural turbulence (Schertzer and Lovejoy, 1985), it has since

emerged as a prevalent feature across various fields (Elaskar and del Río, 2023; Zhou, 2021; Schleiss et al., 2011). Today,15

intermittency refers to a dynamic state in which activity of increasing intensity is concentrated in ever-smaller fractions of

space-time.(Zhang et al., 2023; Milan et al., 2013). This phenomenon in turbulence is observed as rapid and random fluc-

tuations in flow variables, particularly in velocity and flux of energy. Various geometrical theories, including fractal analysis

(Mandelbrot, 1967; Losa et al., 2016), have been widely used to quantify the structural complexity and spatial variability of tur-

bulent flows (Procaccia, 1984; Sreenivasan and Meneveau, 1986). The log-normal model (Kolmogorov, 1962; Obukhov, 1962)20

is commonly used to characterize the intermittency, but it has shown deviations when compared to other consistent alternative

models (Mandelbrot, 2005). Given that scaling invariance/self-similarity in this extreme nonlinear behavior can be analyzed

through multifractality (Schertzer and Lovejoy, 2004), the Universal Multifractal (UM) framework (Lovejoy and Schertzer,
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2018; Schertzer and Lovejoy, 2011) is considered a powerful tool for characterizing intermittency. And the log-normal model

has been criticized for its limitations in representing universal behavior (Schertzer and Lovejoy, 1991). Empirical UM param-25

eters estimated from various turbulence data, especially from laboratory experiments and atmospheric in-situ/remotely sensed

data (Schmitt et al., 1992), suggest a multifractality index of α≈ 1.5 and a mean co-dimension of C1 ≈ 0.25, as opposed to

the α = 2 in the log-normal model.

Despite the extensive research on stochastic cascades in relation to intermittency, the relationship between stochastic cas-

cades and the deterministic Navier-Stokes (NS) equations remains contentious. The multifractality of intermittent behavior30

generated by the deterministic NS equation is therefore of significant importance in understanding the characteristics of in-

termittency and its role in turbulence. Given its proximity to Navier-Stokes equations, the Scaling Gyroscope Cascade (SGC)

model (Chigirinskaya and Schertzer, 1997; Schertzer et al., 1997; Chigirinskaya et al., 1997, 1998) has been chosen to inves-

tigate the multifractality of intermittency. Furthermore, simulations of the forced SGC model using a 4th-order Runge-Kutta

scheme over 12 cascade steps provided preliminary estimates of Universal Multifractal (UM) parameters consistent with those35

derived from empirical data. To further investigate quantitatively turbulence intermittency, we perform a large set of forced

SGC simulations over a slightly larger inertial range and discretized using a Semi-implicit Euler numerical scheme to account

for the physical properties. The structure of this paper is as follows: Section 2 provides a brief review of the SGC model,

supplemented by Appendix A. Section 3 briefly summarizes the UM framework. The details of the simulation are presented

in Section 4. The multifractal energy flux analysis is carried out within the UM framework in Section 5. Finally, Section 640

concludes with a summary and discussion of the results.

2 Scaling Gyroscope Cascade model

Many turbulence models (Meneveau and Sreenivasan, 1987; Jensen et al., 1991; Majda and Lee, 2014) have been employed

to investigate turbulence intermittency. However, the SGC model has the unique feature of being based on a parsimonious45

discretisation of Bernoulli form of the Navier Stokes equations and of preserving most of their structural properties, such as the

detailed energy conservation by triad interactions in Fourier space. It is a space-time model, whereas the shell model ((Jensen

et al., 1991)), to which SGC can be reduced, has only scales but no space. Appendix A provides supplemental information on

the SGC model. SGC is discretised along a hierarchy of wave-numbers km = 2m,0≤m≤ n, where n is the total number of

cascade steps, which are indexed by m:50

(
∂

∂t
+ vk2

m)ui
m = km+1[|u2i

m+1|2− |u2i+1
m+1|2] + (−1)i+1kmui

mu
a(i)
m−1 (1)

where ui
m is velocity of eddy in location i at step m (0≤ i≤ 2m− 1); a(i) is location index of its parent eddy which is the

integer part of i
2 . It provides the temporal evolution of velocity field ui

m, which results from the interactions with parent eddy

u
a(i)
m−1 and two sibling eddies u2i

m+1 and u2i+1
m+1.

The system energy is computed by E(t) =
∑m=n

m=0

∑2m−1
i=0 |ui

m(t)|2. Due to the specific spatial structure of SGC model, the55

energy spectrum E(km, t) is calculated by E(km, t) = 1
2m

∑2m−1
i=0 |ui

m(t)|2.
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3 Universal Multifractal framework

The extreme variability observed across all scales of a conservative process, i.e. with strict scale invariance of the mean, can

be effectively characterized in the UM framework (Schertzer and Lovejoy, 1997) with only two parameters that are strongly

physically meaningful. This results from a broad generalisation of the central limit theorem of additive process to multiplicative60

processes: under quite general conditions ‘universal multifractals’ are stable and attractive under normalised multiplications.

Due to the Mellin transform (Schertzer and Lovejoy, 2011), the variability of a stochastic multifractal field ϵλ at resolution

λ (= outer scale L/scale of observation ℓ) can be equivalently defined, as well as their scaling, by the hierarchy of statistical

moments < ϵq
λ or its probability distribution to exceed an arbitrary threshold λγ :

⟨(ϵλ/ϵ1)⟩q ≈ λK(q) ⇔ Pr(ϵλ/ϵ1 ≥ λγ)≈ λ−c(γ) (2)65

where the arbitrary singularity γ measures the algebraic rate of divergence of ϵλ with the increasing resolution λ, c(γ)≥ 0 is

its statistical codimension, K(q) the scaling moment function. The Mellin transform relating the statistical moments and the

probability distribution reduces to a Legendre transform for their exponents c(γ) and K(q), as inferred in a rather deterministic

framework by (Parisi and Frisch, 1985):

K(q) = sup
γ

(qγ− c(γ))⇔ c(γ)) = sup
q

(qγ−K(q)) (3)70

In the UM framework, the scaling exponents K(q) and c(γ) for a conservative field are fully characterized by the multi-

fractality index α and the mean intermittency codimension C1:

K(q) =
C1

α− 1
(qα− q); (4a)

c(γ) = C1(
γ

C1α′
+

1
α

)α′ ; 1 =
1
α

+
1
α′

. (4b)

C1 ≥ 0 is both the codimension of the mean field and its singularity. It measures the average clustering. When C1 = 0, the field75

is homogeneous, i.e. without intermittency. The multifractality index α (0≤ α≤ 2) quantifies how fast intermittency evolves

when the singularity deviates from C1. α = 0 indicates a monofractal field, i.e. with C1 as a unique positive singularity, while

α = 2 corresponds to the Log-normal model (Yaglom, 1966).

UM parameters can be estimated with the help of the Double Trace Moment (DTM) technique (Lavallée et al., 1993), or

more directly by the scaling of the qth statistical moments of the normalized η-power ϵ
(η)
λ of the field (Schertzer and Lovejoy,80

1989), which is only approximated by DTM:

ϵ
(η)
λ =

ϵη
λ

< ϵη >
(5)

whose qth moment scaling exponent is:

K(q,η) = K(ηq)− qK(η) = ηα C1

α− 1
(qα− q). (6)

where the last equation results from Eq.4 and states that α is the logarithmic slope of K(q,η) vs. η and the intercept with85

Log(η) = 0 yields the C1 parameter value.
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4 Simulation parameters

It is easy to check that UM formally admits a homogeneous ‘K41’ scaling as a stationary solution (Eq.1):

|ui
m|2 = E(ki

m)ki
m ≡ E(km)km ≈ ε2/3k5/3

m . (7)

However, it is strongly unstable and therefore interesting to take it as the velocity ui
m at time t = 0, denoted as ui

m(0). The90

initial energy spectrum is Kolmogorov spectrum as E(k,0) = CKε
2
3 k−

5
3 , with both the Kolmogorov constant Ck and ε set

to be 1. From the assumed energy spectrum E(km,0), the initial velocities ui
m(0) are derived by |ui

m(0)|2 = E(ki
m,0)ki

m ≡
E(km,0)km. The energy dissipation due to the molecular viscosity ν becomes dominant at the Kolmogorov scale ℓK whose

local Reynolds number is of unity order Re(ℓK) = uℓK
ℓK

ν = uℓK

νkK
≈ 1.

It is numerically assumed to occur two steps prior to the maximal cascade step n. The time step ∆t is limited by the stability95

of computational techniques employed in the numerical simulations. In our study, the SGC model is discretised using the Semi-

implicit Euler method, also known as Störmer-Verlet and symplectic-Euler method (Hairer et al., 2006): the linear part is fully

implicit and therefore unconditionally stable, while the nonlinear part is explicit and possibly unstable. This method preserves

the volume conservation in phase-space elements of the physical system. It is commonly used in numerical simulations of

rigid bodies due to its enhanced stability compared to traditional explicit Euler schemes. Hence, the SGC model is discretely100

interpolated using the Semi-implicit Euler schemes, as the SGC is derived from the gyroscope equation-Euler’s equation for a

rigid body.

The energy flux Π(km) through the wave number km refers to the energy transfer rate T (k,t) = ∂E(k,t)
∂t −2νk2E(k,t) from

all wave numbers k < km to the other wave numbers k ≥ km. It is computed using the following formula:

Π(km) =
n∑

j=m

T (kj , t)∝
n∑

j=m

2m−1∑

i=0

ui
j(t) · [kj+1[|u2i

j+1(t)|2− |u2i+1
j+1 (t)|2] + (−1)i+1kju

i
j(t)u

a(i)
j−1(t)]. (8)105

The parameter values for the two cases discussed in this paper are displayed in Table 1. Due to the structure of SGC model,

the computational cost increases exponentially with the number of cascade steps, which are respectively 13 in Case 1.x (x=1,10)

and 14 in Case 2.x (x=1,10).

Table 1. Preliminary parameters of Case 1 and Case 2

The total number of cascade step n Kolmogorov scale ℓK Time step ∆t Cascade step of energy flux m

Case 1 13 11 0.00015 7
Case 2 14 12 0.0001 8

Since adding forcing maintains a quasi-equilibrium state of turbulence instead of decaying fluctuations, the forced SGC

model is simulated to obtain quasi-steady fluctuations for an arbitrary simulation duration. There are two fundamental ap-110

proaches to forcing (Sullivan et al., 1994): deterministic forcing and stochastic forcing (Eswaran and Pope, 1988). Numerical

evidence confirms that the behavior of the forced SGC model is not significantly dependent on the type of external forcing

(Chigirinskaya and Schertzer, 1997). Therfore, a constant forcing f is simply injected at the largest scale of the SGC model.
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However, this constant forcing should not exceeds the dissipation rate by viscosity (f ≫ vk2
mui

m), otherwise it leads to an

unstable state or even worse explosion of the model.115

To be more specific, the duration of the quasi-equilibrium simulation tf is expressed in terms of the initial largest eddy

turnover time (Frisch, 1995):

τe =
L(0)

(E(0))1/2
(9)

that allows significant distortion of this eddy to transfer energy, and whose scale can be estimated by the integral scale L(t) =∫ kmax
0 k−1E(k,t)dk∫ kmax

0 E(k,t)dk
(Batchelor, 1953). L(t) measures the correlation distance between two points in terms of distance or time120

characterizing energy containing scale.

The key parameters of the simulations are listed in Table 2. External forcings fj(j,= 1,10) are limited to the range of 0.1

to 1.0 as a result of the assumed system energy. The simulation duration is displayed in terms of initial eddy turnover time τe

with time frame tf reaching 2.5× 104 when no major instability occurs, which is the case for j ≤ 5

Table 2. Parameters of Case 1 and Case 2 simulated by Semi-implicit Euler method

f 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Case 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10
tf 25000 25000 25000 25000 25000 19501 25000 25000 11029 8138

Case 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10
tf 25000 25000 25000 25000 25000 25000 18929 23910 24118 8288

5 Results125

In Cases 1.01–1.04, intermittency is observed once the extreme values from the initial transitional phase towards quasi-

equilibrium states are removed. Intermittent energy flux gradually declines in Cases 1.01-1.03, because the injected forcing is

insufficient to sustain system energy loss over a long time run. On the contrary, the forcing seems too large for cases 1.06, 1.09

and 1.10 Example cases are shown in Fig.1. Similar results were observed for Cases 2.j whose cascade step number is 14.130

Figure 1. Three example cases of energy flux. Left: Π(k7, t) of Case 1.03; Middle: Π(k7, t) of Case 1.07; Right: Π(k7, t) of Case 1.09.

Prior to characterising intermittency through UM analysis, it is necessary to choose an appropriate sample size to ensure a

given reliability of statistical estimates for codimension and scaling moment function, as empirical statistical analysis typically

relies on finite samples not on infinite ones. Case 1.05 is used as an example. Due to the initial transitional phase towards

5
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quasi-equilibrium states, UM analysis is performed after time 2800. UM parameters are determined by averaging the outcomes

of three statistical orders η = 0.9,1.5,2. The estimates obtained over the three sample sizes 512, 1024, and 2048 are shown in135

Fig. 2. UM parameters of sample size 512, 1024 and 2024, exhibit relatively small variance. It suggests that sample size 1024

is sufficient to capture the multifractality. Hence, sample size 1024 is selected for the multifractality investigation of energy

flux in the following case.

Figure 2. Ensemble analysis of Case 1.05 whose energy flux is from 2800 to 2.5× 104. Left column: Size 512 (α = 1.44,C1 = 0.27);

Middle column: Size 1024 (α = 1.45,C1 = 0.28); Right column: Size 2048 (α = 1.42,C1 = 0.25).

The multifractal properties of energy flux derived from the numerically simulated SGC model with large cascade steps are

carried out. UM parameters are estimated over the temporal scenario, excluding the initial transition phase. Cases in which140

the injected excessive forcing causes system instability and prevents reaching the expected planned time frame, such as those

with f = 0.9 and f = 1, are excluded from discussion. A summary of detailed parameters and multifractal index regarding

UM analysis is listed in Table 3. The multifractal index α for cascade step 13 ranges from 1.42 to 1.55 with a mean value of

α = 1.48 and mean intermittency codimension C1 falls between 0.24 to 0.28 with an average of C1 = 0.25. For cascade step

14, the averaged multifractal index is 1.49, whereas the corresponding C1 is 0.24. The agreement between the UM parameters145

derived from ensemble analysis in this study and the empirical UM parameters for atmospheric turbulence rather confirms that

the aforementioned estimates of the universal multifractal are indeed universal for turbulence..

Table 3. UM parameters of Case 1 and Case 2 simulated by Semi-implicit Euler method.

f 0.1 0.2 0.3 0.4 0.5 0.6 0.8
Case 1.01 1.02 1.03 1.04 1.05 1.06 1.08
tf 3500-25000 1400-25000 2000-25000 1800-25000 2800-25000 1800-18000 1500-25000
α 1.55 1.42 1.48 1.42 1.45 1.52 1.49
C1 0.24 0.24 0.24 0.24 0.28 0.25 0.25

Case 2.01 2.02 2.03 2.04 2.05 2.06 2.08
tf 4200-25000 4200-25000 3000-25000 4000-25000 3500-25000 2050-25000 1500-22500
α 1.52 1.44 1.57 1.31 1.50 1.52 1.60
C1 0.24 0.23 0.27 0.22 0.23 0.24 0.22
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For UM parameters stability resulting from the discretization approaches, we proceeded to the same scheme (e.g. the same

cascade step, sample size, and excluding the initial ad-hoc phase), but using the classic Euler method. A comparative analysis

between UM parameters obtained with the Semi-implicit Euler method and the classic Euler methods is carried out. But the150

classic Euler method limits the injected force to a maximum value of f = 0.6 to maintain computation stability. The difference

in UM parameters between the two numerical methods is presented in the box plot in Fig. 3. ∆α is defined as α obtained by the

Semi-implicit Euler method minus α obtained by the classic Euler method. ∆C1 is defined in the same way. The results indicate

that the difference in UM parameters between the two numerical methods is slightly low for cascade step 13, showing a more

concentrated distribution. In contrast, cascade step 14 displays a broader distributed pattern, but the difference is acceptable. It155

suggests that the potential impact of numerical simulation schemes on the UM parameters can be disregarded.

Figure 3. The difference of UM parameters caused by numerical methods. Left 1: ∆α; Left 2: Box plot of ∆α ; Left 3: ∆C1; Left 4: Box

plot of ∆C1 .

6 Conclusions

Within the framework of Universal Multifractal, the forced SGC model with constant forcing at a low wave number is used to

investigate the phenomenon of multifractal intermittency. The large cascade levels of simulated SGC model, with eddy turnover

times reaching 2.5×104, are set to 13 and 14 due to its structure. The semi-implicit Euler method, which effectively preserves160

the properties of rigid bodies, is used as the discretization scheme. To begin with, temporal-spatial intermittency is confirmed in

all cases by examining the energy fluxes. Following that, the multifractal analysis is performed after excluding the initial ah-hoc

states. For cascade step numbers 13 and 14, the UM parameters estimated from the UM framework are α = 1.47,C1 = 0.25

and α = 1.48,C1 = 0.24, respectively, demonstrating good agreement with empirical data and challenging the Log-normal

model. These results also suggested that the multifractal intermittency is almost independent of the forcing. At the end, a165

comparison between the UM parameters derived from the Semi-implicit Euler method and those obtained by the classic Euler

method is carried out. The instability of UM parameters caused by numerical simulation schemes can be considered negligible.

Importantly, the structural parallels between the SGC model and the Navier–Stokes equations highlight that UM parameters

derived from SGC may be directly relevant to NS turbulence. These results represent a significant step forward, as it would

support the intermittency of real turbulent flows. Finally, further investigation of enstrophy scaling remains crucial, given the170

ongoing debates on its relationship with energy dissipation.
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Code availability. Codes are available upon reasonable request.

Data availability. Data are available upon reasonable request.

Appendix A: Scaling Gyroscope Cascade (SGC) model

SGC model is simplified as a result of nonlocal orthogonal approximation of NS equation in Bernoulli form. It satisfies gyro-175

scope equation

dM

dt
= M ∧Ω, (A1)

where M is the angular momentum of a rigid body; Ω is its rotation; ∧ is the vector product. Velocity and vorticity are

analogous to angular momentum M and rotation Ω. In the imcompressibility condition div(u(x, t)) = 0, Bernoulli form of

NS equation is180

(
∂

∂t
− v∆)u(x, t) = u(x, t)∧ω(x, t)− grad(α∗); (A2a)

ω(x, t) = curl(u(x, t)) (A2b)

where ω(x, t) is vorticity and α∗ is kinematic pressure. Projector P (∇) instead of pressure gradient Pi,j(∇) = δi,j−∇i∇j∆−1

(δi,j is Kronecker′s δ) imposes the imcompressibility condition restriction on advection term, classic pseudospectral tech-

nique typically employed in DNS (Pope and Pope, 2000; Canuto et al., 2012), and Eq.A2 in Fourier space turns into:185

(
∂

∂t
+ vk2)û(k, t) = P̂ (k) ·

∫

p+q=k

û(p, t)∧ ω̂(q, t)ddp, (A3)

where ω̂i
m = iki

m∧ûi
m. Here, the velocity-vorticity vertex of triad interaction (k,p,q) only exits under orthogonality condition

k · û(k, t) = 0. It yields the orthogonality of vorticity-velocity vertex interaction:

|k| ≪ |p| ≈ |q|,p⊥ k =⇒ (û(p)∧ ω̂(q))⊥ k (A4a)

|p| ≪ |k| ≈ |q|, û(p) ∥ k =⇒ (û(p)∧ ω̂(q))⊥ k,(û(q)∧ ω̂(p)) ∥ k. (A4b)190

Then Eq.A3 turns into:

(
∂

∂t
+ vk2)û(k, t) =

∫

|p|>λk|k|

(û(p)∧ ω̂(q))ddp + (
∫

|p|≤λ−1
k |k|

û(p)ddp)∧ ω̂(q). (A5)

Since the triad interaction of SGC model is chosen as its tree structure (ki
m,k2i

m+1,k
2i+1
m+1), which has orthogonality constraints,

Eq. A5 becomes

(
∂

∂t
+ vk2)ûi

m = û2i
m+1 ∧ ω̂

2i

m+1 + û2i+1
m+1 ∧ ω̂

2i+1

m+1 + ûa(i)
m−1 ∧ ω̂i

m. (A6)195
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The symmetric property of the gyroscope equation yields u(k, t) = ik∧ω̂(k,t)
k2 . And the orthogonality leads to k2i+1

m+1 =−k2i
m+1,

which is the last orthogonality triad. Following the matrix representation of Eq.A6 considering orthogonality, discrete SGC

model is as follow:

(
∂

∂t
+ vk2

m)ui
m = km+1[|u2i

m+1|2− |u2i+1
m+1|2] + (−1)i+1kmui

mu
a(i)
m−1 (A7)

where km is wave number at layer m (0≤m≤ n); km+1 is wave number at layer m + 1; ui
m is velocity of eddy in location200

i at layer m (0≤ i≤ 2m− 1); a(i) is location index of its mother eddy which is the integer part of real i
2 . According to the

invariant of gyroscope equation, turbulence energy corresponds to the square of the angular momentum M2 conserves.

Appendix B: UM analysis of SGC model simulated by classic Euler method

The multifractal intermittency of SGC model which is numerically simulated by classic Euler method is presented in Table

A1. The UM parameters are estimated by using the same sample size and removing the same initial ah-hoc phase as the205

Semi-implicit Euler method.

Table A1. UM parameters of Case 1 and Case 2 simulated by classic Euler method with the sampling size of 1024.

f 0.1 0.2 0.3 0.4 0.5 0.6
Case 1.01 1.02 1.03 1.04 10.5 1.06
tf 3500-25000 1400-25000 2000-25000 1800-25000 2800-25000 1800-18000
α 1.46 1.29 1.31 1.35 1.45 1.56
C1 0.22 0.24 0.2 0.39 0.27 0.25

Case 2.01 2.02 2.03 2.04 2.05 2.06
tf 4200-25000 4200-25000 3000-25000 4000-25000 3500-25000 2050-25000
α 1.62 1.40 1.55 1.53 1.60 1.16
C1 0.20 0.16 0.29 0.28 0.24 0.17
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